
Introduction to Languages and Computation

George Voutsadakis1

1Mathematics and Computer Science
Lake Superior State University

LSSU Math 400

George Voutsadakis (LSSU) Languages and Computation July 2014 1 / 40



Outline

1 Decidability
Decidable Languages
The Halting Problem

George Voutsadakis (LSSU) Languages and Computation July 2014 2 / 40



Decidability

Limits of Computablity

We investigate the power of algorithms to solve problems.

We demonstrate certain problems that can be solved algorithmically
and others that cannot.

Our objective is to explore the limits of algorithmic solvability.

Why is studying unsolvability useful?

If a problem is known to be algorithmically unsolvable, then we know
that it must be simplified or altered before an algorithmic solution can
be found.
Even if we only deal with problems that are solvable, looking at the
unsolvable can help gain an important perspective on computation.

George Voutsadakis (LSSU) Languages and Computation July 2014 3 / 40



Decidability Decidable Languages

Subsection 1

Decidable Languages

George Voutsadakis (LSSU) Languages and Computation July 2014 4 / 40



Decidability Decidable Languages

Decidable Problems on Regular Languages

We show certain computational problems concerning finite automata
are decidable.
We give algorithms for :

testing whether a finite automaton accepts a string;
whether the language of a finite automaton is empty;
whether two finite automata are equivalent.

We chose to represent computational problems by languages, since we
already have terminology for dealing with languages.

For example, the acceptance problem for DFAs of testing whether a
particular deterministic finite automaton accepts a given string can be
expressed as a language, ADFA. This language contains the encodings
of all DFAs together with strings that the DFAs accept:

ADFA = {〈B ,w〉 : B is a DFA that accepts input string w}.
The problem of testing whether a DFA B accepts an input w is the
same as the problem of testing whether 〈B ,w〉 is a member of the
language ADFA.

George Voutsadakis (LSSU) Languages and Computation July 2014 5 / 40



Decidability Decidable Languages

Decidability of ADFA

Theorem

ADFA is a decidable language.

We simply need to present a TM M that decides ADFA.

M: On input 〈B ,w〉, where B is a DFA and w is a string,
1 Simulate B on input w .
2 If the simulation ends in an accept state, accept. If it ends in a non

accepting state, reject.

We look at a few implementation details:
The input 〈B,w〉 is a representation of a DFA B and of a string w . B’s
representation may be a list of its five components, Q,Σ, δ, q0 and F .
M first determines whether it properly represents a DFA B and a string
w . If not, M rejects.
Then M carries out the simulation directly. It keeps track of B’s
current state and B’s current position in the input w by writing this
information down on its tape.

George Voutsadakis (LSSU) Languages and Computation July 2014 6 / 40



Decidability Decidable Languages

The Language ANFA

Let ANFA = {〈B ,w〉 : B is an NFA that accepts input string w}.
Theorem

ANFA is a decidable language.

We present a TM N that decides ANFA.

We could design N to directly simulate an NFA instead of a DFA.

Instead, we have N use M as a subroutine.

Because M works with DFAs, N first converts the input NFA to a
DFA before passing it to M.
N: On input 〈B ,w〉, where B is an NFA, and w is a string,

1 Convert NFA B to an equivalent DFA C , using the procedure for this
conversion presented previously.

2 Run the TM M of the preceding slide on input 〈C ,w〉.
3 If M accepts, accept; otherwise, reject.

Running TM M in Stage 2 means incorporating M into the design of
N as a subprocedure.

George Voutsadakis (LSSU) Languages and Computation July 2014 7 / 40



Decidability Decidable Languages

The Language AREX

Consider

AREX = {〈R ,w〉 : R is a regular expression that generates string w}.

Theorem

AREX is a decidable language.

The following TM P decides AREX.

P : On input 〈R ,w〉, R a regular expression and w a string,
1 Convert regular expression R to an equivalent NFA A by using the

procedure for this conversion given previously.
2 Run TM N of the preceding slide on input 〈A,w〉.
3 If N accepts, accept; if N rejects, reject.

George Voutsadakis (LSSU) Languages and Computation July 2014 8 / 40



Decidability Decidable Languages

Emptiness Testing

In the next proof we must determine whether a finite automaton
accepts any strings at all.

Let EDFA = {〈A〉 : A is a DFA and L(A) = ∅}.
Theorem

EDFA is a decidable language.

A DFA accepts some string iff reaching an accept state from the start
state by traveling along the arrows of the DFA is possible.

To test this condition we can design a TM T that uses a marking
algorithm similar to that used for graphs.
T : On input 〈A〉, where A is a DFA,

1 Mark the start state of A.
2 Repeat until no new states get marked:

3 Mark any state that has a transition coming into it from any state that

is already marked.

4 If no accept state is marked, accept; otherwise, reject.

George Voutsadakis (LSSU) Languages and Computation July 2014 9 / 40



Decidability Decidable Languages

The Language EQDFA

The next theorem states that determining whether two DFAs
recognize the same language is decidable.

Let EQDFA = {〈A,B〉 : A and B are DFAs and L(A) = L(B)}.
Theorem

EQDFA is a decidable language.

To prove this theorem we use emptiness testing.

We construct a new DFA C from A and B , where C accepts only
those strings that are accepted by either A or B but not by both.

Thus, if A and B recognize the same
language, C will accept nothing. The
language of C is

L(C ) = (L(A)∩L(B))∪(L(A)∩L(B)).

This expression is called the symmetric difference of L(A) and L(B).

George Voutsadakis (LSSU) Languages and Computation July 2014 10 / 40



Decidability Decidable Languages

Algorithm for EQDFA

The symmetric difference is useful because L(C ) = ∅ if and only if
L(A) = L(B).

We can construct C from A and B with the constructions for proving
the class of regular languages closed under complementation, union,
and intersection. These constructions are algorithms that can be
carried out by Turing machines.

Once we have constructed C we can use emptiness testing to test
whether L(C ) is empty. If it is empty, L(A) and L(B) must be equal.

F : On input 〈A,B〉, where A and B are DFAs,
1 Construct DFA C as described.
2 Run TM T on input 〈C 〉.
3 If T accepts, accept. If T rejects, reject.

George Voutsadakis (LSSU) Languages and Computation July 2014 11 / 40



Decidability Decidable Languages

The Language ACFG

Let ACFG = {〈G ,w〉 : G is a CFG that generates string w}.
Theorem

ACFG is a decidable language.

For CFG G and string w we want to determine if G generates w .

One idea is to use G to go through all derivations to determine
whether any is a derivation of w .

Since infinitely many derivations may have to be tried, this is
unworkable.

If G does not generate w , this algorithm would never halt.

This idea gives a Turing machine that is a recognizer, but not a
decider, for ACFG.

To make this Turing machine into a decider we need to ensure that
the algorithm tries only finitely many derivations.

George Voutsadakis (LSSU) Languages and Computation July 2014 12 / 40



Decidability Decidable Languages

Algorithm for ACFG

It is possible to show that, if G is in Chomsky normal form, any
derivation of w has 2n − 1 steps, where n is the length of w .

In that case checking only derivations with 2n − 1 steps to determine
whether G generates w is sufficient.

We can convert G to Chomsky normal form by using the procedure
given previously.

S : On input 〈G ,w〉, where G is a CFG and w is a string,
1 Convert G to an equivalent grammar in Chomsky normal form.
2 Let n be the length of w .

If n 6= 0, then list all derivations with 2n − 1 steps;

If n = 0, then list all derivations with 1 step.

3 If any of these derivations generate w , accept; if not, reject.

Since we have given procedures for converting back and forth between
CFGs and PDAs, all results on the decidability of problems concerning
CFGs apply also to PDAs.

George Voutsadakis (LSSU) Languages and Computation July 2014 13 / 40



Decidability Decidable Languages

CFL Emptiness Testing

We can show that the problem of determining whether a CFG
generates any strings at all is decidable.

Let ECFG = {〈G 〉 : G is a CFG and L(G ) = ∅}.
Theorem

ECFG is a decidable language.

To find an algorithm for this problem we might attempt to use TM S

for string generation. It states that we can test whether a CFG
generates some particular string w .

To determine whether L(G ) = ∅ the algorithm might try going
through all possible w ’s, one by one. But there are infinitely many
w ’s to try, so this method could end up running forever.

In order to determine whether the language of a grammar is empty,
we need to test whether the start variable can generate a string of
terminals.

George Voutsadakis (LSSU) Languages and Computation July 2014 14 / 40



Decidability Decidable Languages

CFL Emptiness Testing: The Algorithm

The algorithm determines, for each variable, whether it is capable of
generating a string of terminals. When the algorithm has determined
that a variable can generate some string of terminals, the algorithm
keeps track of this information by placing a mark on that variable.

First, the algorithm marks all the terminal symbols in the grammar.
Then, it scans all the rules of the grammar. If it ever finds a rule that
permits some variable to be replaced by some string of symbols all of
which are already marked, the algorithm knows that this variable can
be marked, too.
The algorithm continues in this way until it cannot mark any additional
variables.

R : On input 〈G 〉, where G is a CFG,
1 Mark all terminal symbols in G .
2 Repeat until no new variables get marked:

3 Mark any variable A where G has a rule A → U1U2 · · ·Uk and each

symbol U1, . . . ,Uk has already been marked.

4 If the start variable is not marked, accept; otherwise, reject.

George Voutsadakis (LSSU) Languages and Computation July 2014 15 / 40



Decidability Decidable Languages

The Language EQCFG

Next we consider the problem of determining whether two
context-free grammars generate the same language.

Let EQCFG = {〈G ,H〉 : G and H are CFGs and L(G ) = L(H)}.
The algorithm that decides the corresponding language EQDFA for
finite automata is based on the closedness of regular languages under
complementation, intersection and union.

The class of context-free languages is not closed under
complementation or intersection, and the technique cannot be
applied.

In fact, EQCFG is not decidable.

On the other hand, every context-free language is decidable.

George Voutsadakis (LSSU) Languages and Computation July 2014 16 / 40



Decidability Decidable Languages

Decidability of Context-Free Languages

Theorem

Every context-free language is decidable.

Let A be a CFL. Our objective is to show that A is decidable.

A bad idea is to convert a PDA for A directly into a TM.

That is not hard to do, since simulating a stack with the TM’s more
versatile tape is easy.
The PDA for A may be nondeterministic, but we can convert it into a
nondeterministic TM and we know that any nondeterministic TM can
be converted into an equivalent deterministic TM.

The difficulty is that some branches of the PDA’s computation may
go on forever, reading and writing the stack without ever halting.

The simulating TM then would also have some non-halting branches
in its computation, and so the TM would not be a decider.

George Voutsadakis (LSSU) Languages and Computation July 2014 17 / 40



Decidability Decidable Languages

Deciding a Context-Free Language A: The Algorithm

The TM S deciding ACFG is used.

Let G be a CFG for A.

We design a TM MG that decides A by including a copy of G into
MG :

MG : On input w
1 Run TM S on input 〈G ,w〉
2 If this machine accepts, accept; if it rejects, reject.

The relationship among the four
classes of regular, context free,
decidable and Turing-recognizable
languages:

George Voutsadakis (LSSU) Languages and Computation July 2014 18 / 40



Decidability The Halting Problem

Subsection 2

The Halting Problem

George Voutsadakis (LSSU) Languages and Computation July 2014 19 / 40



Decidability The Halting Problem

Algorithmic Unsolvability

One of the most philosophically important theorems of the theory of
computation is the following:

There is a specific problem that is algorithmically unsolvable.

Computers are so powerful that one may believe that all problems can
be solved by a computer.

However, computers are limited in a fundamental way.

Even some ordinary problems are computationally unsolvable:
Given a computer program and a precise specification of what that
program is supposed to do, the task is to verify that the program
performs as specified, i.e., that it is correct.

Because both the program and the specification are mathematically
precise objects, the hope was to automate the process of verification by
feeding these objects into a suitably programmed computer.
However, the general problem of software verification is not solvable by
computer.

George Voutsadakis (LSSU) Languages and Computation July 2014 20 / 40



Decidability The Halting Problem

The Problem ATM

We look at types of problems that are unsolvable and learn techniques
for proving unsolvability.

We start with the problem of determining whether a Turing machine
accepts a given input string:

ATM = {〈M,w〉 : M is a TM and M accepts w}.

Theorem

ATM is undecidable.

We first observe that ATM is Turing-recognizable.

A consequence is that recognizers are more powerful than deciders,
i.e., requiring a TM to halt on all inputs restricts the kinds of
languages that it can recognize.

George Voutsadakis (LSSU) Languages and Computation July 2014 21 / 40



Decidability The Halting Problem

A Turing Machine Recognizing ATM

The following Turing machine U recognizes ATM:

U: On input 〈M,w〉, where M is a TM and w is a string,
1 Simulate M on input w .
2 If M ever enters its accept state, accept; if M ever enters its reject

state, reject.

This machine loops on input 〈M,w〉, if M loops on w , which is why
this machine does not decide ATM.

If the algorithm had some way to determine that M was not halting
on w , it could reject, whence ATM is sometimes called the halting

problem.

The Turing machine U is called universal because it is capable of
simulating any other Turing machine when provided with the
description of that machine.

George Voutsadakis (LSSU) Languages and Computation July 2014 22 / 40



Decidability The Halting Problem

Cantor’s Counting Method

The proof of the undecidability of the halting problem uses a
technique called diagonalization (Georg Cantor, 1873).

Cantor was concerned with the problem of measuring the sizes of
infinite sets.
If we have two infinite sets, how can we tell whether one is larger
than the other or whether they are of the same size?

For a finite set, we simply count its elements and the resulting number
is its size.
If we try to count the elements of an infinite set, we will never finish!

Example: Take the set of even integers and the set of all strings over
{0, 1}. Both sets are infinite and thus larger than any finite set, but is
one of the two larger than the other? How can we compare their
relative size?

Cantor observed that two finite sets have the same size if the
elements of one set can be paired with the elements of the other set.

This method compares the sizes without resorting to counting.

George Voutsadakis (LSSU) Languages and Computation July 2014 23 / 40



Decidability The Halting Problem

Correspondences

Definition (Correspondence)

Assume that we have sets A and B and a function f from A to B .

Say that f is one-to-one if it never maps two different elements to
the same place, i.e., if f (a) 6= f (b) whenever a 6= b.

Say that f is onto if it hits every element of B , i.e., if for every
b ∈ B , there is an a ∈ A, such that f (a) = b.

Say that A and B are the same size if there is a one-to-one, onto
function f : A → B .

A function that is both one-to-one and onto is called a
correspondence. In a correspondence every element of A maps to a
unique element of B and each element of B has a unique element of
A mapping to it, i.e., a correspondence is simply a way of pairing the
elements of A with the elements of B .

George Voutsadakis (LSSU) Languages and Computation July 2014 24 / 40



Decidability The Halting Problem

Illustrating the Definition

Let N be the set of natural numbers {1, 2, 3, . . .} and let E be the set
of even natural numbers {2, 4, 6, . . .}.
Using Cantor’s definition of size we can see that N and E have the
same size.

The correspondence f mapping N to E is simply

f (n) = 2n.

We can visualize f more easily with the help of a table:

n f (n)

1 2
2 4
3 6
...

...

This example may seem bizarre, since E seems smaller than N

because E is a proper subset of N.

George Voutsadakis (LSSU) Languages and Computation July 2014 25 / 40



Decidability The Halting Problem

Countable Sets

Definition (Countable Set)

A set A is countable if either it is finite or it has the same size as N.

Example: Let Q = {m
n
: m, n ∈ N} be the set of positive rational

numbers.

Q seems to be much larger than N.
Yet these two sets are the same size according to our definition.

We give a correspondence with N to show that Q is countable. One
easy way to do so is to list all the elements of Q. Then, we pair:

the first element on the list with the number 1 from N;
the second element on the list with the number 2 from N;
and so on.

Every member of Q should appear only once on the list.

George Voutsadakis (LSSU) Languages and Computation July 2014 26 / 40



Decidability The Halting Problem

Making a List of the Elements of Q

We make an infinite matrix containing all the positive rational
numbers:

The ith row contains all numbers with
numerator i and the jth column has all
numbers with denominator j . So the
number i

j
occurs in the ith row and jth

column.

To turn this matrix into a list, we list
the elements on the diagonals, starting
from the corner.

The first diagonal contains the single element 1
1 ;

The second diagonal contains the two elements 2
1

1
2 .

The third diagonal contains 3
1 ,

2
2 and 1

3 . If we simply added these to
the list, we would repeat 1

1 = 2
2 . We avoid doing so by skipping an

element when it would cause a repetition, i.e., we add only 3
1 and 1

3 .
Continuing in this way we obtain a list of all the elements of Q.

George Voutsadakis (LSSU) Languages and Computation July 2014 27 / 40



Decidability The Halting Problem

Uncountable Sets

After seeing this correspondence of N and Q, one might think that
any two infinite sets have the same size.

For some infinite sets no correspondence with N exists.

Such sets are called uncountable.

The set of real numbers is an example of an uncountable set.

A real number is one that has a decimal representation, e.g.,
π = 3.1415926 · · · and

√
2 = 1.4142135 · · · are real numbers.

We use R to denote the set of real numbers.

Cantor proved that R is uncountable and in doing so he introduced
the diagonalization method.

George Voutsadakis (LSSU) Languages and Computation July 2014 28 / 40



Decidability The Halting Problem

Uncountabilty of R: Outline of Proof

Theorem

R is uncountable.

We show that no correspondence exists between N and R. The proof
is by contradiction. Suppose that a correspondence f exists between
N and R. f must pair all the members of N with all the members of
R. We find an x ∈ R that is not paired with anything in N, which
will give a contradiction.
The way we find this x is by actually choosing each digit of x to make
x different from one of the real numbers that is paired with an
element of N. In the end we are sure that x is different from any real
number that is paired.

George Voutsadakis (LSSU) Languages and Computation July 2014 29 / 40



Decidability The Halting Problem

Uncountabilty of R: Illustration of the Idea

Suppose that the correspondence f exists. Let f (1) = 3.14159 . . .,
f (2) = 55.55555 . . ., f (3) = 0.12345 . . ., . . .. Then f pairs the
number 1 with 3.14159 . . ., the number 2 with 55.55555 . . ., and so
on. The following table shows a few values of a hypothetical
correspondence f between N and R:

n f (n)

1 3.14159 . . .
2 55.55555 . . .
3 0.12345 . . .
4 0.50000 . . .
...

...

The desired x is a number between 0 and 1, such that x 6= f (n), for
any n.

George Voutsadakis (LSSU) Languages and Computation July 2014 30 / 40



Decidability The Halting Problem

Uncountabilty of R: Illustration of the Idea (Cont’d)

We construct x :

To ensure that x 6= f (1) we let the first digit of x be anything different
from the first fractional digit 1 of f (1) = 3.14159 . . .. Arbitrarily, we let
it be 4.
To ensure that x 6= f (2) we let the second digit of x be anything
different from the second fractional digit 5 of f (2) = 55.555555 . . ..
Arbitrarily, we let it be 6.
The third fractional digit of f (3) = 0.12345 . . . is 3, so we let x be
anything different, say, 4.
Continuing in this way down the diagonal of the table for f , we obtain
all the digits of x .

We know that x is not f (n) for any n because it differs from f (n) in
the nth fractional digit. We overcome the problem that arises because
certain numbers, such as 0.1999 . . . and 0.2000 . . ., are equal even
though their decimal representations are different, by never selecting
the digits 0 or 9 when we construct x .

George Voutsadakis (LSSU) Languages and Computation July 2014 31 / 40



Decidability The Halting Problem

Existence of non-Turing Recognizable Languages

The preceding theorem has an important application to the theory of
computation: It shows that some languages are not decidable or even
Turing recognizable, for the reason that there are uncountably many
languages, but only countably many Turing machines.

Because each Turing machine can recognize a single language and
there are more languages than Turing machines, some languages are
not recognized by any Turing machine.

Such languages are not Turing-recognizable, as we state in the
following corollary:

Corollary

Some languages are not Turing-recognizable.

George Voutsadakis (LSSU) Languages and Computation July 2014 32 / 40



Decidability The Halting Problem

Proof of the Corollary

To see that the set of all Turing machines is countable, first observe
that the set of all strings Σ∗ is countable, for any alphabet Σ.

There are finitely many strings of each length, so we may form a list of
Σ∗ by writing down all strings of length 0, length 1, length 2, and so
on.

The set of all Turing machines is countable because each Turing
machine M has an encoding into a string 〈M〉. If we simply omit
those strings that are not legal encodings of Turing machines, we can
obtain a list of all Turing machines.
To show that the set of all languages is uncountable, we first observe
that the set of all infinite binary sequences is uncountable. An infinite
binary sequence is an unending sequence of 0s and 1s. Let B be the
set of all infinite binary sequences. The uncountability of B may be
shown by diagonalization, as was done before for R.

George Voutsadakis (LSSU) Languages and Computation July 2014 33 / 40



Decidability The Halting Problem

Uncountability of the Set of all Languages over Σ

Let L be the set of all languages over alphabet Σ. We show that L is
uncountable by giving a correspondence with B , thus showing that
the two sets are the same size. Let Σ = {s1, s2, s3, . . .}. Each
language A ∈ L has a unique sequence in B . The ith bit of that
sequence is a 1 if si ∈ A and a 0 if si 6∈ A, which is called the
characteristic sequence of A. E.g., if A were the language of all
strings starting with a 0 over the alphabet {0, 1}, its characteristic
sequence χA would be

Σ∗ = { ε, 0, 1, 00, 01, 10, 11, 000, 001, · · · };
A = { 0, 00, 01, 000, 001, · · · };

χA = 0 1 0 1 1 0 0 1 1 · · ·
The function f : L → B , where f (A) equals the characteristic
sequence of A, is one-to-one and onto and hence a correspondence.
Therefore, as B is uncountable, L is uncountable as well. Thus, the
set of all languages cannot be put into a correspondence with the set
of all Turing machines.

George Voutsadakis (LSSU) Languages and Computation July 2014 34 / 40



Decidability The Halting Problem

Undecidability of the Halting Problem

Theorem (Undecidability of the Halting Problem)

ATM = {〈M,w〉 : M is a TM and M accepts w} is undecidable.

We assume that ATM is decidable and obtain a contradiction.
Suppose that H is a decider for ATM. On input 〈M,w〉, where M is a
TM and w is a string, H halts and accepts, if M accepts w , and H

halts and rejects, if M fails to accept w . In other words, we assume
that H is a TM, where

H(〈M,w〉) =
{

accept, if M accepts w
reject, if M does not accept w

.

Now we construct a new Turing machine D with H as a subroutine.
This new TM calls H to determine what M does when the input to
M is its own description 〈M〉. Once D has determined this
information, it does the opposite, i.e., it rejects, if M accepts, and
accepts, if M does not accept.

George Voutsadakis (LSSU) Languages and Computation July 2014 35 / 40



Decidability The Halting Problem

The Turing Machine D

The Machine D is described as follows:

D: On input 〈M〉, where M is a TM,
1 Run H on input 〈M , 〈M〉〉.
2 Output the opposite of what H outputs: if H accepts, reject; if H

rejects, accept.

In summary, D(〈M〉) =
{

accept, if M does not accept 〈M〉
reject, if M accepts 〈M〉 .

When we run D with its own description 〈D〉 as input, we get

D(〈D〉) =
{

accept, if D does not accept 〈D〉
reject, if D accepts 〈D〉 .

No matter what D does, it is forced to do the opposite, which is
obviously a contradiction. Thus, neither TM D nor TM H can exist.

George Voutsadakis (LSSU) Languages and Computation July 2014 36 / 40



Decidability The Halting Problem

Illustration of the Diagonalization

Mi(〈Mj〉) H(〈Mi , 〈Mj〉〉)
〈M1〉 〈M2〉 〈M3〉 〈M4〉 · · ·

M1 accept accept
M2 accept accept accept accept
M3 · · ·
M4 accept accept

.

.

.

.

.

.

〈M1〉 〈M2〉 〈M3〉 〈M4〉 · · ·
M1 accept reject accept reject
M2 accept accept accept accept
M3 reject reject reject reject · · ·
M4 accept accept reject reject

.

.

.

.

.

.

Adding Machine D in the Last Table

〈M1〉 〈M2〉 〈M3〉 〈M4〉 · · · 〈D〉 · · ·
M1 accept reject accept reject accept
M2 accept accept accept accept accept
M3 reject reject reject reject · · · reject · · ·
M4 accept accept reject reject accept
..
.

..

.
. . .

D reject reject accept accept ???
...

...
. . .

George Voutsadakis (LSSU) Languages and Computation July 2014 37 / 40



Decidability The Halting Problem

Characterization of Decidability

We exhibited a language, namely ATM, that is undecidable.

Now we demonstrate a language that is not even Turing-recognizable.

Recall that ATM was shown to be Turing-recognizable.

The following theorem shows that, if both a language and its
complement are Turing-recognizable, the language is decidable.

Thus, for any undecidable language, either it or its complement is not
Turing-recognizable.

A language is co-Turing-recognizable if it is the complement of a
Turing-recognizable language.

Theorem (Characterization of Decidability)

A language is decidable if and only if it is both Turing-recognizable and
co-Turing-recognizable.

George Voutsadakis (LSSU) Languages and Computation July 2014 38 / 40



Decidability The Halting Problem

Proof of the Characterization Theorem

If A is decidable, both A and A are Turing-recognizable:
Any decidable language is Turing-recognizable;
The complement of a decidable language also is decidable.

If both A and A are Turing-recognizable, let M1 be the recognizer for
A and M2 the recognizer for A. The following TM M decides A:
M: On input w

1 Run both M1 and M2 on input w in parallel.
2 If M1 accepts, accept; if M2 accepts, reject.

Running the two machines in parallel means that M has two tapes,
one for simulating M1 and the other for simulating M2. M takes turns
simulating one step of each machine until one of them accepts. M
decides A: Every string w is either in A or A. Therefore either M1 or
M2 must accept w . Because M halts whenever M1 or M2 accepts, M
always halts and so it is a decider. Furthermore, it accepts all strings
in A and rejects all strings not in A. So M is a decider for A, and,
thus, A is decidable.

George Voutsadakis (LSSU) Languages and Computation July 2014 39 / 40



Decidability The Halting Problem

A Non Turing Recognizable Language

Corollary

ATM is not Turing-recognizable.

We know that ATM is Turing-recognizable.
If ATM also were Turing recognizable, ATM would be decidable.
But the preceding theorem shows that ATM is not decidable.
We conclude that ATM is not Turing-recognizable.

George Voutsadakis (LSSU) Languages and Computation July 2014 40 / 40


	Decidability
	Decidable Languages
	The Halting Problem


