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Propositional Logic Connectives, Formulas and Truth Tables

Subsection 1

Connectives, Formulas and Truth Tables
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Propositional Logic Connectives, Formulas and Truth Tables

The Alphabet: Connectives and Variables

The following are the basic logical connectives that we use to
connect logical statements:

Symbol Name Symbol Name

1 true ∧ and
0 false ∨ or
¬ not → implies

↔ iff

In the same way that in algebra we use x , y , z , . . . to stand for
unknown or varying numbers, in logic we use the propositional
variables P ,Q,R , . . . to stand for unknown or varying propositions or
statements;

Using the connectives and variables we can construct propositional
formulas like

((P → (Q ∨ R)) ∧ ((¬Q) ↔ (1 ∨ P))).
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Propositional Logic Connectives, Formulas and Truth Tables

Inductive (Recursive) Definition of Propositional Formulas

Propositional formulas are formally built as follows:

Every propositional variable P is a propositional formula;
the constants 0 and 1 are propositional formulas;
if F is a propositional formula, then (¬F ) is a propositional formula;
if F and G are propositional formulas, then

(F ∧ G),
(F ∨ G),
(F → G) and
(F ↔ G)

are propositional formulas.
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Propositional Logic Connectives, Formulas and Truth Tables

An Example of Recursively Building a Formula

As an example, the formula

((P → (Q ∨ R)) ∧ ((¬Q) ↔ (1 ∨ P)))

of the previous page is recursively built as follows:
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Propositional Logic Connectives, Formulas and Truth Tables

Priorities or Precedence of Logical Connectives

You may remember from algebra that, when we write algebraic
expressions, we impose certain precedence in the application of
operation symbols so as to avoid writing too many parentheses.
E.g., we agree that exponentiation applies before multiplication and
division and those apply before addition and subtraction.

Similarly, to simplify our writing of formulas in logic, we

drop the outer parentheses;
use the following precedence conventions:

weaker

stronger
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Propositional Logic Connectives, Formulas and Truth Tables

Example of Precedence

The formula

((P → (Q ∨ R)) ∧ ((¬Q) ↔ (1 ∨ P)))

can be rewritten without redundant parentheses as

(P → Q ∨ R) ∧ (¬Q ↔ 1 ∨ P)

On the other hand, we do not want to write a non-formula

P ∧ Q ∨ R

since this writing is ambiguous!
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Propositional Logic Connectives, Formulas and Truth Tables

Subformulas

Consider the formula (P ∧ Q) ∨ ¬(P ∧Q); its syntax tree is

P Q

P Q

The subformulas of (P ∧ Q) ∨ ¬(P ∧ Q) are all formulas appearing
in the tree, i.e.,

(P ∧ Q) ∨ ¬(P ∧ Q)
P ∧Q

¬(P ∧Q)
P

Q
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Propositional Logic Connectives, Formulas and Truth Tables

Formal Inductive Definition of Subformulas

The subformulas of a formula F are defined inductively by:

The only subformula of a propositional variable P is P itself;
The only subformula of a constant c is c itself (c is 0 or 1).
The subformulas of ¬F are

¬F and
all subformulas of F ;

The subformulas of G�H are

G�H and
all subformulas of G and
all subformulas of H;

(� denotes any of ∨,∧,→,↔.)
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Propositional Logic Connectives, Formulas and Truth Tables

Semantics Using Truth Values

The semantics of a formula refers to the meaning of the formula;

If we assign truth values to the variables in a propositional formula
then we can calculate the truth value of the formula.

This is based on the truth tables for the connectives:

P ¬P

1 0
0 1

P Q P ∧Q

1 1 1
1 0 0
0 1 0
0 0 0

P Q P ∨ Q

1 1 1
1 0 1
0 1 1
0 0 0

P Q P → Q

1 1 1
1 0 0
0 1 1
0 0 1

P Q P ↔ Q

1 1 1
1 0 0
0 1 0
0 0 1
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Propositional Logic Connectives, Formulas and Truth Tables

Truth Tables for Arbitrary Formulas

Given any propositional formula F we have a truth table for F .

For instance, for (P ∨ Q) → (P ↔ Q), we have the table

P Q (P ∨Q) → (P ↔ Q)

1 1 1
1 0 0
0 1 0
0 0 1

This is constructed starting from the truth assignments to the
variables and inductively calculating values for subformulas:

P Q P ∨Q P ↔ Q (P ∨ Q) → (P ↔ Q)

1 1 1 1 1
1 0 1 0 0
0 1 1 0 0
0 0 0 1 1
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Propositional Logic Connectives, Formulas and Truth Tables

Truth Assignments

A truth assignment or truth evaluation e = (e1, . . . , en) for the list
P1, . . . ,Pn of propositional variables is a sequence of n truth values;

Example: e = (1, 1, 0, 1) is a truth evaluation for the variables
P ,Q,R ,S ;

Given a formula F (P1, . . . ,Pn) let F (e) denote the propositional
formula F (e1, . . . , en);

Example: If the formula has four variables, say F (P ,Q,R ,S), then
for the e above we have F (e) = F (1, 1, 0, 1);

Let F̂ (e) be the truth value of F at e.

Example: Consider the formula F (P ,Q,R ,S) = ¬(P ∨ R) → (S ∧ Q)
and the truth assignment e = (1, 1, 0, 1) for P ,Q,R ,S ; Then,
F (e) = ¬(1 ∨ 0) → (1 ∧ 1) and F̂ (e) = 1.
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Propositional Logic Equivalences, Tautologies and Contradictions

Subsection 2

Equivalences, Tautologies and Contradictions
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Propositional Logic Equivalences, Tautologies and Contradictions

Equivalent Formulas

Formulas F and G are called (truth) equivalent, written F ∼ G , if
they have the same truth tables;

Examples:

1 ∼ P ∨ ¬P
0 ∼ ¬(P ∨ ¬P)

P ∧ Q ∼ ¬(¬P ∨ ¬Q)
P → Q ∼ ¬P ∨ Q

P ↔ Q ∼ ¬(¬P ∨ ¬Q) ∨ ¬(P ∨ Q)

These are the well-known expressions of the standard connectives in
terms of just ¬ and ∨.
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Propositional Logic Equivalences, Tautologies and Contradictions

Proof of an Equivalence

We show that P → Q ∼ ¬Q → ¬P ∼ ¬P ∨ Q:

P Q ¬Q ¬P P → Q ¬Q → ¬P ¬P ∨ Q

1 1 0 0 1 1 1
1 0 1 0 0 0 0
0 1 0 1 1 1 1
0 0 1 1 1 1 1
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Propositional Logic Equivalences, Tautologies and Contradictions

One More Equivalence

We also show that P ∧ (Q ∨ R) ∼ (P ∧ Q) ∨ (P ∧ R).

P Q R Q ∨ R P ∧ Q P ∧ R P ∧ (Q ∨ R) (P ∧ Q)∨
(P ∧ R)

1 1 1 1 1 1 1 1
1 1 0 1 1 0 1 1
1 0 1 1 0 1 1 1
1 0 0 0 0 0 0 0
0 1 1 1 0 0 0 0
0 1 0 1 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0
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Propositional Logic Equivalences, Tautologies and Contradictions

Fundamental Truth Equivalences

1. P ∨ P ∼ P (Idempotent)
2. P ∧ P ∼ P (Idempotent)
3. P ∨ Q ∼ Q ∨ P (Commutative)
4. P ∧ Q ∼ Q ∧ P (Commutative)
5. P ∨ (Q ∨ R) ∼ (P ∨ Q) ∨ R (Associative)
6. P ∧ (Q ∧ R) ∼ (P ∧ Q) ∧ R (Associative)
7. P ∧ (P ∨ Q) ∼ P (Absorption)
8. P ∨ (P ∧ Q) ∼ P (Absorption)
9. P ∧ (Q ∨ R) ∼ (P ∧ Q) ∨ (P ∧ R) (Distributive)

10. P ∨ (Q ∧ R) ∼ (P ∨ Q) ∧ (P ∨ R) (Distributive)

To be continued after a break!
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Propositional Logic Equivalences, Tautologies and Contradictions

Augustus De Morgan

Augustus De Morgan, born in Madurai, Madras Presidency, British
Raj (1806-1871)
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Propositional Logic Equivalences, Tautologies and Contradictions

More Truth Equivalences

11. P ∨ ¬P ∼ 1 (Excluded Middle)
12. P ∧ ¬P ∼ 0
13. ¬¬P ∼ P

14. P ∨ 1 ∼ 1
15. P ∧ 1 ∼ P

16. P ∨ 0 ∼ P

17. P ∧ 0 ∼ 0
18. ¬(P ∨Q) ∼ ¬P ∧ ¬Q (De Morgan’s Law)
19. ¬(P ∧Q) ∼ ¬P ∨ ¬Q (De Morgan’s Law)
20. P → Q ∼ ¬P ∨ Q

21. P → Q ∼ ¬Q → ¬P (Contraposition)
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Propositional Logic Equivalences, Tautologies and Contradictions

More Truth Equivalences

22. P → (Q → R) ∼ (P ∧ Q) → R

23. P → (Q → R) ∼ (P → Q) → (P → R)
24. P ↔ P ∼ 1
25. P ↔ Q ∼ Q ↔ P

26. (P ↔ Q) ↔ R ∼ P ↔ (Q ↔ R)
27. P ↔ ¬Q ∼ ¬(P ↔ Q)
28. P ↔ (Q ↔ P) ∼ Q

29. P ↔ Q ∼ (P → Q) ∧ (Q → P)
30. P ↔ Q ∼ (P ∧ Q) ∨ (¬P ∧ ¬Q)
31. P ↔ Q ∼ (P ∨ ¬Q) ∧ (¬P ∨ Q)
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Propositional Logic Equivalences, Tautologies and Contradictions

A Few More Useful Equivalences

32. 1 ↔ P ∼ P

33. 0 ↔ P ∼ ¬P
34. 1 → P ∼ P

35. P → 1 ∼ 1
36. 0 → P ∼ 1
37. P → 0 ∼ ¬P

George Voutsadakis (LSSU) Logic January 2013 22 / 86



Propositional Logic Equivalences, Tautologies and Contradictions

Tautologies and Contradictions

A formula F is called a tautology if F̂ (e) = 1, for every truth
assignment e. This means the truth table for F looks like:

F

1
...
1

Theorem (Truth Equivalence and Tautologies)

Two propositional formulas F and G are truth equivalent if and only if the
formula F ↔ G is a tautology.

A formula F is called a contradiction if F̂ (e) = 0, for every truth
assignment e. How does the truth table of a contradiction looks like?
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Propositional Logic Substitution

Subsection 3

Substitution
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Propositional Logic Substitution

Substitutions

Substitution means uniform substitution of formulas for variables.

Given

a formula F (P1, . . . ,Pn) with variables P1, . . . ,Pn, and
formulas H1, . . . ,Hn,

F (H1, . . . ,Hn) is the formula resulting from substituting Hi for each
occurrence of Pi in F (P1, . . . ,Pn);

If F (P ,Q) is the formula P → (Q → P), then

F (¬P ∨ R ,¬P) = ¬P ∨ R → (¬P → ¬P ∨ R).
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Propositional Logic Substitution

Substitution Theorem

Substitution Theorem

Given

formulas F (P1, . . . ,Pn) and G (P1, . . . ,Pn) with variables P1, . . . ,Pn,
and

formulas H1, . . . ,Hn,

if F (P1, . . . ,Pn) ∼ G (P1, . . . ,Pn), then F (H1, . . . ,Hn) ∼ G (H1, . . . ,Hn).

Example: Consider one of De Morgan’s Laws:

¬(P ∨Q) ∼ ¬P ∧ ¬Q.

By the Substitution Theorem, we may conclude:

¬((P → R) ∨ (R ↔ Q)) ∼ ¬(P → R) ∧ ¬(R ↔ Q).
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Propositional Logic Substitution

An Exercise on Substitution

Which of the following propositional formulas are substitution
instances of the formula P → (Q → P)? If a formula is indeed a
substitution instance, give the formulas substituted for P ,Q.

1 ¬R → (R → ¬R)
YES!

2 ¬R → (¬R → ¬R)
YES!

3 ¬R → (¬R → R)
No!

4 (P ∧ Q → P) → ((Q → P) → (P ∧ Q → P))
YES!

5 ((P → P) → P) → ((P → (P → (P → P))))
No!
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Propositional Logic Replacement

Subsection 4

Replacement
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Propositional Logic Replacement

Replacement

If a formula F has a subformula G , say

GF =

then, when we replace the given occurrence of G by another formula
H, the result looks like

HF =

Some like to call this substitution as well. But then there are two
kinds of substitution!

So, for clarity it is better to call it replacement.

Example: If we replace the second occurrence of P ∨ Q in the
formula F = (P ∨ Q) → (R ↔ (P ∨ Q)) by the formula Q ∨ P,
then we obtain the formula F ′ = (P ∨ Q) → (R ↔ (Q ∨ P)).
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Propositional Logic Replacement

Replacement Theorem

Replacement Theorem

Let F ,G ,H be formulas. If G ∼ H , then F (· · ·G · · · ) ∼ F (· · ·H · · · ).

Example: We know by De Morgan’s Law that

¬(Q ∨ R) ∼ ¬Q ∧ ¬R.

Thus, by the Replacement Theorem, we can conclude that

(P → ¬(Q ∨ R)) ∧ ¬Q ∼ (P → ¬Q ∧ ¬R) ∧ ¬Q

George Voutsadakis (LSSU) Logic January 2013 30 / 86



Propositional Logic Replacement

Simplification Through Replacement

By replacing subformulas by equivalent formulas and using the
Replacement Theorem, we can simplify formulas; This means
obtaining equivalent formulas in simpler form;

Example: Simplify the formula (P ∧ Q) ∨ ¬(¬P ∨ Q).

(P ∧Q) ∨ ¬(¬P ∨ Q) (apply De Morgan’s Law)
∼ (P ∧ Q) ∨ (¬¬P ∧ ¬Q)

(apply Double Negation Law)
∼ (P ∧ Q) ∨ (P ∧ ¬Q)

(apply Distributive Law)
∼ P ∧ (Q ∨ ¬Q)

(apply Disjunction Law)
∼ P ∧ 1

(apply Conjunction Law)
∼ P .

By transitivity of ∼, we get (P ∧Q) ∨ ¬(¬P ∨ Q) ∼ P .
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Propositional Logic Adequate Sets of Connectives

Subsection 5

Adequate Sets of Connectives
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Propositional Logic Adequate Sets of Connectives

Adequate Sets of Connectives

A set of connectives is called adequate if every truth table is the
truth table of some propositional formula using only the given set of
connectives;

The set of standard connectives {1, 0,¬,∧,∨,→,↔} is adequate;

Given any truth table, we can construct a formula using only these
connectives whose truth table agrees with the given table;

P Q R F

1 1 1 0
1 1 0 1
1 0 1 1
1 0 0 0
0 1 1 1
0 1 0 0
0 0 1 0
0 0 0 1

Find a formula F (P ,Q,R) us-
ing only the standard connec-
tives that has this truth table:
Answer:
(P∧Q∧¬R)∨(P∧¬Q∧R)∨
(¬P∧Q∧R)∨(¬P∧¬Q∧¬R)

George Voutsadakis (LSSU) Logic January 2013 33 / 86



Propositional Logic Adequate Sets of Connectives

Minimal Adequate Sets

From the previous example, we conclude that we only need the
connectives ∨,∧ and ¬ to construct a formula for any given table;

It follows that {∨,∧,¬} is an adequate set of connectives;

An adequate set of connectives is minimal if no proper subset of it is
adequate;

Is {∨,∧,¬} minimal? The answer is “no” because, by De Morgan’s
Laws

P ∨Q ∼ ¬(¬P ∧ ¬Q) and P ∧Q ∼ ¬(¬P ∨ ¬Q).

Therefore, both {∧,¬} and {∨,¬} are adequate sets of connectives.
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Propositional Logic Adequate Sets of Connectives

More on Minimality

Is the set of connectives {¬,→} adequate?
Yes! How can we show this?
We must show that every connective in an adequate set can be
expressed using only those two!

Sets with a Single Standard Connective

No single standard connective is adequate.

This is an interesting statement.
How can we prove something like this?

The strategy is to show that for each standard connective, there is
some other standard connective that cannot be expressed using the
first standard connective.
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Propositional Logic Adequate Sets of Connectives

Inadequacy of a Single Standard Connective

If we have a single constant 0 or 1 then we cannot express ¬;

If we have just ¬ we cannot express ∧;

If we have just � (� can be any of ∧,∨,→,↔), then we cannot
express ¬;
This means that it is not possible to find a formula F (P) using just
the connective � that is equivalent to ¬P .
To see this, we first have two find out what can be expressed with
F (P) using only a single connective �.
The following table summarizes what can be expressed:

� = ∧ ∨ → ↔

F (P) ∼ P P 1 or P 1 or P
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Propositional Logic Adequate Sets of Connectives

More on Table

The table:
� = ∧ ∨ → ↔

F (P) ∼ P P 1 or P 1 or P

For example, if we start with →, then any formula F (P) in one
variable P , using just the connective →, is equivalent to either 1 or P ;

This can be proved by using a form of induction, called structural
induction because it inducts on the increasingly complex structure of
formulas taking into account the rules for constructing them;

In the next slide we use structural induction to show that

any formula constructed just using P and → is truth equivalent
to the formula 1 or the formula P .
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Propositional Logic Adequate Sets of Connectives

→ cannot express ¬

If only P and → are used to construct F (P), then F (P) can only be

P or P → P ;
G(P) → H(P), for some formulas G(P) and H(P), using only P and
→ and of simpler structure than F (P) itself;

So, to see that F (P) is truth equivalent to 1 or P , we start with P
and P → P (Basis of Structural Induction):

P ∼ P ;
P → P ∼ 1: This is because of the following truth-table:

P P → P

1 1
0 1
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Propositional Logic Adequate Sets of Connectives

→ cannot express ¬ (Cont’d)

We finish by showing that
if G (P),H(P) are truth-equivalent to 1 or P (Structural Induction
Hypothesis),
then F (P) = G (P) → H(P) must also be equivalent to 1 or P (Step
of Structural Induction): This is because of the following truth-table:

G (P) H(P) G (P) → H(P)

1 1 1
1 P P

P 1 1
P P 1

Since F (P) is equivalent to either 1 or P , it cannot be equivalent to
¬P .
Thus, no formula constructed just by using P and →, no matter how
complex, can express the formula ¬P .
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Propositional Logic Adequate Sets of Connectives

Ernst Schröder

Ernst Schröder, born in Mannheim, Baden, Germany (1841-1902)
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Propositional Logic Adequate Sets of Connectives

Schröder’s f Connective

Schröder found in 1880 the f connective with truth table

P Q P fQ

1 1 0
1 0 0
0 1 0
0 0 1

This connective is adequate because it can express
¬P ∼ P f P P P f P

1 0
0 1

P ∧ Q ∼ (P f P)f (Q f Q)

P Q P f P Q fQ (P f P)f (Q f Q)
1 1 0 0 1
1 0 0 1 0
0 1 1 0 0
0 0 1 1 0
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Propositional Logic Adequate Sets of Connectives

Henry Maurice Sheffer

Henry Maurice Sheffer, born in western Ukraine (1882-1964)

Figure : The Harvard Philosophy Faculty 1929: Sheffer Last in Front Row
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Propositional Logic Adequate Sets of Connectives

The Sheffer Stroke |

Sheffer found in 1913 the Sheffer stroke | connective:

P Q P | Q

1 1 0
1 0 1
0 1 1
0 0 1

This connective is adequate because it can express
¬P ∼ P | P P P | P

1 0
0 1

P ∨ Q ∼ (P | P) | (Q | Q)
P Q P | P Q | Q (P | P) | (Q | Q)
1 1 0 0 1
1 0 0 1 1
0 1 1 0 1
0 0 1 1 0
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Propositional Logic Disjunctive and Conjunctive Forms

Subsection 6

Disjunctive and Conjunctive Forms
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Propositional Logic Disjunctive and Conjunctive Forms

Associativity

Since the associative law holds for ∨ and ∧ it is common practice to
drop parentheses in situations such as

P ∧ ((Q ∧ R) ∧ S),

yielding
P ∧ Q ∧ R ∧ S ;

Likewise we often write

P ∨ Q ∨ R ∨ S

instead of
(P ∨ Q) ∨ (R ∨ S).
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Propositional Logic Disjunctive and Conjunctive Forms

Disjunctive Normal Form (DNF)

Any formula F can be transformed into a disjunctive form, e.g.,
P ↔ Q ∼ (P ∧ Q) ∨ (¬P ∧ ¬Q);

If every variable or its negation appears in each conjunction then we
call it a disjunctive normal form.

Such conjunctions are called DNF-constituents.

The above disjunctive form is actually a disjunctive normal form, with
the DNF-constituents P ∧Q and ¬P ∧ ¬Q.

The formula tree for this DNF form is

P Q

P Q

Notice that
the negations are all next to the leaves of the tree;
And there is no ∧ above a ∨.
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Propositional Logic Disjunctive and Conjunctive Forms

Disjunctive Form

Being in disjunctive form really means:
1 negations only appear next to variables;
2 no ∧ is above a ∨.

So we can have degenerate cases of the disjunctive form:

P ;
P ∨ ¬Q;
P ∧ ¬Q;
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Propositional Logic Disjunctive and Conjunctive Forms

Conjunctive Form

And we have conjunctive forms such as
P ↔ Q ∼ (¬P ∨Q) ∧ (P ∨ ¬Q);

The formula tree is given by

P

PQ

Q

Being in conjunctive form means:
1 negations only appear next to variables;
2 no ∨ is above a ∧.
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Propositional Logic Disjunctive and Conjunctive Forms

Important Remarks on CNF and DNF

The formula
F (P ,Q) = P ∨ ¬Q

is in both disjunctive and conjunctive form;

It is in conjunctive normal form, but not in disjunctive normal form;

The set of variables used affects the normal forms;

The formula F (P) = ¬P is in both CNF and DNF;

However, the formula F (P ,Q) = ¬P is in neither:

Its CNF is (¬P ∨ Q) ∧ (¬P ∨ ¬Q);
Its DNF is (¬P ∧ Q) ∨ (¬P ∧ ¬Q).
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Propositional Logic Disjunctive and Conjunctive Forms

Rules for Transforming a Formula into DNF and CNF

To transform a given formula F into a disjunctive form we apply the
following equivalences:

F → G  ¬F ∨ G

F ↔ G  (F → G) ∧ (G → F )
¬(F ∨ G) ¬F ∧ ¬G
¬(F ∧ G) ¬F ∨ ¬G
¬¬F  F

F ∧ (G ∨ H) (F ∧ G) ∨ (F ∧ H)
(F ∨ G) ∧ H  (F ∧ H) ∨ (G ∧ H)

These rules are applied until no further applications are possible.
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Propositional Logic Disjunctive and Conjunctive Forms

Example and Additional Rules

Consider P ∧ (P → Q);

Rewrite P ∧ (¬P ∨Q)  (P ∧ ¬P) ∨ (P ∧ Q);

Now this formula clearly gives a disjunctive form, but not a normal
form. (Why?)

We can simplify it considerably, but to do this we need to invoke
additional rewrite rules.

0 ∧ F  0
¬1 0
· · · ∧ F ∧ · · · ∧ · · · ∧ ¬F ∧ · · · 0
· · · ∧ F ∧ · · · ∧ · · · ∧ F ∧ · · · · · · ∧ F ∧ · · ·

Applying them, we get (P ∧ ¬P) ∨ (P ∧Q) 0 ∨ (P ∧Q) P ∧Q;

One more rule is needed, to handle the exceptional case that the
above rules reduce the formula to the constant 1. In this case we
rewrite 1 as a join of all possible DNF constituents.
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Propositional Logic Disjunctive and Conjunctive Forms

Exceptional Cases

Sometimes, after applying all these rules, one still does not have a
disjunctive normal form;

Example: If we start with (P ∧Q)∨¬P then none of the rules apply.
To get a DNF we need to replace ¬P with (¬P ∧Q) ∨ (¬P ∧ ¬Q).
Then

(P ∧ Q) ∨ ¬P ∼ (P ∧ Q) ∨ (¬P ∧ Q) ∨ (¬P ∧ ¬Q).

Now we have a disjunctive normal form.
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Using Truth Tables to find Normal Forms

The second method to find normal forms is to use truth tables;

Rows of truth table of F yield the constituents according to:

The DNF-constituents chosen from rows for which F is true;
The CNF-constituents chosen from rows for which F is false.

Example: Consider F (P ,Q) = (¬P ∨ Q) ∧ ¬P . Truth table:

P Q (¬P ∨ Q) ∧ ¬P

1 1 0
1 0 0
0 1 1
0 0 1

P Q (P ↔ Q) ∨ (P → Q)

1 1 1
1 0 0
0 1 1
0 0 1

Therefore, its DNF is (¬P ∧Q) ∨ (¬P ∧ ¬Q).

Example: Consider F (P ,Q) = (P ↔ Q) ∨ (P → Q). Truth table:
Therefore, its CNF is ¬P ∨ Q.
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Uniqueness of Normal Forms and Test for Equivalence

A formula has many disjunctive forms, and many conjunctive forms;

But it has only one disjunctive normal form and only one conjunctive
normal form;

This happens because normal forms are determined by the truth table
of a formula.

A consequence of this uniqueness property is the following:

Equivalence Test based on Normal Forms

Two formulas are equivalent iff they have the same disjunctive (or
conjunctive) normal forms.
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Subsection 7

Valid Arguments, Tautologies and Satisfiability
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Logical Arguments

A (logical) argument draws conclusions from premisses.

Example:

P ∨ Q ∨ R

¬P
¬Q
∴ R

The general form of a logical argument is

F1, . . . ,Fn ∴ F .

F1, . . . ,Fn are the premises and F is the conclusion.

Some arguments are valid and some are not; we define validity
carefully in the following slide.
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Valid Arguments

An argument
F1, . . . ,Fn ∴ F

is valid (or correct) if the conclusion is true whenever the premisses
are true.

Schematically, F1, . . . ,Fn ∴ F is valid if

F1 · · · Fn F

1 · · · 1
implies

F1 · · · Fn F

1 · · · 1 1
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Validity of Arguments and Tautology of Implication

Proposition (Relating ∴ and →)

The argument F1, . . . ,Fn ∴ F is valid iff the implication F1 ∧ · · · ∧ Fn → F

is a tautology.

Both statements mean that F is true whenever F1, . . . ,Fn are true.

A nice example to follow after a break!
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Chrysippos from Soli

Chrysippos, born in Soli, Cilicia (279-206 B.C.)
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Chrysippos’ Smart Hunting Dog

When running after a rabbit, the dog found that the path suddenly
split in three directions.

The dog sniffed the first path and found no scent;
Then it sniffed the second path and found no scent;
Then, without bothering to sniff the third path, it ran down that path.

Reasoning of the smart canine:
The rabbit went this way or that way or the other way.
Not this way;
Not that way;
Therefore the other way.

The dog’s argument:

P ∨ Q ∨ R

¬P
¬Q
∴ R
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Validity of Chrysippos’ Dog Reasoning

Is the dog’s argument

P ∨Q ∨ R

¬P
¬Q
∴ R

a valid argument?

This is verified by the following truth table:

P Q R P ∨ Q ∨ R ¬P ¬Q R

1 1 1 1 0 0 1
1 1 0 1 0 0 0
1 0 1 1 0 1 1
1 0 0 1 0 1 0
0 1 1 1 1 0 1
0 1 0 1 1 0 0
0 0 1 11 11 11 11
0 0 0 0 1 1 0
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Satisfiability of a Set of Formulas

A set S of propositional formulas is satisfiable if there is a truth
evaluation e for the variables in S that makes every formula in S true;

In that case, we say that e satisfies S;

The expression Sat(S) means “S is satisfiable”;

The expression ¬Sat(S) means “S is not satisfiable”;

Thus a finite set {F1, . . . ,Fn} of formulas is satisfiable if, when we
look at the combined truth table for the Fi ’s, we can find a line that
looks as follows:

P1 · · · Pm F1 · · · Fn
e1 · · · em 1 · · · 1
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Example of Satisfiability I

Consider the set S = {P → Q,Q → R ,R → P};

Because
P Q R P → Q Q → R R → P

1 1 1 11 11 11
1 1 0 1 0 1
1 0 1 0 1 1
1 0 0 0 1 1
0 1 1 1 1 0
0 1 0 1 0 1
0 0 1 1 1 0
0 0 0 11 11 11

S is satisfiable and both e = (1, 1, 1) and e′ = (0, 0, 0) satisfy S.
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Example of Satisfiability II

Consider the set S = {P ↔ ¬Q,Q ↔ R ,R ↔ P};

Because
P Q R P ↔ ¬Q Q ↔ R R ↔ P

1 1 1 0 1 1
1 1 0 0 0 0
1 0 1 1 0 1
1 0 0 1 1 0
0 1 1 1 1 0
0 1 0 1 0 1
0 0 1 0 0 0
0 0 0 0 1 1

S is not satisfiable.
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Valid Arguments and Non-Satisfiable Formulas

Theorem

Let F1, . . . ,Fn,F be formulas. Then the following assertions are
equivalent:

The argument F1, . . . ,Fn ∴ F is valid;

The set {F1, . . . ,Fn,¬F} is not satisfiable;

The formula F1 ∧ · · · ∧ Fn → F is a tautology;

The formula F1 ∧ · · · ∧ Fn ∧ ¬F is not satisfiable.

All of those statements say in essence that F is true whenever
F1, . . . ,Fn are true!
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Summary of Info Provided by Combined Truth Tables

From a combined truth table , such as

P Q R F1 F2 F3 F4
1 1 1 1 1 0 1
1 1 0 0 0 1 0
1 0 1 1 1 0 0
1 0 0 0 0 0 0
0 1 1 1 0 0 0
0 1 0 0 0 1 1
0 0 1 1 1 0 1
0 0 0 0 0 0 1

one may draw conclusions about:

Normal Forms;

Equivalence of Formulas;

Tautologies;

Contradictions;

Satisfiability of Formulas;

Valid Arguments.
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An Applied Example: The Two Tribes on the Island of Tufa

The island of Tufa has two tribes:

the Tu’s who always tell the truth;
the Fa’s who always lie.

A traveler encountered three residents A,B , and C of Tufa, and each
made a statement to the traveler:

A: “A or B tells the truth if C lies.”
B: “If A or C tell the truth, then it is not the case that exactly one of
us is telling the truth.”
C : “A or B is lying iff A or C is telling the truth.”

How can we determine, as best possible, which tribes A,B , and C

belong to?
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Tribes on the Island of Tufa: Solution I

Statements of the Tufa residents:

A: “A or B tells the truth if C lies.”
B: “If A or C tell the truth, then it is not the case that exactly one of
us is telling the truth.”
C : “A or B is lying iff A or C is telling the truth.”

Let

A be the statement “A is telling the truth” (equivalently “A is a Tu”);
B be the statement “B is telling the truth” (equivalently “B is a Tu”);
C be the statement “C is telling the truth” (equivalently “C is a Tu”);

Then in symbolic form the three people have made the following
statements:

A says: ¬C → (A ∨ B);
B says: A∨C → ¬((¬A∧¬B ∧C )∨ (¬A∧B ∧¬C )∨ (A∧¬B ∧¬C ));
C says: (¬A ∨ ¬B) ↔ (A ∨ C ).
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Tribes on the Island of Tufa: Solution I
Since a person tells the truth iff what he says is true, we obtain the
following statements:

A ↔ (¬C → (A ∨ B));
B ↔ (A∨C → ¬((¬A∧¬B ∧C )∨ (¬A∧B ∧¬C )∨ (A∧¬B ∧¬C )));
C ↔ ((¬A ∨ ¬B) ↔ (A ∨ C )).

Letting these three propositional formulas be F ,G , and H, we have
the truth table:

A B C F G H

1 1 1 1 1 0
1 1 0 1 1 1
1 0 1 1 0 0
1 0 0 1 1 1
0 1 1 0 1 0
0 1 0 0 1 0
0 0 1 0 1 1
0 0 0 1 0 1

From lines 2 and 4 we see that
A must be a Tu and C must
be a Fa.
However, we do not know for
sure which tribe B belongs to.
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Compactness
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The Compactness Theorem

Compactness Theorem for Propositional Logic

Suppose S is a set of propositional formulas. S is satisfiable iff every finite
subset S0 ⊆ S is satisfiable.

Note that the theorem is trivial if S is finite;

Note, also, that the left to right implication of the theorem is trivial,
even when S is infinite; After all, if a set of formulas is satisfiable,
every subset of the set is also satisfiable;

The proof of the right to left implication takes some time; We will
not present it here, but you may find it on page 75 of our textbook;

We will instead showcase the usefulness of the theorem by presenting
two applications.
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Philip Hall

Philip Hall, born in Hampstead, London, England (1904-1982)
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William “Bill” Thomas Tutte

William “Bill” Thomas Tutte, born in Newmarket, Suffolk, England
(1917-2002)
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Application of Compactness I: The Matching Problem

Suppose that A,B are sets and R ⊆ A× B a relation from A to B ,
such that

every element of A is related to at least one element of B;
every element of A is related to only finitely many elements of B;

Suppose that, for every finite subset A0 ⊆ A, it is possible to find a
matching f : A0 → B , i.e.,
a one-to-one function f , satisfying (a, f (a)) ∈ R , for all a ∈ A0;

We can use the Compactness Theorem to show that there exists a
matching for all of A;
We do this carefully in the following slide.
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The Matching Problem: The Solution

For all (a, b) ∈ A×B , we introduce a propositional variable Pab; (The
intuition is that Pab will have value 1 if f (a) = b and 0, otherwise.)
Let S be the set of propositional formulas consisting of

1 Pab1 ∨ · · · ∨ Pabn , where bi ranges over all b ∈ B, such that aRb holds,
and a ∈ A;

2 ¬Pab1 ∨ ¬Pab2 , for all b1, b2 ∈ B, b1 6= b2, and a ∈ A;
3 ¬Pa1b ∨ ¬Pa2b, for all a1, a2 ∈ A, a1 6= a2, and b ∈ B;

The formulas of type
1 say “each a is matched to at least one of the b’s, such that aRb holds”;
2 say “each a is matched to at most one b”;
3 say “different a’s are not matched to the same b”;

The postulated hypothesis asserts the existence of a matching for
every finite subset of A; i.e., that every finite subset of S is satisfiable;

By the Compactness Theorem S is also satisfiable; A satisfying
assignment of truth values to Pab’s translates directly to a matching
for all A.
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Paul Erdös

Paul Erdös, born in Budapest, Austria-Hungary (1913-1996)
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Nicolaas Govert “Dick” de Bruijn

Nicolaas Govert “Dick” de Bruijn, born in The Hague (Den Haag),
South Holland, Netherlands (1918-2012)
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Application of Compactness II: Graph Coloring

Suppose that G = (G , r) is a graph, i.e., G is a set of vertices and r
is an edge relation, assumed to be

irreflexive, i.e., (a, a) 6∈ r , for all a ∈ G ;
symmetric, i.e., (a, b) ∈ r implies (b, a) ∈ r , for all a, b ∈ G ;

If (a, b) ∈ r , we say (a, b) is an edge, a, b belong to edge (a, b) or
a, b are adjacent;

A graph G′ = (G ′, r ′) is a subgraph of G = (G , r) if
G ′ ⊆ G is nonempty;
(a, b) ∈ r ′ iff (a, b) ∈ r , for all a, b ∈ G ′;

Given a positive integer k , a k-coloring of G = (G , r) is an
assignment of colors to the vertices of G from a collection of k colors
{c1, . . . , ck} with the property that

adjacent vertices are not assigned the same color.

Erdös-De Bruijn Theorem

Let k be fixed. If every finite subgraph of a graph G = (G , r) has a
k-coloring, then G itself has a k-coloring.
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The Erdös-De Bruijn Theorem

We use the Compactness Theorem to prove Erdös-De Bruijn;

For all a ∈ G and all 1 ≤ i ≤ k , we introduce a variable Pai ;
(Intuition: Pai will have value 1 if vertex a gets color i and 0,
otherwise.)
Let S be the set of propositional formulas consisting of

1 Pa1 ∨ · · · ∨ Pak , a ∈ G ;
2 ¬Pai ∨ ¬Paj , a ∈ G , 1 ≤ i < j ≤ k ;
3 ¬Pai ∨ ¬Pbi , for all a, b ∈ G , with (a, b) ∈ r and 1 ≤ i ≤ k ;

The formulas of type
1 say “each a is assigned at least one color”;
2 say “no a is assigned two different colors”;
3 say “adjacent a’s are not assigned the same color”;

The hypothesis asserts the existence of a k-coloring for every finite
subgraph of G; i.e., that every finite subset of S is satisfiable;

By the Compactness Theorem S is also satisfiable; A satisfying
assignment of truth values to Pai ’s translates directly to a k-coloring
of G itself.

George Voutsadakis (LSSU) Logic January 2013 79 / 86



Propositional Logic Epilogue: Other Propositional Logics
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Epilogue: Other Propositional Logics
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Other Propositional Logics

The term propositional logic alludes to the fact that the variables
P ,Q, . . . stand for propositions and that the connectives ¬,∧, . . .
combine propositions;

We studied Classical Propositional Logic, which has two distinctive
features:

Its connectives are the classical connectives;
Its propositions are evaluated to either 1 (true) or 0 (false);

This is by no means the only propositional logic!

By allowing different sets of connectives (syntax) or different
evaluations (semantics) we may construct and study a huge variety of
other very important and interesting propositional logics!
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Luitzen Egbertus Jan Brouwer

Luitzen Egbertus Jan Brouwer, born in Overschie, Netherlands
(1881-1966)
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Arend Heyting

Arend Heyting, born in Amsterdam, Netherlands (1898-1980)
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Constructive Mathematics

In Classical Propositional Logic (that we have studied in detail), the
formula (Law of the Excluded Middle) P ∨ ¬P is a tautology.

So, if one shows that ¬P assumes the value 0, i.e., that the negation
of P cannot hold, then one may conclude that P must assume the
value 1, i.e., that P must hold!
Many mathematicians objected to this type of reasoning on
philosophical grounds.

They claimed that, e.g., to prove the existence of an object, it should
not be enough to show that its nonexistence leads to a contradiction!
They insisted that to show that an object exists one must construct
such an object!

The propositional logic on which this type of mathematics, called
constructive mathematics, is based is not classical propositional
logic, but rather intuitionistic logic.

One of the founders of intuitionism was Brouwer; Heyting was one of
his students, also a strong intuitionist.
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Jan  Lukasiewicz

Jan  Lukasiewicz, born in Lwów (Lemberg in German), Galicia,
Austria-Hungary (1878-1956)
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 Lukasiewicz’s Three-Valued Logic

Think of a propositional logic that is also based on the connectives
¬,∨,∧, . . .;

But, instead of its variables being only allowed the values 0 and 1, the
variables may be assigned the values 0, 1 and u, the latter standing
for Unknown;

The evaluations of the formulas are based on the following truth
tables for these connectives:

P ¬P

1 0
u u

0 1

∨ 0 u 1

0 0 u 1
u u u 1
1 1 1 1

∧ 0 u 1

0 0 0 0
u 0 u u

1 0 u 1

Then P ∨ ¬P is not a tautology anymore!

Since the Law of the Excluded Middle is not a law of this logic, the
kind of reasoning by contradiction, that intuitionists strongly object
to, is avoided!
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