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Introduction and Primer on Sets

Central Themes in Mathematical Logic

What is truth? Which things/statements/ideas etc. are true?

Closely related, what is falsity? Which statements are false?

It turns out to be mind-boggling to answer if we are too ambitious!

To make reasonable advances, we restrict our vocabulary (language)
to a small “artificial” one and allow sentences (formulas) only using
that small vocabulary.
In other words, we deviate from our natural language; we do not want
to (or cannot) be too inclusive and too ambitious!

We also restrict what things we talk about (models). We talk mostly
about “mathematical” structures; not arbitrary situations in real life;
Again, we do not want to (or cannot) be too inclusive and too
ambitious, because the difficulty in reasoning about very general
“real-life” situations is a Herculean task...
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Introduction and Primer on Sets

Sets (or Classes or Collections)

We take the notion of “A is a set” or “A is a class” as understood;
we provide no formal definition.

Intuitively a set (or a class or a collection) is any collection of
things; the things in the set are called its elements or its members.

Remark: We use the words set and class interchangeably, just as
was the custom before 1900.
There are some more contemporary theoretical reasons for which
these terms are sometimes distinguished nowadays.
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Introduction and Primer on Sets

Membership, Equality and Empty Set

We say “x is a member of the set A” or “x belongs to the set A”
or, simply, “x is in A” and we write x ∈ A to mean

A

x

If x is not in A, we write x 6∈ A:

A
x

Two sets A and B are equal, written A = B , if they have exactly the
same elements; Equivalently, A and B are equal, if every element of A
is a member of B and every element of B is a member of A.

The empty set ∅ is the set with no elements in it.
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Introduction and Primer on Sets

Exercises

Recall A = B if every element of A is in B and vice-versa.

Let A be the set of all male human beings. Let B be the set of all
sons of a human being. Show that A = B.
Show first that every element of A is also an element of B .
Next show that every element of B is also an element of A.
Finally, conclude that A and B have exactly the same elements.

Show that there can be only one empty set.
Assume there are two such ∅ and ∅′.
Next show that every element of ∅ is a member of ∅′;
Now show, also, that every element of ∅′ is a member of ∅;
But this means that ∅ = ∅′; that is there can only exist one emptyset!
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Introduction and Primer on Sets

The Intention and the Extension of a Concept

From a philosophical viewpoint, a notion has both intension and
extension.

Intension has to do with properties:

x is a rose. (The property itself)

Extension has to do with sets:

The set of all roses. (Set of objects having the property)

From the mathematical point of view

a property (intention) is either true or false for a specific object;
the set (extension) consists of all objects for which the corresponding
property is true.

Can we provide a simple example from elementary mathematics?
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Introduction and Primer on Sets

Using Properties to Create Sets

We can express the construction of a set (an extension) using a
property (an intention) with set-builder notation.

We write
{x : P(x)}

This is read “the set of all x , such that property P holds for x”.

For example the set Roses of all roses can be written

Roses = {x : x is a rose}.

This “naive” way of constructing sets has led to paradoxes when one
considers classes that are “too big”.
Even though such problems do not arise in our work, we present a
famous one in the following slides.
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Eubulides of Miletus

Eubulides (Ef-vou-li-this) of Miletus (4th Century B.C.)
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Introduction and Primer on Sets

Eubulides’ Liar Paradox

Eubulides asked the following question:
A man says that he is lying. Is what he says true or false?

Trying to assign a truth value to the man’s statement leads to a
paradox!

If what he says is true, then he is lying. But if he is lying, then what
he says is false. It follows that if what he says is true, then what he
says is false.

If what he says is false, then he is not lying. But if he is not lying,
then what he says is true. It follows that if what he says is false, then
what he says is true.

The man’s sentence employs self-reference; This is a common way of
obtaining paradoxes and contradictions.
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Introduction and Primer on Sets

Bertrand Arthur William Russell

Bertrand Arthur William Russell, born in Trellech, Monmouthshire,
United Kingdom (1872-1970)
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Introduction and Primer on Sets

The Russell Paradox (Bertrand Russell 1901)

Let P(x) be the property “x 6∈ x”.

An object has this property if it does not belong to itself.

Consider a set A = {x : P(x)}. Then

A ∈ A iff P(A)
iff A 6∈ A.

This is clearly a contradiction.

We have to be more careful about how we build sets (using an
intension (property) to build an extension (set)) to avoid such
problems!
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Philip Edward Bertrand Jourdain

Philip Edward Bertrand Jourdain, born in Ashbourne, Derbyshire,
United Kingdom (1879-1919)
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Introduction and Primer on Sets

Jourdain’s Card Paradox

Consider the two faces of a card:

Front: The sentence on the other side of this card is TRUE.

Back: The sentence on the other side of this card is FALSE.

Trying to assign a truth value to either of them leads to a paradox!

If the first statement is true, then so is the second. But if the second
statement is true, then the first statement is false. It follows that if
the first statement is true, then the first statement is false.

If the first statement is false, then the second is false, too. But if the
second statement is false, then the first statement is true. It follows
that if the first statement is false, then the first statement is true.

The same mechanism applies to the second statement.

Neither of the sentences employs self-reference; Instead this is a case
of circular reference.

George Voutsadakis (LSSU) Logic January 2013 14 / 24



Introduction and Primer on Sets

Using Properties Carefully to Create Sets

Axiom of Specification or Comprehension

Given any property P(x) and set A there is a set whose elements are the
elements x of A for which P(x) is true.

The usual way of describing this set is by set-builder notation, namely

{x ∈ A : P(x)}.

This is read: “the set of all x in A, for which P holds”.

Recall the notation for the various number systems: N natural (it
includes 0), Z integer, Q rational, R real and C complex;

Example: Assume all previous number systems are given. An
application of the Axiom of Comprehension gives the set of all even
natural numbers:

{x ∈ N : x is even}.
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Leonhard Euler

Leonhard Euler, born in Basel, Switzerland (1707-1783)
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Introduction and Primer on Sets

Subsets of a Set

Given two sets A and B , we say that A is a subset of B , and write
A ⊆ B , if every element of A is an element of B.

B

A
(An Euler Diagram )

The notation A 6⊆ B means that “A is not a subset of B”.

The notation A $ B (also A ⊂ B) means that “A ⊆ B and A 6= B”.

In case A $ B , we say “A is a proper subset of B”; Note that this
means that “A is a subset of B and B has at least one element that is
not an element of A”.

Let us create a couple of examples!
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Introduction and Primer on Sets

Union of Sets

Given two sets A and B we define the union A ∪ B of A and B by

x ∈ A ∪ B iff x ∈ A or x ∈ B .
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Figure : The elements of A ∪ B are in the shaded region.

Caution! The textbook uses a different convention... It shades those
regions that are known to be empty.

Example: {0, 2, 4, 6, 8, 10} ∪ {0, 3, 6, 9} = {0, 2, 3, 4, 6, 8, 9, 10}.
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Intersection of Sets

Given two sets A and B we define the intersection A ∩ B of A and B

by
x ∈ A ∩ B iff x ∈ A and x ∈ B .
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Figure : The elements of A ∩ B are in the shaded region.

Example: {0, 2, 4, 6, 8, 10} ∩ {0, 3, 6, 9} = {0, 6}.
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Difference of Sets

Given two sets A and B we define the difference A\B (also written
A− B) of A minus B by

x ∈ A\B iff x ∈ A and x 6∈ B .
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Figure : The elements of A\B are in the shaded region.

Example: {0, 2, 4, 6, 8, 10}\{0, 3, 6, 9} = {2, 4, 8, 10}.
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Universe U and Complements

In a given context it is understood that the sets being considered are
all subsets of a given set U called the universe (of discourse).

Given a set A (a subset of the universe U) we define the
complement A′ of A by

x ∈ A
′ iff x 6∈ A.
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Figure : The elements of A′ are in the shaded region.

Example: Suppose U = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. Then
{0, 2, 4, 6, 8, 10}′ = {1, 3, 5, 7, 9}.

George Voutsadakis (LSSU) Logic January 2013 21 / 24



Introduction and Primer on Sets

Some Exercises with Sets

Show that, for a set A in a universe U, we have

(A′)′ = A.

Show that, for any sets A,B in a universe U, we have

A ∪ (B\A) = A ∪ B .

Show that, for any sets A,B ,C in a universe U, we have

A ∩ (B ∪ C ) = (A ∩ B) ∪ (A ∪ C ).

Show that, for any sets A,B in a universe U, we have

(A ∪ B)′ = A
′ ∩ B

′
.

Show that, for any sets A,B ,C in a universe U, we have

(A\B)\C ⊆ A\C .
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Proof of A ∪ (B\A) = A ∪ B

We show first that A ∪ (B\A) ⊆ A ∪ B .
If x ∈ A ∪ (B\A), then

x ∈ A or
In this case x ∈ A ∪ B.
x ∈ B\A.
In this case x ∈ B.
Therefore, x ∈ A ∪ B.

We show next that A ∪ B ⊆ A ∪ (B\A).
If x ∈ A ∪ B , then

x ∈ A or
In this case x ∈ A ∪ (B\A).
x ∈ B.
If x ∈ A, then x ∈ A ∪ (B\A).
If x 6∈ A, then x ∈ B\A,
whence, again x ∈ A ∪ (B\A).
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Proof of (A\B)\C ⊆ A\C

We show that (A\B)\C ⊆ A\C .
If x ∈ (A\B)\C , then
x ∈ (A\B) and x 6∈ C

whence x ∈ A and x 6∈ B and x 6∈ C

and, therefore, x ∈ A\C .
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