Mathematical Logic

(Based on lecture slides by Stan Burris)

George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science Lake Superior State University

LSSU Math 300
(1) First-Order Languages

- First-Order Languages without Equality
- Interpretations and Structures
- The Syntax of First-Order Logic
- First-Order Syntax for the Natural Numbers
- The Semantics of First-Order Sentences in \mathbb{N}
- Other Number Systems
- First-Order Syntax for Directed Graphs
- The Semantics of First-Order Sentences in Directed Graphs
- Semantics for First-Order Logic
- Equivalent Formulas
- Replacement and Substitution
- Prenex Form
- Valid Arguments
- Skolemization

Subsection 1

First-Order Languages without Equality

First-Order Languages without Equality

- A first-order language without equality \mathcal{L} consists of
- a set \mathcal{F} of function symbols f, g, h, \ldots, with associated arities;
- a set \mathcal{R} of relation symbols r, r_{1}, r_{2}, \ldots, with associated arities;
- a set \mathcal{C} of constant symbols c, d, e, \ldots;
- a set X of variables x, y, z, \ldots.
- Each relation symbol r has a positive integer, called its arity, assigned to it; If the number is n, we say r is n-ary. For small n we use the same special names that we use for function symbols: unary, binary, ternary, quaternary.
- The set $\mathcal{L}=\mathcal{R} \cup \mathcal{F} \cup \mathcal{C}$ is called a first-order language.
- For instance, if we want to work with the integers, dealing both with their operations and their ordering, the language $\{+, \cdot,<,-, 0,1\}$ would be a natural choice.

Subsection 2

Interpretations and Structures

Interpretation of Relation Symbols

- The obvious interpretation of a relation symbol is as a relation on a set.
- If A is a set and n is a positive integer, then an n-ary relation r on A is a subset of A^{n}; that is, r consists of a collection of n-tuples $\left(a_{1}, \ldots, a_{n}\right)$ of elements of A.
- Example: The ordinary "less than" relation on the reals is the binary relation

$$
r=\left\{(x, y) \in \mathbb{R}^{2}: x<y\right\}
$$

- Example: The adjacency relation on the vertices of a graph is the binary relation

$$
r=\left\{(x, y) \in V^{2}: x \text { and } y \text { are adjacent }\right\}
$$

- Recall the notions of a reflexive, symmetric, anti-symmetric, asymmetric, transitive, equivalence binary relation on a set A;

Formal Definitions of Properties of Binary Relations

- Let A be a set. A binary relation $r \subseteq A^{2}$ is called:
- reflexive if $(a, a) \in r$, for all $a \in A$;
- irreflexive if $(a, a) \notin r$, for all $a \in A$;
- symmetric if $(a, b) \in r$ implies $(b, a) \in r$, for all $a, b \in A$;
- anti-symmetric if
$(a, b) \in r$ and $(b, a) \in r$ imply $a=b$, for all $a, b \in A$;
- asymmetric if $(a, b) \in r$ implies $(b, a) \notin r$, for all $a, b \in A$;
- transitive if
$(a, b) \in r$ and $(b, c) \in r$ imply $(a, c) \in r$, for all $a, b, c \in A$;
- equivalence if it is reflexive, symmetric and transitive;
- partial order if it is reflexive, anti-symmetric and transitive;
- strict order if it is irreflexive and transitive (which implies asymmetric).

Interpretations

- An interpretation I of the first-order language \mathcal{L} on a set S is a mapping with domain \mathcal{L} such that
- I(c) is an element of S for each constant symbol c in \mathcal{C};
- $I(f)$ is an n-ary function on S for each n-ary function symbol f in \mathcal{F};
- $I(r)$ is an n-ary relation on S for each n-ary relation symbol r in \mathcal{R};
- An \mathcal{L}-structure \mathbf{S} is a pair $\mathbf{S}=(S, I)$, where
- S is a set;
- I is an interpretation of \mathcal{L} on S.

Notation and Example

- We sometimes write
- $c^{\text {s }}$ (or just c) for I(c);
- $f^{\text {S }}$ (or just f) for I(f);
- r^{s} (or just r) for $I(r)$;
- ($S, \mathcal{F}, \mathcal{R}, \mathcal{C}$) for (S, I);
- Example: The structure $\mathbb{R}=(\mathbb{R},+, \cdot,<, 0,1)$, the reals with addition, multiplication, less than, and two specified constants has:

$$
\mathcal{F}=\{+, \cdot\}, \quad \mathcal{R}=\{<\}, \quad \mathcal{C}=\{0,1\} .
$$

Unary Relation Symbols and Subsets

- If $r \in \mathcal{R}$ is a unary relation symbol, then in any \mathcal{L}-structure \mathbf{S}, the relation r^{S} is a subset of S;
- We can picture this as:

Binary Relation Symbols and Directed Graphs

- If \mathcal{L} consists of a single binary relation symbol r, then we call an \mathcal{L}-structure a directed graph.
- A small finite directed graph can be conveniently described in three different ways:
- By listing the ordered pairs in the relation r.

A simple example, with $S=\{a, b, c\}$, is
$r^{s}=\{(a, a),(a, b),(b, c),(c, b),(c, a)\}$.

- By a table: (1 indicates a pair is in the relation.)

r	a	b	c
a	1	1	0
b	0	0	1
c	1	1	0

- By drawing a picture:

An Example of a First-Order Structure

- An interpretation of a language on a small set can be conveniently given by tables;
- Suppose that $\mathcal{L}=\{+,<\}$, where
- + is a binary function symbol;
- < is a binary relation symbol;
- The following tables give an interpretation $\mathbf{S}=\left(S,+^{\mathbf{S}},<^{\mathbf{S}}\right)$ of \mathcal{L} on the two element set $S=\{a, b\}$:

+	a	b
a	a	b
b	b	a

$<$	a	b
a	0	1
b	0	0

Subsection 3

The Syntax of First-Order Logic

The Vocabulary of First-Order Logic

- First-Order Logic is adequate for expressing almost all reasoning performed in mathematics;
- It is the most powerful, most expressive logic that our textbook examines;
- It can be presented in many different ways;
- Our version of first-order logic will use the following symbols:
- variables (these are individual, not propositional variables);
- connectives $(\vee, \wedge, \rightarrow, \leftrightarrow, \neg)$;
- function symbols;
- relation symbols;
- constant symbols;
- equality (\approx);
- quantifiers (\forall, \exists).

First-Order Formulas

- Atomic Formulas for a first-order language \mathcal{L} are of two kinds:
- $s \approx t$, where s and t are terms;
- $\left(r t_{1} \cdots t_{n}\right)$, where r is an n-ary relation symbol and t_{1}, \ldots, t_{n} are terms;
- Formulas for a first-order language \mathcal{L} are defined inductively as follows:
- Atomic formulas are formulas;
- If F is a formula, then so is $(\neg F)$;
- If F and G are formulas, then so are

$$
(F \vee G), \quad(F \wedge G), \quad(F \rightarrow G), \quad(F \leftrightarrow G) ;
$$

- If F is a formula and x is a variable, then $(\forall x F)$ and $(\exists x F)$ are formulas.

Notational Conventions

- Drop outer parentheses;
- Adopt the previous precedence conventions for the propositional connectives (negation \neg first, disjunction \vee and conjunction \wedge next, implication \rightarrow and equivalence \leftrightarrow last);
- Quantifiers bind more strongly than any of the connectives;
- Following those conventions, the expression

$$
\forall y(r x y) \vee \exists y(r x y)
$$

stands for the formula

$$
((\forall y(r x y)) \vee(\exists y(r x y)))
$$

Subformulas of First-Order Formulas

- The subformulas of a formula F are defined recursively as follows:
- The only subformula of an atomic formula F is F itself;
- The subformulas of $\neg F$ are $\neg F$ itself and all the subformulas of F;
- The subformulas of $F \square G$ are $F \square G$ itself and all the subformulas of F and all the subformulas of G; \square is any of $\vee, \wedge, \rightarrow, \leftrightarrow$);
- The subformulas of $\forall x F$ are $\forall x F$ itself and all the subformulas of F;
- The subformulas of $\exists x F$ are $\exists x F$ itself and all the subformulas of F.

Bound and Free Variables

- An occurrence of a variable x in a formula F is:
- bound if the occurrence is in a subformula

$$
\text { of the form } \forall x G \text { or of the form } \exists x G \text {; }
$$

Such a subformula is called the scope of the quantifier that begins the subformula.

- Otherwise the occurrence of the variable is said to be free;
- Note that the same variable may occur both bound and free in the same formula; e.g.,

$$
\exists x(x \approx y) \wedge \forall y(r x y)
$$

Thus, bound and free refer to occurrences of a variable, not to the variable itself!

- A formula with no free occurrences of variables is called a sentence.

Quantifiers Binding Variables

- Given a bound occurrence of x in F, we say that x is bound by an occurrence of a quantifier Q if
(i) the occurrence of Q quantifies the variable x, and
(ii) subject to this constraint the scope of this occurrence of Q is the smallest in which the given occurrence of x occurs.
- It is easier to explain scope, and quantifiers that bind variables, with a diagram; In the diagram scopes of quantifiers are underlined;

Example with Free and Bound Occurrences of Variables

free occurrences

Subsection 4

First-Order Syntax for the Natural Numbers

The Language \mathcal{L}_{N} for the Natural Numbers

- To discuss formally the natural number system, we consider the language

$$
\mathcal{L}_{N}=\{+, \cdot,<, 0,1\}
$$

- The \mathcal{L}_{N}-structure $\mathbb{N}=(\mathbb{N},+, \cdot,<, 0,1)$ represents the natural numbers with
- ordinary addition +;
- ordinary multiplication ;;
- ordinary strict ordering <;
- constants the natural numbers 0 and 1 ;
- The atomic \mathcal{L}_{N}-formulas are
- $(s \approx t)$;
- $(s<t)$;
- For instance, the following are all atomic \mathcal{L}_{N}-formulas:

$$
\begin{array}{ll}
(0<0) & (1<0) \quad(x<0) \\
(x \cdot(y+1)<x \cdot x+y \cdot z)
\end{array} \quad(x \cdot(y+z)<x \cdot z)
$$

\mathcal{L}_{N}-Formulas

- The following are \mathcal{L}_{N}-formulas:

$$
\begin{aligned}
& ((x<y) \rightarrow(x+x<y+y)) \\
& (\forall x((x \cdot(y+1)<x \cdot x+y \cdot z) \rightarrow(\exists y(y \cdot y<x+z))))
\end{aligned}
$$

- Consider the formula:

$$
(\forall x(x \cdot(y+1)<x \cdot x+y \cdot z)) \rightarrow(\exists y(y \cdot y<x+z))
$$

Its subformulas are:

$$
\begin{aligned}
& (\forall x(x \cdot(y+1)<x \cdot x+y \cdot z)) \rightarrow(\exists y(y \cdot y<x+z)) \\
& \forall x(x \cdot(y+1)<x \cdot x+y \cdot z) \quad \exists y(y \cdot y<x+z) \\
& x \cdot(y+1)<x \cdot x+y \cdot z \quad y \cdot y<x+z
\end{aligned}
$$

- When working with the language \mathcal{L}_{N}, one uses the abbreviations
- 2 stands for $1+1$; 3 stands for $(1+1)+1$; etc.
- For instance, $3<5$ stands for $(1+1)+1<(((1+1)+1)+1)+1$; it is an atomic \mathcal{L}_{N}-sentence saying that " 3 is less than 5"; This sentence is true in the \mathcal{L}_{N}-structure \mathbb{N}.

Subsection 5

The Semantics of First-Order Sentences in \mathbb{N}

Examples of First-Order Formulas with Intuition

- $2+2<3$ is an atomic sentence; It says "four is less than three". False in \mathbb{N}.
- $\forall x \exists y(x<y)$ says that "for every number there is a larger number". True in \mathbb{N}.
- $\exists y \forall x(x<y)$ says that "there is a number that is larger than every other number".
False in \mathbb{N}.
- $\forall x((0<x) \rightarrow \exists y(y \cdot y \approx x))$ says that "every positive number is a square".
False in \mathbb{N}.
- $\forall x \forall y((x<y) \rightarrow \exists z((x<z) \wedge(z<y)))$ says that "if one number is less than another, then there is a number properly between the two". False in \mathbb{N}.

Notation for Meets and Joins

- We will use the shorthand notation

$$
\bigwedge_{i=1}^{n} F_{i}
$$

to mean the same as the notation

$$
F_{1} \wedge \cdots \wedge F_{n} .
$$

- Likewise, we will use the notation

$$
\bigvee_{i=1}^{n} F_{i}
$$

for

$$
F_{1} \vee \cdots \vee F_{n} .
$$

Translating English to First-Order I

- Suppose that $F(x)$ is a first-order formula with variable x; We can find first-order sentences to say:
a. "There is at least one number such that $F(x)$ is true in \mathbb{N} ". $\exists x F(x)$
b. "There are at least two numbers such that $F(x)$ is true in \mathbb{N} ". $\exists x \exists y(\neg(x \approx y) \wedge F(x) \wedge F(y))$
c. "There are at least n numbers (n fixed) such that $F(x)$ is true in \mathbb{N}^{\prime} ". $\exists x_{1} \cdots \exists x_{n}\left(\left(\bigwedge_{1 \leq i<j \leq n} \neg\left(x_{i} \approx x_{j}\right)\right) \wedge\left(\bigwedge_{1 \leq i \leq n} F\left(x_{i}\right)\right)\right)$
d. "There are infinitely many numbers that make $F(x)$ true in \mathbb{N} ". $\forall x \exists y((x<y) \wedge F(y))$

Translating English to First-Order II

- We can also find first-order sentences to say:
e. "There is at most one number such that $F(x)$ is true in \mathbb{N} ". $\forall x \forall y((F(x) \wedge F(y)) \rightarrow(x \approx y))$
f. "There are at most two numbers such that $F(x)$ is true in \mathbb{N} ". $\forall x \forall y \forall z((F(x) \wedge F(y) \wedge F(z)) \rightarrow((x \approx y) \vee(x \approx z) \vee(y \approx z)))$
g. "There are at most n numbers (n fixed) such that $F(x)$ is true in \mathbb{N} ". $\forall x_{1} \cdots \forall x_{n+1}\left(\left(\bigwedge_{1 \leq i \leq n+1} F\left(x_{i}\right)\right) \rightarrow\left(\bigvee_{1 \leq i<j \leq n+1}\left(x_{i} \approx x_{j}\right)\right)\right)$
h. "There are only finitely many numbers that make $F(x)$ true in \mathbb{N} ". $\exists x \forall y(F(y) \rightarrow(y<x))$

Truth of a Formula at a Tuple of Domain Elements

- To better understand what we can express with first-order sentences we need to introduce definable relations;
- Given a first-order formula $F\left(x_{1}, \ldots, x_{k}\right)$, we say F is true at a k-tuple $\left(a_{1}, \ldots, a_{k}\right)$ of natural numbers if the expression $F\left(a_{1}, \ldots, a_{k}\right)$ is a true statement about the natural numbers;
- Example: Let $F(x, y)$ be the formula $x<y$. Then F is true at (a, b) iff a is less than b.
- Example: Let $F(x, y)$ be $\exists z(x \cdot z \approx y)$. Then F is true at (a, b) iff a divides b, written $a \backslash b$.
- Important Note: Don't confuse $a \backslash b$ with $\frac{a}{b}$. The first is true or false. The second has a value.
Check that $a \backslash 0$ for any a, including $a=0$.

Definable Relations

- For $F\left(x_{1}, \ldots, x_{k}\right)$ a formula, let $F^{\mathbb{N}}$ be the set of k-tuples $\left(a_{1}, \ldots, a_{k}\right)$ of natural numbers for which $F\left(a_{1}, \ldots, a_{k}\right)$ is true in \mathbb{N};
- We call $F^{\mathbb{N}}$ the relation on \mathbb{N} defined by the formula F;
- A k-ary relation $r \subseteq \mathbb{N}^{k}$ is definable in \mathbb{N} if there is a formula $F\left(x_{1}, \ldots, x_{k}\right)$ such that $r=F^{\mathbb{N}}$;
- Examples:
a. x is an even number is definable in \mathbb{N} by

$$
\exists y(x \approx y+y)
$$

b. x divides y is definable in \mathbb{N} by

$$
\exists z(x \cdot z \approx y)
$$

More Examples of Definable Relations

- We continue the list of Examples:
c. x is prime is definable in \mathbb{N} by

$$
(1<x) \wedge \forall y((y \backslash x) \rightarrow((y \approx 1) \vee(y \approx x))) .
$$

d. $x \equiv y$ modulo n is definable in \mathbb{N} by

$$
\exists z((x \approx y+n \cdot z) \vee(y \approx x+n \cdot z))
$$

e. z is the remainder of dividing x by y is definable in \mathbb{N} by

$$
z<y \wedge \exists w(x \approx w \cdot y+z)
$$

Using Abbreviations; The Metalanguage

- When we write $x \backslash y$, we understand the formula $\exists z(x \cdot z \approx y)$.
- When we write prime (x), we understand the formula

$$
(1<x) \wedge \forall y((y \backslash x) \rightarrow((y \approx 1) \vee(y \approx x)))
$$

- Note that in prime (x), we have used the abbreviation for $y \backslash x$. This means that to properly write prime (x) as a first-order formula we need to replace that abbreviation; doing so gives us

$$
(1<x) \wedge \forall y((\exists z(y \cdot z \approx x)) \rightarrow((y \approx 1) \vee(y \approx x)))
$$

- Abbreviations are not a feature of first-order logic, but rather they are a tool in the language used by people to discuss first-order logic; To distinguish this language for the language of first-order logic, we sometimes call it the metalanguage;
- Without abbreviations, writing out the first-order sentences that we find interesting would fill up lines with tedious, hard-to-read symbolism.

Substitution Needs Care!

- We saw that $x \backslash y$ abbreviates $\exists z(x \cdot z \approx y)$;
- Then $(u+1) \backslash(u \cdot u+1)$ is an abbreviation for

$$
\exists z((u+1) \cdot z \approx u \cdot u+1)
$$

- If we write out $z \backslash 2$ we obtain $\exists z(z \cdot z \approx 1+1)$.
- Unfortunately, this last formula does not define the set of elements in \mathbb{N} that divide 2 ; It is a first-order sentence that is simply false in \mathbb{N}; the square root of 2 is not a natural number;

Renaming "Dummy" Variables

- We have stumbled onto one of the subtler points of first-order logic, namely, we must be careful with substitution;
- The remedy for defining " z divides 2 " is to use another formula, like

$$
\exists w(x \cdot w \approx y)
$$

for " x divides y ".

- We obtain such a formula by simply renaming the bound variable \boldsymbol{z} in the formula for $x \backslash y$;
- With this formula we can correctly express " z divides 2 " by $\exists w(z \cdot w \approx 2)$.
- The danger in using abbreviations in first-order logic, as showcased by this example, is that we forget the names of the bound variables in the abbreviation.

Substitution: Alerting Reader of the Danger

- Our solution: add $a \star$ to the abbreviation to alert the reader to the necessity for renaming the bound variables that overlap with the variables in the term to be substituted into the abbreviation;
- For example, we write prime ${ }^{\star}(y+z)$ to explicitly express the need to change the formula for $\operatorname{prime}(x)$, say to

$$
(1<x) \wedge \forall v((v \backslash x) \rightarrow((v \approx 1) \vee(v \approx x)))
$$

so that when we substitute $y+z$ for x in the formula, no new occurrence of y or z becomes bound.

- Thus we could express prime $(y+z)$ by

$$
(1<y+z) \wedge \forall v\left(\left(v \backslash^{\star}(y+z)\right) \rightarrow((v \approx 1) \vee(v \approx y+z))\right) .
$$

Expressing Statements in First-Order Logic

a. The relation "divides" is transitive:
$\forall x \forall y \forall z\left(\left((x \backslash y) \wedge\left(y \backslash^{\star} z\right)\right) \rightarrow\left(x \backslash^{\star} z\right)\right)$.
b. There are an infinite number of primes:
$\forall x \exists y\left((x<y) \wedge\right.$ prime $\left.^{\star}(y)\right)$.
c. The Twin Prime Conjecture

There are an infinite number of pairs of primes that differ by the number 2:
$\forall x \exists y\left((x<y) \wedge \operatorname{prime}^{\star}(y) \wedge \operatorname{prime}^{\star}(y+2)\right)$.
d. Goldbach's Conjecture

All even numbers greater than two are the sum of two primes: $\forall x\left(((2 \backslash x) \wedge(2<x)) \rightarrow \exists y \exists z\left(\operatorname{prime}^{\star}(y) \wedge \operatorname{prime}(z) \wedge(x \approx y+z)\right)\right)$.

Subsection 6

Other Number Systems

Other Number Systems: Integers, Rationals and Reals

- Our first-order language $\mathcal{L}=\{+, \cdot,<, 0,1\}$ can just as easily be used to study other number systems, in particular,
- the integers $\mathbb{Z}=(\mathbb{Z},+, \cdot,<, 0,1)$;
- the rationals $\mathbb{Q}=(\mathbb{Q},+, \cdot,<, 0,1)$;
- the reals $\mathbb{R}=(\mathbb{R},+, \cdot,<, 0,1)$;
- However, first-order sentences that are true in one can be false in another.

Sentences Considered in Various Models

- Consider the following first-order sentences:
(a) $\forall x \exists y(x<y)$
"For every number, there is a (strictly) greater number".
(b) $\forall y \exists x(x<y)$
"For every number, there exists a (strictly) smaller number".
(c) $\forall x \forall y((x<y) \rightarrow \exists z((x<z) \wedge(z<y)))$
"For every two different numbers, there exists a number lying
(properly) between the two".
- The following table evaluates the truth of (a)-(e) in the models $\mathbb{N}, \mathbb{Z}, \mathbb{Q}$ and \mathbb{R} :

	\mathbb{N}	\mathbb{Z}	\mathbb{Q}	\mathbb{R}
(a)	true	true	true	true
(b)	false	true	true	true
(c)	false	false	true	true
(d)				
(e)				

Sentences Considered in Various Models

- Two more first-order sentences:
(d) $\forall x \exists y((0<x) \rightarrow(x \approx y \cdot y))$
"Every positive number has a square root".
(e) $\exists x \forall y(x<y)$
"There exists a number (strictly) less than all numbers".
- The following table evaluates the truth of (a)-(e) in the models $\mathbb{N}, \mathbb{Z}, \mathbb{Q}$ and \mathbb{R} :

	N	\mathbb{Z}	Q	R
(a)	true	true	true	true
(b)	false	true	true	true
(c)	false	false	true	true
(d)	false	false	false	true
(e)	false	false	false	false

Subsection 7

First-Order Syntax for Directed Graphs

The Language of Directed Graphs

- The first-order language of (directed) graphs is $\mathcal{L}=\{r\}$, where r is a binary relation symbol;
- The only terms are the variables x;
- Atomic formulas look like
- $(x \approx y)$;
- (rxy);
- Example: The subformulas of $\forall x((r x y) \rightarrow \exists y(r y x))$ are

$$
\begin{aligned}
& \forall x((r x y) \rightarrow \exists y(r y x)) \\
& (r x y) \rightarrow \exists y(r y x) \\
& r x y \\
& \exists y(r y x) \\
& r y x
\end{aligned}
$$

Subsection 8

The Semantics of First-Order Sentences in Directed Graphs

First-Order to English On Directed Graphs

- Two structures over the language $\mathcal{L}=\{r\}$ of directed graphs:

Graph A

Graph B

- We consider some first-order logic sentences over \mathcal{L} :
a. $\forall x \neg(r x x)$

It says: "the directed graph is irreflexive". False in A; True in B;
b. $\forall x \forall y((r x y) \rightarrow(r y x))$

It says: "the directed graph is symmetric". False in A; True in B;
c. $\forall x \forall y(r x y)$

It says: "all possible edges are present". False in A; False in B;
d. $\forall x \exists y(r x y)$

It says: "for every vertex there is an outgoing edge". True in A; True in B;

English to First-Order Logic On Directed Graphs

- Consider the following statements:
a. The (directed) graph has at least two vertices.
$\exists x \exists y(\neg(x \approx y))$
b. Every vertex has an edge attached to it. $\forall x \exists y((r x y) \vee(r y x))$
c. Every vertex has at most two edges directed from it to other vertices. $\forall x \forall y \forall z \forall w(((r x y) \wedge(r x z) \wedge(r x w)) \rightarrow((y \approx z) \vee(y \approx w) \vee(w \approx z)))$

Some Graph-Theoretic Definitions

- The degree of a vertex is the number of (undirected) edges attached to it;
- A path of length n from vertex x to vertex y is a sequence of vertices a_{1}, \ldots, a_{n+1} with each $\left(a_{i}, a_{i+1}\right)$ being an edge, and with $x=a_{1}, y=a_{n+1}$;
- Two vertices are adjacent if there is an edge connecting them.

Definable Relations and Statements about Graphs

- The following are definable relations on graphs:
a. The degree of x is at least one.

$$
\exists y(r x y)
$$

b. The degree of x is at least two.

$$
\exists y \exists z(\neg(y \approx z) \wedge(r x y) \wedge(r x z))
$$

- The following are statements about graphs:
a. Some vertex has degree at least two.

$$
\exists x \exists y \exists z(\neg(y \approx z) \wedge(r x y) \wedge(r x z))
$$

b. Every vertex has degree at least two.

$$
\forall x \exists y \exists z(\neg(y \approx z) \wedge(r x y) \wedge(r x z))
$$

Subsection 9

Semantics for First-Order Logic

Overview of First-Order Semantics

- Given a first-order \mathcal{L}-structure $\mathbf{S}=(S, I)$, the interpretation I gives meaning to the symbols of the language \mathcal{L};
- We associate with each term $t\left(x_{1}, \ldots, x_{n}\right)$ the n-ary term function $t^{S}: S^{n} \rightarrow S$;
- We associate with each formula $F\left(x_{1}, \ldots, x_{n}\right)$ an n-ary relation $F^{\mathrm{S}} \subseteq S^{n}$;
- We continue with the formal definition after a small break!

Alfred Tarski

- Alfred Tarski, born in Warsaw, Kingdom of Poland (1901-1983)

Tarski's Definition of Truth

- The notion of a formula F being true or holding in a structure $S=(S, I)$ under an assignment \vec{a} of values from S to its variables \vec{x} is defined by induction on the structure of F :
- $F(\vec{x})$ is atomic:
- F is the formula $t_{1}(\vec{x}) \approx t_{2}(\vec{x})$: $F(\vec{a})$ holds iff $t_{1}^{S}(\vec{a})=t_{2}^{S}(\vec{a})$.
- F is the formula $r\left(t_{1}(\vec{x}), \ldots, t_{n}(\vec{x})\right)$: $F(\vec{a})$ holds iff $r^{\mathrm{S}}\left(t_{1}^{\mathrm{S}}(\vec{a}), \ldots, t_{n}^{\mathrm{S}}(\vec{a})\right)$ holds.
- $F=\neg G$: Then $F(\vec{a})$ holds iff $G(\vec{a})$ does not hold.
- $F=G \vee H$: Then $F(\vec{a})$ holds iff $G(\vec{a})$ holds or $H(\vec{a})$ holds.
- $F=G \wedge H$: Then $F(\vec{a})$ holds iff $G(\vec{a})$ holds and $H(\vec{a})$ holds.
- $F=G \rightarrow H$: Then $F(\vec{a})$ holds iff $G(\vec{a})$ does not hold or $H(\vec{a})$ holds.
- $F=G \leftrightarrow H$: Then $F(\vec{a})$ holds iff both or neither of $G(\vec{a})$ and $H(\vec{a})$ holds.
- $F(\vec{x})$ is $\forall y G(y, \vec{x})$: Then $F(\vec{a})$ holds iff $G(b, \vec{a})$ holds for every $b \in S$.
- $F(\vec{x})$ is $\exists y G(y, \vec{x})$: Then $F(\vec{a})$ holds iff $G(b, \vec{a})$ holds for some $b \in S$.

Illustrating the Definition of Truth I

- Consider the language $\mathcal{L}=\{f, r\}$, where
- f is a unary function symbol;
- r is a binary relation symbol;
- Consider the \mathcal{L}-structure $\mathbf{S}=\left(S, f^{\mathrm{S}}, r^{\mathrm{S}}\right)$, with

$$
\left.S=\{a, b\}, \quad \begin{array}{l|ll|ll}
x & f x \\
\hline a & b \\
b & a
\end{array}, \quad \begin{array}{c}
r \\
a
\end{array}\right)
$$

- Consider the \mathcal{L}-formula

$$
F(x)=\forall y \exists z((r f x f y) \wedge(r f y f z))
$$

- In the next slide, we evaluate $F(x)$ at both $x=a$ and $x=b$ in \mathbf{S}; i.e., we fully determine F^{S} (set of all $x \in S$ for which $F(x)$ holds).

Evaluation of $F(x)=\forall y \exists z((r f x f y) \wedge(r f y f z))$

	x	$y \quad z$	$f x$ fy fz	rfxfy	rfyfz	$z(r f x f y) \wedge(r f y f z)$
	a	a a	$b \quad b \quad b$	0	0	0
	a	$a \quad b$	$b \quad b \quad a$	0	1	0
	a	$b \quad a$	$b \quad a \quad b$	1	1	1
	a	$b \quad b$	$b \quad a \quad a$	1	0	0
	b	$a \quad a$	$a \quad b \quad b$	1	0	0
	b	$a \quad b$	$a \quad b \quad a$	1	1	1
	b	b a	$a \quad a \quad b$	0	1	0
	b	$b \quad b$	$a \quad a \quad a$	0	0	0
x	y	$\exists z((r f x f y) \wedge(r f y f z))$				
a	a	0			x $\forall y \exists z((r f x f y) \wedge(r f y f z))$ 0	
a	b		1		a	0
b	a		1		b	0
b	b		0			

Therefore $F^{S}=\emptyset$.

Illustrating the Definition of Truth II

- Consider the same language $\mathcal{L}=\{f, r\}$;
- Consider the same \mathcal{L}-structure $\mathbf{S}=\left(S, f^{\mathrm{S}}, r^{\mathrm{S}}\right)$, with

$$
\left.S=\{a, b\}, \quad \begin{array}{l|ll|ll}
x & f x \\
\hline a & b \\
b & a
\end{array}, \left.\quad \begin{array}{c}
r \\
a \\
b
\end{array} \right\rvert\, \begin{array}{ll}
& 1
\end{array}\right)
$$

- Consider the \mathcal{L}-formula

$$
F(x, y)=\exists z((r x f z) \wedge(f y \approx z)) \rightarrow(f y \approx f x)
$$

- In the next slide, we evaluate $F(x, y)$ at all pairs $(a, b) \in S^{2}$; i.e., we fully determine F^{S} (set of all $(x, y) \in S^{2}$ for which $F(x, y)$ holds).

Evaluation of $F(x, y)=\exists z((r x f z) \wedge(f y \approx z)) \rightarrow(f y \approx f x)$

Therefore $F^{\mathrm{S}}=\{(a, a),(b, b)\}$.

Definition of Truth for Sentences

- Let \mathcal{L} be a language, F be an \mathcal{L}-sentence and S an \mathcal{L}-structure;
- Then F is true in \mathbf{S} provided one of the following holds:
- F is $r t_{1} \ldots t_{n}$ and $r^{\mathrm{S}}\left(t_{1}^{\mathrm{S}}, \ldots, t_{n}^{\mathrm{S}}\right)$ holds;
- F is $t_{1} \approx t_{2}$ and $t_{1}^{S}=t_{2}^{S}$;
- F is $\neg G$ and G is not true in S;
- F is $G \vee H$ and at least one of G, H is true in S;
- F is $G \wedge H$ and both of G, H are true in S;
- F is $G \rightarrow H$ and G is not true in S or H is true in S;
- F is $G \leftrightarrow H$ and both or neither of G, H is true in S;
- F is $\forall x G(x)$ and $G^{S}(a)$ is true for every $a \in S$;
- F is $\exists x G(x)$ and $G^{S}(a)$ is true for some $a \in S$.
- If F is not true in \mathbf{S}, then we say F is false in \mathbf{S}.

Notational Conventions for Truth

- Given a first-order language \mathcal{L}, let F be an \mathcal{L}-sentence, \mathcal{S} a set of \mathcal{L}-sentences, and S a structure for this language;
- $\mathbf{S} \models F$ means F is true in S;
- F is valid if it is true in all \mathcal{L}-structures;
- $\mathbf{S} \models \mathcal{S}$ means every sentence F in \mathcal{S} is true in \mathbf{S};
- Sat (\mathcal{S}) means \mathcal{S} is satisfiable;
- $\mathcal{S} \models F$ means every model of \mathcal{S} is a model of F; If this is the case, we say F is a consequence of \mathcal{S}.

The Propositional Skeleton of a Formula

- The propositional skeleton, $\operatorname{Skel}(F)$, of a formula F is defined as follows:
- Delete all quantifiers and terms;
- Replace \approx with 1 ;
- Replace the relation symbols r with propositional variables R;
- Example: The formula

$$
F=\forall x \forall y(\neg(x<y) \leftrightarrow \exists z((x<z) \vee(f z \approx y)))
$$

has

$$
\operatorname{Skel}(F)=\neg P \leftrightarrow P \vee 1 .
$$

The Propositional Skeleton Criterion

Theorem

The first-order formula F has a one-element model iff $\operatorname{Skel}(F)$ is satisfiable.

- If $\operatorname{Skel}(F)$ is satisfiable, then choose an evaluation \mathbf{e} that makes it true in a model S with universe $S=\{a\}$, as follows:
- Let $f^{\mathrm{S}}(a, \ldots, a)=a$ for $f \in \mathcal{F}$;
- Let $r^{\mathrm{S}}(a, \ldots, a)$ hold iff $\mathrm{e}(R)=1$ for $r \in \mathcal{R}$;
- Example: $F=\forall x \forall y(\neg(x<y) \leftrightarrow \exists z((x<z) \vee(f z \approx y)))$;
- We obtained Skel $(F)=\neg P \leftrightarrow P \vee 1$;
- This is satisfiable if P is evaluated as 0 ;
- F has the one-element model $\mathbf{S}=(\{a\}, f,<)$, where

$$
f a=a, \quad<\quad a \begin{array}{l|l}
& \quad \\
\hline a & 0
\end{array}
$$

Subsection 10

Equivalent Formulas

Equivalent Sentences

- The sentences F and G are equivalent, written $F \sim G$, if they are true in the same \mathcal{L}-structures \mathbf{S}, that is, for all structures \mathbf{S}, we have

$$
\mathbf{S} \models F \quad \text { iff } \quad \mathbf{S} \models G .
$$

- For example, the sentences
$\forall x(\neg(x \approx 0) \rightarrow \exists y(x \cdot y \approx 1)) \quad$ and $\quad \forall x \exists y(\neg(x \approx 0) \rightarrow(x \cdot y \approx 1))$ are equivalent.

Theorem

The sentences F and G are equivalent iff $F \leftrightarrow G$ is a valid sentence.

Equivalent Formulas

- Two formulas $F\left(x_{1}, \ldots, x_{n}\right)$ and $G\left(x_{1}, \ldots, x_{n}\right)$ are equivalent, written $F\left(x_{1}, \ldots, x_{n}\right) \sim G\left(x_{1}, \ldots, x_{n}\right)$, iff F and G define the same relation on any \mathcal{L}-structure \mathbf{S}, that is, $F^{S}=G^{S}$;
- For example, the following formulas are equivalent

$$
\neg(x \approx 0) \rightarrow \exists y(x \cdot y \approx 1) \quad \text { and } \quad \exists y(\neg(x \approx 0) \rightarrow(x \cdot y \approx 1))
$$

Proposition

The formulas $F(\vec{x})$ and $G(\vec{x})$ are equivalent iff $\forall \vec{x}(F(\vec{x}) \leftrightarrow G(\vec{x}))$ is a valid sentence.

Proposition

The relation \sim is an equivalence relation on sentences as well as on formulas.

- This is immediate from the definition of \sim and the fact that ordinary equality $(=)$ is an equivalence relation.

Fundamental Equivalences

- The following are some fundamental Equivalences of Formulas:
(1) $\neg \exists x F \sim \forall x(\neg F)$;
(2) $\neg \forall x F \sim \exists x(\neg F)$;
(3) $(\forall x F) \vee G \sim \forall x(F \vee G)$ if x is not free in G;
(4) $(\exists x F) \vee G \sim \exists x(F \vee G)$ if x is not free in G;
(5) $(\forall x F) \wedge G \sim \forall x(F \wedge G)$ if x is not free in G;
(6) $(\exists x F) \wedge G \sim \exists x(F \wedge G)$ if x is not free in G;
(7) $(\forall x F) \rightarrow G \sim \exists x(F \rightarrow G)$ if x is not free in G;
(8) $(\exists x F) \rightarrow G \sim \forall x(F \rightarrow G)$ if x is not free in G;
(9) $F \rightarrow(\forall x G) \sim \forall x(F \rightarrow G)$ if x is not free in F;
(10) $F \rightarrow(\exists x G) \sim \exists x(F \rightarrow G)$ if x is not free in F;
(11) $\forall x(F \wedge G) \sim(\forall x F) \wedge(\forall x G)$
(2) $\exists x(F \vee G) \sim(\exists x F) \vee(\exists x G)$

Important Remarks on Freeness

- If x occurs free in G then we cannot conclude

$$
(\forall x F) \vee G \sim \forall x(F \vee G) ;
$$

- for example,

$$
(\forall x(x<0)) \vee(0<x) \quad \text { and } \quad \forall x((x<0) \vee(0<x))
$$

are not equivalent; This can be seen by considering the natural numbers \mathbb{N} : in \mathbb{N}, the first is true of positive numbers x (Note that x occurs free in this formula);
whereas the second is false (Note that there are no free occurrences of x in this formula);

Some Other Remarks

- For the implication we have:

$$
\begin{aligned}
(\forall x F) \rightarrow G & \sim \neg(\forall x F) \vee G \\
& \sim \exists x(\neg F) \vee G \\
& \sim \exists x(\neg F \vee G) \\
& \sim \exists x(F \rightarrow G) .
\end{aligned}
$$

- To see that

$$
\forall x(F \vee G) \sim(\forall x F) \vee(\forall x G)
$$

need not be true consider the following example:

$$
\forall x((0 \approx x) \vee(0<x)) \quad \text { and } \quad(\forall x(0 \approx x)) \vee(\forall x(0<x))
$$

- And to see that

$$
\exists x(F \wedge G) \sim(\exists x F) \wedge(\exists x G)
$$

need not be true consider the example:

$$
\exists x((0 \approx x) \wedge(0<x)) \quad \text { and } \quad(\exists x(0 \approx x)) \wedge(\exists x(0<x))
$$

Subsection 11

Replacement and Substitution

Substitution of Formulas for Propositional Variables

- Equivalent propositional formulas lead to equivalent first-order formulas as follows:

Proposition

If $F\left(P_{1}, \ldots, P_{n}\right)$ and $G\left(P_{1}, \ldots, P_{n}\right)$ are equivalent propositional formulas, then for any sequence H_{1}, \ldots, H_{n} of first-order formulas we have $F\left(H_{1}, \ldots, H_{n}\right) \sim G\left(H_{1}, \ldots, H_{n}\right)$.

- Example: De Morgan's Law gives the equivalence of the two propositional formulas $\neg(P \wedge Q) \sim \neg P \vee \neg Q$. By the Proposition above, then, the following first-order formulas are also equivalent:

$$
\begin{aligned}
\neg((\exists x(x \cdot x & \approx 1)) \wedge(\forall x \forall y(x \cdot y \approx y \cdot x))) \\
& \sim \neg(\exists x(x \cdot x \approx 1)) \vee \neg(\forall x \forall y(x \cdot y \approx y \cdot x))
\end{aligned}
$$

Compatibility of Equivalence with Connectives

- Applying logical connectives preserves equivalence;
- This property of equivalence is called compatibility with the logical connectives;

Compatibility Lemma

Suppose $F_{1} \sim G_{1}$ and $F_{2} \sim G_{2}$. Then
(1) $\neg F_{1} \sim \neg G_{1}$;
(2) $F_{1} \vee F_{2} \sim G_{1} \vee G_{2}$;
(3) $F_{1} \wedge F_{2} \sim G_{1} \wedge G_{2}$;
(9) $F_{1} \rightarrow F_{2} \sim G_{1} \rightarrow G_{2}$;
(5) $F_{1} \leftrightarrow F_{2} \sim G_{1} \leftrightarrow G_{2}$;
(6) $\forall x F_{1} \sim \forall x G_{1}$;
(1) $\exists x F_{1} \sim \exists x G_{1}$.

Replacement in First-Order Logic

- The replacement theorem says that, in a first-order formula the replacement of a subformula by an equivalent formula results in a equivalent formula; More formally:

Replacement Theorem

If $F \sim G$ then $H(\cdots F \cdots) \sim H(\cdots G \cdots)$.

- Example: We have that

$$
\begin{aligned}
\neg((\exists x(x \cdot x & \approx 1)) \wedge(\forall x \forall y(x \cdot y \approx y \cdot x))) \\
& \sim \neg(\exists x(x \cdot x \approx 1)) \vee \neg(\forall x \forall y(x \cdot y \approx y \cdot x))
\end{aligned}
$$

Therefore, by the Replacement Theorem

$$
\begin{aligned}
& (\forall x \exists y(x<y)) \rightarrow \neg((\exists x(x \cdot x \approx 1)) \wedge(\forall x \forall y(x \cdot y \approx y \cdot x))) \\
& \quad \sim(\forall x \exists y(x<y)) \rightarrow \neg(\exists x(x \cdot x \approx 1)) \vee \neg(\forall x \forall y(x \cdot y \approx y \cdot x))
\end{aligned}
$$

Substitution of Terms for Variables

- Substitution of terms for variables in first-order logic often requires the need to rename variables;
- We need to be careful with renaming variables to avoid binding any newly introduced occurrences of variables;
- Given a first-order formula F, define a conjugate of F to be any formula \bar{F} obtained by renaming the occurrences of bound variables of F so that no free occurrences of variables in F become bound; When renaming, we must keep bound occurrences of distinct variables distinct;

Equivalence of Conjugates

If \bar{F} is a conjugate of F, then $\bar{F} \sim F$.

- Example: $\exists y(x \cdot y \approx 1) \sim \exists w(x \cdot w \approx 1)$.

The Substitution Theorem

Substitution Theorem

If $F\left(x_{1}, \ldots, x_{n}\right) \sim G\left(x_{1}, \ldots, x_{n}\right)$ and t_{1}, \ldots, t_{n} are terms, then $F^{\star}\left(t_{1}, \ldots, t_{n}\right) \sim G^{\star}\left(t_{1}, \ldots, t_{n}\right)$.

- For instance, since $\neg \exists y(x \cdot y \approx 1) \sim \forall y(\neg(x \cdot y \approx 1))$, substitution of $(y+w)$ for x and u for y yields

$$
\neg \exists u((y+w) \cdot u \approx 1) \sim \forall u(\neg((y+w) \cdot u \approx 1)) .
$$

Subsection 12

Prenex Form

Prenex Form

- A formula F is in prenex form if it looks like

$$
Q_{1} x_{1} \cdots Q_{n} x_{n} G
$$

where

- the Q_{i} are quantifiers;
- G has no occurrences of quantifiers;
- A formula with no occurrences of quantifiers is called an open formula;
- The formula

$$
\exists x((r x y) \rightarrow \forall u(r u y))
$$

is not in prenex form, but it is equivalent to the prenex form formula

$$
\exists x \forall u((r x y) \rightarrow(r u y))
$$

Prenex Form Theorem

Every formula is equivalent to a formula in prenex form.

Obtaining an Equivalent Formula in Prenex Form

- The following steps put F in prenex form:
(1) Rename the quantified variables so that distinct occurrences of quantifiers bind distinct variables, and no free variable is equal to a bound variable;
Example: Change

$$
\forall z((r z y) \rightarrow \neg \forall y((r x y) \wedge \exists y(r y x)))
$$

to

$$
\forall z((r z y) \rightarrow \neg \forall u((r x u) \wedge \exists w(r w x)))
$$

(2) Eliminate all occurrences of \rightarrow and \leftrightarrow using

- $G \rightarrow H \sim \neg G \vee H$;
- $G \leftrightarrow H \sim(\neg G \vee H) \wedge(\neg H \vee G)$;

Example (Cont'd): The equivalent form is

$$
\forall z(\neg(r z y) \vee \neg \forall u((r x u) \wedge \exists w(r w x))) ;
$$

(3) Pull the quantifiers to the front;

Obtaining an Equivalent Formula in Prenex Form (Cont'd)

- This can be accomplished by using the equivalences:
- $\neg(F \vee G) \sim(\neg F \wedge \neg G)$
- $\neg(F \wedge G) \sim(\neg F \vee \neg G)$
- $G \vee(\forall x H) \sim \forall x(G \vee H)$
- $G \vee(\exists x H) \sim \exists x(G \vee H)$
- $G \wedge(\forall x H) \sim \forall x(G \wedge H)$
- $G \wedge(\exists x H) \sim \exists x(G \wedge H)$
- $(\forall x G) \vee H \sim \forall x(G \vee H)$
- $(\exists x G) \vee H \sim \exists x(G \vee H)$
- $(\forall x G) \wedge H \sim \forall x(G \wedge H)$
- $(\exists x G) \wedge H \sim \exists x(G \wedge H)$
- $\neg \exists x G \sim \forall x \neg G$
- $\neg \forall x G \sim \exists x \neg G$

Example Continued

- Applying some of the equivalences of the previous slide, we get

$$
\begin{gathered}
\forall z(\neg(r z y) \vee \neg \forall u((r x u) \wedge \exists w(r w x))) \\
\downarrow \\
\forall z(\neg(r z y) \vee \exists u(\neg((r x u) \wedge \exists w(r w x)))) \\
\downarrow \\
\forall z \exists u(\neg(r z y) \vee \neg((r x u) \wedge \exists w(r w x))) \\
\downarrow \\
\forall z \exists u(\neg(r z y) \vee(\neg(r x u) \vee \neg(\exists w(r w x)))) \\
\downarrow \\
\forall z \exists u(\neg(r z y) \vee(\neg(r x u) \vee \forall w(\neg(r w x)))) \\
\downarrow \\
\forall z \exists u(\neg(r z y) \vee \forall w(\neg(r x u) \vee(\neg(r w x)))) \\
\forall \\
\forall z \exists u \forall w(\neg(r z y) \vee(\neg(r x u) \vee(\neg(r w x))))
\end{gathered}
$$

Subsection 13

Valid Arguments

Valid or Correct Arguments

- We will be working with sentences in a fixed first-order language \mathcal{L};
- An argument $F_{1}, \ldots, F_{n} \therefore F$ is valid (or correct) in first-order logic provided every structure \mathbf{S} that makes F_{1}, \ldots, F_{n} true also makes F true, i.e., for every \mathcal{L}-structure \mathbf{S},

$$
\mathbf{S} \models\left\{F_{1}, \ldots, F_{n}\right\} \quad \text { implies } \quad \mathbf{S} \models F \text {. }
$$

Proposition

An argument $F_{1}, \ldots, F_{n} \therefore F$ in first-order logic is valid iff

$$
F_{1} \wedge \cdots \wedge F_{n} \rightarrow F
$$

is a valid sentence; Moreover, this holds iff $\left\{F_{1}, \ldots, F_{n}, \neg F\right\}$ is not satisfiable.

Some Examples Involving Equations

- In first-order logic equations are treated as universally quantified sentences:

$$
\forall \vec{x}(s(\vec{x}) \approx t(\vec{x}))
$$

- The following argument is valid

$$
\begin{aligned}
& \forall x \forall y \forall u \forall v(x \cdot y \approx u \cdot v) \\
& \therefore \forall x \forall y \forall z((x \cdot y) \cdot z \approx x \cdot(y \cdot z))
\end{aligned}
$$

- In fact, if a structure \mathbf{S} satisfies the premiss then all multiplications give the same value. Thus, the multiplication must be associative.
- The argument $\begin{aligned} & \exists y \forall x(r x y) \\ & \therefore \forall x \exists y(r x y)\end{aligned}$ is valid;
- To see this, suppose \mathbf{S} is a structure satisfying the premiss. Then, for some $a \in S, \forall x(r x a)$ holds. Thus, $\forall x \exists y(r x y)$ also holds.
- We have demonstrated the validity of the above arguments by appealing to our reasoning skills in mathematics.

Proving Non-Validity of Arguments

- To show that an argument $F_{1}, \ldots, F_{n} \therefore F$ is not valid it suffices to find a single structure S such that
- each of the premisses F_{1}, \ldots, F_{n} is true in \mathbf{S}, but
- the conclusion F is false in S .

Such a structure \mathbf{S} is called a counterexample to the argument.

- Example: The argument $\begin{aligned} & \forall x \exists y(r x y) \\ & \therefore \exists y \forall x(r x y)\end{aligned}$ is not valid;

A simple two-element graph gives a counterexample:

$$
a-b
$$

(Let us verify this!)

Subsection 14

Skolemization

Leopold Löwenheim

- Leopold Löwenheim, born in Krefeld, Germany (1878-1957)

Thoralf Albert Skolem

- Thoralf Albert Skolem, born in Sandsvær, Norway (1887-1963)

Skolemization: The Intuition

- Skolem, following the work of Löwenheim (1915), developed a technique to convert a first-order sentence F into a sentence F^{\prime} in prenex form, with only universal quantifiers, such that
F is satisfiable iff F^{\prime} is satisfiable.
- Universally quantified sentences are apparently much easier to understand.
- This has provided one of the powerful techniques in automated theorem proving.

Skolemization: The Main Lemma

Skolemization Lemma

(1) Given the sentence $\exists y G(y)$, augment the language with a new constant c and form the sentence $G(c)$. Then

$$
\operatorname{Sat}(\exists y G(y)) \text { iff } \operatorname{Sat}(G(c)) ;
$$

(2) Given the sentence $\forall x_{1} \cdots \forall x_{n} \exists y G(\vec{x}, y)$, augment the language with a new n-ary function symbol f and form the sentence $\forall x_{1} \cdots \forall x_{n} G^{\star}(\vec{x}, f(\vec{x}))$. Then

$$
\operatorname{Sat}\left(\forall x_{1} \cdots \forall x_{n} \exists y G(\vec{x}, y)\right) \quad \text { iff } \quad \operatorname{Sat}\left(\forall x_{1} \cdots \forall x_{n} G^{\star}(\vec{x}, f(\vec{x}))\right) .
$$

Universal Formulas

- A first-order formula F is universal if it is in prenex form and all quantifiers are universal, that is, F is of the form $\forall \vec{x} G$, where G is quantifier-free;
- G is called the matrix of F;
- Example:

$$
\forall x \forall y \forall z \underbrace{((x \leq y) \wedge(y \leq z) \rightarrow(x \leq z))}_{\text {matrix }} .
$$

Producing an Equivalent Universal Sentence

Universal Equivalent of a Sentence

Given a first-order sentence F, there is an effective procedure for finding a universal sentence F^{\prime} (usually in an extended language) such that

$$
\operatorname{Sat}(F) \text { iff } \operatorname{Sat}\left(F^{\prime}\right)
$$

Furthermore, we can choose F^{\prime} such that every model of F can be expanded to a model of F^{\prime}, and every model of F^{\prime} can be reducted to a model of F.

- To produce F^{\prime}, given F,
- first, we put F in prenex form;
- then, we just apply the Skolemization Lemma repeatedly until there are no existential quantifiers.
- This process is called skolemizing;
- The newly introduced constants and functions are called skolem constants and skolem functions.

Example of Skolemization

- We skolemize the sentence

$$
F=\forall x \forall y((x<y) \rightarrow \exists z((x<z) \wedge(z<y)))
$$

- First put it in prenex form

$$
F \sim \forall x \forall y \exists z((x<y) \rightarrow(x<z) \wedge(z<y))
$$

- Applying the Skolemization Lemma, we introduce a new binary function symbol, say f, and arrive at the universal sentence

$$
F^{\prime}=\forall x \forall y((x<y) \rightarrow(x<f(x, y)) \wedge(f(x, y)<y))
$$

- The structure $\mathbb{Q}=(\mathbb{Q},<)$, consisting of the rational numbers with the usual $<$, satisfies F; If we choose $f(a, b)=\frac{a+b}{2}$, for $a, b \in \mathbb{Q}$, we see that the expansion $(\mathbb{Q},<, f)$ of \mathbb{Q} satisfies $\stackrel{F}{ }^{\prime}$.

Equivalent Universal Set of Sentences

Universal Equivalent of Sets of Sentences

Given a set of first-order sentences \mathcal{S}, there is a set \mathcal{S}^{\prime} of universal sentences (usually in an extended language) such that

$$
\operatorname{Sat}(\mathcal{S}) \text { iff } \operatorname{Sat}\left(\mathcal{S}^{\prime}\right)
$$

Furthermore, every model of \mathcal{S} can be expanded to a model of \mathcal{S}^{\prime}, and every model of \mathcal{S}^{\prime} can be reducted to a model of \mathcal{S}.

- To obtain \mathcal{S}^{\prime}, given \mathcal{S}, we skolemize each sentence in S, as before, making sure that distinct sentences do not have any common skolem constants or functions.

An Example of Skolemization of a Set of Sentences

- Example: We skolemize the set of sentences

$$
\{\exists x \forall y \exists z(x<y+z), \exists x \forall y \exists z(\neg(x<y+z))\} ;
$$

we obtain a set of universal sentences

$$
\{\forall y(a<y+f y), \forall y(\neg(b<y+g y))\} .
$$

