
Mathematical Logic
(Based on lecture slides by Stan Burris)

George Voutsadakis1

1Mathematics and Computer Science
Lake Superior State University

LSSU Math 300

George Voutsadakis (LSSU) Logic January 2013 1 / 90

Outline

1 First-Order Languages
First-Order Languages without Equality
Interpretations and Structures
The Syntax of First-Order Logic
First-Order Syntax for the Natural Numbers
The Semantics of First-Order Sentences in N

Other Number Systems
First-Order Syntax for Directed Graphs
The Semantics of First-Order Sentences in Directed Graphs
Semantics for First-Order Logic
Equivalent Formulas
Replacement and Substitution
Prenex Form
Valid Arguments
Skolemization

George Voutsadakis (LSSU) Logic January 2013 2 / 90

First-Order Languages First-Order Languages without Equality

Subsection 1

First-Order Languages without Equality

George Voutsadakis (LSSU) Logic January 2013 3 / 90

First-Order Languages First-Order Languages without Equality

First-Order Languages without Equality

A first-order language without equality L consists of

a set F of function symbols f , g , h, . . ., with associated arities;
a set R of relation symbols r , r1, r2, . . ., with associated arities;
a set C of constant symbols c , d , e, . . .;
a set X of variables x , y , z ,

Each relation symbol r has a positive integer, called its arity, assigned
to it; If the number is n, we say r is n-ary. For small n we use the
same special names that we use for function symbols: unary, binary,
ternary, quaternary.

The set L = R∪ F ∪ C is called a first-order language.

For instance, if we want to work with the integers, dealing both with
their operations and their ordering, the language {+, ·, <,−, 0, 1}
would be a natural choice.

George Voutsadakis (LSSU) Logic January 2013 4 / 90

First-Order Languages Interpretations and Structures

Subsection 2

Interpretations and Structures

George Voutsadakis (LSSU) Logic January 2013 5 / 90

First-Order Languages Interpretations and Structures

Interpretation of Relation Symbols

The obvious interpretation of a relation symbol is as a relation on a
set.

If A is a set and n is a positive integer, then an n-ary relation r on A

is a subset of An; that is, r consists of a collection of n-tuples
(a1, . . . , an) of elements of A.

Example: The ordinary “less than” relation on the reals is the binary
relation

r = {(x , y) ∈ R2 : x < y};

Example: The adjacency relation on the vertices of a graph is the
binary relation

r = {(x , y) ∈ V 2 : x and y are adjacent};

Recall the notions of a reflexive, symmetric, anti-symmetric,
asymmetric, transitive, equivalence binary relation on a set A;

George Voutsadakis (LSSU) Logic January 2013 6 / 90

First-Order Languages Interpretations and Structures

Formal Definitions of Properties of Binary Relations

Let A be a set. A binary relation r ⊆ A2 is called:

reflexive if (a, a) ∈ r , for all a ∈ A;
irreflexive if (a, a) 6∈ r , for all a ∈ A;
symmetric if (a, b) ∈ r implies (b, a) ∈ r , for all a, b ∈ A;
anti-symmetric if
(a, b) ∈ r and (b, a) ∈ r imply a = b, for all a, b ∈ A;
asymmetric if (a, b) ∈ r implies (b, a) 6∈ r , for all a, b ∈ A;
transitive if
(a, b) ∈ r and (b, c) ∈ r imply (a, c) ∈ r , for all a, b, c ∈ A;
equivalence if it is reflexive, symmetric and transitive;
partial order if it is reflexive, anti-symmetric and transitive;
strict order if it is irreflexive and transitive (which implies asymmetric).

George Voutsadakis (LSSU) Logic January 2013 7 / 90

First-Order Languages Interpretations and Structures

Interpretations

An interpretation I of the first-order language L on a set S is a
mapping with domain L such that

I (c) is an element of S for each constant symbol c in C;
I (f) is an n-ary function on S for each n-ary function symbol f in F ;
I (r) is an n-ary relation on S for each n-ary relation symbol r in R;

An L-structure S is a pair S = (S , I), where

S is a set;
I is an interpretation of L on S .

George Voutsadakis (LSSU) Logic January 2013 8 / 90

First-Order Languages Interpretations and Structures

Notation and Example

We sometimes write

cS (or just c) for I (c);
f S (or just f) for I (f);
rS (or just r) for I (r);
(S ,F ,R, C) for (S , I);

Example: The structure R = (R,+, ·, <, 0, 1), the reals with addition,
multiplication, less than, and two specified constants has:

F = {+, ·}, R = {<}, C = {0, 1}.

George Voutsadakis (LSSU) Logic January 2013 9 / 90

First-Order Languages Interpretations and Structures

Unary Relation Symbols and Subsets

If r ∈ R is a unary relation symbol, then in any L-structure S, the
relation rS is a subset of S ;

We can picture this as:

S
r

George Voutsadakis (LSSU) Logic January 2013 10 / 90

First-Order Languages Interpretations and Structures

Binary Relation Symbols and Directed Graphs

If L consists of a single binary relation symbol r , then we call an
L-structure a directed graph.

A small finite directed graph can be conveniently described in three
different ways:

By listing the ordered pairs in the relation r.
A simple example, with S = {a, b, c}, is
rS = {(a, a), (a, b), (b, c), (c , b), (c , a)}.
By a table: (1 indicates a pair is in the relation.)

r a b c

a 1 1 0
b 0 0 1
c 1 1 0

b

c

a

By drawing a picture:

George Voutsadakis (LSSU) Logic January 2013 11 / 90

First-Order Languages Interpretations and Structures

An Example of a First-Order Structure

An interpretation of a language on a small set can be conveniently
given by tables;

Suppose that L = {+, <}, where
+ is a binary function symbol;
< is a binary relation symbol;

The following tables give an interpretation S = (S ,+S, <S) of L on
the two element set S = {a, b}:

+ a b

a a b

b b a

< a b

a 0 1
b 0 0

George Voutsadakis (LSSU) Logic January 2013 12 / 90

First-Order Languages The Syntax of First-Order Logic

Subsection 3

The Syntax of First-Order Logic

George Voutsadakis (LSSU) Logic January 2013 13 / 90

First-Order Languages The Syntax of First-Order Logic

The Vocabulary of First-Order Logic

First-Order Logic is adequate for expressing almost all reasoning
performed in mathematics;

It is the most powerful, most expressive logic that our textbook
examines;

It can be presented in many different ways;

Our version of first-order logic will use the following symbols:

variables (these are individual, not propositional variables);
connectives (∨,∧,→,↔,¬);
function symbols;
relation symbols;
constant symbols;
equality (≈);
quantifiers (∀, ∃).

George Voutsadakis (LSSU) Logic January 2013 14 / 90

First-Order Languages The Syntax of First-Order Logic

First-Order Formulas

Atomic Formulas for a first-order language L are of two kinds:

s ≈ t, where s and t are terms;
(rt1 · · · tn), where r is an n-ary relation symbol and t1, . . . , tn are terms;

Formulas for a first-order language L are defined inductively as
follows:

Atomic formulas are formulas;
If F is a formula, then so is (¬F);
If F and G are formulas, then so are

(F ∨ G), (F ∧ G), (F → G), (F ↔ G);

If F is a formula and x is a variable, then (∀xF) and (∃xF) are
formulas.

George Voutsadakis (LSSU) Logic January 2013 15 / 90

First-Order Languages The Syntax of First-Order Logic

Notational Conventions

Drop outer parentheses;

Adopt the previous precedence conventions for the propositional
connectives (negation ¬ first, disjunction ∨ and conjunction ∧ next,
implication → and equivalence ↔ last);

Quantifiers bind more strongly than any of the connectives;

Following those conventions, the expression

∀y(rxy) ∨ ∃y(rxy)

stands for the formula

((∀y(rxy)) ∨ (∃y(rxy)))

George Voutsadakis (LSSU) Logic January 2013 16 / 90

First-Order Languages The Syntax of First-Order Logic

Subformulas of First-Order Formulas

The subformulas of a formula F are defined recursively as follows:

The only subformula of an atomic formula F is F itself;
The subformulas of ¬F are ¬F itself and all the subformulas of F ;
The subformulas of F�G are F�G itself and all the subformulas of F
and all the subformulas of G ; (� is any of ∨,∧,→,↔);
The subformulas of ∀xF are ∀xF itself and all the subformulas of F ;
The subformulas of ∃xF are ∃xF itself and all the subformulas of F .

George Voutsadakis (LSSU) Logic January 2013 17 / 90

First-Order Languages The Syntax of First-Order Logic

Bound and Free Variables

An occurrence of a variable x in a formula F is:

bound if the occurrence is in a subformula

of the form ∀xG or of the form ∃xG ;

Such a subformula is called the scope of the quantifier that begins
the subformula.
Otherwise the occurrence of the variable is said to be free;

Note that the same variable may occur both bound and free in the
same formula; e.g.,

∃x(x ≈ y) ∧ ∀y(rxy)

Thus, bound and free refer to occurrences of a variable, not to the
variable itself!

A formula with no free occurrences of variables is called a sentence.

George Voutsadakis (LSSU) Logic January 2013 18 / 90

First-Order Languages The Syntax of First-Order Logic

Quantifiers Binding Variables

Given a bound occurrence of x in F , we say that x is bound by an
occurrence of a quantifier Q if

(i) the occurrence of Q quantifies the variable x , and
(ii) subject to this constraint the scope of this occurrence of Q is the

smallest in which the given occurrence of x occurs.

It is easier to explain scope, and quantifiers that bind variables, with a
diagram; In the diagram scopes of quantifiers are underlined;

George Voutsadakis (LSSU) Logic January 2013 19 / 90

First-Order Languages The Syntax of First-Order Logic

Example with Free and Bound Occurrences of Variables

(r() (x y (((r)))) zxy (r)x xzx

free occurrences

bound occurrences

A A E

George Voutsadakis (LSSU) Logic January 2013 20 / 90

First-Order Languages First-Order Syntax for the Natural Numbers

Subsection 4

First-Order Syntax for the Natural Numbers

George Voutsadakis (LSSU) Logic January 2013 21 / 90

First-Order Languages First-Order Syntax for the Natural Numbers

The Language LN for the Natural Numbers

To discuss formally the natural number system, we consider the
language

LN = {+, ·, <, 0, 1};

The LN -structure N = (N,+, ·, <, 0, 1) represents the natural
numbers with

ordinary addition +;
ordinary multiplication ·;
ordinary strict ordering <;
constants the natural numbers 0 and 1;

The atomic LN -formulas are
(s ≈ t);
(s < t);

For instance, the following are all atomic LN -formulas:

(0 < 0) (1 < 0) (x < 0) (x · (y + z) < x · z)
(x · (y + 1) < x · x + y · z)

George Voutsadakis (LSSU) Logic January 2013 22 / 90

First-Order Languages First-Order Syntax for the Natural Numbers

LN-Formulas

The following are LN -formulas:

((x < y) → (x + x < y + y))
(∀x((x · (y + 1) < x · x + y · z) → (∃y(y · y < x + z))))

Consider the formula:

(∀x(x · (y + 1) < x · x + y · z)) → (∃y(y · y < x + z))

Its subformulas are:

(∀x(x · (y + 1) < x · x + y · z)) → (∃y(y · y < x + z))
∀x(x · (y + 1) < x · x + y · z) ∃y(y · y < x + z)
x · (y + 1) < x · x + y · z y · y < x + z

When working with the language LN , one uses the abbreviations
2 stands for 1 + 1; 3 stands for (1 + 1) + 1; etc.

For instance, 3 < 5 stands for (1 + 1) + 1 < (((1 + 1) + 1) + 1)+ 1; it
is an atomic LN -sentence saying that “3 is less than 5”; This
sentence is true in the LN -structure N.

George Voutsadakis (LSSU) Logic January 2013 23 / 90

First-Order Languages The Semantics of First-Order Sentences in N

Subsection 5

The Semantics of First-Order Sentences in N

George Voutsadakis (LSSU) Logic January 2013 24 / 90

First-Order Languages The Semantics of First-Order Sentences in N

Examples of First-Order Formulas with Intuition

2 + 2 < 3 is an atomic sentence; It says “four is less than three”.
False in N.

∀x∃y(x < y) says that “for every number there is a larger number”.
True in N.

∃y∀x(x < y) says that “there is a number that is larger than every
other number”.
False in N.

∀x((0 < x) → ∃y(y · y ≈ x)) says that “every positive number is a
square”.
False in N.

∀x∀y((x < y) → ∃z((x < z) ∧ (z < y))) says that “if one number is
less than another, then there is a number properly between the two”.
False in N.

George Voutsadakis (LSSU) Logic January 2013 25 / 90

First-Order Languages The Semantics of First-Order Sentences in N

Notation for Meets and Joins

We will use the shorthand notation

n∧

i=1

Fi

to mean the same as the notation

F1 ∧ · · · ∧ Fn.

Likewise, we will use the notation

n∨

i=1

Fi

for
F1 ∨ · · · ∨ Fn.

George Voutsadakis (LSSU) Logic January 2013 26 / 90

First-Order Languages The Semantics of First-Order Sentences in N

Translating English to First-Order I

Suppose that F (x) is a first-order formula with variable x ; We can
find first-order sentences to say:

a. “There is at least one number such that F (x) is true in N”.
∃xF (x)

b. “There are at least two numbers such that F (x) is true in N”.
∃x∃y(¬(x ≈ y) ∧ F (x) ∧ F (y))

c. “There are at least n numbers (n fixed) such that F (x) is true in N”.
∃x1 · · · ∃xn((

∧

1≤i<j≤n ¬(xi ≈ xj)) ∧ (
∧

1≤i≤n F (xi)))
d. “There are infinitely many numbers that make F (x) true in N”.

∀x∃y((x < y) ∧ F (y))

George Voutsadakis (LSSU) Logic January 2013 27 / 90

First-Order Languages The Semantics of First-Order Sentences in N

Translating English to First-Order II

We can also find first-order sentences to say:

e. “There is at most one number such that F (x) is true in N”.
∀x∀y((F (x) ∧ F (y)) → (x ≈ y))

f. “There are at most two numbers such that F (x) is true in N”.
∀x∀y∀z((F (x) ∧ F (y) ∧ F (z)) → ((x ≈ y) ∨ (x ≈ z) ∨ (y ≈ z)))

g. “There are at most n numbers (n fixed) such that F (x) is true in N”.
∀x1 · · · ∀xn+1((

∧

1≤i≤n+1 F (xi)) → (
∨

1≤i<j≤n+1(xi ≈ xj)))
h. “There are only finitely many numbers that make F (x) true in N”.

∃x∀y(F (y) → (y < x))

George Voutsadakis (LSSU) Logic January 2013 28 / 90

First-Order Languages The Semantics of First-Order Sentences in N

Truth of a Formula at a Tuple of Domain Elements

To better understand what we can express with first-order sentences
we need to introduce definable relations;

Given a first-order formula F (x1, . . . , xk), we say F is true at a
k-tuple (a1, . . . , ak) of natural numbers if the expression
F (a1, . . . , ak) is a true statement about the natural numbers;

Example: Let F (x , y) be the formula x < y . Then F is true at (a, b)
iff a is less than b.

Example: Let F (x , y) be ∃z(x · z ≈ y). Then F is true at (a, b) iff a

divides b, written a\b.

Important Note: Don’t confuse a\b with a
b
. The first is true or

false. The second has a value.
Check that a\0 for any a, including a = 0.

George Voutsadakis (LSSU) Logic January 2013 29 / 90

First-Order Languages The Semantics of First-Order Sentences in N

Definable Relations

For F (x1, . . . , xk) a formula, let FN be the set of k-tuples (a1, . . . , ak)
of natural numbers for which F (a1, . . . , ak) is true in N;

We call FN the relation on N defined by the formula F ;

A k-ary relation r ⊆ Nk is definable in N if there is a formula
F (x1, . . . , xk) such that r = FN;

Examples:

a. x is an even number is definable in N by

∃y(x ≈ y + y).

b. x divides y is definable in N by

∃z(x · z ≈ y).

George Voutsadakis (LSSU) Logic January 2013 30 / 90

First-Order Languages The Semantics of First-Order Sentences in N

More Examples of Definable Relations

We continue the list of Examples:

c. x is prime is definable in N by

(1 < x) ∧ ∀y((y\x) → ((y ≈ 1) ∨ (y ≈ x))).

d. x ≡ y modulo n is definable in N by

∃z((x ≈ y + n · z) ∨ (y ≈ x + n · z)).

e. z is the remainder of dividing x by y is definable in N by

z < y ∧ ∃w(x ≈ w · y + z).

George Voutsadakis (LSSU) Logic January 2013 31 / 90

First-Order Languages The Semantics of First-Order Sentences in N

Using Abbreviations; The Metalanguage

When we write x\y , we understand the formula ∃z(x · z ≈ y).

When we write prime(x), we understand the formula

(1 < x) ∧ ∀y((y\x) → ((y ≈ 1) ∨ (y ≈ x))).

Note that in prime(x), we have used the abbreviation for y\x .
This means that to properly write prime(x) as a first-order formula we
need to replace that abbreviation; doing so gives us

(1 < x) ∧ ∀y((∃z(y · z ≈ x)) → ((y ≈ 1) ∨ (y ≈ x))).

Abbreviations are not a feature of first-order logic, but rather they are
a tool in the language used by people to discuss first-order logic; To
distinguish this language for the language of first-order logic, we
sometimes call it the metalanguage;

Without abbreviations, writing out the first-order sentences that we
find interesting would fill up lines with tedious, hard-to-read
symbolism.

George Voutsadakis (LSSU) Logic January 2013 32 / 90

First-Order Languages The Semantics of First-Order Sentences in N

Substitution Needs Care!

We saw that x\y abbreviates ∃z(x · z ≈ y);

Then (u + 1)\(u · u + 1) is an abbreviation for

∃z((u + 1) · z ≈ u · u + 1);

If we write out z\2 we obtain ∃z(z · z ≈ 1 + 1).

Unfortunately, this last formula does not define the set of elements in
N that divide 2; It is a first-order sentence that is simply false in N;
the square root of 2 is not a natural number;

George Voutsadakis (LSSU) Logic January 2013 33 / 90

First-Order Languages The Semantics of First-Order Sentences in N

Renaming “Dummy” Variables

We have stumbled onto one of the subtler points of first-order logic,
namely, we must be careful with substitution;

The remedy for defining “z divides 2” is to use another formula, like

∃w(x · w ≈ y)

for “x divides y”.

We obtain such a formula by simply renaming the bound variable z in
the formula for x\y ;

With this formula we can correctly express “z divides 2” by
∃w(z · w ≈ 2).

The danger in using abbreviations in first-order logic, as showcased by
this example, is that we forget the names of the bound variables in
the abbreviation.

George Voutsadakis (LSSU) Logic January 2013 34 / 90

First-Order Languages The Semantics of First-Order Sentences in N

Substitution: Alerting Reader of the Danger

Our solution: add a ⋆ to the abbreviation to alert the reader to the
necessity for renaming the bound variables that overlap with the
variables in the term to be substituted into the abbreviation;

For example, we write prime⋆(y + z) to explicitly express the need to
change the formula for prime(x), say to

(1 < x) ∧ ∀v((v\x) → ((v ≈ 1) ∨ (v ≈ x)))

so that when we substitute y + z for x in the formula, no new
occurrence of y or z becomes bound.

Thus we could express prime(y + z) by

(1 < y + z) ∧ ∀v((v\⋆(y + z)) → ((v ≈ 1) ∨ (v ≈ y + z))).

George Voutsadakis (LSSU) Logic January 2013 35 / 90

First-Order Languages The Semantics of First-Order Sentences in N

Expressing Statements in First-Order Logic

a. The relation “divides” is transitive:
∀x∀y∀z(((x\y) ∧ (y\⋆z)) → (x\⋆z)).

b. There are an infinite number of primes:
∀x∃y((x < y) ∧ prime⋆(y)).

c. The Twin Prime Conjecture
There are an infinite number of pairs of primes that differ by the
number 2:
∀x∃y((x < y) ∧ prime⋆(y) ∧ prime⋆(y + 2)).

d. Goldbach’s Conjecture
All even numbers greater than two are the sum of two primes:
∀x(((2\x) ∧ (2 < x)) → ∃y∃z(prime⋆(y) ∧ prime(z) ∧ (x ≈ y + z))).

George Voutsadakis (LSSU) Logic January 2013 36 / 90

First-Order Languages Other Number Systems

Subsection 6

Other Number Systems

George Voutsadakis (LSSU) Logic January 2013 37 / 90

First-Order Languages Other Number Systems

Other Number Systems: Integers, Rationals and Reals

Our first-order language L = {+, ·, <, 0, 1} can just as easily be used
to study other number systems, in particular,

the integers Z = (Z,+, ·, <, 0, 1);
the rationals Q = (Q,+, ·, <, 0, 1);
the reals R = (R,+, ·, <, 0, 1);

However, first-order sentences that are true in one can be false in
another.

George Voutsadakis (LSSU) Logic January 2013 38 / 90

First-Order Languages Other Number Systems

Sentences Considered in Various Models

Consider the following first-order sentences:
(a) ∀x∃y(x < y)

“For every number, there is a (strictly) greater number”.
(b) ∀y∃x(x < y)

“For every number, there exists a (strictly) smaller number”.
(c) ∀x∀y((x < y) → ∃z((x < z) ∧ (z < y)))

“For every two different numbers, there exists a number lying
(properly) between the two”.

The following table evaluates the truth of (a)-(e) in the models
N,Z,Q and R:

N Z Q R

(a) true true true true
(b) false true true true
(c) false false true true
(d)
(e)

George Voutsadakis (LSSU) Logic January 2013 39 / 90

First-Order Languages Other Number Systems

Sentences Considered in Various Models

Two more first-order sentences:

(d) ∀x∃y((0 < x) → (x ≈ y · y))
“Every positive number has a square root”.

(e) ∃x∀y(x < y)
“There exists a number (strictly) less than all numbers”.

The following table evaluates the truth of (a)-(e) in the models
N,Z,Q and R:

N Z Q R

(a) true true true true
(b) false true true true
(c) false false true true
(d) false false false true
(e) false false false false

George Voutsadakis (LSSU) Logic January 2013 40 / 90

First-Order Languages First-Order Syntax for Directed Graphs

Subsection 7

First-Order Syntax for Directed Graphs

George Voutsadakis (LSSU) Logic January 2013 41 / 90

First-Order Languages First-Order Syntax for Directed Graphs

The Language of Directed Graphs

The first-order language of (directed) graphs is L = {r}, where r

is a binary relation symbol;

The only terms are the variables x ;

Atomic formulas look like

(x ≈ y);
(rxy);

Example: The subformulas of ∀x((rxy) → ∃y(ryx)) are

∀x((rxy) → ∃y(ryx))
(rxy) → ∃y(ryx)
rxy

∃y(ryx)
ryx

George Voutsadakis (LSSU) Logic January 2013 42 / 90

First-Order Languages The Semantics of First-Order Sentences in Directed Graphs

Subsection 8

The Semantics of First-Order Sentences in Directed Graphs

George Voutsadakis (LSSU) Logic January 2013 43 / 90

First-Order Languages The Semantics of First-Order Sentences in Directed Graphs

First-Order to English On Directed Graphs

Two structures over the language L = {r} of directed graphs:

d

b

a

c

e d

a

Graph A Graph B

c

b

We consider some first-order logic sentences over L:
a. ∀x¬(rxx)

It says: “the directed graph is irreflexive”. False in A; True in B;
b. ∀x∀y((rxy) → (ryx))

It says: “the directed graph is symmetric”. False in A; True in B;
c. ∀x∀y(rxy)

It says: “all possible edges are present”. False in A; False in B;
d. ∀x∃y(rxy)

It says: “for every vertex there is an outgoing edge”. True in A; True in
B;

George Voutsadakis (LSSU) Logic January 2013 44 / 90

First-Order Languages The Semantics of First-Order Sentences in Directed Graphs

English to First-Order Logic On Directed Graphs

Consider the following statements:

a. The (directed) graph has at least two vertices.
∃x∃y(¬(x ≈ y))

b. Every vertex has an edge attached to it.
∀x∃y((rxy) ∨ (ryx))

c. Every vertex has at most two edges directed from it to other vertices.
∀x∀y∀z∀w(((rxy) ∧ (rxz) ∧ (rxw)) → ((y ≈ z) ∨ (y ≈ w) ∨ (w ≈ z)))

George Voutsadakis (LSSU) Logic January 2013 45 / 90

First-Order Languages The Semantics of First-Order Sentences in Directed Graphs

Some Graph-Theoretic Definitions

The degree of a vertex is the number of (undirected) edges attached
to it;

A path of length n from vertex x to vertex y is a sequence of
vertices a1, . . . , an+1 with each (ai , ai+1) being an edge, and with
x = a1, y = an+1;

Two vertices are adjacent if there is an edge connecting them.

George Voutsadakis (LSSU) Logic January 2013 46 / 90

First-Order Languages The Semantics of First-Order Sentences in Directed Graphs

Definable Relations and Statements about Graphs

The following are definable relations on graphs:

a. The degree of x is at least one.
∃y(rxy)

b. The degree of x is at least two.
∃y∃z(¬(y ≈ z) ∧ (rxy) ∧ (rxz))

The following are statements about graphs:

a. Some vertex has degree at least two.
∃x∃y∃z(¬(y ≈ z) ∧ (rxy) ∧ (rxz))

b. Every vertex has degree at least two.
∀x∃y∃z(¬(y ≈ z) ∧ (rxy) ∧ (rxz))

George Voutsadakis (LSSU) Logic January 2013 47 / 90

First-Order Languages Semantics for First-Order Logic

Subsection 9

Semantics for First-Order Logic

George Voutsadakis (LSSU) Logic January 2013 48 / 90

First-Order Languages Semantics for First-Order Logic

Overview of First-Order Semantics

Given a first-order L-structure S = (S , I), the interpretation I gives
meaning to the symbols of the language L;

We associate with each term t(x1, . . . , xn) the n-ary term function
tS : Sn → S ;

We associate with each formula F (x1, . . . , xn) an n-ary relation
F S ⊆ Sn;

We continue with the formal definition after a small break!

George Voutsadakis (LSSU) Logic January 2013 49 / 90

First-Order Languages Semantics for First-Order Logic

Alfred Tarski

Alfred Tarski, born in Warsaw, Kingdom of Poland (1901-1983)

George Voutsadakis (LSSU) Logic January 2013 50 / 90

First-Order Languages Semantics for First-Order Logic

Tarski’s Definition of Truth

The notion of a formula F being true or holding in a structure
S = (S , I) under an assignment ~a of values from S to its variables ~x
is defined by induction on the structure of F :

F (~x) is atomic:

F is the formula t1(~x) ≈ t2(~x): F (~a) holds iff t
S
1 (~a) = t

S
2 (~a).

F is the formula r(t1(~x), . . . , tn(~x)): F (~a) holds iff
r
S(tS1 (~a), . . . , t

S
n (~a)) holds.

F = ¬G : Then F (~a) holds iff G(~a) does not hold.
F = G ∨ H : Then F (~a) holds iff G(~a) holds or H(~a) holds.
F = G ∧ H : Then F (~a) holds iff G(~a) holds and H(~a) holds.
F = G → H : Then F (~a) holds iff G(~a) does not hold or H(~a) holds.
F = G ↔ H : Then F (~a) holds iff both or neither of G(~a) and H(~a)
holds.
F (~x) is ∀yG(y , ~x): Then F (~a) holds iff G(b,~a) holds for every b ∈ S .
F (~x) is ∃yG(y , ~x): Then F (~a) holds iff G(b,~a) holds for some b ∈ S .

George Voutsadakis (LSSU) Logic January 2013 51 / 90

First-Order Languages Semantics for First-Order Logic

Illustrating the Definition of Truth I

Consider the language L = {f , r}, where
f is a unary function symbol;
r is a binary relation symbol;

Consider the L-structure S = (S , f S, rS), with

S = {a, b},
x fx

a b

b a

,

r a b

a 0 1
b 1 0

Consider the L-formula

F (x) = ∀y∃z((rfxfy) ∧ (rfyfz)).

In the next slide, we evaluate F (x) at both x = a and x = b in S;
i.e., we fully determine F S (set of all x ∈ S for which F (x) holds).

George Voutsadakis (LSSU) Logic January 2013 52 / 90

First-Order Languages Semantics for First-Order Logic

Evaluation of F (x) = ∀y∃z((rfxfy)∧ (rfyfz))

x y z fx fy fz rfxfy rfyfz (rfxfy) ∧ (rfyfz)

a a a b b b 0 0 0
a a b b b a 0 1 0
a b a b a b 1 1 1
a b b b a a 1 0 0
b a a a b b 1 0 0
b a b a b a 1 1 1
b b a a a b 0 1 0
b b b a a a 0 0 0

x y ∃z((rfxfy) ∧ (rfyfz))

a a 0
a b 1
b a 1
b b 0

x ∀y∃z((rfxfy) ∧ (rfyfz))

a 0
b 0

Therefore F S = ∅.
George Voutsadakis (LSSU) Logic January 2013 53 / 90

First-Order Languages Semantics for First-Order Logic

Illustrating the Definition of Truth II

Consider the same language L = {f , r};

Consider the same L-structure S = (S , f S, rS), with

S = {a, b},
x fx

a b

b a

,

r a b

a 0 1
b 1 0

Consider the L-formula

F (x , y) = ∃z((rxfz) ∧ (fy ≈ z)) → (fy ≈ fx).

In the next slide, we evaluate F (x , y) at all pairs (a, b) ∈ S2;
i.e., we fully determine F S (set of all (x , y) ∈ S2 for which F (x , y)
holds).

George Voutsadakis (LSSU) Logic January 2013 54 / 90

First-Order Languages Semantics for First-Order Logic

Evaluation of F (x , y) = ∃z((rxfz)∧ (fy ≈ z)) → (fy ≈ fx)

x y z fx fy fz rxfz fy ≈ z rxfz ∧ fy ≈ z

a a a b b b 1 0 0
a a b b b a 0 1 0
a b a b a b 1 1 1
a b b b a a 0 0 0
b a a a b b 0 0 0
b a b a b a 1 1 1
b b a a a b 0 1 0
b b b a a a 1 0 0

x y ∃z(rxfz ∧ fy ≈ z) fy ≈ fx ∃z((rxfz) ∧ (fy ≈ z)) → (fy ≈ fx)

a a 0 1 1
a b 1 0 0
b a 1 0 0
b b 0 1 1

Therefore F S = {(a, a), (b, b)}.
George Voutsadakis (LSSU) Logic January 2013 55 / 90

First-Order Languages Semantics for First-Order Logic

Definition of Truth for Sentences

Let L be a language, F be an L-sentence and S an L-structure;

Then F is true in S provided one of the following holds:

F is rt1 . . . tn and rS(tS1 , . . . , t
S
n) holds;

F is t1 ≈ t2 and tS1 = tS2 ;
F is ¬G and G is not true in S;
F is G ∨ H and at least one of G ,H is true in S;
F is G ∧ H and both of G ,H are true in S;
F is G → H and G is not true in S or H is true in S;
F is G ↔ H and both or neither of G ,H is true in S;
F is ∀xG(x) and GS(a) is true for every a ∈ S ;
F is ∃xG(x) and GS(a) is true for some a ∈ S .

If F is not true in S, then we say F is false in S.

George Voutsadakis (LSSU) Logic January 2013 56 / 90

First-Order Languages Semantics for First-Order Logic

Notational Conventions for Truth

Given a first-order language L, let F be an L-sentence, S a set of
L-sentences, and S a structure for this language;

S |= F means F is true in S;

F is valid if it is true in all L-structures;

S |= S means every sentence F in S is true in S;

Sat(S) means S is satisfiable;

S |= F means every model of S is a model of F ; If this is the case, we
say F is a consequence of S.

George Voutsadakis (LSSU) Logic January 2013 57 / 90

First-Order Languages Semantics for First-Order Logic

The Propositional Skeleton of a Formula

The propositional skeleton, Skel(F), of a formula F is defined as
follows:

Delete all quantifiers and terms;
Replace ≈ with 1;
Replace the relation symbols r with propositional variables R ;

Example: The formula

F = ∀x∀y(¬(x < y) ↔ ∃z((x < z) ∨ (fz ≈ y)))

has
Skel(F) = ¬P ↔ P ∨ 1.

George Voutsadakis (LSSU) Logic January 2013 58 / 90

First-Order Languages Semantics for First-Order Logic

The Propositional Skeleton Criterion

Theorem

The first-order formula F has a one-element model iff Skel(F) is satisfiable.

If Skel(F) is satisfiable, then choose an evaluation e that makes it
true in a model S with universe S = {a}, as follows:

Let f S(a, . . . , a) = a for f ∈ F ;
Let rS(a, . . . , a) hold iff e(R) = 1 for r ∈ R;

Example: F = ∀x∀y(¬(x < y) ↔ ∃z((x < z) ∨ (fz ≈ y)));

We obtained Skel(F) = ¬P ↔ P ∨ 1;
This is satisfiable if P is evaluated as 0;
F has the one-element model S = ({a}, f , <), where

fa = a,
< a

a 0

George Voutsadakis (LSSU) Logic January 2013 59 / 90

First-Order Languages Equivalent Formulas

Subsection 10

Equivalent Formulas

George Voutsadakis (LSSU) Logic January 2013 60 / 90

First-Order Languages Equivalent Formulas

Equivalent Sentences

The sentences F and G are equivalent, written F ∼ G , if they are
true in the same L-structures S, that is, for all structures S, we have

S |= F iff S |= G .

For example, the sentences

∀x(¬(x ≈ 0) → ∃y(x · y ≈ 1)) and ∀x∃y(¬(x ≈ 0) → (x · y ≈ 1))

are equivalent.

Theorem

The sentences F and G are equivalent iff F ↔ G is a valid sentence.

George Voutsadakis (LSSU) Logic January 2013 61 / 90

First-Order Languages Equivalent Formulas

Equivalent Formulas

Two formulas F (x1, . . . , xn) and G (x1, . . . , xn) are equivalent,
written F (x1, . . . , xn) ∼ G (x1, . . . , xn), iff F and G define the same
relation on any L-structure S, that is, F S = GS;

For example, the following formulas are equivalent

¬(x ≈ 0) → ∃y(x · y ≈ 1) and ∃y(¬(x ≈ 0) → (x · y ≈ 1)).

Proposition

The formulas F (~x) and G (~x) are equivalent iff ∀~x(F (~x) ↔ G (~x)) is a valid
sentence.

Proposition

The relation ∼ is an equivalence relation on sentences as well as on
formulas.

This is immediate from the definition of ∼ and the fact that ordinary
equality (=) is an equivalence relation.

George Voutsadakis (LSSU) Logic January 2013 62 / 90

First-Order Languages Equivalent Formulas

Fundamental Equivalences

The following are some fundamental Equivalences of Formulas:
1 ¬∃xF ∼ ∀x(¬F);
2 ¬∀xF ∼ ∃x(¬F);
3 (∀xF) ∨ G ∼ ∀x(F ∨ G) if x is not free in G ;
4 (∃xF) ∨ G ∼ ∃x(F ∨ G) if x is not free in G ;
5 (∀xF) ∧ G ∼ ∀x(F ∧ G) if x is not free in G ;
6 (∃xF) ∧ G ∼ ∃x(F ∧ G) if x is not free in G ;
7 (∀xF) → G ∼ ∃x(F → G) if x is not free in G ;
8 (∃xF) → G ∼ ∀x(F → G) if x is not free in G ;
9 F → (∀xG) ∼ ∀x(F → G) if x is not free in F ;
10 F → (∃xG) ∼ ∃x(F → G) if x is not free in F ;
11 ∀x(F ∧ G) ∼ (∀xF) ∧ (∀xG)
12 ∃x(F ∨ G) ∼ (∃xF) ∨ (∃xG)

George Voutsadakis (LSSU) Logic January 2013 63 / 90

First-Order Languages Equivalent Formulas

Important Remarks on Freeness

If x occurs free in G then we cannot conclude

(∀xF) ∨ G ∼ ∀x(F ∨ G);

for example,

(∀x(x < 0)) ∨ (0 < x) and ∀x((x < 0) ∨ (0 < x))

are not equivalent; This can be seen by considering the natural
numbers N: in N, the first is true of positive numbers x (Note that x
occurs free in this formula);
whereas the second is false (Note that there are no free occurrences
of x in this formula);

George Voutsadakis (LSSU) Logic January 2013 64 / 90

First-Order Languages Equivalent Formulas

Some Other Remarks

For the implication we have:

(∀xF) → G ∼ ¬(∀xF) ∨ G

∼ ∃x(¬F) ∨ G

∼ ∃x(¬F ∨ G)
∼ ∃x(F → G).

To see that
∀x(F ∨ G) ∼ (∀xF) ∨ (∀xG)

need not be true consider the following example:

∀x((0 ≈ x) ∨ (0 < x)) and (∀x(0 ≈ x)) ∨ (∀x(0 < x)).

And to see that
∃x(F ∧ G) ∼ (∃xF) ∧ (∃xG)

need not be true consider the example:

∃x((0 ≈ x) ∧ (0 < x)) and (∃x(0 ≈ x)) ∧ (∃x(0 < x)).

George Voutsadakis (LSSU) Logic January 2013 65 / 90

First-Order Languages Replacement and Substitution

Subsection 11

Replacement and Substitution

George Voutsadakis (LSSU) Logic January 2013 66 / 90

First-Order Languages Replacement and Substitution

Substitution of Formulas for Propositional Variables

Equivalent propositional formulas lead to equivalent first-order
formulas as follows:

Proposition

If F (P1, . . . ,Pn) and G (P1, . . . ,Pn) are equivalent propositional formulas,
then for any sequence H1, . . . ,Hn of first-order formulas we have
F (H1, . . . ,Hn) ∼ G (H1, . . . ,Hn).

Example: De Morgan’s Law gives the equivalence of the two
propositional formulas ¬(P ∧ Q) ∼ ¬P ∨ ¬Q. By the Proposition
above, then, the following first-order formulas are also equivalent:

¬((∃x(x · x ≈ 1)) ∧ (∀x∀y(x · y ≈ y · x)))
∼ ¬(∃x(x · x ≈ 1)) ∨ ¬(∀x∀y(x · y ≈ y · x))

George Voutsadakis (LSSU) Logic January 2013 67 / 90

First-Order Languages Replacement and Substitution

Compatibility of Equivalence with Connectives

Applying logical connectives preserves equivalence;

This property of equivalence is called compatibility with the logical
connectives;

Compatibility Lemma

Suppose F1 ∼ G1 and F2 ∼ G2. Then

1 ¬F1 ∼ ¬G1;

2 F1 ∨ F2 ∼ G1 ∨ G2;

3 F1 ∧ F2 ∼ G1 ∧ G2;

4 F1 → F2 ∼ G1 → G2;

5 F1 ↔ F2 ∼ G1 ↔ G2;

6 ∀xF1 ∼ ∀xG1;

7 ∃xF1 ∼ ∃xG1.

George Voutsadakis (LSSU) Logic January 2013 68 / 90

First-Order Languages Replacement and Substitution

Replacement in First-Order Logic

The replacement theorem says that, in a first-order formula the
replacement of a subformula by an equivalent formula results in a
equivalent formula; More formally:

Replacement Theorem

If F ∼ G then H(· · · F · · ·) ∼ H(· · ·G · · ·).

Example: We have that

¬((∃x(x · x ≈ 1)) ∧ (∀x∀y(x · y ≈ y · x)))
∼ ¬(∃x(x · x ≈ 1)) ∨ ¬(∀x∀y(x · y ≈ y · x))

Therefore, by the Replacement Theorem

(∀x∃y(x < y)) → ¬((∃x(x · x ≈ 1)) ∧ (∀x∀y(x · y ≈ y · x)))
∼ (∀x∃y(x < y)) → ¬(∃x(x · x ≈ 1)) ∨ ¬(∀x∀y(x · y ≈ y · x))

George Voutsadakis (LSSU) Logic January 2013 69 / 90

First-Order Languages Replacement and Substitution

Substitution of Terms for Variables

Substitution of terms for variables in first-order logic often requires
the need to rename variables;

We need to be careful with renaming variables to avoid binding any
newly introduced occurrences of variables;

Given a first-order formula F , define a conjugate of F to be any
formula F̄ obtained by renaming the occurrences of bound variables
of F so that no free occurrences of variables in F become bound;
When renaming, we must keep bound occurrences of distinct variables
distinct;

Equivalence of Conjugates

If F̄ is a conjugate of F , then F̄ ∼ F .

Example: ∃y(x · y ≈ 1) ∼ ∃w(x · w ≈ 1).

George Voutsadakis (LSSU) Logic January 2013 70 / 90

First-Order Languages Replacement and Substitution

The Substitution Theorem

Substitution Theorem

If F (x1, . . . , xn) ∼ G (x1, . . . , xn) and t1, . . . , tn are terms, then
F ⋆(t1, . . . , tn) ∼ G ⋆(t1, . . . , tn).

For instance, since ¬∃y(x · y ≈ 1) ∼ ∀y(¬(x · y ≈ 1)), substitution of
(y + w) for x and u for y yields

¬∃u((y + w) · u ≈ 1) ∼ ∀u(¬((y + w) · u ≈ 1)).

George Voutsadakis (LSSU) Logic January 2013 71 / 90

First-Order Languages Prenex Form

Subsection 12

Prenex Form

George Voutsadakis (LSSU) Logic January 2013 72 / 90

First-Order Languages Prenex Form

Prenex Form

A formula F is in prenex form if it looks like

Q1x1 · · ·QnxnG ,
where

the Qi are quantifiers;
G has no occurrences of quantifiers;

A formula with no occurrences of quantifiers is called an open
formula;

The formula
∃x((rxy) → ∀u(ruy))

is not in prenex form, but it is equivalent to the prenex form formula

∃x∀u((rxy) → (ruy)).

Prenex Form Theorem

Every formula is equivalent to a formula in prenex form.

George Voutsadakis (LSSU) Logic January 2013 73 / 90

First-Order Languages Prenex Form

Obtaining an Equivalent Formula in Prenex Form

The following steps put F in prenex form:
1 Rename the quantified variables so that distinct occurrences of

quantifiers bind distinct variables, and no free variable is equal to a
bound variable;
Example: Change

∀z((rzy) → ¬∀y ((rxy) ∧ ∃y (ryx)))

to
∀z((rzy) → ¬∀u((rxu) ∧ ∃w(rwx)))

2 Eliminate all occurrences of → and ↔ using
G → H ∼ ¬G ∨ H ;
G ↔ H ∼ (¬G ∨ H) ∧ (¬H ∨ G);

Example (Cont’d): The equivalent form is

∀z(¬(rzy) ∨ ¬∀u((rxu) ∧ ∃w(rwx)));

3 Pull the quantifiers to the front;

George Voutsadakis (LSSU) Logic January 2013 74 / 90

First-Order Languages Prenex Form

Obtaining an Equivalent Formula in Prenex Form (Cont’d)

This can be accomplished by using the equivalences:

¬(F ∨ G) ∼ (¬F ∧ ¬G)
¬(F ∧ G) ∼ (¬F ∨ ¬G)
G ∨ (∀xH) ∼ ∀x(G ∨ H)
G ∨ (∃xH) ∼ ∃x(G ∨ H)
G ∧ (∀xH) ∼ ∀x(G ∧ H)
G ∧ (∃xH) ∼ ∃x(G ∧ H)
(∀xG) ∨ H ∼ ∀x(G ∨ H)
(∃xG) ∨ H ∼ ∃x(G ∨ H)
(∀xG) ∧ H ∼ ∀x(G ∧ H)
(∃xG) ∧ H ∼ ∃x(G ∧ H)
¬∃xG ∼ ∀x¬G
¬∀xG ∼ ∃x¬G

George Voutsadakis (LSSU) Logic January 2013 75 / 90

First-Order Languages Prenex Form

Example Continued

Applying some of the equivalences of the previous slide, we get

∀z(¬(rzy) ∨ ¬∀u((rxu) ∧ ∃w(rwx)))
↓

∀z(¬(rzy) ∨ ∃u(¬((rxu) ∧ ∃w(rwx))))
↓

∀z∃u(¬(rzy)∨ ¬((rxu) ∧ ∃w(rwx)))
↓

∀z∃u(¬(rzy) ∨ (¬(rxu) ∨ ¬(∃w(rwx))))
↓

∀z∃u(¬(rzy) ∨ (¬(rxu) ∨ ∀w(¬(rwx))))
↓

∀z∃u(¬(rzy) ∨ ∀w(¬(rxu) ∨ (¬(rwx))))
↓

∀z∃u∀w(¬(rzy)∨ (¬(rxu) ∨ (¬(rwx))))

George Voutsadakis (LSSU) Logic January 2013 76 / 90

First-Order Languages Valid Arguments

Subsection 13

Valid Arguments

George Voutsadakis (LSSU) Logic January 2013 77 / 90

First-Order Languages Valid Arguments

Valid or Correct Arguments

We will be working with sentences in a fixed first-order language L;

An argument F1, . . . ,Fn ∴ F is valid (or correct) in first-order logic
provided every structure S that makes F1, . . . ,Fn true also makes F
true, i.e., for every L-structure S,

S |= {F1, . . . ,Fn} implies S |= F .

Proposition

An argument F1, . . . ,Fn ∴ F in first-order logic is valid iff

F1 ∧ · · · ∧ Fn → F

is a valid sentence; Moreover, this holds iff {F1, . . . ,Fn,¬F} is not
satisfiable.

George Voutsadakis (LSSU) Logic January 2013 78 / 90

First-Order Languages Valid Arguments

Some Examples Involving Equations

In first-order logic equations are treated as universally quantified
sentences:

∀~x(s(~x) ≈ t(~x));

The following argument is valid

∀x∀y∀u∀v(x · y ≈ u · v)
∴ ∀x∀y∀z((x · y) · z ≈ x · (y · z))

In fact, if a structure S satisfies the premiss then all multiplications
give the same value. Thus, the multiplication must be associative.

The argument
∃y∀x(rxy)
∴ ∀x∃y(rxy)

is valid;

To see this, suppose S is a structure satisfying the premiss. Then, for
some a ∈ S , ∀x(rxa) holds. Thus, ∀x∃y(rxy) also holds.

We have demonstrated the validity of the above arguments by
appealing to our reasoning skills in mathematics.

George Voutsadakis (LSSU) Logic January 2013 79 / 90

First-Order Languages Valid Arguments

Proving Non-Validity of Arguments

To show that an argument F1, . . . ,Fn ∴ F is not valid it suffices to
find a single structure S such that

each of the premisses F1, . . . ,Fn is true in S, but
the conclusion F is false in S.

Such a structure S is called a counterexample to the argument.

Example: The argument
∀x∃y(rxy)
∴ ∃y∀x(rxy)

is not valid;

A simple two-element graph gives a counterexample:

a b

(Let us verify this!)

George Voutsadakis (LSSU) Logic January 2013 80 / 90

First-Order Languages Skolemization

Subsection 14

Skolemization

George Voutsadakis (LSSU) Logic January 2013 81 / 90

First-Order Languages Skolemization

Leopold Löwenheim

Leopold Löwenheim, born in Krefeld, Germany (1878-1957)

George Voutsadakis (LSSU) Logic January 2013 82 / 90

First-Order Languages Skolemization

Thoralf Albert Skolem

Thoralf Albert Skolem, born in Sandsvær, Norway (1887-1963)

George Voutsadakis (LSSU) Logic January 2013 83 / 90

First-Order Languages Skolemization

Skolemization: The Intuition

Skolem, following the work of Löwenheim (1915), developed a
technique to convert a first-order sentence F into a sentence F ′ in
prenex form, with only universal quantifiers, such that

F is satisfiable iff F ′ is satisfiable.

Universally quantified sentences are apparently much easier to
understand.

This has provided one of the powerful techniques in automated
theorem proving.

George Voutsadakis (LSSU) Logic January 2013 84 / 90

First-Order Languages Skolemization

Skolemization: The Main Lemma

Skolemization Lemma

1 Given the sentence ∃yG (y), augment the language with a new
constant c and form the sentence G (c). Then

Sat(∃yG (y)) iff Sat(G (c));

2 Given the sentence ∀x1 · · · ∀xn∃yG (~x , y), augment the language with
a new n-ary function symbol f and form the sentence
∀x1 · · · ∀xnG

⋆(~x , f (~x)). Then

Sat(∀x1 · · · ∀xn∃yG (~x, y)) iff Sat(∀x1 · · · ∀xnG
⋆(~x , f (~x))).

George Voutsadakis (LSSU) Logic January 2013 85 / 90

First-Order Languages Skolemization

Universal Formulas

A first-order formula F is universal if it is in prenex form and all
quantifiers are universal, that is, F is of the form ∀~xG , where G is
quantifier-free;

G is called the matrix of F;

Example:
∀x∀y∀z ((x ≤ y) ∧ (y ≤ z) → (x ≤ z))

︸ ︷︷ ︸

matrix

.

George Voutsadakis (LSSU) Logic January 2013 86 / 90

First-Order Languages Skolemization

Producing an Equivalent Universal Sentence

Universal Equivalent of a Sentence

Given a first-order sentence F , there is an effective procedure for finding a
universal sentence F ′ (usually in an extended language) such that

Sat(F) iff Sat(F ′).

Furthermore, we can choose F ′ such that every model of F can be
expanded to a model of F ′, and every model of F ′ can be reducted to a
model of F .

To produce F ′, given F ,
first, we put F in prenex form;
then, we just apply the Skolemization Lemma repeatedly until there are
no existential quantifiers.

This process is called skolemizing;

The newly introduced constants and functions are called skolem
constants and skolem functions.

George Voutsadakis (LSSU) Logic January 2013 87 / 90

First-Order Languages Skolemization

Example of Skolemization

We skolemize the sentence

F = ∀x∀y((x < y) → ∃z((x < z) ∧ (z < y)))

First put it in prenex form

F ∼ ∀x∀y∃z((x < y) → (x < z) ∧ (z < y))

Applying the Skolemization Lemma, we introduce a new binary
function symbol, say f , and arrive at the universal sentence

F ′ = ∀x∀y((x < y) → (x < f (x , y)) ∧ (f (x , y) < y))

The structure Q = (Q, <), consisting of the rational numbers with

the usual <, satisfies F ; If we choose f (a, b) =
a + b

2
, for a, b ∈ Q,

we see that the expansion (Q, <, f) of Q satisfies F ′.

George Voutsadakis (LSSU) Logic January 2013 88 / 90

First-Order Languages Skolemization

Equivalent Universal Set of Sentences

Universal Equivalent of Sets of Sentences

Given a set of first-order sentences S, there is a set S ′ of universal
sentences (usually in an extended language) such that

Sat(S) iff Sat(S ′).

Furthermore, every model of S can be expanded to a model of S ′, and
every model of S ′ can be reducted to a model of S.

To obtain S ′, given S, we skolemize each sentence in S, as before,
making sure that distinct sentences do not have any common skolem
constants or functions.

George Voutsadakis (LSSU) Logic January 2013 89 / 90

First-Order Languages Skolemization

An Example of Skolemization of a Set of Sentences

Example: We skolemize the set of sentences

{∃x∀y∃z(x < y + z),∃x∀y∃z(¬(x < y + z))};

we obtain a set of universal sentences

{∀y(a < y + fy),∀y(¬(b < y + gy))}.

George Voutsadakis (LSSU) Logic January 2013 90 / 90

	First-Order Languages
	First-Order Languages without Equality
	Interpretations and Structures
	The Syntax of First-Order Logic
	First-Order Syntax for the Natural Numbers
	The Semantics of First-Order Sentences in N
	Other Number Systems
	First-Order Syntax for Directed Graphs
	The Semantics of First-Order Sentences in Directed Graphs
	Semantics for First-Order Logic
	Equivalent Formulas
	Replacement and Substitution
	Prenex Form
	Valid Arguments
	Skolemization

