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Reducibility

Reducibility

We look at several unsolvable problems beyond ATM.

The primary method for proving that problems are computationally
unsolvable is called reducibility.

A reduction is a way of converting one problem to another problem
in such a way that a solution to the second problem can be used to
solve the first problem.

Reducibility always involves two problems, which we call A and B .

If A reduces to B, we can use a solution to B to solve A.
Reducibility says nothing about solving A or B alone, but only about
the solvability of A, given a solution to B.

Examples:

The problem of measuring the area of a rectangle reduces to the
problem of measuring its length and width.
The problem of solving a system of linear equations reduces to the
problem of inverting a matrix.
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Reducibility

Reducibility and Decidability

Reducibility plays an important role in classifying problems by
decidability and later in complexity theory as well:

When A is reducible to B, solving A cannot be harder than solving B

because a solution to B gives a solution to A.
In terms of computability theory, if A is reducible to B and B is
decidable, A is also decidable.
Equivalently, if A is undecidable and reducible to B, B is undecidable.

To prove that a problem is undecidable, show that some other
problem already known to be undecidable reduces to it.
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Reducibility Undecidable Problems from Language Theory

Subsection 1

Undecidable Problems from Language Theory
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Reducibility Undecidable Problems from Language Theory

The Halting Problem

We have already established the undecidability of ATM, the problem
of determining whether a Turing machine accepts a given input.

We consider now HaltTM, the problem of determining whether a
Turing machine halts by accepting or rejecting, on a given input.

We use the undecidability of ATM to prove the undecidability of
HaltTM by reducing ATM to HaltTM.

Let HaltTM = {〈M,w〉 : M is a TM and M halts on input w}.

Theorem

HaltTM is undecidable.

We assume that HaltTM is decidable and use that assumption to
show that ATM is decidable, a contradiction. The key idea is to show
that ATM is reducible to HaltTM. Assume that we have a TM R

that decides HaltTM. Then we use R to construct a TM S that
decides ATM.
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Reducibility Undecidable Problems from Language Theory

Undecidability of the Halting Problem

Given an input of the form 〈M,w〉, S must output accept, if M
accepts w , and reject, if M loops or rejects on w . Use R to determine
whether M halts on w . If R indicates that M does not halt on w ,
then reject. However, if R indicates that M does halt on w , you can
simulate M on w without any danger of looping. Thus, if TM R

exists, we can decide ATM, but we know that ATM is undecidable.
So, R does not exist. Therefore, HaltTM is undecidable.

Let us assume for the purposes of obtaining a contradiction that TM
R decides HaltTM. We construct TM S to decide ATM:
S : On input 〈M,w〉, an encoding of a TM M and a string w ,

1 Run TM R on input 〈M ,w〉.
2 If R rejects, reject.
3 If R accepts, simulate M on w until it halts.
4 If M accepts, accept; if M rejects, reject.

Clearly, if R decides HaltTM, then S decides ATM. Because ATM is
undecidable, HaltTM must also be undecidable.
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Reducibility Undecidable Problems from Language Theory

Emptiness Testing for Turing Machines

Let ETM = {〈M〉 : M is a TM and L(M) = ∅}.

Theorem

ETM is undecidable.

We assume for the purposes of obtaining a contradiction that ETM is
decidable and then show that ATM is decidable, a contradiction.

Let R be a TM that decides ETM. We use R to construct TM S that
decides ATM. When S receives input 〈M,w〉, we run R on a
modification of 〈M〉 that guarantees that M rejects all strings except
w , but on input w it works as usual. Then we use R to determine
whether the modified machine recognizes the empty language. The
only string the machine can now accept is w , so its language will be
nonempty if and only if it accepts w . If R accepts when it is fed a
description of the modified machine, we know that the modified
machine does not accept anything and that M does not accept w .
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Reducibility Undecidable Problems from Language Theory

Undecidability of Emptiness Testing

We call the modified machine, described above, M1:
M1: On input x

1 If x 6= w , reject.
2 If x = w , run M on input w and accept if M does.

This machine has the string w as part of its description. It conducts
the test of whether x = w by scanning the input and comparing it
character by character with w to determine if they are the same.

Assume TM R decides ETM and construct TM S that decides ATM:
S : On input 〈M,w〉, an encoding of a TM M and a string w ,

1 Use the description of M and w to construct the TM M1 just described.
2 Run R on input 〈M1〉.
3 If R accepts, reject; if R rejects, accept.

S must actually be able to compute a description of M1 from a
description of M and w . This only requires adding extra states to M

that perform the x = w test. If R were a decider for ETM, S would
be a decider for ATM. Since a decider for ATM cannot exist, ETM

must be undecidable.
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Reducibility Undecidable Problems from Language Theory

Equivalence with a Finite Automaton

Let RegularTM be the problem of determining whether a given
Turing machine has an equivalent finite automaton.

This problem is the same as determining whether the Turing machine
recognizes a regular language.

RegularTM = {〈M〉 : M is a TM and L(M) is regular language}.

Theorem

RegularTM is undecidable.

The proof is by reduction from ATM. We assume that RegularTM

is decidable by a TM R and use this assumption to construct a TM S

that decides ATM. To use R , S , provided with its input 〈M,w〉,
modifies M so that the resulting TM recognizes a regular language if
and only if M accepts w .
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Reducibility Undecidable Problems from Language Theory

Undecidability of the Equivalence

We design the modified machine M2 to recognize the nonregular
language {0n1n : n ≥ 0}, if M does not accept w , and to recognize
the regular language Σ∗, if M accepts w .

We must specify how S can construct such an M2 from M and w .
M2 works by automatically accepting all strings in {0n1n : n ≥ 0}. In
addition, if M accepts w , M2 accepts all other strings.

We let R be a TM that decides RegularTM and construct TM S to
decide ATM:
S : On input 〈M,w〉, where M is a TM and w is a string,

1 Construct the following TM M2.
M2: On input x

1 If x has the form 0n1n, accept.

2 If x does not have this form, run M on input w and accept if M

accepts w .

2 Run R on input 〈M2〉.
3 If R accepts, accept; if R rejects, reject.
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Reducibility Undecidable Problems from Language Theory

Properties of Turing Recognizable Languages

The problems of testing whether the language of a Turing machine is

a context-free language,
a decidable language,
a finite language

can be shown to be undecidable with similar proofs.

Rice’s Theorem states that testing any property of the languages
recognized by Turing machines is undecidable.

So far, our strategy for proving languages undecidable involves a
reduction from ATM.

Sometimes reducing from some other undecidable language is more
convenient when we are showing undecidability.

We use reduction from HaltTM and from ETM, respectively, to prove
Rice’s Theorem and to show that testing the equivalence of two
Turing machines is undecidable.
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Reducibility Undecidable Problems from Language Theory

Rice’s Theorem

Let S be a proper nonempty subset of the set of all
Turing-recognizable languages.

Let SMembTM be the problem of determining whether a given
Turing machine recognizes a language in S:

SMembTM = {〈M〉 : M is a TM and L(M) ∈ S}.

Theorem (Rice’s Theorem)

Let S be a proper nonempty subset of the set of all Turing-recognizable
languages. Then SMembTM is undecidable.

The proof is by reduction from HaltTM. We assume that
SMembTM is decidable by a TM S and use this assumption to
construct a TM H that decides HaltTM. To use S , H, provided with
its input 〈M,w〉, uses a TM MA recognizing a fixed language
A ∈ S 6= ∅ to construct a TM Mw and uses 〈Mw 〉 as input to S . The
construction ensures that M halts on w iff L(Mw ) ∈ S.
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Reducibility Undecidable Problems from Language Theory

Proof of Rice’s Theorem

We assume that ∅ 6∈ S; otherwise, we use S.
Since S 6= ∅, there exists A ∈ S. Since S consists of Turing
recognizable languages, there exists a TM MA recognizing A.
Given 〈M,w〉, a description of a TM M and a string w , we design a
machine Mw , such that:

If M halts on w , Mw recognizes A ∈ S;
If M does not halt on w , Mw recognizes ∅ 6∈ S.

Thus testing Mw for membership in S solves the halting of M on w .
We let S be a TM that decides SMembTM and construct TM H to
decide HaltTM:
H: On input 〈M,w〉, where M is a TM and w is a string,

1 Construct the following TM Mw .
Mw : On input y

1 Run M on w .

2 If M halts, simulate MA on y .

3 If it accepts, accept.

2 Run S on input 〈Mw 〉.
3 If S accepts, accept; if S rejects, reject.
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Reducibility Undecidable Problems from Language Theory

Correctness of the Reduction

If S decides SMembTM, then H decides HaltTM:

Suppose 〈M ,w〉 ∈ HaltTM. Then M halts on w . Thus, Mw runs MA

on y and accepts iff y ∈ A. Therefore, in this case, L(Mw ) = A ∈ S.
This means that S will accept 〈Mw 〉 and, thus, H will also accept.
If 〈M ,w〉 6∈ HaltTM, then M does not halt on w . Thus, on all inputs
y , Mw does not halt. In his case, L(Mw ) = ∅ 6∈ S. Therefore, S will
not accept 〈Mw 〉 and, thus, H will reject.

Thus H is a decider for HaltTM, which is a contradiction. Therefore,
SMembTM is also undecidable.
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Reducibility Undecidable Problems from Language Theory

Equivalence of Turing Machines

Let EQTM = {〈M1,M2〉 : M1 and M2 are TMs and L(M1) = L(M2)}.

Theorem

EQTM is undecidable.

We show that, if EQTM were decidable, ETM would be decidable, by
giving a reduction from ETM to EQTM. If one of the languages
tested for equivalence happens to be ∅, the problem reduces to
determining whether the language of the other machine is empty, i.e.,
the ETM problem. Thus, in a sense, ETM is a special case of EQTM

wherein one of the machines is fixed to recognize the empty language.

We let TM R decide EQTM and construct TM S to decide ETM:
S : On input 〈M〉, where M is a TM,

1 Run R on input 〈M ,M1〉, where M1 is a TM that rejects all inputs.
2 If R accepts, accept; if R rejects, reject.

If R decides EQTM, S decides ETM. But ETM is undecidable,
whence EQTM must also be undecidable.
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Reducibility Undecidable Problems from Language Theory

Computation Histories

The computation history method is an important technique for
proving that ATM is reducible to certain languages.

This method is often useful when the problem to be shown
undecidable involves testing for the existence of something.

An example is the undecidability of Hilbert’s tenth problem.

The computation history for a Turing machine on an input is simply
the sequence of configurations that the machine goes through as it
processes the input, i.e., a complete record of its computation:

Definition (Computation History)

Let M be a Turing machine and w an input string. An accepting

computation history for M on w is a sequence of configurations,
C1,C2, . . . ,Cℓ, where C1 is the start configuration of M on w , Cℓ is an
accepting configuration of M, and each Ci legally follows from Ci−1

according to the rules of M. A rejecting computation history for M on
w is defined similarly, except that Cℓ is a rejecting configuration.
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Reducibility Undecidable Problems from Language Theory

Linear Bounded Automata

Computation histories are finite sequences.

If M does not halt on w , no accepting or rejecting computation
history exists for M on w .

Deterministic machines have at most one computation history on any
given input.

Nondeterministic machines may have many computation histories on
a single input, corresponding to the various computation branches.

For now, we continue to focus on deterministic machines.

Definition (Linear Bounded Automaton)

A linear bounded automaton is a restricted type of Turing machine
wherein the tape head is not permitted to move off the portion of the tape
containing the input.
If the machine tries to move its head off either end of the input, the head
stays where it is, in the same way that the head will not move off the
left-hand end of an ordinary Turing machine’s tape.
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Reducibility Undecidable Problems from Language Theory

Memory of Linear Bounded Automaton

A linear bounded automaton is a Turing machine with a limited
amount of memory:

It can only solve problems requiring memory that can fit within the
tape used for the input.

Using a tape alphabet larger than the input alphabet allows the
available memory to be increased up to a constant factor.

We express this by saying that, for an input of length n, the amount
of memory available is linear in n, whence the name of this model.
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Reducibility Undecidable Problems from Language Theory

Acceptance Testing for LBAs

Despite their memory constraint, linear bounded automata (LBAs)
are quite powerful:

The deciders for ADFA, ACFG, EDFA, and ECFG all are LBAs.
Every CFL can be decided by an LBA.
In fact, coming up with a decidable language that cannot be decided
by an LBA takes some work.

ALBA is the problem of determining whether an LBA accepts its input.

Even though ALBA is the same as the undecidable problem ATM

where the Turing machine is restricted to be an LBA, we can show
that ALBA is decidable.

Let ALBA = {〈M,w〉 : M is an LBA that accepts string w}.

An LBA can have only a limited number of configurations when a
string of length n is the input.
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Reducibility Undecidable Problems from Language Theory

Number of Configurations of an LBA

Lemma

Let M be an LBA with q states and g symbols in the tape alphabet.
There are exactly qngn distinct configurations of M for a tape of length n.

Recall that a configuration of M is like a snapshot in the middle of its
computation. A configuration consists of the state of the control,
position of the head, and contents of the tape. Here, M has q states.
The length of its tape is n, so the head can be in one of n positions,
and gn possible strings of tape symbols appear on the tape. The
product of these three quantities is the total number of different
configurations of M with a tape of length n.

George Voutsadakis (LSSU) Languages and Computation July 2014 21 / 69



Reducibility Undecidable Problems from Language Theory

Decidability of Acceptance Testing for LBAs

Theorem

ALBA is decidable.

In order to decide whether LBA M accepts input w , we simulate M

on w . During the course of the simulation, if M halts and accepts or
rejects, we accept or reject accordingly. The difficulty occurs if M
loops on w . We need to be able to detect looping so that we can halt
and reject.
The idea for detecting when M is looping is that, as M computes on
w , it goes from configuration to configuration. If M ever repeats a
configuration it would go on to repeat this configuration over and
over again and thus be in a loop. Because M is an LBA, the amount
of tape available to it is limited. By the lemma, M can be in only a
limited number of configurations on this amount of tape. Therefore
only a limited amount of time is available to M before it will enter
some configuration that it has previously entered.
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Reducibility Undecidable Problems from Language Theory

Decidability of Acceptance Testing for LBAs: The Proof

Detecting that M is looping is possible by simulating M for the
number of steps given by the lemma. If M has not halted by then, it
must be looping.

The algorithm that decides ALBA:

L: On input 〈M,w〉, where M is an LBA and w is a string,
1 Simulate M on w for qngn steps or until it halts.
2 If M halts, accept if it has accepted and reject if it has rejected.

If it has not halted, reject.

If M on w has not halted within qngn steps, it must be repeating a
configuration according to the preceding lemma and, therefore,
looping. So the algorithm must reject in this instance.
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Reducibility Undecidable Problems from Language Theory

Emptiness Testing for LBAs: Proof Outline

For LBAs the acceptance problem is decidable, but for TMs it is not.

Certain other problems involving LBAs remain undecidable.

Let ELBA = {〈M〉 : M is an LBA where L(M) = ∅}.

We give a reduction that uses the computation history method.

Theorem

ELBA is undecidable.

This proof is by reduction from ATM. We show that, if ELBA were
decidable, ATM would also be. Suppose that ELBA is decidable. For a
TM M and an input w we can determine whether M accepts w by
constructing a certain LBA B and then testing whether L(B) is
empty. The language that B recognizes comprises all accepting
computation histories for M on w . If M accepts w , this language
contains one string and so is nonempty. If M does not accept w , this
language is empty. If we can determine whether B ’s language is
empty, clearly we can determine whether M accepts w .
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Reducibility Undecidable Problems from Language Theory

Emptiness Testing for LBAs: Computation History

We need to show more than the mere existence of B : We have to
show how a Turing machine can obtain a description of B , given
descriptions of M and w . We construct B to accept its input x , if x
is an accepting computation history for M on w . Recall that an
accepting computation history is the sequence of configurations,
C1,C2, . . . ,Cℓ that M goes through as it accepts some string w .
For the purposes of this proof we assume that the accepting
computation history is presented as a single string, with the
configurations separated from each other by the # symbol:

#
︸ ︷︷ ︸

C1

#
︸ ︷︷ ︸

C2

#
︸ ︷︷ ︸

C3

# · · ·#
︸ ︷︷ ︸

Cℓ

#
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Reducibility Undecidable Problems from Language Theory

Operation of the LBA B

The LBA B works as follows: When it receives an input x , B is
supposed to accept if x is an accepting computation for M on w .

First, B breaks up x into the strings C1,C2, . . . ,Cℓ.
Then B determines whether the Ci satisfy the three conditions of an
accepting computation history:

1. C1 is the start configuration for M on w .

2. Each Ci+1 legally follows from Ci .

3. Cℓ is an accepting configuration for M.

The start configuration C1 for M on w is the string q0w1w2 · · ·wn,
where q0 is the start state for M on w . Here, B has this string directly
built in, so it is able to check the first condition.
An accepting configuration is one that contains the qaccept state, so B

can check the third condition by scanning Cℓ for qaccept.
The second condition is the hardest to check. For each pair of adjacent
configurations, B checks whether Ci+1 legally follows from Ci . This
step involves verifying that Ci and Ci+1 are identical except for the
positions under and adjacent to the head in Ci . These positions must
be updated according to the transition function of M .
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Reducibility Undecidable Problems from Language Theory

Finishing the Preparation for the Proof

B verifies that the updating was done properly by zig-zagging between
corresponding positions of Ci and Ci+1. To keep track of the current
positions while zig-zagging, B marks the current position with dots on
the tape.
If conditions 1, 2, and 3 are satisfied, B accepts its input.

Note that the LBA B is not constructed for the purposes of actually
running it on some input.

We construct B only for the purpose of feeding a description of B into
the decider for ELBA that we have assumed to exist.
Once this decider returns its answer we can invert it to obtain the
answer to whether M accepts w .

This decides ATM, a contradiction.
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Reducibility Undecidable Problems from Language Theory

The Proof

Now we are ready to state the reduction of ATM to ELBA. Suppose
that TM R decides ELBA. We construct TM S that decides ATM as
follows.

S : On input 〈M,w〉, where M is a TM and w is a string,
1 Construct LBA B from M and w as described in the proof idea.
2 Run R on input 〈B〉.
3 If R rejects, accept; if R accepts, reject.

If R accepts 〈B〉, then L(B) = ∅. Thus M has no accepting
computation history on w and M does not accept w . Consequently S

rejects 〈M,w〉. Similarly, if R rejects 〈B〉, the language of B is
nonempty. The only string that B can accept is an accepting
computation history for M on w . Thus M must accept w .
Consequently S accepts 〈M,w〉.
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Reducibility Undecidable Problems from Language Theory

Universal Inclusion Testing for CFGs

We can also use the technique of reduction via computation histories
to establish the undecidability of certain problems related to
context-free grammars and pushdown automata.

We have presented an algorithm to decide whether a context-free
grammar generates any strings, i.e., whether L(G ) = ∅.
Now we show that the problem of determining whether a context-free
grammar generates all possible strings is undecidable.

This is also the main step in showing that the equivalence problem for
context-free grammars is undecidable.

Let AllCFG = {〈G 〉 : G is a CFG and L(G ) = Σ∗}.

Theorem

AllCFG is undecidable.

This proof is by contradiction. We assume that AllCFG is decidable
and use this assumption to show that ATM is decidable. The proof
consists of a reduction from ATM via computation histories.
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Reducibility Undecidable Problems from Language Theory

Description of the Reduction

We develop a decision procedure for ATM using one for AllCFG.

For a TM M and an input w we construct a CFG G that generates all
strings if and only if M does not accept w .

So, if M does accept w , G does not generate some particular string.
This string is the accepting computation history for M on w .
Thus, G is designed to generate all strings that are not accepting
computation histories for M on w : An accepting computation history
for M on w appears as #C1#C2# · · ·#Cℓ#, where Ci is the
configuration of M on the ith step of the computation on w . G
generates all strings that:
1. do not start with C1, or
2. do not end with an accepting configuration, or
3. where some Ci does not properly yield Ci+1 under the rules of M .

If M does not accept w , no accepting computation history exists, so
all strings fail in one way or another. Therefore G would generate all
strings.
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Reducibility Undecidable Problems from Language Theory

Construction of Grammar G

Instead of constructing the grammar G , we construct a PDA D. D
can then be converted to a CFG. Designing a PDA is easier than
designing a CFG.
D will start by nondeterministically branching to guess which of the
preceding three conditions to check.

One branch checks on whether the beginning of the input string is C1

and accepts if it is not.
Another branch checks on whether the input string ends with a
configuration containing the accept state and accepts if it does not.
The third branch is supposed to accept if some Ci does not properly
yield Ci+1. It works by scanning the input until it nondeterministically
decides that it has come to Ci . Next, it pushes Ci onto the stack until
it comes to the end as marked by the # symbol. Then D pops the
stack to compare with Ci+1. They are supposed to match except
around the head position where the difference is dictated by the
transition function of M . Finally, D accepts if it is a mismatch or an
improper update.
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Reducibility Undecidable Problems from Language Theory

A Twist in the Construction of the PDA

There is a problem with this construction: When D pops Ci off the
stack, it is in reverse order and not suitable for comparison with Ci+1.

To deal with this, we write the accepting computation history
differently: Every other configuration appears in reverse order.

The odd positions remain written in the forward order;
the even positions are written backward.

# →
︸ ︷︷ ︸

C1

# ←
︸ ︷︷ ︸

CR

2

# →
︸ ︷︷ ︸

C3

# ←
︸ ︷︷ ︸

CR

4

# · · ·#
︸ ︷︷ ︸

Cℓ

#

In this form, the PDA is able to push a configuration so that when it
is popped, the order is suitable for comparison with the next one.

We design D to accept any string that is not an accepting
computation history in the modified form.
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Reducibility Mapping Reducibility

Subsection 2

Mapping Reducibility
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Reducibility Mapping Reducibility

Formalizing Reducibility

We have shown how to use the reducibility technique to prove that
various problems are undecidable.

We now formalize the notion of reducibility in order to be able to use
it in more refined ways, e.g., for proving that certain languages are
not Turing-recognizable.

We choose to define a simple type of reducibility, called mapping
reducibility or many-one reducibility.

Being able to reduce problem A to problem B by using a mapping
reducibility means that a computable function exists that converts
instances of problem A to instances of problem B.
If we have such a conversion function, called a reduction, we can solve
A with a solver for B: Given any instance of A,

First, use the reduction to convert it to an instance of B;

Then apply the solver for B.
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Reducibility Mapping Reducibility

Computable Functions

A Turing machine computes a function by starting with the input to
the function on the tape and halting with the output of the function
on the tape.

Definition (Computable Function)

A function f : Σ∗ → Σ∗ is a computable function if some Turing
machine M, on every input w , halts with just f (w) on its tape.

Example: All usual arithmetic operations on integers are computable
functions. For example, we can make a machine that takes input
〈m, n〉 and returns m + n, the sum of m and n.

George Voutsadakis (LSSU) Languages and Computation July 2014 35 / 69



Reducibility Mapping Reducibility

Transformations of Machine Descriptions

Computable functions may be transformations of machine
descriptions.

Example: For example, one computable function f takes input w .
If w = 〈M〉 is an encoding of a Turing machine M , then f returns the
description of a Turing machine 〈M ′〉:

The machine M ′ is a machine that recognizes the same language as M,

but never attempts to move its head off the left-hand end of its tape.

The function f accomplishes this task by adding several states to the
description of M .
If w is not a legal encoding of a Turing machine, then f returns ε
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Mapping Reducibility

Recall the representation of computational problems by languages.

Definition (Mapping Reducibility)

Language A is mapping reducible to language B , written A ≤m B , if
there is a computable function f : Σ∗ → Σ∗, such that, for every w ,

w ∈ A ⇐⇒ f (w) ∈ B .

The function f is called the reduction of A to B .

The following figure illustrates mapping reducibility:
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Reducibility and Decidability

A mapping reduction of A to B provides a way to convert questions
about membership testing in A to membership testing in B .

To test whether w ∈ A, we use the reduction f to map w to f (w) and
test whether f (w) ∈ B.

Theorem

If A ≤m B and B is decidable, then A is decidable.

We let M be the decider for B and f be the reduction from A to B .
We describe a decider N for A:
N: On input w

1 Compute f (w).
2 Run M on input f (w) and output whatever M outputs.

Clearly, w ∈ A iff f (w) ∈ B , because f is a reduction from A to B .
Thus, M accepts f (w) iff w ∈ A. So N works as desired.

Corollary

If A ≤m B and A is undecidable, then B is undecidable.
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Reducing Acceptability Testing to Halting

Some earlier proofs that used the reducibility method provide
examples of mapping reducibilities.

Example: We have used a reduction from ATM to prove that
HaltTM is undecidable. This reduction showed how a decider for
HaltTM could be used to give a decider for ATM.

To demonstrate a mapping reducibility from ATM to HaltTM, we
must present a computable function f that takes input of the form
〈M,w〉 and returns output of the form 〈M ′,w ′〉, where

〈M,w〉 ∈ ATM if and only if 〈M ′
,w ′〉 ∈ HaltTM.

The following machine F computes a reduction f .
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Description of the Machine F

F : On input 〈M,w〉
1 Construct the following machine M ′:

M ′: On input x

1 Run M on x .

2 If M accepts, accept.

3 If M rejects, enter a loop.

2 Output 〈M ′,w〉.

A minor issue arises concerning improperly formed input strings.

If TM F determines that its input is not of the correct form as specified
in the input line and, hence, that the input is not in ATM, the TM
outputs a string not in HaltTM. Any string not in HaltTM will do.

In general, when we describe a Turing machine that computes a
reduction from A to B , improperly formed inputs are assumed to map
to strings outside of B .
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Two More Examples

Example: A mapping reduction f from ETM to EQTM maps the
input 〈M〉 to the output 〈M,M1〉, where M1 is the machine that
rejects all inputs.

Example: The proof showing that ETM is undecidable illustrates the
difference between the formal notion of mapping reducibility and the
informal notion of reducibility.

The proof shows that ETM is undecidable by reducing ATM to it. From
the original reduction a function f can be constructed that takes input
〈M ,w〉 and produces output 〈M1〉, where M1 is the Turing machine
described in the proof.
M accepts w iff L(M1) is not empty. So f is a mapping reduction from
ATM to ETM.

The reduction still shows that ETM is undecidable because decidability

is not affected by complementation. However, It does not give a

mapping reduction from ATM to ETM.

In fact, no reduction from ATM to ETM exists.
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Reducibility and Turing Recognizability

The sensitivity of mapping reducibility to complementation is
important in the use of reducibility to prove non-recognizability.

Theorem

If A ≤m B and B is Turing-recognizable, then A is Turing-recognizable.

The proof is the same as that of the theorem concerning decision,
except that M and N are recognizers instead of deciders.

Corollary

If A ≤m B and A is not Turing-recognizable, then B is not either.

In a typical application of this corollary, we let A be ATM, the
complement of ATM. We know that ATM is not Turing-recognizable.
The definition of mapping reducibility implies that A ≤m B means the
same as A ≤m B. To prove that B is not recognizable we may show
that ATM ≤m B.
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EQTM is not Turing-Recognizable

We can also use mapping reducibility to show that certain problems
are neither Turing-recognizable nor co-Turing-recognizable.

Theorem

EQTM is neither Turing-recognizable nor co-Turing-recognizable.

First we show that EQTM is not Turing-recognizable. We reduce ATM

to EQTM. The following TM F computes the reducing function f :
F : On input 〈M,w〉, where M is a TM and w a string,

1 Construct the following two machines M1 and M2.
M1: On any input

1 Reject.

M2: On any input
1 Run M on w . If it accepts, accept.

2 Output 〈M1,M2〉.

M1 accepts nothing. If M accepts w , M2 accepts everything, and the
two machines are not equivalent. If M does not accept w , M2 accepts
nothing, and they are equivalent. Thus, f reduces ATM to EQTM.
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EQTM is not co-Turing-Recognizable

To show that EQTM is not Turing-recognizable we give a reduction
from ATM to EQTM. The following TM G computes the reducing
function g :

G : On input 〈M,w〉, where M is a TM and w a string,
1 Construct the following two machines M1 and M2.

M1: On any input

1 Accept.

M2: On any input

1 Run M on w .

2 If it accepts, accept.

2 Output 〈M1,M2〉.

The only difference between f and g is in machine M1. In f , machine
M1 always rejects, whereas in g it always accepts. In both f and g ,
M accepts w iff M2 always accepts. In g , M accepts w iff M1 and
M2 are equivalent. So g is a reduction from ATM to EQTM.
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Subsection 3

Turing Reducibility
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Turing versus Mapping Reducibility

We introduced reducibility as a way of using a solution to one
problem to solve other problems.

If A is reducible to B, and we find a solution to B, we can obtain a
solution to A.

We then described mapping reducibility, a specific form of reducibility.

It turns out that mapping reducibility does not capture our intuitive
concept of reducibility in the most general way.

Example: Consider the two languages ATM and ATM.

Intuitively, they are reducible to one another because a solution to
either could be used to solve the other by simply reversing the answer.
However, we know that ATM is not mapping reducible to ATM because
ATM is Turing-recognizable but ATM is not.

A very general form of reducibility which captures our intuitive
concept of reducibility more closely is Turing reducibility.
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Oracle Turing Machines

Definition (Oracle Turing Machine)

An oracle for a language B is an external device that is capable of
reporting whether any string w is a member of B .

An oracle Turing machine is a modified Turing machine that has
the additional capability of querying an oracle.

We write MB to describe an oracle Turing machine that has an oracle
for language B .

The way an oracle determines its responses is of no concern.

Example: Consider an oracle for ATM. An oracle Turing machine with
an oracle for ATM can decide more languages than an ordinary Turing
machine can:

Such a machine can (obviously) decide ATM itself, by querying the
oracle about the input.
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Another Example of an Oracle Turing Machine

An oracle Turing machine with an oracle for ATM can also decide
ETM, the emptiness testing problem for TMs, with the following
procedure called TATM .

TATM : On input 〈M〉, where M is a TM,
1 Construct the following TM N .

N : On any input

1 Run M in parallel on all strings in Σ∗.

2 If M accepts any of these strings, accept.

2 Query the oracle to determine whether 〈N , 0〉 ∈ ATM

3 If the oracle answers NO, accept; if YES, reject.

If M’s language is not empty, N will accept every input and, in
particular, input 0. Hence the oracle will answer YES, and TATM will
reject. Conversely, if M’s language is empty, TATM will accept. Thus
TATM decides ETM.

We say that ETM is decidable relative to ATM.
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Turing Reducibility

Definition (Turing Reducibility)

Language A is Turing reducible to language B , written A ≤T B , if A is
decidable relative to B .

Example: We saw that ETM is Turing reducible to ATM.

Turing reducibility satisfies our intuitive concept of reducibility:

Theorem

If A ≤T B and B is decidable, then A is decidable.

If B is decidable, then we may replace the oracle for B by an actual
procedure that decides B . Thus we may replace the oracle Turing
machine that decides A by an ordinary Turing machine that decides A.
Turing reducibility is a generalization of mapping reducibility:

If A ≤m B, then A ≤T B, because the mapping reduction may be used
to give an oracle Turing machine that decides A relative to B.

Despite deciding more languages than ordinary TMs, oracle Turing
machines with an oracle for ATM cannot decide all languages.
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Subsection 4

The Definition of Information
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Algorithm and Information in Computer Science

The concepts of algorithm and information are fundamental in
computer science.

The Church-Turing Thesis gives a universally applicable,
model-independent, definition of algorithm.

No equally comprehensive definition of information is known.

One way of defining information is by using computability theory.

Example: Consider the information content of the following two
binary sequences:

A = 0101010101010101010101010101010101010101
B = 1110010110100011101010000111010011010111

Intuitively, sequence A contains little information because it is merely a
repetition of the pattern 01 twenty times.
In contrast, sequence B appears to contain more information.
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Information Content of a Sequence

We define the quantity of information contained in an object to be
the size of that object’s smallest representation or description.

By a description of an object we mean a precise and unambiguous
characterization of the object so that we may recreate it from the
description alone.

Consider again

A = 0101010101010101010101010101010101010101
B = 1110010110100011101010000111010011010111

Sequence A contains little information because it has a small
description;
Sequence B contains more information because it seems to have no
concise description.
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Shortest Descriptions and Restriction to Binary Strings

Clearly, we may always describe an object, such as a string, by placing
a copy of the object directly into the description.

This type of description is never shorter than the object itself and
does not tell us anything about its information quantity.

A description that is significantly shorter than the object implies that
the information contained within it can be compressed into a small
volume implying that the amount of information cannot be very large.

That is the reason why the size of the shortest description determines
the amount of information.
To formalize this intuitive idea:

First, we restrict our attention to objects that are binary strings. Other
objects can be represented as binary strings, so this restriction does not
limit the scope of the theory.
Second, we consider only descriptions that are themselves binary
strings. By imposing this requirement, we may easily compare the
length of the object with the length of its description.
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Discussion of Possible Encodings

One way to use algorithms to describe strings is to:
Construct a TM that outputs the string when it starts on a blank tape;
Then represent the Turing machine itself as a string.

The string representing the TM is a description of the original string.
However, a Turing machine cannot represent a table of information
concisely with its transition function:

Representing a string of n bits might use n states and n rows in the
transition function table.
That would result in a description that is too long for our purpose.

Instead, we describe a binary string x with a Turing machine M and a
binary input w to M. The length of the description is the combined
length of representing M and w .

We write this description with our usual notation for encoding several
objects into a single binary string 〈M,w〉. But, here, we must pay
additional attention to the encoding operation 〈•, •〉 because we need
to produce a concise result.

George Voutsadakis (LSSU) Languages and Computation July 2014 54 / 69



Reducibility The Definition of Information

Adoption of a Suitable Encoding

We define the string 〈M,w〉 to be 〈M〉w , where we concatenate the
binary string w onto the end of the binary encoding of M.
The encoding 〈M〉 of M may be done in any standard way, except for
the subtlety that we describe next:

Concatenating w onto the end of 〈M〉 to yield a description of x might
create trouble if the point at which 〈M〉 ends and w begins is not
discernible from the description itself.
Then, several ways of partitioning the description 〈M〉w into a
syntactically correct TM and an input may occur, in which case the
description would be ambiguous and hence invalid.

To avoid this problem, we ensure that we can locate the separation
between 〈M〉 and w in 〈M〉w .

One way to do so is to write each bit of 〈M〉 twice, writing 0 as 00 and
1 as 11, and then follow it with 01 to mark the separation point:

〈M ,w〉 = 11001111001100 · · ·11000

delimiter
︷︸︸︷

01
︸ ︷︷ ︸

〈M〉

01101011 · · ·010
︸ ︷︷ ︸

w
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Descriptive or Kolmogorov Complexity

Definition (Descriptive or Kolmogorov Complexity)

Let x be a binary string. The minimal description of x , written d(x), is
the shortest string 〈M,w〉, where TM M on input w halts with x on its
tape. If several such strings exist, select the lexicographically first among
them. The descriptive complexity or Kolmogorov complexity or
Kolmogorov-Chaitin complexity of x , written K(x), is K(x) = |d(x)|.

In other words, K(x) is the length of the minimal description of x .

The definition of K(x) is intended to capture our intuition for the
amount of information in the string x .
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An Upper Bound on the Kolmogorov Complexity

Theorem

There exists a constant c , such that, for all x , K(x) ≤ |x |+ c .

The theorem says that the descriptive complexity of a string is at
most a fixed constant more than its length.

The constant is a universal one, not dependent on the string.

To prove an upper bound on K(x), we need only demonstrate some
description of x that is no longer than the stated bound. Then the
minimal description of x may be shorter than the demonstrated
description, but not longer. We describe the string x by considering
the Turing machine M that halts as soon as it is started. This
machine computes the identity function, i.e., its output is the same as
its input. A description of x is simply 〈M〉x . Letting c be the length
of 〈M〉 completes the proof.
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Descriptive Complexity of xx

The preceding result verifies our intuition that the amount of
information contained in a string cannot be much more than its
length.

Similarly, intuition says that the information contained by the string
xx is not significantly more than the information contained by x :

Theorem

There exists a constant c , such that, for all x , K(xx) ≤ K(x) + c .

Consider the TM M, which expects an input of the form 〈N,w〉,
where N is a Turing machine and w is an input for it:
M: On input 〈N,w〉, where N is a TM and w is a string,

1 Run N on w until it halts and produces an output string s.
2 Output the string ss.

A description of xx is 〈M〉d(x). Recall that d(x) is a minimal
description of x . The length of this description is |〈M〉|+ |d(x)|,
which is c +K(x), where c is the length of 〈M〉.
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Descriptive Complexity of xy

We might be led to believe that the complexity of the concatenation is
at most the sum of the individual complexities (plus a fixed constant),
but the cost of combining two descriptions leads to a greater bound:

Theorem

There exists a constant c , such that, for all strings x and y ,

K(xy) ≤ 2K(x) +K(y) + c .

We construct a TM M that breaks its input w into two separate
descriptions. The bits of the first description d(x) are all doubled and
terminated with string 01 before the second description d(y) appears.
Once both descriptions have been obtained, they are run to obtain
the strings x and y and the output xy is produced. The length of this
description of xy is twice the complexity of x plus the complexity of y
plus a fixed constant for describing M. This sum is 2K(x) +K(y)+ c .
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Improvements on the Upper Bound of K(xy)

We may improve this theorem somewhat by using a more efficient
method of indicating the separation between the two descriptions to
avoid doubling the bits of d(x).

Instead we prepend the length of d(x) as a binary integer that has
been doubled to differentiate it from d(x).

The description still contains enough information to decode it into the
two descriptions of x and y , and it now has length at most

2 log2 K(x) +K(x) +K(y) + c .

Further small improvements are possible, but it can be shown that we
cannot reach the bound

K(x) +K(y) + c .
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Alternative Algorithmic Descriptions

The adopted definition of K(x) has an optimality property among all
possible ways of defining descriptive complexity with algorithms.

Suppose that we consider a general description language to be any
computable function p : Σ∗ → Σ∗. Define the minimal description

of x with respect to p, written dp(x), to be the lexicographically
shortest string s where p(s) = x . Define Kp(x) = |dp(x)|.

Example: Consider a programming language, such as LISP (encoded
into binary), as the description language.

dLISP(x) would be the minimal LISP program that outputs x .
KLISP(x) would be the length of the minimal program.

The following theorem shows that any description language of this
type is not significantly more concise than the language of Turing
machines and inputs that determines the Kolmogorov complexity.
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Comparison With Descriptive Complexity

Theorem

For any description language p, a fixed constant c exists that depends only
on p, where, for all x , K(x) ≤ Kp(x) + c .

We illustrate the idea of this proof by using the LISP example.
Suppose that x has a short description w in LISP. Let M be a TM
that can interpret LISP and use the LISP program for x as M’s input
w . Then 〈M,w〉 is a description of x that is only a fixed amount
larger than the LISP description of x . The extra length is for the
LISP interpreter M.

Take any description language p and consider the following Turing
machine M:
M: On input w

1 Output p(w).

Then 〈M〉dp(x) is a description of x whose length is at most a fixed
constant greater than Kp(x). The constant is the length of 〈M〉.
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Incompressibility

We proved that a string’s minimal description is never much longer
than the string itself.

For some strings, the minimal description may be much shorter if the
information in the string appears sparsely or redundantly.

Do some strings lack short descriptions? I.e., is the minimal
description of some strings actually as long as the string itself?

Definition (Incompressible Strings)

Let x be a string.
Say that x is c-compressible if K(x) ≤ |x | − c .

If x is not c-compressible, we say that x is incompressible by c .

If x is incompressible by 1, we say that x is incompressible.

In other words, if x has a description that is c bits shorter than its
length, x is c-compressible. If not, x is incompressible by c .

If x does not have a description shorter than itself, then x is
incompressible.
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Existence of Incompressible Strings

Theorem

Incompressible strings of every length exist.

The number of binary strings of length n is 2n. Each description is a
binary string. Thus, the number of descriptions of length less than n

is at most
n−1∑

i=0

2i = 1 + 2 + 4 + 8 + · · ·+ 2n−1 = 2n − 1.

The number of short descriptions is less than the number of strings of
length n. Therefore at least one string of length n is incompressible.

Corollary

At least 2n − 2n−c+1 + 1 strings of length n are incompressible by c .

At most 2n−c+1 − 1 strings of length n are c-compressible, because at
most that many descriptions of length at most n − c exist. The
remaining 2n − (2n−c+1 − 1) are incompressible by c .
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Properties “Holding For Almost All Strings”

Incompressible strings have many properties that we would expect to
find in randomly chosen strings.

Any incompressible string of length n has roughly an equal number of
0s and 1s.
The length of its longest run of 0s is approximately log2 n, as we would
expect to find in a random string of that length.

We only prove a theorem that forms the basis for these statements:
It shows that any computable property that holds for “almost all”
strings also holds for all sufficiently long incompressible strings.

A property of strings is simply a function f that maps strings to
{TRUE,FALSE}. We say that a property holds for almost all

strings if the fraction of strings of length n on which it is FALSE
approaches 0 as n grows large.

A randomly chosen long string is likely to satisfy a computable
property that holds for almost all strings, whence random strings and
incompressible strings share such properties.
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Compressibility and Properties of Almost All Strings

Theorem

Let f be a computable property that holds for almost all strings. Then, for
any b > 0, the property f is FALSE on only finitely many strings that are
incompressible by b.

Let M be the following algorithm:
M: On input i , a binary integer,

1 Find the i-th string s where f (s) = FALSE, considering the strings
ordered lexicographically.

2 Output string s.

We can use M to obtain short descriptions of strings that fail to have
property f as follows: For any such string x , let ix be the position or
index of x on a list of all strings that fail to have property f , ordered
by length and lexicographically within each length. Then 〈M, ix〉 is a
description of x . The length of this description is |ix |+ c , where c is
the length of 〈M〉. Because few strings fail to have property f , the
index of x is small and its description is correspondingly short.
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Proving Compressibility by any b > 0

Fix any number b > 0. Select n such that at most a
1

2b+c+1
fraction

of strings of length n or less fail to have property f . All sufficiently
large n satisfy this condition because f holds for almost all strings.
Let x be a string of length n that fails to have property f . We have a
total of 2n+1 − 1 strings of length n or less, so

ix ≤
2n+1 − 1

2b+c+1
≤ 2n−b−c

.

Therefore, |ix | ≤ n− b − c , so the length of 〈M, ix〉 is at most
(n − b − c) + c = n − b, which implies that K(x) ≤ n − b. Thus,
every sufficiently long x that fails to have property f is compressible
by b. Hence, only finitely many strings that fail to have property f

are incompressible by b, which proves the theorem.
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Uncomputability of Descriptive Complexity

At this point exhibiting some examples of incompressible strings
would be appropriate.

However:

The K measure of complexity is not computable.
No algorithm can decide in general whether strings are incompressible.
No infinite subset of them is Turing-recognizable.

So there is no way to obtain long incompressible strings.

There is no way either to determine whether a string is incompressible
even if one was produced.

We finish by describing certain strings that are nearly incompressible,
without providing a way to exhibit them explicitly.
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Near Incompressibility of Minimal Description

Theorem

There exists a constant b, such that, for every string x , the minimal
description d(x) of x is incompressible by b.

Consider the following TM M:
M: On input 〈R , y〉, where R is a TM and y is a string,

1 Run R on y and reject if its output is not of the form 〈S , z〉.
2 Run S on z and halt with its output on the tape.

Let b be |〈M〉|+ 1.

Claim: b satisfies the theorem.
Suppose, to the contrary, d(x) is b-compressible for some string x .
Then |d(d(x))| ≤ |d(x)| − b. But then 〈M〉d(d(x)) is a description
of x whose length is at most

|〈M〉| + |d(d(x))| ≤ (b − 1) + (|d(x)| − b) = |d(x)| − 1.

This description is shorter than d(x), contradicting minimality.
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