Mathematical Logic

(Based on lecture slides by Stan Burris)

George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science Lake Superior State University

LSSU Math 300
(1) Terms, Interpretations and Term Functions

- Language of Algebras
- Interpretations and Algebras
- Terms
- Term Functions

Subsection 1

Language of Algebras

The Language of Algebras

- A language \mathcal{L} of algebras (or algebraic structures) consists of
- a set \mathcal{F} of function symbols f, g, h, \ldots;
- a set \mathcal{C} of constant symbols c, d, e, \ldots;
- a set X of variables x, y, z, \ldots.
- Each function symbol has an arity to indicate how many arguments it takes.
If the symbol takes n arguments we say it is n-ary.
- For small n 's we have the terminology

Number of Arguments n	1	2	3	4
The Symbol is	unary	binary	ternary	quaternary

Example: The Language of Boolean Algebras

- The language $\mathcal{L}_{\mathrm{BA}}$ of Boolean algebras has

$$
\mathcal{F}=\left\{\vee, \wedge,^{\prime}\right\}, \quad \mathcal{C}=\{0,1\}
$$

where

- \vee and \wedge are binary function symbols;
- ' is a unary function symbol.
- Names:

Symbol	Symbol Name
\vee	join
\wedge	meet
,	complement

- The constants are just called by the usual names zero and one.

Subsection 2

Interpretations and Algebras

The Meaning of the Symbols

- To assign meaning to the symbols in a language of algebras, we start with a set A, called the universe of the algebra;
- Then the symbols of \mathcal{L} are interpreted in A as follows:
- Function symbols are interpreted as functions on the set. More specifically, an n-ary function symbol f is interpreted as a function $f^{\mathrm{A}}: A^{n} \rightarrow A$;
These are called n-ary functions because they have n arguments (or inputs);
- Constant symbols are interpreted as elements of the set.

The interpretation of a constant symbol c is denoted by c^{A};

- Variables in X are left uninterpreted;

They are intended to vary over arbitrary elements of A.

Example: A Simple Language \mathcal{L}

- Consider a language \mathcal{L}, such that $\mathcal{F}=\{f\}$ and $\mathcal{C}=\emptyset$, with f unary;
- If $A=\{0,1,2,3\}$, we can describe an interpretation $f^{A}: A \rightarrow A$ of f in A using
- an element-wise description: $0 \mapsto 1,1 \mapsto 0,2 \mapsto 3$ and $3 \mapsto 3$;
- a table, e.g.,

	f
0	1
1	0
2	3
3	3

- or with a directed graph representation:

Arthur Cayley

- Arthur Cayley, born in Richmond, Surrey, United Kingdom (1821-1895)

Cayley Tables

- We can also describe small binary functions on a set A using a table, called a Cayley table;
- To describe the integers mod 4 , with the binary operation of multiplication mod 4 , we may use the following Cayley table:

\cdot	0	1	2	3
0	0	0	0	0
1	0	1	2	3
2	0	2	0	2
3	0	3	2	1

Function Tables

- We can also describe functions on a small set A using a table that is similar to the truth tables used to describe the connectives;
- To describe the ternary function

$$
f(x, y, z)=1+x y z
$$

on the integers mod 2 , we could use the function table

x	y	z	f
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

Interpretations of a Language \mathcal{L} : Formal Definition

- An interpretation / of the language \mathcal{L} on a nonempty set A assigns to each symbol from \mathcal{L} a function or constant as follows:
- $I(c)=c^{A}$ is an element of A for each constant symbol c in \mathcal{C};
- $I(f)=f^{A}: A^{n} \rightarrow A$ is an n-ary function on A for each n-ary function symbol f in \mathcal{F}.
- Visualizing an interpretation / on a set A :

\mathcal{L}-Algebras

- An \mathcal{L}-algebra (or \mathcal{L}-structure) \mathbf{A} is a pair $\mathbf{A}=(A, I)$ where
- A is a set;
- I is an interpretation of \mathcal{L} on A;
- Given an algebra $\mathbf{A}=(A, I)$:
- the interpretations of the constant symbols are called the constants of the algebra \mathbf{A};
- the interpretations of the function symbols are called the fundamental operations of the algebra \mathbf{A}.
- The following notations can all be used:
- $I(c)=c^{A}=c$;
- $I(f)=f^{A}=f$;
- $(A, I)=(A, \mathcal{F}, \mathcal{C})$.
- For example, the integers with addition, multiplication, and the zero 0 and unit 1 as constant elements can be written $\mathbb{Z}=(\mathbb{Z},+, \cdot, 0,1)$.

Example: Boolean Algebra of Subsets of a Set U

- Let $\mathcal{L}=\mathcal{L}_{\mathrm{BA}}=\left\{\vee, \wedge,{ }^{\prime}, 0,1\right\}$;
- Let $\mathcal{P}(U)$ be the collection of all subsets of a given set $U(U$ is called the universe and $\mathcal{P}(U)$ the powerset of U);
- Interpret the function symbols and the constants of \mathcal{L} as follows:
- join as union (()$_{\text {) }}$
- meet as intersection (\cap);
- complement as complement (') in U;
- 0 as the empty set (\emptyset);
- 1 as the universe (U).
- Then, $\mathcal{P}(U)=\left(\mathcal{P}(U), \cup, \cap,{ }^{\prime}, \emptyset, U\right)$ is the Boolean algebra of subsets of U.

The 2-Element Boolean Algebra

- Let $\mathcal{L}=\mathcal{L}_{\mathrm{BA}}=\left\{\vee, \wedge,{ }^{\prime}, 0,1\right\}$;
- Let $A=\{0,1\}$ and let the function symbols be interpreted as follows:

$$
\begin{array}{c|cc}
\vee & 0 & 1 \\
\hline 0 & 0 & 1 \\
1 & 1 & 1
\end{array}
$$

and 0,1 are interpreted in the obvious manner (as 0,1).

- This is the best known of all the Boolean algebras. Sometimes, logicians denote
- the set $A=\{0,1\}$ by $2=\{0,1\}$;
- and the algebra by $\mathbf{2}=\left(2, \vee, \wedge,{ }^{\prime}, 0,1\right)$.

Subsection 3

Terms

Intuition Behind Use of Terms

- Terms are used to make the sides of equations;
- Examples of terms using familiar infix notation for the language $\{+, \cdot,-, 0,1\}$:
- $0 \quad 1 \quad x \quad y$
- $-0 \quad-1 \quad-x \quad-y$
- $1+0 \quad x \cdot y \quad-(-x) \quad x+1$
- $x \cdot(y+z) \quad(-x) \cdot(-y) \quad 1+(0+1)$
- Terms constructing using familiar infix notation for the language of Boolean algebra $\mathcal{L}_{\mathrm{BA}}=\left\{\vee, \wedge,{ }^{\prime}, 0,1\right\}$:
- 0
- $0^{\prime} \quad 1^{\prime} \quad x^{\prime} \quad y^{\prime}$
- $1 \vee 0 \quad x \wedge y \quad x^{\prime \prime} \quad x \vee 1$
- $x \wedge(y \vee z) \quad\left(x^{\prime}\right) \wedge\left(y^{\prime}\right) \quad 1 \vee(0 \vee 1)$

Some More Abstract Examples of Terms

- In the following examples of terms prefix notation will be used:
- If f is a unary function symbol, the following are terms:

$$
x \quad f x \quad f f x
$$

- If c is a constant symbol, the following are terms:

$$
c \quad f c \quad f f c
$$

- If g is a binary function symbol, the following are terms:

$$
g c x \quad g y y \quad g g f z c g c x
$$

- If h is a ternary function symbol, the following are terms:

$$
h x y z \quad h c c x \quad h f g x c g x c g g x y f c
$$

Formal Definition of Terms

- The \mathcal{L}-terms over X are defined inductively by the following clauses:
- A variable x in X is an \mathcal{L}-term;
- A constant symbol c in \mathcal{C} is an \mathcal{L}-term;
- If t_{1}, \ldots, t_{n} are \mathcal{L}-terms and f is an n-ary function symbol in \mathcal{F}, then

$$
f t_{1} \cdots t_{n}
$$

is an \mathcal{L}-term.

A Parsing Algorithm for Terms in Prefix Form

- Define an integer γ on the symbols of a string $s=f_{s_{1}} \cdots s_{n}$ by:
- γ is 0 when at first symbol f;
- Increase γ by 1 when scanning variables or constants;
- Decrease γ by $\operatorname{arity}(g)-1$ when scanning a function symbol g;
- Schematically, we have

Decision of the Algorithm

(1) s is a term iff the value of γ is always less than $\operatorname{arity}(f)$ except at the last symbol, where γ has the value $\operatorname{arity}(f)$.
(2) If s is a term, say $s=f t_{1} \cdots t_{k}$ where $k=\operatorname{arity}(f)$, then, the end of t_{i} is the first symbol where γ is equal to i.

Illustration of the Algorithm

- Suppose $\mathcal{L}=\{f, g, c\}$, with
- f unary;
- g binary;
- c a constant;
- We use the algorithm to determine if $s=g g c x f z$ is a term.
- Moreover, if it is, we find the subterms t_{1} and t_{2}, such that $g t_{1} t_{2}=g g c x f z$.
- Here is the computation of γ (according to the algorithm):

i	0	1	2	3	4	5
s_{i}	g	g	c	x	f	z
γ_{i}	0	-1	0	1	1	2

- Conclusions:
- Since g is binary, $\gamma<2$ except at last symbol and the algorithm terminates with $\gamma=2$, the string is a valid term;
- The first subterm t_{1} ends at x; so it is $g c x$;
- The second subterm t_{2} ends at z; so it is $f z$.

The Syntax Tree of a Term

- The way a term is built can be depicted using a syntax tree;
- The following are two examples:

The term $((x+y) \cdot(y+z))+1$:
The term $f x g x y z$ (f ternary, g binary):

Syntax Trees and Subterms

- Looking at the tree of a term we see that it is built up in stages called subterms.
- Using infix notation, the subterms of $((x+y) \cdot(y+z))+1$ are

Syntax Trees and Subterms: Another Example

- Using prefix notation, the subterms of $f x g x y z$, with f ternary and g binary, are

Subterms: Formal Definition

- The subterms of a term t are defined inductively:
- The only subterm of a variable x is the variable x itself;
- The only subterm of a constant symbol c is the symbol c itself;
- The subterms of the term $f t_{1} \cdots t_{n}$ are $f t_{1} \cdots t_{n}$ itself and all the subterms of the t_{i}, for $1 \leq i \leq n$.
- Can we find all subterms of $(x \wedge y) \vee\left(x^{\prime} \wedge z\right)$ carefully using the inductive definition?

$$
\begin{aligned}
& (x \wedge y) \vee\left(x^{\prime} \wedge z\right) \\
& x \wedge y \quad x^{\prime} \wedge z \\
& x \quad y \quad x^{\prime} \quad z \\
& x \quad \text { (but we had it already) }
\end{aligned}
$$

Subsection 4

Term Functions

Term Functions Intuitively

- We interpret terms in an algebra as functions;
- Terms $t\left(x_{1}, \ldots, x_{n}\right)$ define functions $t^{\mathbf{A}}: A^{n} \rightarrow A$;
- Example: Using the usual language for the natural numbers, consider the term

$$
t(x, y, z)=(x \cdot(y+1))+z
$$

The corresponding term function $t^{\mathbb{N}}: \mathbb{N}^{3} \rightarrow \mathbb{N}$ maps the triple $(1,0,2)$ to 3 since $t^{\mathbb{N}}(1,0,2)=(1 \cdot(0+1))+2=3$.

Term Functions: Formal Definition

- Term functions $t^{\mathbf{A}}$ for terms $t\left(x_{1}, \ldots, x_{n}\right)$ are the functions on the algebra \mathbf{A} defined inductively by the following:
- If t is the variable x_{i} then

$$
t^{\mathrm{A}}\left(a_{1}, \ldots, a_{n}\right)=a_{i}
$$

- If t is the constant $c \in \mathcal{C}$ then

$$
t^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right)=c^{\mathbf{A}}
$$

- If t is the term $f t_{1} \cdots t_{k}$ then

$$
t^{\mathbf{A}}=f^{\mathbf{A}}\left(t_{1}^{\mathbf{A}}, \ldots, t_{k}^{\mathbf{A}}\right)
$$

Evaluation Tables: An Example

- Let $\mathbf{2}=\left(\{0,1\}, \vee, \wedge,^{\prime}, 0,1\right)$ be our familiar 2-element Boolean algebra;
- Let

$$
t(x, y, z)=x \vee\left(y \wedge z^{\prime}\right)
$$

- The function $t^{2}:\{0,1\}^{3} \rightarrow\{0,1\}$ may be described by the following evaluation table:

$x \quad y \quad z$	z	$\wedge z$	t		x	y	z	t
$\begin{array}{lll}1 & 1 & 1\end{array}$	0	0	1		1	1	1	1
110	1	1	1		1	1	0	1
101	0	0	1		1	0	1	1
100	1	0	1	or	1	0	0	1
$\begin{array}{lll}0 & 1 & 1\end{array}$	0	0	0		0	1	1	0
$0 \quad 10$	1	1	1		0	1	0	1
$0 \quad 0 \quad 1$	0	0	0		0	0	1	0
000	1	0	0		0	0	0	0

