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First-Order Languages First-Order Languages without Equality

First-Order Languages without Equality

A first-order language without equality L consists of

a set F of function symbols f , g , h, . . ., with associated arities;
a set R of relation symbols r , r1, r2, . . ., with associated arities;
a set C of constant symbols c , d , e, . . .;
a set X of variables x , y , z , . . ..

Each relation symbol r has a positive integer, called its arity, assigned
to it; If the number is n, we say r is n-ary. For small n we use the
same special names that we use for function symbols: unary, binary,
ternary, quaternary.

The set L = R∪ F ∪ C is called a first-order language.

For instance, if we want to work with the integers, dealing both with
their operations and their ordering, the language {+, ·, <,−, 0, 1}
would be a natural choice.
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First-Order Languages Interpretations and Structures

Interpretation of Relation Symbols

The obvious interpretation of a relation symbol is as a relation on a
set.

If A is a set and n is a positive integer, then an n-ary relation r on A

is a subset of An; that is, r consists of a collection of n-tuples
(a1, . . . , an) of elements of A.

Example: The ordinary “less than” relation on the reals is the binary
relation

r = {(x , y) ∈ R2 : x < y};

Example: The adjacency relation on the vertices of a graph is the
binary relation

r = {(x , y) ∈ V 2 : x and y are adjacent};

Recall the notions of a reflexive, symmetric, anti-symmetric,
asymmetric, transitive, equivalence binary relation on a set A;

George Voutsadakis (LSSU) Logic January 2013 6 / 90



First-Order Languages Interpretations and Structures

Formal Definitions of Properties of Binary Relations

Let A be a set. A binary relation r ⊆ A2 is called:

reflexive if (a, a) ∈ r , for all a ∈ A;
irreflexive if (a, a) 6∈ r , for all a ∈ A;
symmetric if (a, b) ∈ r implies (b, a) ∈ r , for all a, b ∈ A;
anti-symmetric if
(a, b) ∈ r and (b, a) ∈ r imply a = b, for all a, b ∈ A;
asymmetric if (a, b) ∈ r implies (b, a) 6∈ r , for all a, b ∈ A;
transitive if
(a, b) ∈ r and (b, c) ∈ r imply (a, c) ∈ r , for all a, b, c ∈ A;
equivalence if it is reflexive, symmetric and transitive;
partial order if it is reflexive, anti-symmetric and transitive;
strict order if it is irreflexive and transitive (which implies asymmetric).
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Interpretations

An interpretation I of the first-order language L on a set S is a
mapping with domain L such that

I (c) is an element of S for each constant symbol c in C;
I (f ) is an n-ary function on S for each n-ary function symbol f in F ;
I (r) is an n-ary relation on S for each n-ary relation symbol r in R;

An L-structure S is a pair S = (S , I ), where

S is a set;
I is an interpretation of L on S .
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Notation and Example

We sometimes write

cS (or just c) for I (c);
f S (or just f ) for I (f );
rS (or just r) for I (r);
(S ,F ,R, C) for (S , I );

Example: The structure R = (R,+, ·, <, 0, 1), the reals with addition,
multiplication, less than, and two specified constants has:

F = {+, ·}, R = {<}, C = {0, 1}.
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Unary Relation Symbols and Subsets

If r ∈ R is a unary relation symbol, then in any L-structure S, the
relation rS is a subset of S ;

We can picture this as:

S
r
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Binary Relation Symbols and Directed Graphs

If L consists of a single binary relation symbol r , then we call an
L-structure a directed graph.

A small finite directed graph can be conveniently described in three
different ways:

By listing the ordered pairs in the relation r.
A simple example, with S = {a, b, c}, is
rS = {(a, a), (a, b), (b, c), (c , b), (c , a)}.
By a table: (1 indicates a pair is in the relation.)

r a b c

a 1 1 0
b 0 0 1
c 1 1 0

b

c

a

By drawing a picture:
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An Example of a First-Order Structure

An interpretation of a language on a small set can be conveniently
given by tables;

Suppose that L = {+, <}, where
+ is a binary function symbol;
< is a binary relation symbol;

The following tables give an interpretation S = (S ,+S, <S) of L on
the two element set S = {a, b}:

+ a b

a a b

b b a

< a b

a 0 1
b 0 0
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First-Order Languages The Syntax of First-Order Logic

The Vocabulary of First-Order Logic

First-Order Logic is adequate for expressing almost all reasoning
performed in mathematics;

It is the most powerful, most expressive logic that our textbook
examines;

It can be presented in many different ways;

Our version of first-order logic will use the following symbols:

variables (these are individual, not propositional variables);
connectives (∨,∧,→,↔,¬);
function symbols;
relation symbols;
constant symbols;
equality (≈);
quantifiers (∀, ∃).

George Voutsadakis (LSSU) Logic January 2013 14 / 90



First-Order Languages The Syntax of First-Order Logic

First-Order Formulas

Atomic Formulas for a first-order language L are of two kinds:

s ≈ t, where s and t are terms;
(rt1 · · · tn), where r is an n-ary relation symbol and t1, . . . , tn are terms;

Formulas for a first-order language L are defined inductively as
follows:

Atomic formulas are formulas;
If F is a formula, then so is (¬F );
If F and G are formulas, then so are

(F ∨ G), (F ∧ G), (F → G), (F ↔ G);

If F is a formula and x is a variable, then (∀xF ) and (∃xF ) are
formulas.
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Notational Conventions

Drop outer parentheses;

Adopt the previous precedence conventions for the propositional
connectives (negation ¬ first, disjunction ∨ and conjunction ∧ next,
implication → and equivalence ↔ last);

Quantifiers bind more strongly than any of the connectives;

Following those conventions, the expression

∀y(rxy) ∨ ∃y(rxy)

stands for the formula

((∀y(rxy)) ∨ (∃y(rxy)))
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Subformulas of First-Order Formulas

The subformulas of a formula F are defined recursively as follows:

The only subformula of an atomic formula F is F itself;
The subformulas of ¬F are ¬F itself and all the subformulas of F ;
The subformulas of F�G are F�G itself and all the subformulas of F
and all the subformulas of G ; (� is any of ∨,∧,→,↔);
The subformulas of ∀xF are ∀xF itself and all the subformulas of F ;
The subformulas of ∃xF are ∃xF itself and all the subformulas of F .
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Bound and Free Variables

An occurrence of a variable x in a formula F is:

bound if the occurrence is in a subformula

of the form ∀xG or of the form ∃xG ;

Such a subformula is called the scope of the quantifier that begins
the subformula.
Otherwise the occurrence of the variable is said to be free;

Note that the same variable may occur both bound and free in the
same formula; e.g.,

∃x(x ≈ y) ∧ ∀y(rxy)

Thus, bound and free refer to occurrences of a variable, not to the
variable itself!

A formula with no free occurrences of variables is called a sentence.
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Quantifiers Binding Variables

Given a bound occurrence of x in F , we say that x is bound by an
occurrence of a quantifier Q if

(i) the occurrence of Q quantifies the variable x , and
(ii) subject to this constraint the scope of this occurrence of Q is the

smallest in which the given occurrence of x occurs.

It is easier to explain scope, and quantifiers that bind variables, with a
diagram; In the diagram scopes of quantifiers are underlined;
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Example with Free and Bound Occurrences of Variables

( r( ) (x y ( ( ( r ) ) )) zxy ( r )x xzx

free occurrences 

bound occurrences

A A E
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First-Order Languages First-Order Syntax for the Natural Numbers

The Language LN for the Natural Numbers

To discuss formally the natural number system, we consider the
language

LN = {+, ·, <, 0, 1};

The LN -structure N = (N,+, ·, <, 0, 1) represents the natural
numbers with

ordinary addition +;
ordinary multiplication ·;
ordinary strict ordering <;
constants the natural numbers 0 and 1;

The atomic LN -formulas are
(s ≈ t);
(s < t);

For instance, the following are all atomic LN -formulas:

(0 < 0) (1 < 0) (x < 0) (x · (y + z) < x · z)
(x · (y + 1) < x · x + y · z)
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LN-Formulas

The following are LN -formulas:

((x < y) → (x + x < y + y))
(∀x((x · (y + 1) < x · x + y · z) → (∃y(y · y < x + z))))

Consider the formula:

(∀x(x · (y + 1) < x · x + y · z)) → (∃y(y · y < x + z))

Its subformulas are:

(∀x(x · (y + 1) < x · x + y · z)) → (∃y(y · y < x + z))
∀x(x · (y + 1) < x · x + y · z) ∃y(y · y < x + z)
x · (y + 1) < x · x + y · z y · y < x + z

When working with the language LN , one uses the abbreviations
2 stands for 1 + 1; 3 stands for (1 + 1) + 1; etc.

For instance, 3 < 5 stands for (1 + 1) + 1 < (((1 + 1) + 1) + 1)+ 1; it
is an atomic LN -sentence saying that “3 is less than 5”; This
sentence is true in the LN -structure N.
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First-Order Languages The Semantics of First-Order Sentences in N

Examples of First-Order Formulas with Intuition

2 + 2 < 3 is an atomic sentence; It says “four is less than three”.
False in N.

∀x∃y(x < y) says that “for every number there is a larger number”.
True in N.

∃y∀x(x < y) says that “there is a number that is larger than every
other number”.
False in N.

∀x((0 < x) → ∃y(y · y ≈ x)) says that “every positive number is a
square”.
False in N.

∀x∀y((x < y) → ∃z((x < z) ∧ (z < y))) says that “if one number is
less than another, then there is a number properly between the two”.
False in N.
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Notation for Meets and Joins

We will use the shorthand notation

n∧

i=1

Fi

to mean the same as the notation

F1 ∧ · · · ∧ Fn.

Likewise, we will use the notation

n∨

i=1

Fi

for
F1 ∨ · · · ∨ Fn.
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Translating English to First-Order I

Suppose that F (x) is a first-order formula with variable x ; We can
find first-order sentences to say:

a. “There is at least one number such that F (x) is true in N”.
∃xF (x)

b. “There are at least two numbers such that F (x) is true in N”.
∃x∃y(¬(x ≈ y) ∧ F (x) ∧ F (y))

c. “There are at least n numbers (n fixed) such that F (x) is true in N”.
∃x1 · · · ∃xn((

∧

1≤i<j≤n ¬(xi ≈ xj)) ∧ (
∧

1≤i≤n F (xi )))
d. “There are infinitely many numbers that make F (x) true in N”.

∀x∃y((x < y) ∧ F (y))
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Translating English to First-Order II

We can also find first-order sentences to say:

e. “There is at most one number such that F (x) is true in N”.
∀x∀y((F (x) ∧ F (y)) → (x ≈ y))

f. “There are at most two numbers such that F (x) is true in N”.
∀x∀y∀z((F (x) ∧ F (y) ∧ F (z)) → ((x ≈ y) ∨ (x ≈ z) ∨ (y ≈ z)))

g. “There are at most n numbers (n fixed) such that F (x) is true in N”.
∀x1 · · · ∀xn+1((

∧

1≤i≤n+1 F (xi )) → (
∨

1≤i<j≤n+1(xi ≈ xj)))
h. “There are only finitely many numbers that make F (x) true in N”.

∃x∀y(F (y) → (y < x))
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Truth of a Formula at a Tuple of Domain Elements

To better understand what we can express with first-order sentences
we need to introduce definable relations;

Given a first-order formula F (x1, . . . , xk), we say F is true at a
k-tuple (a1, . . . , ak) of natural numbers if the expression
F (a1, . . . , ak) is a true statement about the natural numbers;

Example: Let F (x , y) be the formula x < y . Then F is true at (a, b)
iff a is less than b.

Example: Let F (x , y) be ∃z(x · z ≈ y). Then F is true at (a, b) iff a

divides b, written a\b.

Important Note: Don’t confuse a\b with a
b
. The first is true or

false. The second has a value.
Check that a\0 for any a, including a = 0.
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Definable Relations

For F (x1, . . . , xk) a formula, let FN be the set of k-tuples (a1, . . . , ak)
of natural numbers for which F (a1, . . . , ak) is true in N;

We call FN the relation on N defined by the formula F ;

A k-ary relation r ⊆ Nk is definable in N if there is a formula
F (x1, . . . , xk) such that r = FN;

Examples:

a. x is an even number is definable in N by

∃y(x ≈ y + y).

b. x divides y is definable in N by

∃z(x · z ≈ y).
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More Examples of Definable Relations

We continue the list of Examples:

c. x is prime is definable in N by

(1 < x) ∧ ∀y((y\x) → ((y ≈ 1) ∨ (y ≈ x))).

d. x ≡ y modulo n is definable in N by

∃z((x ≈ y + n · z) ∨ (y ≈ x + n · z)).

e. z is the remainder of dividing x by y is definable in N by

z < y ∧ ∃w(x ≈ w · y + z).
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Using Abbreviations; The Metalanguage

When we write x\y , we understand the formula ∃z(x · z ≈ y).

When we write prime(x), we understand the formula

(1 < x) ∧ ∀y((y\x) → ((y ≈ 1) ∨ (y ≈ x))).

Note that in prime(x), we have used the abbreviation for y\x .
This means that to properly write prime(x) as a first-order formula we
need to replace that abbreviation; doing so gives us

(1 < x) ∧ ∀y((∃z(y · z ≈ x)) → ((y ≈ 1) ∨ (y ≈ x))).

Abbreviations are not a feature of first-order logic, but rather they are
a tool in the language used by people to discuss first-order logic; To
distinguish this language for the language of first-order logic, we
sometimes call it the metalanguage;

Without abbreviations, writing out the first-order sentences that we
find interesting would fill up lines with tedious, hard-to-read
symbolism.
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Substitution Needs Care!

We saw that x\y abbreviates ∃z(x · z ≈ y);

Then (u + 1)\(u · u + 1) is an abbreviation for

∃z((u + 1) · z ≈ u · u + 1);

If we write out z\2 we obtain ∃z(z · z ≈ 1 + 1).

Unfortunately, this last formula does not define the set of elements in
N that divide 2; It is a first-order sentence that is simply false in N;
the square root of 2 is not a natural number;
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Renaming “Dummy” Variables

We have stumbled onto one of the subtler points of first-order logic,
namely, we must be careful with substitution;

The remedy for defining “z divides 2” is to use another formula, like

∃w(x · w ≈ y)

for “x divides y”.

We obtain such a formula by simply renaming the bound variable z in
the formula for x\y ;

With this formula we can correctly express “z divides 2” by
∃w(z · w ≈ 2).

The danger in using abbreviations in first-order logic, as showcased by
this example, is that we forget the names of the bound variables in
the abbreviation.
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Substitution: Alerting Reader of the Danger

Our solution: add a ⋆ to the abbreviation to alert the reader to the
necessity for renaming the bound variables that overlap with the
variables in the term to be substituted into the abbreviation;

For example, we write prime⋆(y + z) to explicitly express the need to
change the formula for prime(x), say to

(1 < x) ∧ ∀v((v\x) → ((v ≈ 1) ∨ (v ≈ x)))

so that when we substitute y + z for x in the formula, no new
occurrence of y or z becomes bound.

Thus we could express prime(y + z) by

(1 < y + z) ∧ ∀v((v\⋆(y + z)) → ((v ≈ 1) ∨ (v ≈ y + z))).
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Expressing Statements in First-Order Logic

a. The relation “divides” is transitive:
∀x∀y∀z(((x\y) ∧ (y\⋆z)) → (x\⋆z)).

b. There are an infinite number of primes:
∀x∃y((x < y) ∧ prime⋆(y)).

c. The Twin Prime Conjecture
There are an infinite number of pairs of primes that differ by the
number 2:
∀x∃y((x < y) ∧ prime⋆(y) ∧ prime⋆(y + 2)).

d. Goldbach’s Conjecture
All even numbers greater than two are the sum of two primes:
∀x(((2\x) ∧ (2 < x)) → ∃y∃z(prime⋆(y) ∧ prime(z) ∧ (x ≈ y + z))).
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Other Number Systems: Integers, Rationals and Reals

Our first-order language L = {+, ·, <, 0, 1} can just as easily be used
to study other number systems, in particular,

the integers Z = (Z,+, ·, <, 0, 1);
the rationals Q = (Q,+, ·, <, 0, 1);
the reals R = (R,+, ·, <, 0, 1);

However, first-order sentences that are true in one can be false in
another.
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Sentences Considered in Various Models

Consider the following first-order sentences:
(a) ∀x∃y(x < y)

“For every number, there is a (strictly) greater number”.
(b) ∀y∃x(x < y)

“For every number, there exists a (strictly) smaller number”.
(c) ∀x∀y((x < y) → ∃z((x < z) ∧ (z < y)))

“For every two different numbers, there exists a number lying
(properly) between the two”.

The following table evaluates the truth of (a)-(e) in the models
N,Z,Q and R:

N Z Q R

(a) true true true true
(b) false true true true
(c) false false true true
(d)
(e)
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Sentences Considered in Various Models

Two more first-order sentences:

(d) ∀x∃y((0 < x) → (x ≈ y · y))
“Every positive number has a square root”.

(e) ∃x∀y(x < y)
“There exists a number (strictly) less than all numbers”.

The following table evaluates the truth of (a)-(e) in the models
N,Z,Q and R:

N Z Q R

(a) true true true true
(b) false true true true
(c) false false true true
(d) false false false true
(e) false false false false
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The Language of Directed Graphs

The first-order language of (directed) graphs is L = {r}, where r

is a binary relation symbol;

The only terms are the variables x ;

Atomic formulas look like

(x ≈ y);
(rxy);

Example: The subformulas of ∀x((rxy) → ∃y(ryx)) are

∀x((rxy) → ∃y(ryx))
(rxy) → ∃y(ryx)
rxy

∃y(ryx)
ryx
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First-Order to English On Directed Graphs

Two structures over the language L = {r} of directed graphs:

d

b

a

c

e d

a

Graph A Graph B

c

b

We consider some first-order logic sentences over L:
a. ∀x¬(rxx)

It says: “the directed graph is irreflexive”. False in A; True in B;
b. ∀x∀y((rxy) → (ryx))

It says: “the directed graph is symmetric”. False in A; True in B;
c. ∀x∀y(rxy)

It says: “all possible edges are present”. False in A; False in B;
d. ∀x∃y(rxy)

It says: “for every vertex there is an outgoing edge”. True in A; True in
B;
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English to First-Order Logic On Directed Graphs

Consider the following statements:

a. The (directed) graph has at least two vertices.
∃x∃y(¬(x ≈ y))

b. Every vertex has an edge attached to it.
∀x∃y((rxy) ∨ (ryx))

c. Every vertex has at most two edges directed from it to other vertices.
∀x∀y∀z∀w(((rxy) ∧ (rxz) ∧ (rxw)) → ((y ≈ z) ∨ (y ≈ w) ∨ (w ≈ z)))
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Some Graph-Theoretic Definitions

The degree of a vertex is the number of (undirected) edges attached
to it;

A path of length n from vertex x to vertex y is a sequence of
vertices a1, . . . , an+1 with each (ai , ai+1) being an edge, and with
x = a1, y = an+1;

Two vertices are adjacent if there is an edge connecting them.
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Definable Relations and Statements about Graphs

The following are definable relations on graphs:

a. The degree of x is at least one.
∃y(rxy)

b. The degree of x is at least two.
∃y∃z(¬(y ≈ z) ∧ (rxy) ∧ (rxz))

The following are statements about graphs:

a. Some vertex has degree at least two.
∃x∃y∃z(¬(y ≈ z) ∧ (rxy) ∧ (rxz))

b. Every vertex has degree at least two.
∀x∃y∃z(¬(y ≈ z) ∧ (rxy) ∧ (rxz))
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Overview of First-Order Semantics

Given a first-order L-structure S = (S , I ), the interpretation I gives
meaning to the symbols of the language L;

We associate with each term t(x1, . . . , xn) the n-ary term function
tS : Sn → S ;

We associate with each formula F (x1, . . . , xn) an n-ary relation
F S ⊆ Sn;

We continue with the formal definition after a small break!
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Alfred Tarski

Alfred Tarski, born in Warsaw, Kingdom of Poland (1901-1983)
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Tarski’s Definition of Truth

The notion of a formula F being true or holding in a structure
S = (S , I ) under an assignment ~a of values from S to its variables ~x
is defined by induction on the structure of F :

F (~x) is atomic:

F is the formula t1(~x) ≈ t2(~x): F (~a) holds iff t
S
1 (~a) = t

S
2 (~a).

F is the formula r(t1(~x), . . . , tn(~x)): F (~a) holds iff
r
S(tS1 (~a), . . . , t

S
n (~a)) holds.

F = ¬G : Then F (~a) holds iff G(~a) does not hold.
F = G ∨ H : Then F (~a) holds iff G(~a) holds or H(~a) holds.
F = G ∧ H : Then F (~a) holds iff G(~a) holds and H(~a) holds.
F = G → H : Then F (~a) holds iff G(~a) does not hold or H(~a) holds.
F = G ↔ H : Then F (~a) holds iff both or neither of G(~a) and H(~a)
holds.
F (~x) is ∀yG(y , ~x): Then F (~a) holds iff G(b,~a) holds for every b ∈ S .
F (~x) is ∃yG(y , ~x): Then F (~a) holds iff G(b,~a) holds for some b ∈ S .
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Illustrating the Definition of Truth I

Consider the language L = {f , r}, where
f is a unary function symbol;
r is a binary relation symbol;

Consider the L-structure S = (S , f S, rS), with

S = {a, b},
x fx

a b

b a

,

r a b

a 0 1
b 1 0

Consider the L-formula

F (x) = ∀y∃z((rfxfy) ∧ (rfyfz)).

In the next slide, we evaluate F (x) at both x = a and x = b in S;
i.e., we fully determine F S (set of all x ∈ S for which F (x) holds).
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Evaluation of F (x) = ∀y∃z((rfxfy)∧ (rfyfz))

x y z fx fy fz rfxfy rfyfz (rfxfy) ∧ (rfyfz)

a a a b b b 0 0 0
a a b b b a 0 1 0
a b a b a b 1 1 1
a b b b a a 1 0 0
b a a a b b 1 0 0
b a b a b a 1 1 1
b b a a a b 0 1 0
b b b a a a 0 0 0

x y ∃z((rfxfy) ∧ (rfyfz))

a a 0
a b 1
b a 1
b b 0

x ∀y∃z((rfxfy) ∧ (rfyfz))

a 0
b 0

Therefore F S = ∅.
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Illustrating the Definition of Truth II

Consider the same language L = {f , r};

Consider the same L-structure S = (S , f S, rS), with

S = {a, b},
x fx

a b

b a

,

r a b

a 0 1
b 1 0

Consider the L-formula

F (x , y) = ∃z((rxfz) ∧ (fy ≈ z)) → (fy ≈ fx).

In the next slide, we evaluate F (x , y) at all pairs (a, b) ∈ S2;
i.e., we fully determine F S (set of all (x , y) ∈ S2 for which F (x , y)
holds).
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Evaluation of F (x , y) = ∃z((rxfz)∧ (fy ≈ z)) → (fy ≈ fx)

x y z fx fy fz rxfz fy ≈ z rxfz ∧ fy ≈ z

a a a b b b 1 0 0
a a b b b a 0 1 0
a b a b a b 1 1 1
a b b b a a 0 0 0
b a a a b b 0 0 0
b a b a b a 1 1 1
b b a a a b 0 1 0
b b b a a a 1 0 0

x y ∃z(rxfz ∧ fy ≈ z) fy ≈ fx ∃z((rxfz) ∧ (fy ≈ z)) → (fy ≈ fx)

a a 0 1 1
a b 1 0 0
b a 1 0 0
b b 0 1 1

Therefore F S = {(a, a), (b, b)}.
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Definition of Truth for Sentences

Let L be a language, F be an L-sentence and S an L-structure;

Then F is true in S provided one of the following holds:

F is rt1 . . . tn and rS(tS1 , . . . , t
S
n ) holds;

F is t1 ≈ t2 and tS1 = tS2 ;
F is ¬G and G is not true in S;
F is G ∨ H and at least one of G ,H is true in S;
F is G ∧ H and both of G ,H are true in S;
F is G → H and G is not true in S or H is true in S;
F is G ↔ H and both or neither of G ,H is true in S;
F is ∀xG(x) and GS(a) is true for every a ∈ S ;
F is ∃xG(x) and GS(a) is true for some a ∈ S .

If F is not true in S, then we say F is false in S.
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Notational Conventions for Truth

Given a first-order language L, let F be an L-sentence, S a set of
L-sentences, and S a structure for this language;

S |= F means F is true in S;

F is valid if it is true in all L-structures;

S |= S means every sentence F in S is true in S;

Sat(S) means S is satisfiable;

S |= F means every model of S is a model of F ; If this is the case, we
say F is a consequence of S.
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The Propositional Skeleton of a Formula

The propositional skeleton, Skel(F ), of a formula F is defined as
follows:

Delete all quantifiers and terms;
Replace ≈ with 1;
Replace the relation symbols r with propositional variables R ;

Example: The formula

F = ∀x∀y(¬(x < y) ↔ ∃z((x < z) ∨ (fz ≈ y)))

has
Skel(F ) = ¬P ↔ P ∨ 1.
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The Propositional Skeleton Criterion

Theorem

The first-order formula F has a one-element model iff Skel(F ) is satisfiable.

If Skel(F ) is satisfiable, then choose an evaluation e that makes it
true in a model S with universe S = {a}, as follows:

Let f S(a, . . . , a) = a for f ∈ F ;
Let rS(a, . . . , a) hold iff e(R) = 1 for r ∈ R;

Example: F = ∀x∀y(¬(x < y) ↔ ∃z((x < z) ∨ (fz ≈ y)));

We obtained Skel(F ) = ¬P ↔ P ∨ 1;
This is satisfiable if P is evaluated as 0;
F has the one-element model S = ({a}, f , <), where

fa = a,
< a

a 0
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Equivalent Sentences

The sentences F and G are equivalent, written F ∼ G , if they are
true in the same L-structures S, that is, for all structures S, we have

S |= F iff S |= G .

For example, the sentences

∀x(¬(x ≈ 0) → ∃y(x · y ≈ 1)) and ∀x∃y(¬(x ≈ 0) → (x · y ≈ 1))

are equivalent.

Theorem

The sentences F and G are equivalent iff F ↔ G is a valid sentence.
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Equivalent Formulas

Two formulas F (x1, . . . , xn) and G (x1, . . . , xn) are equivalent,
written F (x1, . . . , xn) ∼ G (x1, . . . , xn), iff F and G define the same
relation on any L-structure S, that is, F S = GS;

For example, the following formulas are equivalent

¬(x ≈ 0) → ∃y(x · y ≈ 1) and ∃y(¬(x ≈ 0) → (x · y ≈ 1)).

Proposition

The formulas F (~x) and G (~x) are equivalent iff ∀~x(F (~x) ↔ G (~x)) is a valid
sentence.

Proposition

The relation ∼ is an equivalence relation on sentences as well as on
formulas.

This is immediate from the definition of ∼ and the fact that ordinary
equality (=) is an equivalence relation.
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Fundamental Equivalences

The following are some fundamental Equivalences of Formulas:
1 ¬∃xF ∼ ∀x(¬F );
2 ¬∀xF ∼ ∃x(¬F );
3 (∀xF ) ∨ G ∼ ∀x(F ∨ G) if x is not free in G ;
4 (∃xF ) ∨ G ∼ ∃x(F ∨ G) if x is not free in G ;
5 (∀xF ) ∧ G ∼ ∀x(F ∧ G) if x is not free in G ;
6 (∃xF ) ∧ G ∼ ∃x(F ∧ G) if x is not free in G ;
7 (∀xF ) → G ∼ ∃x(F → G) if x is not free in G ;
8 (∃xF ) → G ∼ ∀x(F → G) if x is not free in G ;
9 F → (∀xG) ∼ ∀x(F → G) if x is not free in F ;
10 F → (∃xG) ∼ ∃x(F → G) if x is not free in F ;
11 ∀x(F ∧ G) ∼ (∀xF ) ∧ (∀xG)
12 ∃x(F ∨ G) ∼ (∃xF ) ∨ (∃xG)
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Important Remarks on Freeness

If x occurs free in G then we cannot conclude

(∀xF ) ∨ G ∼ ∀x(F ∨ G );

for example,

(∀x(x < 0)) ∨ (0 < x) and ∀x((x < 0) ∨ (0 < x))

are not equivalent; This can be seen by considering the natural
numbers N: in N, the first is true of positive numbers x (Note that x
occurs free in this formula);
whereas the second is false (Note that there are no free occurrences
of x in this formula);
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Some Other Remarks

For the implication we have:

(∀xF ) → G ∼ ¬(∀xF ) ∨ G

∼ ∃x(¬F ) ∨ G

∼ ∃x(¬F ∨ G )
∼ ∃x(F → G ).

To see that
∀x(F ∨ G ) ∼ (∀xF ) ∨ (∀xG )

need not be true consider the following example:

∀x((0 ≈ x) ∨ (0 < x)) and (∀x(0 ≈ x)) ∨ (∀x(0 < x)).

And to see that
∃x(F ∧ G ) ∼ (∃xF ) ∧ (∃xG )

need not be true consider the example:

∃x((0 ≈ x) ∧ (0 < x)) and (∃x(0 ≈ x)) ∧ (∃x(0 < x)).
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Substitution of Formulas for Propositional Variables

Equivalent propositional formulas lead to equivalent first-order
formulas as follows:

Proposition

If F (P1, . . . ,Pn) and G (P1, . . . ,Pn) are equivalent propositional formulas,
then for any sequence H1, . . . ,Hn of first-order formulas we have
F (H1, . . . ,Hn) ∼ G (H1, . . . ,Hn).

Example: De Morgan’s Law gives the equivalence of the two
propositional formulas ¬(P ∧ Q) ∼ ¬P ∨ ¬Q. By the Proposition
above, then, the following first-order formulas are also equivalent:

¬((∃x(x · x ≈ 1)) ∧ (∀x∀y(x · y ≈ y · x)))
∼ ¬(∃x(x · x ≈ 1)) ∨ ¬(∀x∀y(x · y ≈ y · x))
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Compatibility of Equivalence with Connectives

Applying logical connectives preserves equivalence;

This property of equivalence is called compatibility with the logical
connectives;

Compatibility Lemma

Suppose F1 ∼ G1 and F2 ∼ G2. Then

1 ¬F1 ∼ ¬G1;

2 F1 ∨ F2 ∼ G1 ∨ G2;

3 F1 ∧ F2 ∼ G1 ∧ G2;

4 F1 → F2 ∼ G1 → G2;

5 F1 ↔ F2 ∼ G1 ↔ G2;

6 ∀xF1 ∼ ∀xG1;

7 ∃xF1 ∼ ∃xG1.
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Replacement in First-Order Logic

The replacement theorem says that, in a first-order formula the
replacement of a subformula by an equivalent formula results in a
equivalent formula; More formally:

Replacement Theorem

If F ∼ G then H(· · · F · · · ) ∼ H(· · ·G · · · ).

Example: We have that

¬((∃x(x · x ≈ 1)) ∧ (∀x∀y(x · y ≈ y · x)))
∼ ¬(∃x(x · x ≈ 1)) ∨ ¬(∀x∀y(x · y ≈ y · x))

Therefore, by the Replacement Theorem

(∀x∃y(x < y)) → ¬((∃x(x · x ≈ 1)) ∧ (∀x∀y(x · y ≈ y · x)))
∼ (∀x∃y(x < y)) → ¬(∃x(x · x ≈ 1)) ∨ ¬(∀x∀y(x · y ≈ y · x))
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Substitution of Terms for Variables

Substitution of terms for variables in first-order logic often requires
the need to rename variables;

We need to be careful with renaming variables to avoid binding any
newly introduced occurrences of variables;

Given a first-order formula F , define a conjugate of F to be any
formula F̄ obtained by renaming the occurrences of bound variables
of F so that no free occurrences of variables in F become bound;
When renaming, we must keep bound occurrences of distinct variables
distinct;

Equivalence of Conjugates

If F̄ is a conjugate of F , then F̄ ∼ F .

Example: ∃y(x · y ≈ 1) ∼ ∃w(x · w ≈ 1).
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The Substitution Theorem

Substitution Theorem

If F (x1, . . . , xn) ∼ G (x1, . . . , xn) and t1, . . . , tn are terms, then
F ⋆(t1, . . . , tn) ∼ G ⋆(t1, . . . , tn).

For instance, since ¬∃y(x · y ≈ 1) ∼ ∀y(¬(x · y ≈ 1)), substitution of
(y + w) for x and u for y yields

¬∃u((y + w) · u ≈ 1) ∼ ∀u(¬((y + w) · u ≈ 1)).
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Prenex Form

A formula F is in prenex form if it looks like

Q1x1 · · ·QnxnG ,
where

the Qi are quantifiers;
G has no occurrences of quantifiers;

A formula with no occurrences of quantifiers is called an open
formula;

The formula
∃x((rxy) → ∀u(ruy))

is not in prenex form, but it is equivalent to the prenex form formula

∃x∀u((rxy) → (ruy)).

Prenex Form Theorem

Every formula is equivalent to a formula in prenex form.
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Obtaining an Equivalent Formula in Prenex Form

The following steps put F in prenex form:
1 Rename the quantified variables so that distinct occurrences of

quantifiers bind distinct variables, and no free variable is equal to a
bound variable;
Example: Change

∀z((rzy) → ¬∀y ((rxy ) ∧ ∃y (ryx)))

to
∀z((rzy) → ¬∀u((rxu) ∧ ∃w(rwx)))

2 Eliminate all occurrences of → and ↔ using
G → H ∼ ¬G ∨ H ;
G ↔ H ∼ (¬G ∨ H) ∧ (¬H ∨ G);

Example (Cont’d): The equivalent form is

∀z(¬(rzy) ∨ ¬∀u((rxu) ∧ ∃w(rwx)));

3 Pull the quantifiers to the front;
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Obtaining an Equivalent Formula in Prenex Form (Cont’d)

This can be accomplished by using the equivalences:

¬(F ∨ G) ∼ (¬F ∧ ¬G)
¬(F ∧ G) ∼ (¬F ∨ ¬G)
G ∨ (∀xH) ∼ ∀x(G ∨ H)
G ∨ (∃xH) ∼ ∃x(G ∨ H)
G ∧ (∀xH) ∼ ∀x(G ∧ H)
G ∧ (∃xH) ∼ ∃x(G ∧ H)
(∀xG) ∨ H ∼ ∀x(G ∨ H)
(∃xG) ∨ H ∼ ∃x(G ∨ H)
(∀xG) ∧ H ∼ ∀x(G ∧ H)
(∃xG) ∧ H ∼ ∃x(G ∧ H)
¬∃xG ∼ ∀x¬G
¬∀xG ∼ ∃x¬G
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Example Continued

Applying some of the equivalences of the previous slide, we get

∀z(¬(rzy) ∨ ¬∀u((rxu) ∧ ∃w(rwx)))
↓

∀z(¬(rzy) ∨ ∃u(¬((rxu) ∧ ∃w(rwx))))
↓

∀z∃u(¬(rzy)∨ ¬((rxu) ∧ ∃w(rwx)))
↓

∀z∃u(¬(rzy) ∨ (¬(rxu) ∨ ¬(∃w(rwx))))
↓

∀z∃u(¬(rzy) ∨ (¬(rxu) ∨ ∀w(¬(rwx))))
↓

∀z∃u(¬(rzy) ∨ ∀w(¬(rxu) ∨ (¬(rwx))))
↓

∀z∃u∀w(¬(rzy)∨ (¬(rxu) ∨ (¬(rwx))))
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Valid or Correct Arguments

We will be working with sentences in a fixed first-order language L;

An argument F1, . . . ,Fn ∴ F is valid (or correct) in first-order logic
provided every structure S that makes F1, . . . ,Fn true also makes F
true, i.e., for every L-structure S,

S |= {F1, . . . ,Fn} implies S |= F .

Proposition

An argument F1, . . . ,Fn ∴ F in first-order logic is valid iff

F1 ∧ · · · ∧ Fn → F

is a valid sentence; Moreover, this holds iff {F1, . . . ,Fn,¬F} is not
satisfiable.
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Some Examples Involving Equations

In first-order logic equations are treated as universally quantified
sentences:

∀~x(s(~x) ≈ t(~x));

The following argument is valid

∀x∀y∀u∀v(x · y ≈ u · v)
∴ ∀x∀y∀z((x · y) · z ≈ x · (y · z))

In fact, if a structure S satisfies the premiss then all multiplications
give the same value. Thus, the multiplication must be associative.

The argument
∃y∀x(rxy)
∴ ∀x∃y(rxy)

is valid;

To see this, suppose S is a structure satisfying the premiss. Then, for
some a ∈ S , ∀x(rxa) holds. Thus, ∀x∃y(rxy) also holds.

We have demonstrated the validity of the above arguments by
appealing to our reasoning skills in mathematics.
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Proving Non-Validity of Arguments

To show that an argument F1, . . . ,Fn ∴ F is not valid it suffices to
find a single structure S such that

each of the premisses F1, . . . ,Fn is true in S, but
the conclusion F is false in S.

Such a structure S is called a counterexample to the argument.

Example: The argument
∀x∃y(rxy)
∴ ∃y∀x(rxy)

is not valid;

A simple two-element graph gives a counterexample:

a b

(Let us verify this!)
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Leopold Löwenheim

Leopold Löwenheim, born in Krefeld, Germany (1878-1957)
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Thoralf Albert Skolem

Thoralf Albert Skolem, born in Sandsvær, Norway (1887-1963)
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Skolemization: The Intuition

Skolem, following the work of Löwenheim (1915), developed a
technique to convert a first-order sentence F into a sentence F ′ in
prenex form, with only universal quantifiers, such that

F is satisfiable iff F ′ is satisfiable.

Universally quantified sentences are apparently much easier to
understand.

This has provided one of the powerful techniques in automated
theorem proving.
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Skolemization: The Main Lemma

Skolemization Lemma

1 Given the sentence ∃yG (y), augment the language with a new
constant c and form the sentence G (c). Then

Sat(∃yG (y)) iff Sat(G (c));

2 Given the sentence ∀x1 · · · ∀xn∃yG (~x , y), augment the language with
a new n-ary function symbol f and form the sentence
∀x1 · · · ∀xnG

⋆(~x , f (~x)). Then

Sat(∀x1 · · · ∀xn∃yG (~x, y)) iff Sat(∀x1 · · · ∀xnG
⋆(~x , f (~x))).

George Voutsadakis (LSSU) Logic January 2013 85 / 90



First-Order Languages Skolemization

Universal Formulas

A first-order formula F is universal if it is in prenex form and all
quantifiers are universal, that is, F is of the form ∀~xG , where G is
quantifier-free;

G is called the matrix of F;

Example:
∀x∀y∀z ((x ≤ y) ∧ (y ≤ z) → (x ≤ z))

︸ ︷︷ ︸

matrix

.
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Producing an Equivalent Universal Sentence

Universal Equivalent of a Sentence

Given a first-order sentence F , there is an effective procedure for finding a
universal sentence F ′ (usually in an extended language) such that

Sat(F ) iff Sat(F ′).

Furthermore, we can choose F ′ such that every model of F can be
expanded to a model of F ′, and every model of F ′ can be reducted to a
model of F .

To produce F ′, given F ,
first, we put F in prenex form;
then, we just apply the Skolemization Lemma repeatedly until there are
no existential quantifiers.

This process is called skolemizing;

The newly introduced constants and functions are called skolem
constants and skolem functions.
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Example of Skolemization

We skolemize the sentence

F = ∀x∀y((x < y) → ∃z((x < z) ∧ (z < y)))

First put it in prenex form

F ∼ ∀x∀y∃z((x < y) → (x < z) ∧ (z < y))

Applying the Skolemization Lemma, we introduce a new binary
function symbol, say f , and arrive at the universal sentence

F ′ = ∀x∀y((x < y) → (x < f (x , y)) ∧ (f (x , y) < y))

The structure Q = (Q, <), consisting of the rational numbers with

the usual <, satisfies F ; If we choose f (a, b) =
a + b

2
, for a, b ∈ Q,

we see that the expansion (Q, <, f ) of Q satisfies F ′.
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Equivalent Universal Set of Sentences

Universal Equivalent of Sets of Sentences

Given a set of first-order sentences S, there is a set S ′ of universal
sentences (usually in an extended language) such that

Sat(S) iff Sat(S ′).

Furthermore, every model of S can be expanded to a model of S ′, and
every model of S ′ can be reducted to a model of S.

To obtain S ′, given S, we skolemize each sentence in S, as before,
making sure that distinct sentences do not have any common skolem
constants or functions.
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An Example of Skolemization of a Set of Sentences

Example: We skolemize the set of sentences

{∃x∀y∃z(x < y + z),∃x∀y∃z(¬(x < y + z))};

we obtain a set of universal sentences

{∀y(a < y + fy),∀y(¬(b < y + gy))}.
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