### Mathematical Logic

(Based on lecture slides by Stan Burris)

#### George Voutsadakis<sup>1</sup>

<sup>1</sup>Mathematics and Computer Science Lake Superior State University

LSSU Math 300

#### Outline

#### 1 First-Order Languages

- First-Order Languages without Equality
- Interpretations and Structures
- The Syntax of First-Order Logic
- First-Order Syntax for the Natural Numbers
- $\bullet$  The Semantics of First-Order Sentences in  ${\rm I\!N}$
- Other Number Systems
- First-Order Syntax for Directed Graphs
- The Semantics of First-Order Sentences in Directed Graphs
- Semantics for First-Order Logic
- Equivalent Formulas
- Replacement and Substitution
- Prenex Form
- Valid Arguments
- Skolemization

#### Subsection 1

### First-Order Languages without Equality

### First-Order Languages without Equality

• A first-order language without equality  ${\cal L}$  consists of

- a set  $\mathcal{F}$  of function symbols  $f, g, h, \ldots$ , with associated arities;
- a set  $\mathcal{R}$  of relation symbols  $r, r_1, r_2, \ldots$ , with associated arities;
- a set C of constant symbols  $c, d, e, \ldots$ ;
- a set X of variables x, y, z, . . ..
- Each relation symbol *r* has a positive integer, called its **arity**, assigned to it; If the number is *n*, we say *r* is *n*-**ary**. For small *n* we use the same special names that we use for function symbols: **unary**, **binary**, **ternary**, **quaternary**.
- The set  $\mathcal{L} = \mathcal{R} \cup \mathcal{F} \cup \mathcal{C}$  is called a **first-order language**.
- For instance, if we want to work with the integers, dealing both with their operations and their ordering, the language  $\{+, \cdot, <, -, 0, 1\}$  would be a natural choice.

#### Subsection 2

### Interpretations and Structures

# Interpretation of Relation Symbols

- The obvious interpretation of a relation symbol is as a relation on a set.
- If A is a set and n is a positive integer, then an n-ary relation r on A is a subset of A<sup>n</sup>; that is, r consists of a collection of n-tuples (a<sub>1</sub>,..., a<sub>n</sub>) of elements of A.
- Example: The ordinary "less than" relation on the reals is the binary relation

$$r = \{(x, y) \in \mathbb{R}^2 : x < y\};$$

• Example: The adjacency relation on the vertices of a graph is the binary relation

$$r = \{(x, y) \in V^2 : x \text{ and } y \text{ are adjacent}\};$$

• Recall the notions of a reflexive, symmetric, anti-symmetric, asymmetric, transitive, equivalence binary relation on a set *A*;

### Formal Definitions of Properties of Binary Relations

- Let A be a set. A binary relation  $r \subseteq A^2$  is called:
  - reflexive if  $(a, a) \in r$ , for all  $a \in A$ ;
  - irreflexive if  $(a, a) \notin r$ , for all  $a \in A$ ;
  - symmetric if  $(a, b) \in r$  implies  $(b, a) \in r$ , for all  $a, b \in A$ ;
  - anti-symmetric if  $(a, b) \in r$  and  $(b, a) \in r$  imply a = b, for all  $a, b \in A$ ;
  - asymmetric if  $(a, b) \in r$  implies  $(b, a) \notin r$ , for all  $a, b \in A$ ;
  - transitive if

 $(a,b) \in r$  and  $(b,c) \in r$  imply  $(a,c) \in r$ , for all  $a,b,c \in A$ ;

- equivalence if it is reflexive, symmetric and transitive;
- partial order if it is reflexive, anti-symmetric and transitive;
- strict order if it is irreflexive and transitive (which implies asymmetric).

### Interpretations

- An **interpretation** *I* of the first-order language  $\mathcal{L}$  on a set *S* is a mapping with domain  $\mathcal{L}$  such that
  - I(c) is an element of S for each constant symbol c in C;
  - I(f) is an *n*-ary function on S for each n-ary function symbol f in  $\mathcal{F}$ ;
  - I(r) is an *n*-ary relation on S for each n-ary relation symbol r in  $\mathcal{R}$ ;
- An  $\mathcal{L}$ -structure **S** is a pair **S** = (*S*, *I*), where
  - S is a set;
  - I is an interpretation of  $\mathcal{L}$  on S.

# Notation and Example

#### We sometimes write

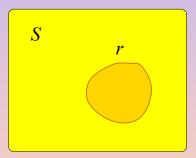
- $c^{s}$  (or just c) for I(c);
- $f^{S}$  (or just f) for I(f);
- $r^{S}$  (or just r) for I(r);
- (*S*, *F*, *R*, *C*) for (*S*, *I*);

• Example: The structure  $\mathbb{R} = (\mathbb{R}, +, \cdot, <, 0, 1)$ , the reals with addition, multiplication, less than, and two specified constants has:

$$\mathcal{F} = \{+, \cdot\}, \qquad \mathcal{R} = \{<\}, \qquad \mathcal{C} = \{0, 1\}.$$

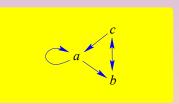
# Unary Relation Symbols and Subsets

- If r ∈ R is a unary relation symbol, then in any L-structure S, the relation r<sup>S</sup> is a subset of S;
- We can picture this as:



# Binary Relation Symbols and Directed Graphs

- If  $\mathcal{L}$  consists of a single binary relation symbol *r*, then we call an  $\mathcal{L}$ -structure a **directed graph**.
- A small finite directed graph can be conveniently described in three different ways:
  - By listing the ordered pairs in the relation r. A simple example, with  $S = \{a, b, c\}$ , is  $r^{S} = \{(a, a), (a, b), (b, c), (c, b), (c, a)\}.$
  - By a table: (1 indicates a pair is in the relation.)



• By drawing a picture:

# An Example of a First-Order Structure

- An interpretation of a language on a small set can be conveniently given by tables;
- Suppose that  $\mathcal{L} = \{+, <\}$ , where
  - + is a binary function symbol;
  - < is a binary relation symbol;
- The following tables give an interpretation S = (S, +S, <S) of L on the two element set S = {a, b}:</li>

$$\begin{array}{c|ccc} + & a & b \\ \hline a & a & b \\ b & b & a \end{array} \qquad \begin{array}{c|ccc} < & a & b \\ \hline a & 0 & 1 \\ b & 0 & 0 \end{array}$$

#### Subsection 3

### The Syntax of First-Order Logic

# The Vocabulary of First-Order Logic

- First-Order Logic is adequate for expressing almost all reasoning performed in mathematics;
- It is the most powerful, most expressive logic that our textbook examines;
- It can be presented in many different ways;
- Our version of first-order logic will use the following symbols:
  - variables (these are individual, not propositional variables);
  - connectives  $(\lor, \land, \rightarrow, \leftrightarrow, \neg)$ ;
  - function symbols;
  - relation symbols;
  - constant symbols;
  - equality ( $\approx$ );
  - quantifiers  $(\forall, \exists)$ .

## First-Order Formulas

• Atomic Formulas for a first-order language  $\mathcal{L}$  are of two kinds:

- $s \approx t$ , where s and t are terms;
- $(rt_1 \cdots t_n)$ , where r is an n-ary relation symbol and  $t_1, \ldots, t_n$  are terms;
- Formulas for a first-order language  ${\mathcal L}$  are defined inductively as follows:
  - Atomic formulas are formulas;
  - If F is a formula, then so is  $(\neg F)$ ;
  - If F and G are formulas, then so are

$$(F \lor G), \quad (F \land G), \quad (F \to G), \quad (F \leftrightarrow G);$$

 If F is a formula and x is a variable, then (∀xF) and (∃xF) are formulas.

# Notational Conventions

- Drop outer parentheses;
- Adopt the previous precedence conventions for the propositional connectives (negation ¬ first, disjunction ∨ and conjunction ∧ next, implication → and equivalence ↔ last);
- Quantifiers bind more strongly than any of the connectives;
- Following those conventions, the expression

 $\forall y(rxy) \lor \exists y(rxy)$ 

stands for the formula

 $((\forall y(rxy)) \lor (\exists y(rxy)))$ 

# Subformulas of First-Order Formulas

- The subformulas of a formula *F* are defined recursively as follows:
  - The only subformula of an atomic formula F is F itself;
  - The subformulas of  $\neg F$  are  $\neg F$  itself and all the subformulas of F;
  - The subformulas of F□G are F□G itself and all the subformulas of F and all the subformulas of G; (□ is any of ∨, ∧, →, ↔);
  - The subformulas of  $\forall xF$  are  $\forall xF$  itself and all the subformulas of F;
  - The subformulas of  $\exists xF$  are  $\exists xF$  itself and all the subformulas of F.

# Bound and Free Variables

• An occurrence of a variable x in a formula F is:

• bound if the occurrence is in a subformula

```
of the form \forall x G or of the form \exists x G;
```

Such a subformula is called the **scope of the quantifier** that begins the subformula.

- Otherwise the occurrence of the variable is said to be free;
- Note that the same variable may occur both bound and free in the same formula; e.g.,

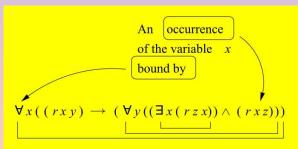
$$\exists \mathbf{x}(\mathbf{x} \approx \mathbf{y}) \land \forall \mathbf{y}(\mathbf{r} \mathbf{x} \mathbf{y})$$

Thus, bound and free refer to occurrences of a variable, not to the variable itself!

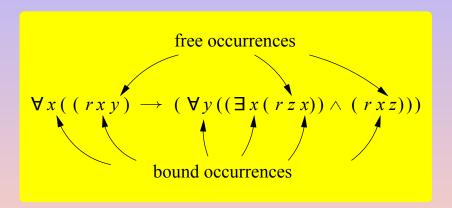
• A formula with no free occurrences of variables is called a sentence.

# Quantifiers Binding Variables

- Given a bound occurrence of x in F, we say that x is bound by an occurrence of a quantifier Q if
  - (i) the occurrence of Q quantifies the variable x, and
  - (ii) subject to this constraint the scope of this occurrence of Q is the smallest in which the given occurrence of x occurs.
- It is easier to explain scope, and quantifiers that bind variables, with a diagram; In the diagram scopes of quantifiers are underlined;



## Example with Free and Bound Occurrences of Variables



#### Subsection 4

#### First-Order Syntax for the Natural Numbers

# The Language $\mathcal{L}_N$ for the Natural Numbers

• To discuss formally the natural number system, we consider the language

$$\mathcal{L}_{N} = \{+, \cdot, <, 0, 1\};$$

- The  $\mathcal{L}_N$ -structure  $\mathbb{N} = (\mathbb{N}, +, \cdot, <, 0, 1)$  represents the natural numbers with
  - ordinary addition +;
  - ordinary multiplication ·;
  - ordinary strict ordering <;</li>
  - constants the natural numbers 0 and 1;
- The atomic  $\mathcal{L}_N$ -formulas are
  - $(s \approx t);$
  - (s < t);
- For instance, the following are all atomic  $\mathcal{L}_N$ -formulas:

$$\begin{array}{ll} (0 < 0) & (1 < 0) & (x < 0) & (x \cdot (y + z) < x \cdot z) \\ (x \cdot (y + 1) < x \cdot x + y \cdot z) & \end{array}$$

# $\mathcal{L}_N$ -Formulas

• The following are  $\mathcal{L}_N$ -formulas:

$$egin{aligned} &((x < y) 
ightarrow (x + x < y + y)) \ &(orall x ((x \cdot (y + 1) < x \cdot x + y \cdot z) 
ightarrow (\exists y (y \cdot y < x + z)))) \end{aligned}$$

• Consider the formula:

$$(\forall x(x \cdot (y+1) < x \cdot x + y \cdot z)) \rightarrow (\exists y(y \cdot y < x + z))$$

Its subformulas are:

$$\begin{array}{l} (\forall x(x \cdot (y+1) < x \cdot x + y \cdot z)) \rightarrow (\exists y(y \cdot y < x + z)) \\ \forall x(x \cdot (y+1) < x \cdot x + y \cdot z) \qquad \exists y(y \cdot y < x + z) \\ x \cdot (y+1) < x \cdot x + y \cdot z \qquad y \cdot y < x + z \end{array}$$

When working with the language L<sub>N</sub>, one uses the abbreviations
2 stands for 1 + 1; 3 stands for (1 + 1) + 1; etc.

• For instance, 3 < 5 stands for (1 + 1) + 1 < (((1 + 1) + 1) + 1) + 1; it is an atomic  $\mathcal{L}_N$ -sentence saying that "3 is less than 5"; This sentence is true in the  $\mathcal{L}_N$ -structure  $\mathbb{N}$ .

#### Subsection 5

### The Semantics of First-Order Sentences in ${\rm I\!N}$

## Examples of First-Order Formulas with Intuition

- 2 + 2 < 3 is an atomic sentence; It says "four is less than three". False in  $\mathbb{N}$ .
- ∀x∃y(x < y) says that "for every number there is a larger number". True in N.
- ∃y∀x(x < y) says that "there is a number that is larger than every other number".</li>
   False in IN.
- ∀x((0 < x) → ∃y(y ⋅ y ≈ x)) says that "every positive number is a square".</li>
   False in N.
- ∀x∀y((x < y) → ∃z((x < z) ∧ (z < y))) says that "if one number is less than another, then there is a number properly between the two".</li>
   False in N.

### Notation for Meets and Joins

• We will use the shorthand notation

$$\bigwedge_{i=1}^{n} F_{i}$$

to mean the same as the notation

$$F_1 \wedge \cdots \wedge F_n$$
.

• Likewise, we will use the notation

$$\bigvee_{i=1}^{n} F_{i}$$

for

$$F_1 \vee \cdots \vee F_n$$
.

# Translating English to First-Order I

- Suppose that F(x) is a first-order formula with variable x; We can find first-order sentences to say:
  - a. "There is at least one number such that F(x) is true in  $\mathbb{N}$ ".  $\exists x F(x)$
  - b. "There are at least two numbers such that F(x) is true in  $\mathbb{N}$ ".  $\exists x \exists y (\neg (x \approx y) \land F(x) \land F(y))$
  - c. "There are at least *n* numbers (*n* fixed) such that F(x) is true in  $\mathbb{N}$ ".  $\exists x_1 \cdots \exists x_n ((\bigwedge_{1 \le i < j \le n} \neg (x_i \approx x_j)) \land (\bigwedge_{1 \le i \le n} F(x_i)))$
  - d. "There are infinitely many numbers that make F(x) true in  $\mathbb{N}$ ".  $\forall x \exists y((x < y) \land F(y))$

# Translating English to First-Order II

#### • We can also find first-order sentences to say:

- e. "There is at most one number such that F(x) is true in  $\mathbb{N}$ ".  $\forall x \forall y((F(x) \land F(y)) \rightarrow (x \approx y))$
- f. "There are at most two numbers such that F(x) is true in  $\mathbb{N}$ ".  $\forall x \forall y \forall z ((F(x) \land F(y) \land F(z)) \rightarrow ((x \approx y) \lor (x \approx z) \lor (y \approx z)))$
- g. "There are at most *n* numbers (*n* fixed) such that F(x) is true in  $\mathbb{N}$ ".  $\forall x_1 \cdots \forall x_{n+1}((\bigwedge_{1 \le i \le n+1} F(x_i)) \to (\bigvee_{1 \le i < j \le n+1} (x_i \approx x_j)))$
- h. "There are only finitely many numbers that make F(x) true in  $\mathbb{N}$ ".  $\exists x \forall y (F(y) \rightarrow (y < x))$

### Truth of a Formula at a Tuple of Domain Elements

- To better understand what we can express with first-order sentences we need to introduce definable relations;
- Given a first-order formula F(x1,...,xk), we say F is true at a k-tuple (a1,...,ak) of natural numbers if the expression F(a1,...,ak) is a true statement about the natural numbers;
- Example: Let F(x, y) be the formula x < y. Then F is true at (a, b) iff a is less than b.
- Example: Let F(x, y) be ∃z(x ⋅ z ≈ y). Then F is true at (a, b) iff a divides b, written a\b.
- Important Note: Don't confuse a\b with a/b. The first is true or false. The second has a value.
   Check that a\0 for any a, including a = 0.

# **Definable Relations**

- For F(x<sub>1</sub>,...,x<sub>k</sub>) a formula, let F<sup>ℕ</sup> be the set of k-tuples (a<sub>1</sub>,...,a<sub>k</sub>) of natural numbers for which F(a<sub>1</sub>,...,a<sub>k</sub>) is true in ℕ;
- We call  $F^{\mathbb{N}}$  the relation on  $\mathbb{N}$  defined by the formula F;
- A *k*-ary relation  $r \subseteq \mathbb{N}^k$  is **definable in**  $\mathbb{N}$  if there is a formula  $F(x_1, \ldots, x_k)$  such that  $r = F^{\mathbb{N}}$ ;
- Examples:
  - a. x is an even number is definable in  $\mathbb{N}$  by

$$\exists y(x\approx y+y).$$

b. x divides y is definable in  $\mathbb{N}$  by

$$\exists z(x \cdot z \approx y).$$

### More Examples of Definable Relations

• We continue the list of Examples:

c. x is prime is definable in  $\mathbb{N}$  by

 $(1 < x) \land \forall y((y \setminus x) \to ((y \approx 1) \lor (y \approx x))).$ 

d.  $x \equiv y \mod n$  is definable in  $\mathbb{N}$  by

 $\exists z((x \approx y + n \cdot z) \lor (y \approx x + n \cdot z)).$ 

e. z is the remainder of dividing x by y is definable in  $\mathbb{N}$  by  $z < y \land \exists w (x \approx w \cdot y + z).$ 

# Using Abbreviations; The Metalanguage

- When we write  $x \setminus y$ , we understand the formula  $\exists z (x \cdot z \approx y)$ .
- When we write prime(x), we understand the formula

 $(1 < x) \land \forall y((y \setminus x) \to ((y \approx 1) \lor (y \approx x))).$ 

Note that in prime(x), we have used the abbreviation for y\x.
 This means that to properly write prime(x) as a first-order formula we need to replace that abbreviation; doing so gives us

 $(1 < x) \land \forall y ((\exists z(y \cdot z \approx x)) \rightarrow ((y \approx 1) \lor (y \approx x))).$ 

- Abbreviations are not a feature of first-order logic, but rather they are a tool in the language used by people to discuss first-order logic; To distinguish this language for the language of first-order logic, we sometimes call it the **metalanguage**;
- Without abbreviations, writing out the first-order sentences that we find interesting would fill up lines with tedious, hard-to-read symbolism.

# Substitution Needs Care!

- We saw that  $x \setminus y$  abbreviates  $\exists z (x \cdot z \approx y)$ ;
- Then  $(u+1) \setminus (u \cdot u + 1)$  is an abbreviation for

 $\exists z((u+1) \cdot z \approx u \cdot u + 1);$ 

- If we write out  $z \setminus 2$  we obtain  $\exists z (z \cdot z \approx 1 + 1)$ .
- Unfortunately, this last formula does not define the set of elements in In that divide 2; It is a first-order sentence that is simply false in N; the square root of 2 is not a natural number;

## Renaming "Dummy" Variables

- We have stumbled onto one of the subtler points of first-order logic, namely, we must be careful with substitution;
- The remedy for defining "z divides 2" is to use another formula, like

 $\exists w(x \cdot w \approx y)$ 

for "x divides y".

- We obtain such a formula by simply renaming the bound variable z in the formula for x\y;
- With this formula we can correctly express "z divides 2" by  $\exists w(z \cdot w \approx 2)$ .
- The danger in using abbreviations in first-order logic, as showcased by this example, is that we forget the names of the bound variables in the abbreviation.

### Substitution: Alerting Reader of the Danger

- Our solution: add a \* to the abbreviation to alert the reader to the necessity for renaming the bound variables that overlap with the variables in the term to be substituted into the abbreviation;
- For example, we write prime\*(y + z) to explicitly express the need to change the formula for prime(x), say to

 $(1 < x) \land \forall v ((v \setminus x) \to ((v \approx 1) \lor (v \approx x)))$ 

so that when we substitute y + z for x in the formula, no new occurrence of y or z becomes bound.

• Thus we could express prime(y + z) by

 $(1 < y + z) \land \forall v ((v \setminus^{\star} (y + z)) \rightarrow ((v \approx 1) \lor (v \approx y + z))).$ 

### Expressing Statements in First-Order Logic

- a. The relation "divides" is transitive:  $\forall x \forall y \forall z (((x \setminus y) \land (y \setminus z)) \to (x \setminus z)).$
- b. There are an infinite number of primes:  $\forall x \exists y ((x < y) \land \text{prime}^*(y)).$

#### c. The Twin Prime Conjecture

There are an infinite number of pairs of primes that differ by the number 2:  $\forall x \exists y((x < y) \land \text{prime}^{*}(y) \land \text{prime}^{*}(y + 2)).$ 

#### d. Goldbach's Conjecture

All even numbers greater than two are the sum of two primes:  $\forall x(((2 \setminus x) \land (2 < x)) \rightarrow \exists y \exists z (prime^*(y) \land prime(z) \land (x \approx y + z))).$ 

## Subsection 6

## Other Number Systems

# Other Number Systems: Integers, Rationals and Reals

- Our first-order language  $\mathcal{L} = \{+, \cdot, <, 0, 1\}$  can just as easily be used to study other number systems, in particular,
  - the integers  $\mathbb{Z} = (\mathbb{Z}, +, \cdot, <, 0, 1);$
  - the rationals  $\mathbb{Q} = (\mathbb{Q}, +, \cdot, <, 0, 1);$
  - the reals  $\mathbb{R} = (\mathbb{R}, +, \cdot, <, 0, 1);$
- However, first-order sentences that are true in one can be false in another.

# Sentences Considered in Various Models

• Consider the following first-order sentences:

(a) ∀x∃y(x < y)</li>
 "For every number, there is a (strictly) greater number".

(b)  $\forall y \exists x (x < y)$ 

"For every number, there exists a (strictly) smaller number".

- (c) ∀x∀y((x < y) → ∃z((x < z) ∧ (z < y)))</li>
   "For every two different numbers, there exists a number lying (properly) between the two".
- The following table evaluates the truth of (a)-(e) in the models  $\mathbb{N}, \mathbb{Z}, \mathbb{Q}$  and  $\mathbb{R}$ :

|              | $\mathbb{N}$ | $\mathbb{Z}$ | Q    | $\mathbb{R}$ |
|--------------|--------------|--------------|------|--------------|
| (a)          | true         | true         | true | true         |
| <i>(b)</i>   | false        | true         | true | true         |
| (c)          | false        | false        | true | true         |
| ( <i>d</i> ) |              |              |      |              |
| (e)          |              |              |      |              |

# Sentences Considered in Various Models

• Two more first-order sentences:

(d)  $\forall x \exists y ((0 < x) \rightarrow (x \approx y \cdot y))$ 

"Every positive number has a square root".

(e)  $\exists x \forall y (x < y)$ 

"There exists a number (strictly) less than all numbers".

• The following table evaluates the truth of (a)-(e) in the models  $\mathbb{N},\mathbb{Z},\mathbb{Q}$  and  $\mathbb{R}:$ 

|              | $\mathbb{N}$ | $\mathbb{Z}$ | Q     | $\mathbb{R}$ |
|--------------|--------------|--------------|-------|--------------|
| ( <i>a</i> ) | true         | true         | true  | true         |
| ( <i>b</i> ) | false        | true         | true  | true         |
| (c)          | false        | false        | true  | true         |
| ( <i>d</i> ) | false        | false        | false | true         |
| (e)          |              | false        |       |              |

## Subsection 7

## First-Order Syntax for Directed Graphs

# The Language of Directed Graphs

- The first-order language of (directed) graphs is L = {r}, where r is a binary relation symbol;
- The only terms are the variables x;
- Atomic formulas look like
  - $(x \approx y);$
  - (*rxy*);
- **Example:** The subformulas of  $\forall x((rxy) \rightarrow \exists y(ryx))$  are

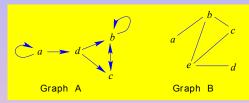
 $\forall x((rxy) \rightarrow \exists y(ryx))$  $(rxy) \rightarrow \exists y(ryx)$ rxy $\exists y(ryx)$ ryx

## Subsection 8

## The Semantics of First-Order Sentences in Directed Graphs

# First-Order to English On Directed Graphs

• Two structures over the language  $\mathcal{L} = \{r\}$  of directed graphs:



• We consider some first-order logic sentences over  $\mathcal{L}$ :

a.  $\forall x \neg (rxx)$ 

It says: "the directed graph is irreflexive". False in A; True in B;

b.  $\forall x \forall y ((rxy) \rightarrow (ryx))$ 

It says: "the directed graph is symmetric". False in A; True in B;

c.  $\forall x \forall y(rxy)$ 

It says: "all possible edges are present". False in A; False in B;

d. ∀x∃y(rxy)
It says: "for every vertex there is an outgoing edge". True in A; True in B;

# English to First-Order Logic On Directed Graphs

### • Consider the following statements:

- a. The (directed) graph has at least two vertices.  $\exists x \exists y (\neg(x \approx y))$
- b. Every vertex has an edge attached to it. ∀x∃y((rxy) ∨ (ryx))
- c. Every vertex has at most two edges directed from it to other vertices.  $\forall x \forall y \forall z \forall w (((rxy) \land (rxz) \land (rxw)) \rightarrow ((y \approx z) \lor (y \approx w) \lor (w \approx z)))$

# Some Graph-Theoretic Definitions

- The **degree** of a vertex is the number of (undirected) edges attached to it;
- A path of length n from vertex x to vertex y is a sequence of vertices a<sub>1</sub>,..., a<sub>n+1</sub> with each (a<sub>i</sub>, a<sub>i+1</sub>) being an edge, and with x = a<sub>1</sub>, y = a<sub>n+1</sub>;
- Two vertices are **adjacent** if there is an edge connecting them.

# Definable Relations and Statements about Graphs

### • The following are definable relations on graphs:

- a. The degree of x is at least one.  $\exists y(rxy)$
- b. The degree of x is at least two.  $\exists y \exists z (\neg (y \approx z) \land (rxy) \land (rxz))$
- The following are statements about graphs:
  - a. Some vertex has degree at least two.  $\exists x \exists y \exists z (\neg (y \approx z) \land (rxy) \land (rxz))$
  - b. Every vertex has degree at least two.  $\forall x \exists y \exists z (\neg (y \approx z) \land (rxy) \land (rxz))$

### Subsection 9

## Semantics for First-Order Logic

# **Overview of First-Order Semantics**

- Given a first-order *L*-structure S = (S, I), the interpretation I gives meaning to the symbols of the language *L*;
- We associate with each term  $t(x_1, \ldots, x_n)$  the *n*-ary term function  $t^{\mathbf{S}}: S^n \to S$ ;
- We associate with each formula  $F(x_1, ..., x_n)$  an *n*-ary relation  $F^{S} \subseteq S^n$ ;
- We continue with the formal definition after a small break!

## Alfred Tarski

Alfred Tarski, born in Warsaw, Kingdom of Poland (1901-1983)





# Tarski's Definition of Truth

- The notion of a formula F being true or holding in a structure
   S = (S, I) under an assignment a of values from S to its variables x is defined by induction on the structure of F:
  - $F(\vec{x})$  is atomic:
    - F is the formula  $t_1(\vec{x}) \approx t_2(\vec{x})$ :  $F(\vec{a})$  holds iff  $t_1^{\mathsf{S}}(\vec{a}) = t_2^{\mathsf{S}}(\vec{a})$ .
    - F is the formula  $r(t_1(\vec{x}), \ldots, t_n(\vec{x}))$ :  $F(\vec{a})$  holds iff  $r^{\mathsf{S}}(t_1^{\mathsf{S}}(\vec{a}), \ldots, t_n^{\mathsf{S}}(\vec{a}))$  holds.
  - $F = \neg G$ : Then  $F(\vec{a})$  holds iff  $G(\vec{a})$  does not hold.
  - $F = G \lor H$ : Then  $F(\vec{a})$  holds iff  $G(\vec{a})$  holds or  $H(\vec{a})$  holds.
  - $F = G \wedge H$ : Then  $F(\vec{a})$  holds iff  $G(\vec{a})$  holds and  $H(\vec{a})$  holds.
  - $F = G \rightarrow H$ : Then  $F(\vec{a})$  holds iff  $G(\vec{a})$  does not hold or  $H(\vec{a})$  holds.
  - $F = G \leftrightarrow H$ : Then  $F(\vec{a})$  holds iff both or neither of  $G(\vec{a})$  and  $H(\vec{a})$  holds.
  - $F(\vec{x})$  is  $\forall y G(y, \vec{x})$ : Then  $F(\vec{a})$  holds iff  $G(b, \vec{a})$  holds for every  $b \in S$ .
  - $F(\vec{x})$  is  $\exists y G(y, \vec{x})$ : Then  $F(\vec{a})$  holds iff  $G(b, \vec{a})$  holds for some  $b \in S$ .

# Illustrating the Definition of Truth I

- Consider the language  $\mathcal{L} = \{f, r\}$ , where
  - f is a unary function symbol;
  - r is a binary relation symbol;
- Consider the  $\mathcal{L}$ -structure  $\mathbf{S} = (S, f^{S}, r^{S})$ , with

$$S = \{a, b\}, \qquad \begin{array}{c|c} x & fx \\ \hline a & b \\ b & a \end{array}, \qquad \begin{array}{c|c} r & a & b \\ \hline a & 0 & 1 \\ b & 1 & 0 \end{array}$$

• Consider the *L*-formula

$$F(x) = \forall y \exists z ((rfxfy) \land (rfyfz)).$$

In the next slide, we evaluate F(x) at both x = a and x = b in S;
 i.e., we fully determine F<sup>S</sup> (set of all x ∈ S for which F(x) holds).

# Evaluation of $F(x) = \forall y \exists z ((rfxfy) \land (rfyfz))$

|   | x | у                                        | Ζ | fx | fy | fz | rfxfy | rfy | $rfz$ ( $rfxfy$ ) $\land$ ( $rfyfz$ )         |  |  |  |
|---|---|------------------------------------------|---|----|----|----|-------|-----|-----------------------------------------------|--|--|--|
|   | а | а                                        | а | b  | b  | b  | 0     | 0   | ) 0                                           |  |  |  |
|   | а | а                                        | b | b  | b  | а  | 0     | 1   | L 0                                           |  |  |  |
|   | а | b                                        | а | b  | а  | b  | 1     | 1   | l 1                                           |  |  |  |
|   | а | b                                        | b | b  | а  | а  | 1     | 0   | ) 0                                           |  |  |  |
|   | b | а                                        | а | а  | b  | b  | 1     | 0   | ) 0                                           |  |  |  |
|   | b | а                                        | b | а  | b  | а  | 1     | 1   | l 1                                           |  |  |  |
|   | b | b                                        | а | а  | а  | b  | 0     | 1   | L 0                                           |  |  |  |
|   | b | b                                        | b | а  | а  | а  | 0     | 0   | ) 0                                           |  |  |  |
| x | y | $\exists z((rf x f y) \land (rf y f z))$ |   |    |    |    |       |     |                                               |  |  |  |
| а | а |                                          |   | 0  |    |    |       | x   | $\forall y \exists z ((rfxfy) \land (rfyfz))$ |  |  |  |
| а | b | 1                                        |   |    |    |    |       |     | 0                                             |  |  |  |
| b | а | 1                                        |   |    |    |    |       | b   | 0                                             |  |  |  |
| b | b |                                          |   | 0  |    |    |       |     |                                               |  |  |  |

Therefore  $F^{S} = \emptyset$ .

# Illustrating the Definition of Truth II

- Consider the same language  $\mathcal{L} = \{f, r\}$ ;
- Consider the same  $\mathcal{L}$ -structure  $\mathbf{S} = (S, f^{\mathbf{S}}, r^{\mathbf{S}})$ , with

$$S = \{a, b\}, \qquad \begin{array}{c|ccc} x & fx & & r & a & b \\ \hline a & b & , & & a & 0 & 1 \\ b & a & & b & 1 & 0 \end{array}$$

• Consider the *L*-formula

$$F(x,y) = \exists z((rxfz) \land (fy \approx z)) \to (fy \approx fx).$$

In the next slide, we evaluate F(x, y) at all pairs (a, b) ∈ S<sup>2</sup>;
 i.e., we fully determine F<sup>S</sup> (set of all (x, y) ∈ S<sup>2</sup> for which F(x, y) holds).

# Evaluation of $F(x, y) = \exists z((rxfz) \land (fy \approx z)) \rightarrow (fy \approx fx)$

|   |   | x   | y   | Ζ | fx |              | fz   | rxfz      |                                                      | $rxfz \wedge fy pprox z$ |  |  |
|---|---|-----|-----|---|----|--------------|------|-----------|------------------------------------------------------|--------------------------|--|--|
|   |   | а   | а   | а | b  | b            | b    | 1         | 0                                                    | 0                        |  |  |
|   |   | а   | а   | b | b  | b            | а    | 0         | 1                                                    | 0                        |  |  |
|   |   | а   | b   | а | Ь  | а            | b    | 1         | 1                                                    | 1                        |  |  |
|   |   | а   | b   | b | Ь  | а            | а    | 0         | 0                                                    | 0                        |  |  |
|   |   | b   | а   | а | а  | b            | b    | 0         | 0                                                    | 0                        |  |  |
|   |   | b   | а   | b | а  | b            | а    | 1         | 1                                                    | 1                        |  |  |
|   |   | b   | b   | а | а  | а            | b    | 0         | 1                                                    | 0                        |  |  |
|   |   | b   | b   | b | а  | а            | а    | 1         | 0                                                    | 0                        |  |  |
| x | y |     |     |   |    | $y \approx $ | fx = | z((rxfz)) | $\wedge (fy \approx z)) \rightarrow (fy \approx fx)$ |                          |  |  |
| а | а | 0 1 |     |   |    | 1            |      | 1         |                                                      |                          |  |  |
| а | b |     | 1 ( |   |    |              | 0    |           | 0                                                    |                          |  |  |
| Ь | а |     | 1 0 |   |    |              | 0    |           |                                                      |                          |  |  |
| b | b |     | (   | 0 |    |              | 1    |           | 1                                                    |                          |  |  |
|   | ~ | - 5 |     | ~ |    |              |      |           |                                                      |                          |  |  |

Therefore  $F^{S} = \{(a, a), (b, b)\}.$ 

# Definition of Truth for Sentences

- Let  $\mathcal{L}$  be a language, F be an  $\mathcal{L}$ -sentence and S an  $\mathcal{L}$ -structure;
- Then F is true in S provided one of the following holds:
  - F is  $rt_1 \ldots t_n$  and  $r^{S}(t_1^{S}, \ldots, t_n^{S})$  holds;
  - F is  $t_1 \approx t_2$  and  $t_1^{\mathbf{S}} = t_2^{\mathbf{S}}$ ;
  - F is  $\neg G$  and G is not true in **S**;
  - F is  $G \lor H$  and at least one of G, H is true in **S**;
  - F is  $G \wedge H$  and both of G, H are true in **S**;
  - F is  $G \rightarrow H$  and G is not true in **S** or H is true in **S**;
  - F is  $G \leftrightarrow H$  and both or neither of G, H is true in S;
  - *F* is  $\forall x G(x)$  and  $G^{S}(a)$  is true for every  $a \in S$ ;
  - *F* is  $\exists x G(x)$  and  $G^{S}(a)$  is true for some  $a \in S$ .
- If F is not true in **S**, then we say F is false in **S**.

# Notational Conventions for Truth

- Given a first-order language L, let F be an L-sentence, S a set of L-sentences, and S a structure for this language;
- $S \models F$  means F is true in S;
- F is valid if it is true in all *L*-structures;
- $S \models S$  means every sentence F in S is true in S;
- Sat(S) means S is satisfiable;
- S ⊨ F means every model of S is a model of F; If this is the case, we say F is a consequence of S.

# The Propositional Skeleton of a Formula

- The **propositional skeleton**, Skel(*F*), of a formula *F* is defined as follows:
  - Delete all quantifiers and terms;
  - Replace  $\approx$  with 1;
  - Replace the relation symbols r with propositional variables R;
- Example: The formula

$$F = \forall x \forall y (\neg (x < y) \leftrightarrow \exists z ((x < z) \lor (fz \approx y)))$$

has

$$\mathsf{Skel}(F) = \neg P \leftrightarrow P \lor 1.$$

# The Propositional Skeleton Criterion

#### Theorem

The first-order formula F has a one-element model iff Skel(F) is satisfiable.

- If Skel(F) is satisfiable, then choose an evaluation e that makes it true in a model S with universe S = {a}, as follows:
  - Let  $f^{\mathsf{S}}(a,\ldots,a) = a$  for  $f \in \mathcal{F}$ ;
  - Let  $r^{\mathbf{S}}(a, \ldots, a)$  hold iff  $\mathbf{e}(R) = 1$  for  $r \in \mathcal{R}$ ;
- Example:  $F = \forall x \forall y (\neg (x < y) \leftrightarrow \exists z ((x < z) \lor (fz \approx y)));$ 
  - We obtained  $Skel(F) = \neg P \leftrightarrow P \lor 1;$
  - This is satisfiable if P is evaluated as 0;
  - **F** has the one-element model  $\mathbf{S} = (\{a\}, f, <)$ , where

$$fa = a, \qquad \frac{\langle a \rangle}{a \rangle 0}$$

## Subsection 10

## Equivalent Formulas

# **Equivalent Sentences**

 The sentences F and G are equivalent, written F ~ G, if they are true in the same L-structures S, that is, for all structures S, we have

$$\mathbf{S} \models F$$
 iff  $\mathbf{S} \models G$ .

• For example, the sentences

 $\forall x (\neg (x \approx 0) \rightarrow \exists y (x \cdot y \approx 1)) \text{ and } \forall x \exists y (\neg (x \approx 0) \rightarrow (x \cdot y \approx 1))$ 

are equivalent.

#### Theorem

The sentences F and G are equivalent iff  $F \leftrightarrow G$  is a valid sentence.

# Equivalent Formulas

- Two formulas  $F(x_1, \ldots, x_n)$  and  $G(x_1, \ldots, x_n)$  are **equivalent**, written  $F(x_1, \ldots, x_n) \sim G(x_1, \ldots, x_n)$ , iff F and G define the same relation on any  $\mathcal{L}$ -structure **S**, that is,  $F^{S} = G^{S}$ ;
- For example, the following formulas are equivalent  $\neg(x \approx 0) \rightarrow \exists y(x \cdot y \approx 1)$  and  $\exists y(\neg(x \approx 0) \rightarrow (x \cdot y \approx 1)).$

### Proposition

The formulas  $F(\vec{x})$  and  $G(\vec{x})$  are equivalent iff  $\forall \vec{x}(F(\vec{x}) \leftrightarrow G(\vec{x}))$  is a valid sentence.

### Proposition

The relation  $\sim$  is an equivalence relation on sentences as well as on formulas.

• This is immediate from the definition of  $\sim$  and the fact that ordinary equality (=) is an equivalence relation.

# Fundamental Equivalences

• The following are some fundamental Equivalences of Formulas:

## Important Remarks on Freeness

• If x occurs free in G then we cannot conclude

$$(\forall xF) \lor G \sim \forall x(F \lor G);$$

• for example,

 $(\forall x(x < 0)) \lor (0 < x) \text{ and } \forall x((x < 0) \lor (0 < x))$ 

are not equivalent; This can be seen by considering the natural numbers  $\mathbb{N}$ : in  $\mathbb{N}$ , the first is true of positive numbers x (Note that x occurs free in this formula); whereas the second is false (Note that there are no free occurrences of x in this formula);

# Some Other Remarks

• For the implication we have:

$$\begin{aligned} (\forall xF) \to G &\sim \neg(\forall xF) \lor G \\ &\sim \exists x(\neg F) \lor G \\ &\sim \exists x(\neg F \lor G) \\ &\sim \exists x(F \to G). \end{aligned}$$

To see that

$$\forall x(F \lor G) \sim (\forall xF) \lor (\forall xG)$$

need not be true consider the following example:

 $\forall x((0 \approx x) \lor (0 < x)) \text{ and } (\forall x(0 \approx x)) \lor (\forall x(0 < x)).$ 

And to see that

$$\exists x(F \land G) \sim (\exists xF) \land (\exists xG)$$

need not be true consider the example:

 $\exists x((0 \approx x) \land (0 < x)) \text{ and } (\exists x(0 \approx x)) \land (\exists x(0 < x)).$ 

## Subsection 11

## Replacement and Substitution

# Substitution of Formulas for Propositional Variables

• Equivalent propositional formulas lead to equivalent first-order formulas as follows:

### Proposition

If  $F(P_1, \ldots, P_n)$  and  $G(P_1, \ldots, P_n)$  are equivalent propositional formulas, then for any sequence  $H_1, \ldots, H_n$  of first-order formulas we have  $F(H_1, \ldots, H_n) \sim G(H_1, \ldots, H_n)$ .

 Example: De Morgan's Law gives the equivalence of the two propositional formulas ¬(P ∧ Q) ~ ¬P ∨ ¬Q. By the Proposition above, then, the following first-order formulas are also equivalent:

$$\neg ((\exists x(x \cdot x \approx 1)) \land (\forall x \forall y(x \cdot y \approx y \cdot x))) \\ \sim \neg (\exists x(x \cdot x \approx 1)) \lor \neg (\forall x \forall y(x \cdot y \approx y \cdot x))$$

# Compatibility of Equivalence with Connectives

- Applying logical connectives preserves equivalence;
- This property of equivalence is called compatibility with the logical connectives;

### Compatibility Lemma

Suppose  $F_1 \sim G_1$  and  $F_2 \sim G_2$ . Then

- $\bigcirc \exists x F_1 \sim \exists x G_1.$

# Replacement in First-Order Logic

• The replacement theorem says that, in a first-order formula the replacement of a subformula by an equivalent formula results in a equivalent formula; More formally:

Replacement Theorem

If 
$$F \sim G$$
 then  $H(\cdots F \cdots) \sim H(\cdots G \cdots)$ .

• Example: We have that

$$egin{aligned} 
egin{aligned} 
end {aligned} &\neg ((\exists x(x \cdot x pprox 1)) \land (\forall x \forall y(x \cdot y pprox y \cdot x))) \ &\sim 
egin{aligned} &\sim 
egin{aligned} 
end {aligned} &\sim 
ext{(} \exists x(x \cdot x pprox 1)) \lor 
egin{aligned} &\sim 
ext{(} \exists x(x \cdot x pprox 1)) \lor 
egin{aligned} 
ext{(} \forall x \forall y(x \cdot y pprox y \cdot x))) \ &\sim 
ext{(} \exists x(x \cdot x pprox 1)) \lor 
ext{(} \forall x \forall y(x \cdot y pprox y \cdot x))) \end{aligned}$$

Therefore, by the Replacement Theorem

$$\begin{array}{l} (\forall x \exists y (x < y)) \rightarrow \neg ((\exists x (x \cdot x \approx 1)) \land (\forall x \forall y (x \cdot y \approx y \cdot x))) \\ \sim (\forall x \exists y (x < y)) \rightarrow \neg (\exists x (x \cdot x \approx 1)) \lor \neg (\forall x \forall y (x \cdot y \approx y \cdot x)) \end{array}$$

# Substitution of Terms for Variables

- Substitution of terms for variables in first-order logic often requires the need to rename variables;
- We need to be careful with renaming variables to avoid binding any newly introduced occurrences of variables;
- Given a first-order formula F, define a conjugate of F to be any formula F obtained by renaming the occurrences of bound variables of F so that no free occurrences of variables in F become bound; When renaming, we must keep bound occurrences of distinct variables distinct;

#### Equivalence of Conjugates

- If  $\overline{F}$  is a conjugate of F, then  $\overline{F} \sim F$ .
  - Example:  $\exists y(x \cdot y \approx 1) \sim \exists w(x \cdot w \approx 1)$ .

# The Substitution Theorem

### Substitution Theorem

If  $F(x_1, \ldots, x_n) \sim G(x_1, \ldots, x_n)$  and  $t_1, \ldots, t_n$  are terms, then  $F^*(t_1, \ldots, t_n) \sim G^*(t_1, \ldots, t_n)$ .

For instance, since ¬∃y(x · y ≈ 1) ~ ∀y(¬(x · y ≈ 1)), substitution of (y + w) for x and u for y yields

$$\neg \exists u((y+w) \cdot u \approx 1) \sim \forall u(\neg((y+w) \cdot u \approx 1)).$$

## Subsection 12

Prenex Form

#### Prenex Form

• A formula F is in prenex form if it looks like

 $Q_1 x_1 \cdots Q_n x_n G$ ,

where

- the  $Q_i$  are quantifiers;
- G has no occurrences of quantifiers;
- A formula with no occurrences of quantifiers is called an **open formula**;
- The formula

$$\exists x((rxy) \rightarrow \forall u(ruy))$$

is not in prenex form, but it is equivalent to the prenex form formula

 $\exists x \forall u((rxy) \rightarrow (ruy)).$ 

Prenex Form Theorem

Every formula is equivalent to a formula in prenex form.

# Obtaining an Equivalent Formula in Prenex Form

- The following steps put *F* in prenex form:
  - Rename the quantified variables so that distinct occurrences of quantifiers bind distinct variables, and no free variable is equal to a bound variable;
    - Example: Change

$$\forall z((rzy) \to \neg \forall \mathbf{y}((rx\mathbf{y}) \land \exists \mathbf{y}(r\mathbf{y}x)))$$

to

$$\forall z((rzy) \rightarrow \neg \forall u((rxu) \land \exists w(rwx)))$$

2 Eliminate all occurrences of → and ↔ using
• G → H ~ ¬G ∨ H;
• G ↔ H ~ (¬G ∨ H) ∧ (¬H ∨ G);
Example (Cont'd): The equivalent form is

$$\forall z(\neg(rzy) \lor \neg \forall u((rxu) \land \exists w(rwx)));$$

#### Oull the quantifiers to the front;

# Obtaining an Equivalent Formula in Prenex Form (Cont'd)

• This can be accomplished by using the equivalences:

• 
$$\neg (F \lor G) \sim (\neg F \land \neg G)$$

- $\neg (F \land G) \sim (\neg F \lor \neg G)$
- $G \lor (\forall xH) \sim \forall x(G \lor H)$
- $G \lor (\exists xH) \sim \exists x(G \lor H)$
- $G \land (\forall xH) \sim \forall x(G \land H)$
- $G \land (\exists xH) \sim \exists x(G \land H)$
- $(\forall xG) \lor H \sim \forall x(G \lor H)$
- $(\exists xG) \lor H \sim \exists x(G \lor H)$
- $(\forall xG) \land H \sim \forall x(G \land H)$
- $(\exists xG) \land H \sim \exists x(G \land H)$
- $\neg \exists x G \sim \forall x \neg G$
- $\neg \forall x G \sim \exists x \neg G$

#### Example Continued

• Applying some of the equivalences of the previous slide, we get

$$\forall z(\neg(rzy) \lor \neg \forall u((rxu) \land \exists w(rwx)))$$

$$\downarrow$$

$$\forall z(\neg(rzy) \lor \exists u(\neg((rxu) \land \exists w(rwx))))$$

$$\downarrow$$

$$\forall z \exists u(\neg(rzy) \lor \neg((rxu) \land \exists w(rwx)))$$

$$\downarrow$$

$$\forall z \exists u(\neg(rzy) \lor (\neg(rxu) \lor \neg(\exists w(rwx))))$$

$$\downarrow$$

$$\forall z \exists u(\neg(rzy) \lor (\neg(rxu) \lor \forall w(\neg(rwx))))$$

$$\downarrow$$

$$\forall z \exists u(\neg(rzy) \lor \forall w(\neg(rxu) \lor (\neg(rwx))))$$

$$\downarrow$$

$$\forall z \exists u(\neg(rzy) \lor \forall w(\neg(rxu) \lor (\neg(rwx))))$$

#### Subsection 13

Valid Arguments

#### Valid or Correct Arguments

- We will be working with sentences in a fixed first-order language  $\mathcal{L}$ ;
- An argument F<sub>1</sub>,..., F<sub>n</sub> ∴ F is valid (or correct) in first-order logic provided every structure S that makes F<sub>1</sub>,..., F<sub>n</sub> true also makes F true, i.e., for every *L*-structure S,

$$\mathbf{S} \models \{F_1, \dots, F_n\}$$
 implies  $\mathbf{S} \models F$ .

#### Proposition

An argument  $F_1, \ldots, F_n \therefore F$  in first-order logic is valid iff

 $F_1 \wedge \cdots \wedge F_n \rightarrow F$ 

is a valid sentence; Moreover, this holds iff  $\{F_1, \ldots, F_n, \neg F\}$  is not satisfiable.

#### Some Examples Involving Equations

 In first-order logic equations are treated as universally quantified sentences:

 $\forall \vec{x}(s(\vec{x}) \approx t(\vec{x}));$ 

• The following argument is valid

 $\forall x \forall y \forall u \forall v (x \cdot y \approx u \cdot v)$  $\therefore \forall x \forall y \forall z ((x \cdot y) \cdot z \approx x \cdot (y \cdot z))$ 

- In fact, if a structure **S** satisfies the premiss then all multiplications give the same value. Thus, the multiplication must be associative.
- The argument  $\exists y \forall x (rxy) \\ \therefore \forall x \exists y (rxy)$  is valid;
- To see this, suppose S is a structure satisfying the premiss. Then, for some a ∈ S, ∀x(rxa) holds. Thus, ∀x∃y(rxy) also holds.
- We have demonstrated the validity of the above arguments by appealing to our reasoning skills in mathematics.

### Proving Non-Validity of Arguments

- To show that an argument  $F_1, \ldots, F_n \therefore F$  is not valid it suffices to find a single structure **S** such that
  - each of the premisses  $F_1, \ldots, F_n$  is true in **S**, but
  - the conclusion *F* is false in **S**.

Such a structure **S** is called a **counterexample** to the argument.

• Example: The argument  $\forall x \exists y(rxy)$  $\therefore \exists y \forall x(rxy)$  is not valid;

A simple two-element graph gives a counterexample:

(Let us verify this!)

#### Subsection 14

Skolemization

#### Leopold Löwenheim

• Leopold Löwenheim, born in Krefeld, Germany (1878-1957)





#### Thoralf Albert Skolem

#### • Thoralf Albert Skolem, born in Sandsvær, Norway (1887-1963)





## Skolemization: The Intuition

• Skolem, following the work of Löwenheim (1915), developed a technique to convert a first-order sentence *F* into a sentence *F'* in prenex form, with only universal quantifiers, such that

F is satisfiable iff F' is satisfiable.

- Universally quantified sentences are apparently much easier to understand.
- This has provided one of the powerful techniques in automated theorem proving.

# Skolemization: The Main Lemma

#### Skolemization Lemma

Given the sentence ∃yG(y), augment the language with a new constant c and form the sentence G(c). Then

 $Sat(\exists y G(y))$  iff Sat(G(c));

Given the sentence ∀x<sub>1</sub> ··· ∀x<sub>n</sub>∃yG(x, y), augment the language with a new *n*-ary function symbol f and form the sentence ∀x<sub>1</sub> ··· ∀x<sub>n</sub>G\*(x, f(x)). Then

 $\mathsf{Sat}(\forall x_1 \cdots \forall x_n \exists y G(\vec{x}, y)) \quad \mathsf{iff} \quad \mathsf{Sat}(\forall x_1 \cdots \forall x_n G^*(\vec{x}, f(\vec{x}))).$ 

#### Universal Formulas

- A first-order formula F is universal if it is in prenex form and all quantifiers are universal, that is, F is of the form ∀xG, where G is quantifier-free;
- G is called the matrix of F;
- Example:

$$\forall x \forall y \forall z \underbrace{((x \leq y) \land (y \leq z) \rightarrow (x \leq z))}_{\text{matrix}}.$$

## Producing an Equivalent Universal Sentence

Universal Equivalent of a Sentence

Given a first-order sentence F, there is an effective procedure for finding a universal sentence F' (usually in an extended language) such that

Sat(F) iff Sat(F').

Furthermore, we can choose F' such that every model of F can be expanded to a model of F', and every model of F' can be reducted to a model of F.

- To produce F', given F,
  - first, we put *F* in prenex form;
  - then, we just apply the Skolemization Lemma repeatedly until there are no existential quantifiers.
- This process is called skolemizing;
- The newly introduced constants and functions are called **skolem constants** and **skolem functions**.

### Example of Skolemization

• We skolemize the sentence

$$F = \forall x \forall y ((x < y) \rightarrow \exists z ((x < z) \land (z < y)))$$

• First put it in prenex form

$$F \sim \forall x \forall y \exists z ((x < y) \rightarrow (x < z) \land (z < y))$$

• Applying the Skolemization Lemma, we introduce a new binary function symbol, say *f*, and arrive at the universal sentence

$$F' = \forall x \forall y ((x < y) \rightarrow (x < f(x, y)) \land (f(x, y) < y))$$

 The structure Q = (Q, <), consisting of the rational numbers with the usual <, satisfies F; If we choose f(a, b) = <sup>a+b</sup>/<sub>2</sub>, for a, b ∈ Q, we see that the expansion (Q, <, f) of Q satisfies F'.</li>

## Equivalent Universal Set of Sentences

#### Universal Equivalent of Sets of Sentences

Given a set of first-order sentences S, there is a set S' of universal sentences (usually in an extended language) such that

 $Sat(\mathcal{S})$  iff  $Sat(\mathcal{S}')$ .

Furthermore, every model of S can be expanded to a model of S', and every model of S' can be reducted to a model of S.

• To obtain S', given S, we skolemize each sentence in S, as before, making sure that distinct sentences do not have any common skolem constants or functions.

#### An Example of Skolemization of a Set of Sentences

• Example: We skolemize the set of sentences

 $\{\exists x \forall y \exists z (x < y + z), \exists x \forall y \exists z (\neg (x < y + z))\};$ 

we obtain a set of universal sentences

 $\{\forall y (a < y + fy), \forall y (\neg (b < y + gy))\}.$