Mathematical Logic

(Based on lecture slides by Stan Burris)

George Voutsadakis¹

¹Mathematics and Computer Science Lake Superior State University

LSSU Math 300

1 Terms, Interpretations and Term Functions

- Language of Algebras
- Interpretations and Algebras
- Terms
- Term Functions

Subsection 1

Language of Algebras

The Language of Algebras

• A language \mathcal{L} of algebras (or algebraic structures) consists of

- a set \mathcal{F} of function symbols f, g, h, \ldots ;
- a set C of constant symbols c, d, e, \ldots ;
- a set X of variables x, y, z,
- Each function symbol has an **arity** to indicate how many arguments it takes.

If the symbol takes *n* arguments we say it is n-**ary**.

• For small *n*'s we have the terminology

The Symbol is	unary	binary	ternary	quaternary
Number of Arguments <i>n</i>	1	2	3	4

Example: The Language of Boolean Algebras

 $\bullet\,$ The language $\mathcal{L}_{\rm BA}$ of Boolean algebras has

$$\mathcal{F} = \{ \lor, \land, '\}, \quad \mathcal{C} = \{0, 1\},$$

where

- \lor and \land are binary function symbols;
- ' is a unary function symbol.

Names:

Symbol	Symbol Name
\vee	join
\wedge	meet
/	complement

• The constants are just called by the usual names zero and one.

Subsection 2

Interpretations and Algebras

The Meaning of the Symbols

- To assign meaning to the symbols in a language of algebras, we start with a set *A*, called the **universe** of the algebra;
- Then the symbols of \mathcal{L} are interpreted in A as follows:
 - Function symbols are interpreted as functions on the set. More specifically, an *n*-ary function symbol *f* is interpreted as a function *f*^A : *Aⁿ* → *A*;

These are called *n*-**ary functions** because they have *n* arguments (or inputs);

- Constant symbols are interpreted as elements of the set.
 The interpretation of a constant symbol c is denoted by c^A;
- Variables in X are left uninterpreted;

They are intended to vary over arbitrary elements of A.

Example: A Simple Language \mathcal{L}

- Consider a language \mathcal{L} , such that $\mathcal{F} = \{f\}$ and $\mathcal{C} = \emptyset$, with f unary;
- If A = {0,1,2,3}, we can describe an interpretation f^A : A → A of f in A using
 - an element-wise description: $0 \mapsto 1, 1 \mapsto 0, 2 \mapsto 3$ and $3 \mapsto 3$;
 - a table, e.g.,

• or with a directed graph representation:

Arthur Cayley

• Arthur Cayley, born in Richmond, Surrey, United Kingdom (1821-1895)

Cayley Tables

- We can also describe small binary functions on a set A using a table, called a **Cayley table**;
- To describe the integers mod 4, with the binary operation of multiplication mod 4, we may use the following Cayley table:

•	0	1	2	3
0	0	0	0	0
1	0	1	2	3
2	0	2	0	2
3	0	3	2	1

Function Tables

- We can also describe functions on a small set A using a table that is similar to the truth tables used to describe the connectives;
- To describe the ternary function

$$f(x, y, z) = 1 + xyz$$

on the integers mod 2, we could use the function table

X	у	Ζ	f
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

Interpretations of a Language \mathcal{L} : Formal Definition

- An interpretation *I* of the language *L* on a nonempty set *A* assigns to each symbol from *L* a function or constant as follows:
 - $I(c) = c^{A}$ is an element of A for each constant symbol c in C;
 - $I(f) = f^{A} : A^{n} \to A$ is an n-ary function on A for each n-ary function symbol f in \mathcal{F} .
- Visualizing an interpretation I on a set A:

$\mathcal{L} ext{-}\mathsf{Algebras}$

- An \mathcal{L} -algebra (or \mathcal{L} -structure) **A** is a pair **A** = (A, I) where
 - A is a set;
 - I is an interpretation of \mathcal{L} on A;
- Given an algebra $\mathbf{A} = (A, I)$:
 - the interpretations of the constant symbols are called the **constants** of the algebra **A**;
 - the interpretations of the function symbols are called the fundamental operations of the algebra **A**.
- The following notations can all be used:
 - $I(c) = c^{A} = c;$
 - $I(f) = f^{A} = f;$
 - $(A, I) = (A, \mathcal{F}, \mathcal{C}).$
- For example, the integers with addition, multiplication, and the zero 0 and unit 1 as constant elements can be written Z = (Z, +, ⋅, 0, 1).

Example: Boolean Algebra of Subsets of a Set U

- Let $\mathcal{L} = \mathcal{L}_{\mathrm{BA}} = \{ \lor, \land, ', 0, 1 \};$
- Let P(U) be the collection of all subsets of a given set U (U is called the universe and P(U) the powerset of U);
- \bullet Interpret the function symbols and the constants of ${\cal L}$ as follows:
 - join as union (\cup) ;
 - meet as intersection (\cap) ;
 - complement as complement (') in U;
 - O as the empty set (∅);
 - 1 as the universe (U).
- Then, P(U) = (P(U), ∪, ∩, ', Ø, U) is the Boolean algebra of subsets of U.

The 2-Element Boolean Algebra

• Let
$$\mathcal{L} = \mathcal{L}_{BA} = \{ \lor, \land, ', 0, 1 \};$$

• Let $A = \{0, 1\}$ and let the function symbols be interpreted as follows:

and 0, 1 are interpreted in the obvious manner (as 0, 1).

- This is the best known of all the Boolean algebras. Sometimes, logicians denote
 - the set $A = \{0, 1\}$ by $2 = \{0, 1\}$;
 - and the algebra by $\mathbf{2} = (2, \lor, \land, ', 0, 1).$

Subsection 3

Terms

Intuition Behind Use of Terms

- Terms are used to make the sides of equations;
- Examples of terms using familiar infix notation for the language $\{+,\cdot,-,0,1\}$:

•
$$-0$$
 -1 $-x$ $-y$

•
$$1+0$$
 $x \cdot y$ $-(-x)$ $x+1$
• $x \cdot (y+z)$ $(-x) \cdot (-y)$ $1+(0+1)$

• Terms constructing using familiar infix notation for the language of Boolean algebra $\mathcal{L}_{BA} = \{ \lor, \land, ', 0, 1 \}$:

• 0 1 x y
• 0' 1' x' y'
• 1
$$\lor$$
 0 x \land y x'' x \lor 1
• x \land (y \lor z) (x') \land (y') 1 \lor (0 \lor 1)

Some More Abstract Examples of Terms

- In the following examples of terms prefix notation will be used:
- If f is a unary function symbol, the following are terms:

• If c is a constant symbol, the following are terms:

• If g is a binary function symbol, the following are terms:

gcx gyy ggfzcgcx

• If *h* is a ternary function symbol, the following are terms:

hxyz hccx hfgxcgxcggxyfc

Formal Definition of Terms

• The *L*-terms over X are defined inductively by the following clauses:

- A variable x in X is an \mathcal{L} -term;
- A constant symbol c in C is an \mathcal{L} -term;
- If t_1, \ldots, t_n are \mathcal{L} -terms and f is an *n*-ary function symbol in \mathcal{F} , then

 $ft_1 \cdots t_n$

is an *L*-term.

A Parsing Algorithm for Terms in Prefix Form

• Define an integer γ on the symbols of a string $s = fs_1 \cdots s_n$ by:

- γ is 0 when at first symbol f;
- Increase γ by 1 when scanning variables or constants;
- Decrease γ by $\operatorname{arity}(g) 1$ when scanning a function symbol g;
- Schematically, we have

Decision of the Algorithm

- s is a term iff the value of γ is always less than arity(f) except at the last symbol, where γ has the value arity(f).
- 2 If s is a term, say $s = ft_1 \cdots t_k$ where $k = \operatorname{arity}(f)$, then, the end of t_i is the first symbol where γ is equal to *i*.

Illustration of the Algorithm

- Suppose $\mathcal{L} = \{f, g, c\}$, with
 - f unary;
 - g binary;
 - c a constant:
- We use the algorithm to determine if s = ggcxfz is a term.
- Moreover, if it is, we find the subterms t_1 and t_2 , such that • $gt_1t_2 = ggcxfz$.
- Here is the computation of γ (according to the algorithm):

i	0	1	2	3	4	5
Si	g	g	С	X	f	Ζ
γ_i	0	- 1	0	1	1	2

Onclusions:

- Since g is binary, $\gamma < 2$ except at last symbol and the algorithm terminates with $\gamma = 2$, the string is a valid term;
- The first subterm t_1 ends at x; so it is gcx;
- The second subterm t_2 ends at z; so it is fz.

The Syntax Tree of a Term

- The way a term is built can be depicted using a syntax tree;
- The following are two examples:

The term $((x + y) \cdot (y + z)) + 1$:

The term *fxgxyz* (*f* ternary, *g* binary):

Syntax Trees and Subterms

- Looking at the tree of a term we see that it is built up in stages called subterms.
- Using infix notation, the subterms of $((x + y) \cdot (y + z)) + 1$ are

$$x \quad y \quad z \quad 1$$

$$x + y \quad y + z$$

$$(x + y) \cdot (y + z)$$

$$((x + y) \cdot (y + z)) + 1$$

Syntax Trees and Subterms: Another Example

• Using prefix notation, the subterms of f_{xgxyz} , with f ternary and g binary, are

x y z gxy

fxgxyz

Subterms: Formal Definition

• The subterms of a term t are defined inductively:

- The only subterm of a variable x is the variable x itself;
- The only subterm of a constant symbol c is the symbol c itself;
- The subterms of the term $ft_1 \cdots t_n$ are $ft_1 \cdots t_n$ itself and all the subterms of the t_i , for 1 < i < n.
- Can we find all subterms of $(x \land y) \lor (x' \land z)$ carefully using the inductive definition?

 $(x \wedge y) \vee (x' \wedge z)$

 $x \wedge y \qquad x' \wedge z$

x y x' z

(but we had it already) x

Subsection 4

Term Functions

Term Functions Intuitively

- We interpret terms in an algebra as functions;
- Terms $t(x_1, \ldots, x_n)$ define functions $t^{\mathbf{A}} : A^n \to A$;
- Example: Using the usual language for the natural numbers, consider the term

$$t(x, y, z) = (x \cdot (y+1)) + z$$

The corresponding term function $t^{\mathbb{N}} : \mathbb{N}^3 \to \mathbb{N}$ maps the triple (1,0,2) to 3 since $t^{\mathbb{N}}(1,0,2) = (1 \cdot (0+1)) + 2 = 3$.

Term Functions: Formal Definition

- Term functions t^{A} for terms $t(x_1, ..., x_n)$ are the functions on the algebra A defined inductively by the following:
 - If t is the variable x_i then

$$t^{\mathbf{A}}(a_1,\ldots,a_n)=a_i;$$

• If t is the constant $c \in \mathcal{C}$ then

$$t^{\mathsf{A}}(a_1,\ldots,a_n)=c^{\mathsf{A}};$$

• If t is the term $ft_1 \cdots t_k$ then

$$t^{\mathbf{A}} = f^{\mathbf{A}}(t_1^{\mathbf{A}}, \ldots, t_k^{\mathbf{A}}).$$

Evaluation Tables: An Example

- Let $\mathbf{2}=\big(\{0,1\},\vee,\wedge,{}',0,1\big)$ be our familiar 2-element Boolean algebra;
- Let

$$t(x,y,z) = x \lor (y \land z')$$

• The function $t^2 : \{0,1\}^3 \to \{0,1\}$ may be described by the following evaluation table:

X	y	Z	Ζ'	$y \wedge z'$	t		X	y	Ζ	t
1	1	1	0	0	1		1	1	1	1
1	1	0	1	1	1		1	1	0	1
1	0	1	0	0	1		1	0	1	1
1	0	0	1	0	1	or	1	0	0	1
0	1	1	0	0	0		0	1	1	0
0	1	0	1	1	1		0	1	0	1
0	0	1	0	0	0		0	0	1	0
0	0	0	1	0	0		0	0	0	0