Introduction to Markov Chains

George Voutsadakis (LSSU)

George Voutsadakis!

Mathematics and Computer Science
Lake Superior State University

LSSU Math 500

Markov Chains

April 2024

1/124



o @-Matrices and Their Exponentials

o Continuous Time Random Processes

o Some Properties of the Exponential Distribution
o Poisson Processes

Birth Processes

Jump Chain and Holding Times

Explosion

Forward and Backward Equation

© 06 0 ¢©

George Voutsadakis (LSSU) Markov Chains



Continuous Time Markov Chains | Q-Matrices and Their Exponentials

Subsection 1

@-Matrices and Their Exponentials
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Continuous Time Markov Chains |

o Let / be a countable set.
o A Q-matrix on [ is a matrix Q = (g;j : i,/ € I) satisfying the
following conditions:
0 < —gji < oo, for all i;
qij > 0, for all i # j;
Zje/ gij =0, for all i.
o Thus in each row of @ we can choose the off-diagonal entries to be
any nonnegative real numbers, subject only to the constraint that the
off-diagonal row sum is finite:

Cli:zq[i<oo-

i

o The diagonal entry gj; is then —g;, making the total row sum zero.
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o A convenient way to present the data for a
continuous-time Markov chain is by means
of a diagram.

o Each diagram then corresponds to a unique
Q@-matrix, in this case

-2 1 1
Q= 1 -1 0
2 1 -3

o Thus each off-diagonal entry gj; gives the value we attach to the (7, )
arrow on the diagram, which we shall interpret later as the rate of
going from / to j.

o The numbers g; are not shown, but can be worked out from the other
information given.

o We shall later interpret g; as the rate of leaving .



Continuous Time Markov Chains |

o We may think of the discrete parameter space {0,1,2,...} as
embedded in the continuous parameter space [0, o).

o For p € (0,00) a natural way to interpolate the discrete sequence
(p":n=0,1,2,...) is by the function

(e':t>0), g=logp

o Consider a finite set | and a matrix P = (p;j : i,j € /).

o We ask for a natural way to fill in the gaps in the discrete sequence

(P":n=0,1,2,...).
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o Consider any matrix Q@ = (q;; : i,j € /).
o The series
rg
k=0
converges componentwise.
o We denote its limit by e?.

o If two matrices Q1 and @ commute, then

et — Q1 Q2

o Suppose that we can find a matrix Q with e? = P.
o Then
e"? = (e9)" = P

o So (ef? : t > 0) fills in the gaps in the discrete sequence.
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Let Q be a matrix on a finite set /. Set P(t) = e!?. Then (P(t) : t > 0)
has the following properties:

P(s +t) = P(s)P(t), for all s, t (semigroup property);
(P(t) : t > 0) is the unique solution to the forward equation

d
—P(t) = P(t)Q, P(0)=1,
dt
(P(t) : t > 0) is the unique solution to the backward equation
d
—P(t) = QP(t), P(0) =1
dt
For k=10,1,2,..., we have (&) |,_o P(t) = Q*.
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o For any s, t € R, sQ and tQ commute.
So e5Qet@Q = e(st1)Q proving the semigroup property.
The matrix-valued power series

o0 k
Pty =3

k=0

has infinite radius of convergence.

So each component is differentiable and the derivative is given by
term-by-term differentiation.

We differentiate term-by-term

o k—1 Nk
P(t)=3 7& _%! — P(1)Q = QP(t).
k=1

Hence P(t) satisfies the forward and backward equations.
Moreover by repeated term-by-term differentiation we obtain (iv).
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o It remains to show that P(t) is the only solution of the forward and
backward equations.

If M(t) satisfies the forward equation, then

SM(t)e @) = (FM(t)e ™+ M(t)(Fe )
= M(t)Qe 1 + M(t)(—Q)e *®
= 0.

So M(t)e @ is constant.
Thus, M(t) = P(t).
A similar argument proves uniqueness for the backward equation.

George Voutsadakis (LSSU)



Continuous Time Markov Chains |

o The preceding theorem was about matrix exponentials in general.

o We look at what happens to Q-matrices.

o Recall that a matrix P = (pj; : i,j € I) is stochastic if it satisfies:
0 < pj < oo, for all i, j;
> jer Py =1foralli.

o We recall the conventions that, in the limit t — 0, the statement:

o f(t) = O(t) means that, for some C < oo, @ < C, for all sufficiently
small t;
o f(t) = o(t) means @ —0ast—0.
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Characterization of @-Matrices

Theorem

A matrix @ on a finite set / is a @-matrix if and only if P(t) = €@ is a
stochastic matrix for all t > 0.

o As t \ 0 we have
P(t) = I +tQ + O(t?).

So gjj > 0 for i # j if and only if p;j(t) >0, for all i,j and t >0
sufficiently small.

But P(t) = P(£)" for all n.
So gjj > 0 for i # j if and only if p;j(t) > 0 for all i, and all t > 0.
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o If @ has zero row sums then so does Q" for every n:

qu(k quun 1) un Uqu_O

kel kel jel jel kel
So
>_pi(t) —1+Z > e -1
Jel " jel

Conversely, suppose, for all t > 0,

> pi(t) =

Jel

d
Zqij = |e=0 Zpij(t) =

jel jel

Then
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o Now, if P is a stochastic matrix of the form e® for some Q-matrix,
we can do some sort of filling-in of gaps at the level of processes.

o Fix some large integer m.

o Let (X™),>0 be discrete-time Markov()\, e®/™).

o We define a process indexed by {- :n=0,1,2,...} by

Xojm = X,

n

o Then (X, :n=0,1,2,...) is discrete-time Markov(}, (e?/™)™).
o Moreover,
(e@/mMm = @ = p.

o Thus we can find discrete-time Markov chains with arbitrarily fine
grids {1+ :n=0,1,2,...} as time-parameter sets which give rise to
Markov(A, P) when sampled at integer times.

o It should not then be too surprising that there is, as we will see, a
continuous-time process (X;)¢>0 Which also has this property.
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o We will see that a continuous-time Markov chain (X;)¢>0 with
Q-matrix Q satisfies

P(thﬂ = in+1|Xt0 = lg,. .. ath = i,,) = pinin+1(tn+1 - tn)a

forall n=20,1,2,..., all times 0 < tyg < --- < t,41 and all states
00y, int1, where pji(t) is the (i, ) entry in ef@.
o In particular, the transition probability from / to j in time t is given
by
Pi(Xe = j) == P(Xe = j| Xo = i) = py(¢).
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o We calculate p;1(t) for the continuous-time Markov chain with

-2 1 1
Q-matrix Q = 1 -1 0
2 1 -3
We begin by writing down the characteristic equation for Q.
det(x — Q) =0
X+ 2 —1 -1
det -1 x+1 0| =0
—2 -1 x+3

(x+2)(x+1)(x+3)—1—-2(x+1)—(x+3)=0
x34+6x°+11x+6—-1—-2x—2—-x—-3=0
x3+6x2+8=0
x(x+2)(x+4)=0
x=0,x=—-2,x=—4.

Thus, @ has distinct eigenvalues 0, —2, —4.



Continuous Time Markov Chains | Q-Matrices and Their Exponentials

Example (Cont'd)

Claim: py1(t) has the form
p11(t) = a+ be % + ce ™,

for some constants a, b and c.

We could diagonalize @ by an invertible matrix U:

0 0 O
Q=U|l 0 -2 0o |U
0 0 —4
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Continuous Time Markov Chains | Q-Matrices and Their Exponentials

Example (Cont'd)

o Then

etQ  — oo (tQ)

= USyo&| 0 (-2t o Ut

1 0 0
= U|l 0 e 0 u-1
0 0 e

So p11(t) must be of the form

p11(t) = a+ be %t + ce .
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o To determine the constants we use

1 = p11(0)

— 2= qq1 = pi;(0)

7=q3 = pl1(0)

So we get

at+b+c =1 at+b+c
2b—4c = -2 = b+ 2c
4b+16c = 7 8c

So p11(t) = % + %e‘zt + %e“”.

George Voutsadakis (LSSU) Markov Chains

a+b+c,
—2b — 4c,
4b + 16¢.
=1
=1 =
= 3

0O T o

00| W |0l W
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o We calculate pj;(t) for the continuous time Markov chain with

diagram
A Ao A
0 1 2 N-1 N
A A
A A
The Q-matrix is Q = , where
A A
- A

0
entries off the diagonal and super-diagonal are all zero.

The exponential of an upper-triangular matrix is upper-triangular.
So pjj(t) =0, for i > j.
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o In components the forward equation P'(t) = P(t)Q reads

pi(t) = — Apii(t), pi(0) =1, fori <N,
pll.j(t) — )\pij(t) + )\Pi,j—l(t)a p,J(O) =0, for i <j <N,
pl{N(t) = )\p,'/\/_l(t), p,'N(O) =0, fori<AN.

We can solve these equations.
o pii(t) = e, for i < N;
o Fori<j <N, (ep;(t)) = e pij_1(t).
So, by induction, o
oy Ay
pU(t)_e (_]—I)I
If i =0, these are the Poisson probabilities of parameter At.
So, starting from 0, the distribution of the Markov chain at time t is
the same as the distribution of min {Y;, N}, where Y; is a Poisson
random variable of parameter At.
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Subsection 2

Continuous Time Random Processes
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o Let / be a countable set.

o A continuous time random process
(Xt)tZO = (Xt :0 <t< OO)

with values in [ is a family of random variables X; : Q — /.

o A continuous time random process is right continuous if, for all
w € Q and t > 0, there exists € > 0, such that

Xs(w) = Xe(w), forallt <s<t+e.

o We restrict our attention to right continuous processes.

George Voutsadakis (LSSU)
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o By a standard result of measure theory, the probability of any event
depending on a right continuous process can be determined from its
finite dimensional distributions, i.e., from the probabilities

]P)(Xto = iO,th = I]_, oo ,th = [.n)’

forn>0,0<tg <t <---<tpandig,...,in, € 1.
Example:
P(X; = i for some t € [0,00))
=1—1lim > P(Xq =Jji, .- Xq, = Jn),

n—>oo. - .
JLseesfn
where g1, g, ... is an enumeration of the rationals.
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Continuous Time Markov Chains | Continuous Time Random Processes

Right Continuous Process Type |

o The path makes infinitely many jumps, but only finitely many in any
interval [0, t]:

Xi(w)

Jo=0 J:1 J:2 J:3 14 js t
S S 5 5. LSy oS
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Continuous Time Markov Chains | Continuous Time Random Processes

Right Continuous Process Type Il

o The path makes finitely many jumps and then becomes stuck in some
state forever.

Xi(w)

Sl SQ Sg =
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Continuous Time Markov Chains |

o The process makes infinitely many jumps in a finite interval.

Xi(w)

o In this case, after the explosion time ( the process starts up again.

o It may explode again, maybe infinitely often, or it may not.
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Continuous Time Markov Chains |

o We call Jy, Ji, ... the jump times of (X;):>o.
o They are obtained from (X;)¢>0 by

Jo=0, Jpp1=inf{t>J,: Xe #X,,}, n=0,1,...

where inf () = co.
o We call 51,S;, ... the holding times.
o They are given, for n=1,2,..., by

{ J, — J,,_l, if J,_1 < o0
Sn= .
00, otherwise.

o Note that right continuity forces S, > 0, for all n.

o If Jy41 = o0, for some n, we define X = X),, the final value,
otherwise X, is undefined.

George Voutsadakis (LSSU)
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o The (first) explosion time ( is defined by
C=supJ, = ZS,,.
n
n=1

o The discrete time process (Y,)n>0 given by Y, = X}, is called the
jump process of (X;)¢>o, or the jump chain if it is a discrete time
Markov chain.

o This is the sequence of values taken by (X:);>o up to explosion.
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o We shall not consider what happens to a process after explosion.

o So it is convenient to:
o Adjoin to / a new state, oo say;

o Require that
Xy = o0, if t > (.

o Any process satisfying this requirement is called minimal.

o The terminology “minimal” does not refer to the state of the process
but to the interval of time over which the process is active.
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o Note that a minimal process may be reconstructed from its holding
times and jump process.

o We, thus, obtain another “countable” specification of the
probabilistic behavior of (X¢):>0 by specifying the joint distribution of
51,5,... and (Yn)n>o0.

Example: The probability that X; = i is given by

P(X; = i) = Z]P’(Y,, =iand J, <t < Jpi1).
n=0

Moreover,

P(X: = i for some t € [0,00)) = P(Y, = i for some n > 0).

George Voutsadakis (LSSU)



Continuous Time Markov Chains | Some Properties of the Exponential Distribution

Subsection 3

Some Properties of the Exponential Distribution
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o A random variable T : Q — [0, oo] has exponential distribution of
parameter )\, 0 < A < oo, if

P(T >t)=e, forall t>0.

o We write T ~ E()) for short.
o If A >0, then T has density function

fr(t) = Ae Mlsso.

o The mean of T is given by

E(T) =/OOOIP’(T> £)dt — %

George Voutsadakis (LSSU) Markov Chains
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Memoryless Property

Theorem (Memoryless Property)

A random variable T : Q — (0, 00] has an exponential distribution if and
only if it has the following memoryless property:

P(T >s+t|T >s)=P(T >t), forall s, t >0.

o Suppose T ~ E(X).

Then

P(T>s+tT>s) = %

e—A(s+t)
e—As
—At

; P(T > t).
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o Suppose T has the memoryless property whenever P(T > s) > 0.
Then g(t) =P(T > t) satisfies

g(s+t)=g(s)g(t), foralls,t >0.

We assumed T > 0 so that g(%) > 0, for some n.
Then, by induction

g(l)zg(%+---+%) :g(%)n > 0.

So g(1) = e, for some 0 < \ < oo.

George Voutsadakis (LSSU) Markov Chains
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o By the same argument, for integers p,q > 1,

()=o) s

So g(r) = e, for all rationals r > 0.
For real t > 0, choose rationals r,s > 0 with r < t <'s.

Since g is decreasing,
—\r _ > t > _ —As
e =g(r) 2 g(t) = g(s) ="

But we can choose r and s arbitrarily close to t.
This forces g(t) = et

So T ~ E(\).

George Voutsadakis (LSSU) Markov Chains
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Some Properties of the Exponential Distribution

Sum of Independent Exponential Random Variables

Theorem

Let 51,55, ... be a sequence of independent random variables with
5 NE()\ )and0<)\ < o0, for all n.

JILI DD 1)\ < 00, then P(3 "2, Sn < o0) = 1.
If En—l bW = 00, then P(En:l i = OO) = 1.

(1) Suppose Y72 % < 00.
By Monotone Convergence,

0o 4
E (; Sn) = )\— < 0.
So P(X"%0, S, < 00) = L.

George Voutsadakis (LSSU) Markov Chains April 2024
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Sum of Independent Exponential Random Variables (ii)

(1) Suppose instead that

Then

By Monotone Convergence and independence

Elexp{—>_021 Sn}) = [TIRZiE(exp{-5n})
[+ ,\l")_l
= 0.

SoP(> ;2 Sn=00)=1.
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Let / be countable and let Ty, k € I, be independent random variables
with T ~ E(qx) and 0 < g := ), qx < 0o. Set T = infy Ty. Then this
infimum is attained at a unique random value K of k, with probability 1.
Moreover, T and K are independent, with T ~ E(q) and P(K = k) = %".

o Set K =k if T < Tj, for all j # k, otherwise let K be undefined.
Then

P(K=kand T>t) = P(Tg>tand T; > T forall j # k)
J¢ ake”%P(T; > s for all j  K)ds
ftoo qre™ % [];2y €™ %ds

= [ qrem®ds = Lem

Hence, P(K = k for some k) = 1.
Moreover, T and K have the claimed joint distribution.



Continuous Time Markov Chains |

For independent random variables S ~ E(\) and R ~ E(u) and for t > 0,
we have

pPP(S<t<S+R)=IP(R<t<R+S).

o We have
uP(S<t<S+R) = ufot [ e e drds
= A fot e e H(t=s)gs,

Symmetrically,

t
ME(R< t<R+S)= u/\/ o1 g Mt gy,
0

A change of variables shows that the integrals are equal.
This establishes the identity.
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Subsection 4

Poisson Processes
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o A right-continuous process (X:)¢>0 with values in {0,1,2,...} is a
Poisson process of rate )\, 0 < A < oo, if its holding times

51,S5,... are independent exponential random variables of parameter
A and its jump chain is given by Y, = n.
A A A A
0 1 2 3 R
A A
A A

o The associated Q-matrix is given by Q =

o By a previous theorem (or the Strong Law of Large Numbers) we
have P(J, — o0) = 1.

o So there is no explosion and the law of (X¢)¢>0 is uniquely
determined.
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o A simple way to construct a Poisson process of rate A is to:

o Take a sequence 51, S5, ... of independent exponential random
variables of parameter J;

o Set Jp=0,p=51+...+ Sn;

o Set Xy =nif J, <t < Jpi1.

o The diagram illustrates a typical path.

S Sy P8y 5, D8 0 S

George Voutsadakis (LSSU) Markov Chains
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Theorem (Markov Property)

Let (X¢)¢>0 be a Poisson process of rate A\. Then, for any s > 0,

(Xs+t — Xs)e>0 is also a Poisson process of rate A, independent of
(Xr:r <s).

o It suffices to prove the claim conditional on X5 = i, for each i > 0.
Set X; = Xyt — Xs. We have

{Xs=i}={Ji<s< Jip1} ={Ji <s}n{Sit1>s— Ji}.

On this event X, = ZJ 11{s;<ry, for r <ss.
Moreover, the holding times 51, 52, ...of (Xt)t>0 are given by

:9:1 = Sip1—(s—Jp),
Sn S,'+n, n Z 2.
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S 05
. : Sz+l : SH»Z :
0 T, EAD Tivs

o Recall that the holding times S1, Sy, ... are independent E()).
Condition on Sp,...,S; and {Xs = i}.
Take into account:

o The memoryless property of Sii1;
o Independence.

Then §1,§2, ... are themselves independent E()).

Hence, conditional on {Xs = i}, 51, 5,,... are independent E()), and
independent of S1,...,S;.

So, conditional on {Xs = i}, ()NQ)tZO is a Poisson process of rate A
and independent of (X, : r <'s).

George Voutsadakis (LSSU)
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o We shall see later, by an argument in essentially the same spirit, that
the result also holds with s replaced by any stopping time T of
(Xt)tZO-

Theorem (Strong Markov Property)

Let (Xt)e>0 be a Poisson process of rate A and let T be a stopping time of
(Xt)t=0. Then, conditional on T < oo, (X74+ — X7)¢>0 is also a Poisson
process of rate )\, independent of (Xs:s < T).

George Voutsadakis (LSSU) Markov Chains
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o Let (X¢)t>0 be a real-valued process.
o Consider its increment X; — Xs over any interval (s, t].

o We say that (X;)s>0 has stationary increments if the distribution of
Xs4t — Xs depends only on t > 0.

o We say that (X;)s>0 has independent increments if its increments
over any finite collection of disjoint intervals are independent.

George Voutsadakis (LSSU)



Let (X:)e>0 be an increasing, right-continuous integer-valued process
starting from 0. Let 0 < A < co. Then the following three conditions are
equivalent:
(Jump Chain/Holding Time Definition) The holding times
51,52, ... of (X¢)t>0 are independent exponential random variables of
parameter A and the jump chain is given by Y, = n for all n;
(Infinitesimal Definition) (X;):>0 has independent increments and,
as h ™\, 0, uniformly in t,
P(Xirh— Xe=0) = 1—Ah+ o(h),
P(Xexn — Xe =1) = Xh+o(h);

(Transition Probability Definition) (X;):>o has stationary
independent increments and, for each t, X; has Poisson distribution
of parameter \.
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o Suppose Condition (a) holds.

By the Markov property, for any t, h > 0, X¢yp — X; has the same
distribution as X}, and is independent of (Xs : s < t).

So (Xt)¢>0 has independent increments.

As h 0,
P(Xesn— Xe >1) = P(Xp>1)
= P(Jh < h)
= 1-—e M= h+ o(h);
P(Jy < h)

P(S; < hand S, < h)
(1 —e M2 = o(h).

Al

This implies Condition (b).
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o Suppose Condition (b) holds.
For i=2,3,..., P(Xeyn — Xe = i) = o(h) as h \, 0, uniformly in t.
Set pj(t) = P(X¢ = j).
Then, for j=1,2,...,

plt+h) = B(Xern =)
= YA o P(Xeph — Xe = D)P(Xe =4 — i)
= (L= A+ o(M)pi(t) + (b + o(A))pj-a() + o).
So
pi(t+h) —pi(t) _
; =
This estimate is uniform in t.
So we can put t = s — h to obtain, for all s > h,

pi(s) — pi(s — h)
h

—=Apj(t) + Apj-1(t) + O(h).

= —Apj(s — h) + Apj—1(s — h) + O(h).
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o We found:
o PR — —\pi(1) + Apja(t) + O(h)
o w = —Apj(s — h) + Apj—1(s — h) + O(h), for s > h.
Now let h ™\, 0 to see that:
o pj(t) is continuous;
o pj(t) is differentiable and satisfies

pi(t) = =Ap;(t) + Apj-1(t).
By a simpler argument we also find
po(t) = —Apo(t).
Since Xy = 0, we have initial conditions

po(O) = 1, pj(O) = 0, forj = 1,2, ceee

George Voutsadakis (LSSU) Markov Chains
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o As we saw in a previous example, the preceding system of equations
has a unique solution given by

Aty
pj(t)ze_kt(j—l)la J=Oa172a

Hence X; ~ P(At).

If (X¢)e>0 satisfies Condition (b), then certainly (X¢)¢>0 has
independent increments.

Also (Xs1+ — Xs)e>0 satisfies Condition (b).
So the above argument shows X5+ — Xs ~ P(At), for any s.
This implies Condition (c).

George Voutsadakis (LSSU)
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o There is a process satisfying Condition (a).
Moreover, we have shown that it must then satisfy Condition (c).
But Condition (c) determines the finite dimensional distributions of
(Xt)e>o0.
Hence it determines the distribution of jump chain and holding times.

So, if one process satisfying Condition (c) also satisfies Condition (a),
so must every process satisfying Condition (c).

George Voutsadakis (LSSU)
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o Consider the possibility of starting the process from i at time 0.
o We write IP; as a reminder.

o Set p,'j(t) = ]P’,'(Xt =j)

o By spatial homogeneity, p;j(t) = pj—i(t).

o So we could rewrite the differential equations as

Pio(t) = —Apio(t), pio(0) = dio,
pii(t) = Apij—1(t) — Api(t), pi(0) = dj.

o In matrix form, for Q as above,

P'(t) = P(t)Q, P(0)=1.

George Voutsadakis (LSSU)
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If (X¢)e>0 and (Yi)e>o are independent Poisson processes of rates A and
p, respectively, then (X; + Y3)e>0 is a Poisson process of rate A + p.

o We shall use the infinitesimal definition, according to which:

o (Xt)e>0 and (Y:)r>o0 have independent increments;
o As h 0, uniformly in t,

) 1—Ah—+ o(h),
P(Xesn — Xe =1) = Mh+ o(h),

)

)

1 — ph+ o(h),
ph+ o(h).

Set Zt = Xt + Yt.
By hypothesis, (Xt)s>0 and (Y:)e>0 are independent.
So (Z¢)e>0 has independent increments.

George Voutsadakis (LSSU) Markov Chains
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o As h 0, uniformly in t,

P(Zoph—Ze =0) = P(Xeph — Xe = O)P(Yern — Ye = 0)
= (1 —=Xh+o(h))(1 — puh+ o(h))
= 1—(A+u)h+o(h);
P(Zih—Zr=1) = P(Xeoh— Xe =1)P(Yeun — Y =0)
+ P(Xerh — Xe = O)P(Yern — Ye = 1)
= (Ah+o(h))(1 — ph+ o(h))
+ (1 — Ah+ o(h))(wh + o(h))
= (A+p)h+o(h).

Hence (Z;)+>0 is a Poisson process of rate A + .

George Voutsadakis (LSSU) Markov Chains
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Theorem

Let (X¢)r>0 be a Poisson process. Then, conditional on (X;)>0 having
exactly one jump in the interval [s,s + t], the time at which that jump
occurs is uniformly distributed on [s, s + t].

o We shall use the finite-dimensional distribution definition.
By stationarity of increments, it suffices to consider the case s = 0.
Then, for 0 < u < t,

P(h<u and X;=1
P(h<uXe=1) = Hhsgandx=)
P(X,=1 and X;—X,=0)
P(X;=1)
)\ue—Aue—)\(t—u)
Ate—At

u
-
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Let (X:)¢>0 be a Poisson process. Then, conditional on the event

{Xt = n}, the jump times Ji, ..., J, have joint density function
f(tl, ceey tn) = n!t_nl{ogtlg,,,gtnst}.
Thus, conditional on {X; = n}, the jump times Ji, ..., J, have the same

distribution as an ordered sample of size n from the uniform distribution
on [0, t].

o The holding times Si,...,S,11 have joint density function
An+1e7>\(51+"'+5n+1)1{51 51120}
see9on+1—
So the jump times Ji, ..., o1 have joint density function

n+1 _—At,
AT e M o<y <<t e}
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o The jump times Ji, ..., Jor1 have joint density function

1 -\t
AT T ety <<ty 1)
So, for A C R", we have

P((J1,...,Jn) € Aand X; = n)
—P((h,...,Jn) €Aand Jy < t < Jn1)

= e M St tyen Losn<<t,<eydty - dtn.

Now P(X; = n) = e Q)"

n!
So we obtain

P((J1,...,Jn) € AlXe = n) = /A’7!t_"l{ostls---gtngt}dtl---drn'

So f(t1,...,t,) is as claimed.

George Voutsadakis (LSSU) Markov Chains
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o Robins and blackbirds make brief visits to my birdtable.

The probability that in any small interval of duration h a robin will
arrive is found to be ph + o(h).

The corresponding probability for blackbirds is Sh + o(h).
What is the probability that the first two birds | see are both robins?
What is the distribution of the total number of birds seen in time t?

Given that this number is n, what is the distribution of the number of
blackbirds seen in time t?

George Voutsadakis (LSSU)
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o By the infinitesimal characterization:

o The number of robins seen by time t is a Poisson process (R;)¢>o of
rate p;
o The number of blackbirds is a Poisson process (B;):>o of rate 3.

The times spent waiting for the first robin or blackbird are
independent exponential random variables:

o 51 of parameter p;
o T7 of parameter £3.
So a robin arrives first with probability /HLB'

By the memoryless property of Ti, the probability that the first two
2

birds are robins is —L(HB)Q.

By a previous theorem,the total number of birds seen in an interval of
duration t has Poisson distribution of parameter (p + [)t.

George Voutsadakis (LSSU)
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o Finally

P(B:=k and Ri=n—k
P(B = kIR + By =n) = HEgraseRen-tl
e_'Bﬂk e—ppn—k
K (n—K)!
e 0B (pip)n
_ B \k =
() Gap) G

So if n birds are seen in time t, then the distribution of the number of

blackbirds is binomial of parameters n and /ﬂ%.

George Voutsadakis (LSSU) Markov Chains
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Subsection 5

Birth Processes
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o A birth process is a generalization of a Poisson process in which the
parameter ) is allowed to depend on the current state of the process.

o The data for a birth process consist of birth rates
0<gi<oo, j=0,1,2,....

o We begin with a definition in terms of jump chain and holding times.

o A minimal right-continuous process (X;)¢>0 with values in
{0,1,2,...} U{oo} is a birth process of rates (q; : j > 0) if,
conditional on Xy = i:

o Its holding times 51, S5, ... are independent exponential random
variables of parameters q;, gj11, - . ., respectively;
o lIts jump chain is given by Y, =i+ n.

qo0 q q2 qs

George Voutsadakis (LSSU)
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Birth Processes (@Q-Matrix)

o The @-matrix is

—qo0 qo0
—q1 a1
Q= —q2 Qq
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o Consider a population in which each individual gives birth after an
exponential time of parameter A, all independently.

If / individuals are present then the first birth will occur after an
exponential time of parameter /).

Then we have i + 1 individuals and, by the memoryless property, the
process begins afresh.

Thus the size of the population performs a birth process with rates
qi = A

Let X; denote the number of individuals at time t.
Suppose Xy = 1.
Write T for the time of the first birth.

George Voutsadakis (LSSU)
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o Now we have

E(X:) = E(Xil7<:)+E(Xelrse)

= [y AeME(X|T = s)ds + [ Xe ME(X| T = s)ds

= [y AeTSE(X|T = s)ds + [[° Ae™**ds

= [y AeTSE(X|T = s)ds + e .
Put u(t) = E(X}).
Then

E(Xe| T = s) = 2u(t — s).
So .
u(t) = / 2Ae 5t — s)ds + e,
0

George Voutsadakis (LSSU) Markov Chains
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o We found u(t) = [5 2Ae ™ u(t — s)ds + e
Setting r =t — s,

u() = Jo AT Iu(r)dr + e
= 2\ [ eMpu(r)dr + e

So .

eMu(t) = 2)\/ e p(r)dr + 1.

0

By differentiating we obtain

XeMpu(t) + e Myl (t) = 2xeM u(t)

w'(t) = Au(t).

So the mean population size grows exponentially,

E(Xt) == eAt .

George Voutsadakis (LSSU) Markov Chains
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o Much of the theory associated with the Poisson process goes through
for birth processes with little change.

o But some calculations can no longer be made so explicitly.

X

o The most interesting new phenomenon  *
present in birth processes is the ;
possibility of explosion. ﬁ

o For certain choices of birth rates, a B D f-:
typical path will make infinitely many ;
jumps in a finite time.

o The convention of setting the process to equal oo after explosion is
particularly appropriate for birth processes!

George Voutsadakis (LSSU)
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Let (X¢)e>0 be a birth process of rates (g; : j > 0), starting from 0.
If Zfioqu < 00, then P({ < 00) = 1.
If 3% qu = 00, then P(¢ = 00) = 1.

o We apply a previous theorem to the sequence of holding times

51,%,....

Theorem (Markov Property)

Let (X¢)t>0 be a birth process of rates (g; : j > 0). Then, conditional on
Xs =1, (Xs4+t)e>0 is a birth process of rates (gj : j > 0) starting from i
and independent of (X, : r <'s).

George Voutsadakis (LSSU) Markov Chains
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o We shall shortly prove a theorem on birth processes which generalizes
the key theorem on Poisson processes.

o The Poisson probabilities arose as the unique solution of a system of
differential equations, essentially the forward equations.
o Now we can still write down the forward equation

P'(t)=P(t)Q, P(0)=1.
In components
pio(t) = —pio(t)q0,  Pio(0) = dio;
Forj=1,2,...,
pi(t) = pij-1(t)gi-1 — pii(t)q;,  pi(0) = dj;.

o These equations still have a unique solution.
o But it is not as explicit as before.
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o We must have
pio(t) = dioe™ L.

o This can be substituted in the equation

pi1(t) = pio(t)qo — pir(t)q1, pi(0) = di.

o This equation can be solved to give
t
pir(t) = die” "t + 5;0/ qoe e~ n(t=s)gs,
0

o Now we can substitute for p;1(t) in the next equation up the
hierarchy and find an explicit expression for p;>(t), and so on.

George Voutsadakis (LSSU)



Let (Xt)e>0 be an increasing, right-continuous process with values in
{0,1,2,...} U{oo}. Let 0 < gj < oo, for all j > 0. Then the following
three conditions are equivalent:
(Jump Chain/Holding Time Definition) Conditional on Xy = i/, the
holding times 51, S», ... are independent exponential random variables
of parameters qj, gj+1,- . ., respectively, and the jump chain is given
by Y, =i+ n for all n;
(Infinitesimal Definition) For all t, h > 0, conditional on X; = i,
Xiip is independent of (Xs : s < t) and, as h N\ 0, uniformly in ¢,

P(Xern = i|Xe = i) = 1—gih+ o(h),
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(Transition Probability Definition) For all n=0,1,2,..., all times
0<ty<- - <thr1 and all states iy, ..., int1,

P(Xt,,+1 — in+1‘Xt0 = iOa o ath — ’n) — Pi,,i,,+1(tn+1 - tn)a

where (p;j(t) : i,j = 0,1,2,...) is the unique solution of the forward
equations.
If (X¢)r>0 satisfies any of these conditions then it is called a birth process
of rates (g; : j > 0).

o Suppose Condition (a) holds.

By the Markov Property, for any t, h > 0, conditional on X; =/, X;1p
is independent of (X : s < t).

George Voutsadakis (LSSU)
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As h X\, 0, uniformly in t,

P(Xepn > i +1Xe=10) = P(Xp>i+1X =1)
P(J; < h|Xo = 1)
1— e 9ih
Moreover,

P(Xewn >0 42| Xe = 1) P(Xp > i +2|Xo =1)

P(h < h|Xo =)

P(S1 < hand Sy < h| Xy =)
(1-— e_qih)(]_ —_ e—qi+1h)

o(h).

Al

This implies Condition (b).

George Voutsadakis (LSSU) Markov Chains
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o If (b) holds, then, for k =i+2,i+3,..., as h 0, uniformly in ¢t
Set
pij(t) = P(Xe = j|Xo = i).
Then, for j=1,2,...,
pi(t + h) = B(Xern = jI1Xo = i)
= Lhei P(Xe = kIXo = )P(Xeyn = jIXe = k)
= pij(t)(1 — gjh + o(h)) + pij-1(t)(gj—1h+ o(h)) + o(h).

So
pij(t + h) — p;(t)
h

= pij-1(t)gj-1 — pij(t)q; + O(h).

George Voutsadakis (LSSU) Markov Chains
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o As in the proof of a previous theorem, we can deduce that:
o pji(t) is differentiable;
o Satisfies the differential equation

pij(t) = pij-1(t)gi-1 — pii(t) ;-
By a simpler argument we also find
pio(t) = —pio(t)qo-

Thus
(pij(t) 1 i,j=0,1,2,...)

must be the unique solution to the forward equations.

George Voutsadakis (LSSU) Markov Chains
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o If (Xt)e>o satisfies Condition (b), then certainly
P(Xt,. = int1|Xo = lo,- -, Xz, = in) = P( X,y = int1| Xz, = in)-

But also (Xt,,,)s>0 satisfies Condition (b).
So, by uniqueness for the forward equations, we have

]P)(th+1 = in+1|th = In) = pinin+1(tn+1 - tn)

Hence (X;)¢>0 satisfies Condition (c).
(c)=(a) This mimics the proof of the implication (c)=-(a) of the
theorem for Markov processes.

George Voutsadakis (LSSU)
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Subsection 6

Jump Chain and Holding Times
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o Let / be a countable set.
o The basic data for a continuous-time Markov chain on / are given in
the form of a @-matrix.
o Recall that a Q-matrix on / is any matrix Q = (g;j : /,j € /) which
satisfies the following conditions:
0 < —gji < oo, for all i;
qij > 0, for all i # J;
Zje, gij =0, for all /.
o We will sometimes find it convenient to write g; or g(/) as an
alternative notation for —gj;.

George Voutsadakis (LSSU)
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o We are going to describe a simple procedure for obtaining from a
Q-matrix @ a stochastic matrix I1.

o The jump matrix 1= (7 : i,j € I) of Q is defined by

o %, if j £ i and g; # 0, o 0, ifg #0,
g 0, ifj#iandg =0, ! 1, ifq=0.

o This procedure is best thought of row by row:

o For each i € I, we take, where possible, the off-diagonal entries in the
i-th row of @ and scale them so they add up to 1, putting a 0 on the
diagonal.

o This is only impossible when the off-diagonal entries are all 0.

Then we leave them alone and put a 1 on the diagonal.

George Voutsadakis (LSSU)



Continuous Time Markov Chains |

o The Q-matrix

-2 1 1
Q= 1 -1 0
2 1 -3
has the diagram on the right.
The jump matrix 1 of @ is given by 1
0 3 3 ) .
n= 1 0O ’ °
2 1
3 30

It has the diagram on the right.

wl=

George Voutsadakis (LSSU) Markov Chains
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o Recall that a minimal process is one which is set equal to co after
any explosion.

o A minimal right-continuous process (X¢)¢>0 on / is a Markov chain
with initial distribution A and generator matrix Q if:
o lIts jump chain (Y;)s>0 is discrete-time Markov(A, I);
o For each n > 1, conditional on Yy, ..., Y,_1, its holding times
S1,...,S, are independent exponential random variables of parameters

a(Yo),...,q(Yn_1), respectively.
o We say (X¢)¢>0 is Markov (A, Q) for short.

George Voutsadakis (LSSU)
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o We can construct such a process as follows:
o Let (Y,)n>0 be discrete-time Markov(A, );

o Let Ty, Ty,... be independent exponential random variables of
parameter 1, independent of (Y,)n>0.
o Set:
— Tn .
° Sn = gwiny

o Jh=51+-+ 5
{ Y,, if J, <t < Jy41 for some n,
o Xt = o
00, otherwise.

o Then (X¢)¢>0 has the required properties.

George Voutsadakis (LSSU) Markov Chains
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A Second Construction

o Begin with:

o An initial state Xy = Yy with distribution A;

o Anarray (T/ :n>1,j € ) of independent exponential random

variables of parameter 1.
o Then, inductively for n =0,1,2,...,if Y, =i, set:
i jij ..
O Siuy =122, for j# i
o Spy1 =infjz 5{:+1?.
_ j, If 5{1+1 = Sn+1 < 00,
¢ Tt { i, if Spi1 = o0.
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o Conditional on Y, = i, the random variables Sf;+1 are independent
exponentials of parameter g;; for all j # /.
o So, by a previous theorem, conditional on Y, = i:
o S,11 is exponential of parameter q; = Z#,. qij;
o Y41 has distribution (7w : j € 1);
o Sp11 and Y41 are independent, and independent of Yp,..., Y, and
S1,--,5,.
o This construction presents a justification for calling:

o g; the rate of leaving /;
o gj; the rate of going from j to ;.

George Voutsadakis (LSSU)
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o Our third construction of a Markov chain with generator matrix Q
and initial distribution X\ is based on the Poisson process.

o Imagine the state-space / as a labyrinth of chambers and passages.

o Each passage is shut off by a single door which opens briefly from
time to time to allow us through in one direction only.

o Suppose the door giving access to chamber j from chamber i opens
at the jump times of a Poisson process of rate gj;.

o We take every chance we can to move.

o Then we will perform a Markov chain with Q-matrix Q.

George Voutsadakis (LSSU)
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o We begin with:
o An initial state Xy = Yy with distribution X;
o A family of independent Poisson processes {(N{j)tzo cij e li # T,
(NZ)>0 having rate qij-

o We set Jp = 0.
o We define inductively for n =0,1,2,...,
A inf{t > J, NtY”j £ N}:”j for some j £ Y,,};
Yoir j, if Jop1 < oo and N}:"fl # N,
i, if Jn_|_1 = OQ.

o The first jump time of (N{):>0 is exponential of parameter gj;.
o So, by a previous theorem, conditional on Yy = i:

o Ji is exponential of parameter q; = Z#,- qij;

o Yi has distribution (7j; : j € /);

o Ji and Yj are independent.

George Voutsadakis (LSSU)
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o Now suppose T is a stopping time of (X¢)¢>o-

o Suppose we condition on Xy and on the processes (fo)tzo for
(k,€) # (i, j), which are independent of N/ .

o Then {T < t} depends only on (NY : s < t).

o By the Strong Markov Property of the Poisson process,

NY o N N
Ne =N . — N7

is a Poisson process of rate gj; independent of (Né’ :s<T), and
independent of Xo and (NK);>o for (k,€) # (i, ).

o Hence, conditional on T < oo and X7 =i, (X74+t)e>0 has the same
distribution as (X;)s>0 and is independent of (X5 :s < T).

George Voutsadakis (LSSU)
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o In particular, we can take T = J,.
o We see that, conditional on J, < oo and Y, = I:

o S,11 is exponential of parameter g;;

o Y41 has distribution (m; : j € 1);

o S,11 and Y11 are independent, and independent of Yp,..., Y, and
S1,...,S,.

o Hence, (X¢)r>0 is Markov(A, Q).
o Moreover, (X;¢)r>0 has the Strong Markov Property.

o The conditioning on which this argument relies requires some further
justification, especially when the state-space is infinite.

o So we avoid relying on this third construction in the development of
the theory.
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Subsection 7

Explosion
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Explosion Time

o Consider a process with:

o Jump times Jo, J1, Jo, . . .;
o Holding times 51, Sy, . . ..

o The explosion time ( is given by

¢ =supJd, = ZS,,.
n n=1
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Let (X¢)t>0 be Markov(A, Q). Then (X;)¢>0 does not explode if any one
of the following conditions holds:

| is finite;
SUpjes qi < O0;
Xo =1, and i is recurrent for the jump chain.

o Set T, = q(Yn-1)Sn-
Then Ty, Ty, ... are independent E(1) and independent of (Y})n>0.
In Cases (i) and (ii), we have:

o g =sup;qj < oo;

o q¢> > T,= o0 with probability 1.
In Case (iii), we know that (Y,),>0 visits i infinitely often, at times
N1, Ny, ... say. Then q;¢ > anozl Tn, +1 = oo with probability 1.

George Voutsadakis (LSSU) Markov Chains
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o We denote by P; the conditional probability
Pi(A) =P(A|Xp = 1).
o It is a simple consequence of the Markov property for (Y,)s>0 that,
under PP, the process (X;)¢>0 is Markov(d;, Q).
o We say that a Q-matrix Q is explosive if, for the associated Markov
chain
Pi(¢ < o) > 0, for some i € I.

o Otherwise Q is non-explosive.

o The result just proved gives simple conditions for non-explosion and
covers many cases of interest.
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Let (Xt)e>0 be a continuous-time Markov chain with generator matrix Q
and write ¢ for the explosion time of (X;)s>o. Fix > 0 and set
z; =E;(e7%). Then z = (z; : i € I) satisfies:
|zi| <1, for all i
Rz = 0z.
Moreover, if z also satisfies (i) and (ii), then z; < z;, for all i.

o Condition on Xy = i.
The time and place of the first jump are independent.
Also, Ji is E(q;) and Pi(X), = k) = mik.
By the Markov Property of the jump chain at time n = 1, conditional
on Xy =k, (Xj+¢)e>0 is Markov(dx, Q) and independent of Jj.
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o So we have

Ei(e %X, = k) = Eij(e e 225X, = k)
Jo e qiem 9t dtE (e7%)
- Gz
T git0°
> qim ka
= Y Pi(Xy, = KEi(e™ Xy, = k) = Z =t
k#i k#i

Recall that g; = —gj; and g;7jx = qik.

Then - ka
(9 qll Zj = 9 +qi Z — Z ik Zk-
k#i k#i

So 0z; = gijzi + Zk¢; QikZk = D kel GikZk-
So z satisfies (i) and (ii).
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o Note that the same argument also shows that

E,-(e_eJ"“) —
k#i

ik @ (=0
,+9 K(e).

Suppose that Z also satisfies Conditions (i) and (ii).
Then, in particular, z; < 1 = E;(e~%%), for all i.
Suppose inductively that z; < E;(e/).
Then, since z satisfies Condition (ii),

% = 9imik = GiTik @ (e —9J,,) _ E,-(e‘ej"“).

k >
k;éiqi‘l'e ki I‘I"g

Hence, z; < E,-(e_eJ"), for all n.
By Monotone Convergence, E;(e~%%") — E;(e7%) as n — .

So z; < z;, for all i.
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Corollary

For each 6 > 0, the following are equivalent:
Q is non-explosive;
Qz =6z and |z| < 1, for all i, imply z = 0.

o Suppose Condition (a) holds.
Then P;(¢ = o0) = 1.
So E;(e %) =0.
By the theorem, @z = Az and |z| < 1 imply z; < E;(e%).
Hence z < 0. By symmetry z > 0. Hence (b) holds.
Conversely, suppose Condition (b) holds.
Then, by the theorem, E;(e=%) = 0, for all /.
So P;(¢ = 00) = 1.
This proves (a).
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Subsection 8

Forward and Backward Equation
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o Recall that a random variable T with values in [0, o] is a stopping
time of (X;):>o if, for each t € [0, 00), the event {T < t} depends
only on (Xs:s <t).

Theorem (Strong Markov Property)

Let (X¢)t>0 be Markov(A, Q) and let T be a stopping time of (X:)¢>o.
Then, conditional on T < oo and X1 =i, (X74¢)r>0 is Markov(d;, Q) and
independent of (Xs:s < T).

George Voutsadakis (LSSU) Markov Chains



Let (Xt)¢>0 be a right-continuous process with values in a finite set /. Let
Q be a @-matrix on [ with jump matrix 1. Then the following are
equivalent:

(Jump Chain/Holding Time Definition) Conditional on Xy = i:

o The jump chain (Y;)n>0 of (Xt)t>0 is discrete-time Markov(d;, IM);

o For each n > 1, conditional on Yjp,..., Y,_1, the holding times
Si,...,S, are independent exponential random variables of parameters
q(Yo),...,q(Ya—1), respectively;

(Infinitesimal Definition) For all t, h > 0, conditional on X; = i,
Xetp is independent of (X; : s < t) and, as h \, 0, uniformly in t, for
all j,

P(Xe+n = j|Xe = i) = 6j; + qih + o(h);
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(Transition Probability Definition) For all n =0,1,2,..., all times
0<tg<tg <--- <tyy1 and all states i, ..., int1,

P(Xt,i1 = in+1lXey = o, - s Xty = in) = Pininy1 (tn1 — tn),
where (p;j(t) : i,j € I,t > 0) is the solution of the forward equation
P'(t) = P(t)Q, P(0)=1.

If (X¢)t>0 satisfies any of these conditions, then it is called a Markov
chain with generator matrix Q. We say that (X;):>0 is Markov(}, Q)
for short, where X is the distribution of Xj.

George Voutsadakis (LSSU)
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o Suppose (a) holds. Then, as h \, 0,
P;i(Xp, = i) > Pi(Jy > h) = e 9" =14 g;;h + o(h).
For j # i, we have
Pi(Xp=j) > Pi(h<hYi=j5 >h)
= (1- e 9M)r;e-ah
= gjjh+ o(h).

Thus, for every state j, P;j(Xp = j) > d;; + qjjh + o(h).

By taking the finite sum over j, we see that these must be equalities.
By the Markov Property, for any t, h > 0, conditional on X; =/, X;1p
is independent of (X : s < t).

As h 0, uniformly in t,

P(Xern = j|Xe = 1) = Pi(Xp = j) = 6 + qjh + o(h).

George Voutsadakis (LSSU)



Continuous Time Markov Chains |

o Set pii(t) = BilXe = j) = P(Xe = jXo = i)
If (b) holds, then for all t,h > 0, as h \, 0, uniformly in t,
pi(t+h) = > e Pi(Xe = K)P(Xeqn = j| Xe = k)
= > ker Pi(t)(0kj + qijh + o(h)).

Since [/ is finite, we have

Pt M) ZPilD) _ 5™ b (e)gig + O(h).
kel

So, letting h \, 0, we see that pj;(t) is differentiable on the right.
By uniformity, we can replace t by t — h and let h \, 0 to get:

o pjj(t) is continuous on the left;

o pj;j(t) is differentiable on the left, hence differentiable;

o pjj(t) satisfies the forward equations

PU ZP:k qkp Pij ) = dj;.

kel
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o By a previous theorem, since / is finite, p;j(t) is the unique solution of

pi(t) = Zpik(f)ija pij(0) = 0.
kel

Also, if (b) holds, then
]P)(th+1 = in+1|Xto = io, oo o ,th = in) = ]P)(th+1 = in+1|th = In)

Moreover, (b) holds for (X¢,++¢)t>0-
So, by the above argument,

P(th+1 = inp1|Xe, = in) = pinin+1(t”+1 — tp).
This proves (c).
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o (c)=(a) again mimics the one for Poisson processes.
There is a process satisfying Part (a).
We have shown that it must then satisfy Part (c).

But Condition (c) determines the finite-dimensional distributions of

(Xt)tzo-

Hence it determines the distribution of jump chain and holding times.

So if a process satisfying Part (c) also satisfies Part (a), so must every
process satisfying Part (c).

George Voutsadakis (LSSU)
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o For infinite state space, the backward equation may still be written in
the form
P'(t) = QP(t), P(0)=1I.

o We have an infinite system of differential equations

pi(t Z qikPki(t), pi(0) = 4;
kel

o So the results on matrix exponentials no longer apply.

o A solution to the backward equation is any matrix

(Py(t) :ij € 1)

of differentiable functions satisfying this system of differential
equations.

George Voutsadakis (LSSU)
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Let Q be a Q-matrix. Then the backward equation
P'(t) = QP(t), P(0)=1,

has a minimal non-negative solution (P(t) : t > 0). This solution forms a
matrix semigroup

P(s)P(t) = P(s+t), foralls,t>0.

o We shall prove this result by a probabilistic method in combination
with the following result.

o Note that, if / is finite, we must have P(t) = e'®.
o We call (P(t): t > 0) the minimal non-negative semigroup
associated to @, or simply the semigroup of Q.



Let (Xt)e>0 be a minimal right continuous process with values in /. Let Q
be a Q-matrix on / with jump matrix I and semigroup (P(t): t > 0).
Then the following conditions are equivalent:

(Jump Chain/Holding Time Definition) Conditional on Xy = i:

o The jump chain (Y;)n>0 of (X¢)t>0 is discrete time Markov(d;, I1);

o For each n > 1, conditional on Yjp,..., Y,_1, the holding times
S1,...,S, are independent exponential random variables of parameters
q(Yo),...,q(Ya_1) respectively;

(Transition Probability Definition) For all n =10,1,2,..., all times
0<ty<t; < - <tyy1 and all states iy, i1, - - -, int1,

]P(an+1 = in+1|Xt0 = iO) °coo aan = I") = pinin+1(tn+l — tn)'
If (X¢)e>0 satisfies any of these conditions, it is called a Markov

chain with generator matrix Q. We say (X;)¢>0 is Markov(A, Q)
for short, where X is the distribution of Xj.
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o We know that there exists a process (X;):>o satisfying (a).
Define P(t) by
pij(t) = Pi(Xe = Jj).

Step 1: P(t) satisfies the backward equation.
Conditional on Xy = i we have:

o s~ E(qi);

[ XJ1 N(?T,'k tk e I)
Conditional on J; = s and X, = k, (Xs1+t)t>0 ~ Markov(dk, Q).

So _ ot
P,’(Xt =/, t< Jl) — e i 5,’j;
Pi(J1 < t, Xy, = k,Xe = j) = [; qie” W mpp(t — s)ds.
Therefore,
pU(t) = PI(Xt:J7t<J1)+Zk7£I]P)I(J1 S t’XJl :k,Xt :_])

= UG+ Yy Jo gie” Wi (t — 5)ds.
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o We derived

t
pi(t) =55+ Y [ qie " mupglt - ).
Kk£i /0
Change variable u = t — s in each of the integrals.
Interchange sum and integral by Monotone Convergence.
Multiply by e%* to obtain

t
eqitp;j(t) = 5,'j +/ Z q;eq""w,-kpkj(u)du.
0 ki

This equation shows that:

o pj;j(t) is continuous in t for all i, j;

o The integrand is a uniformly converging sum of continuous functions.
So it is continuous.

George Voutsadakis (LSSU)
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o Hence, pjj(t) is differentiable in t and satisfies
¥ (qipyi(t) + pj(t)) = Y qie¥ miupii(t)-
ki
Recall that g; = —qji and qjx = qimix, for k # i.
Then, on rearranging, we obtain
pU Z qlkpkj(t

kel

So P(t) satisfies the backward equation.
The integral equation

pl.l(t)_ S q,t(; +Z/ gié —as 7I'lkpkj(t_s)ds
k#i

is called the integral form of the backward equation.
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Step 2: If Is(t) is another non-negative solution of the backward
equation, then P(t) < P(t), hence P(t) is the minimal non-negative
solution.

The argument used to prove the integral form also shows that

]P),'(Xt :j, t < Jn_|_1)
= e + Y ki Jo Gie T TUPR(Xes = j, t — 5 < Jp)ds.

If Is(t) satisfies the backward equation, then, by reversing the steps in
the last part of Step 1, it also satisfies the integral form:

t
pii(t) = e~y + Z/ qie” T miPij(t — s)ds.
ki 70
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o If ,E(t) >0, then Pi(X¢ = j,t < Jo) =0 < p;(¢), for all i,j and t.
Suppose inductively that, for all i,  and t,

Bi(X: = J, t < Jn) < Biy(2).
Then by comparing the preceding equations, for all 7, and t,
Pi(Xe = ji t < Jny1) < py(2).

So the induction proceeds.

Hence, for all /,j and t,

p,'j(t) = nirgOP;(Xt =j, t < Jn) < [3,1(1')

George Voutsadakis (LSSU) Markov Chains
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Step 3: Since (X;)t>0 does not return from oo, we have,
pi(s+t) = Pi(Xsrr =J)
ZkEI ]P)i(XS—i-t :J|Xs = k)]P),(Xs = k)

= Zkel Pi(Xs = k)Px(Xe = Jj)
(Markov Property)

= D ker Pik(s)pPxi(t)-

Hence (P(t) : t > 0) is a matrix semigroup.

This completes the proof of the first theorem.

George Voutsadakis (LSSU) Markov Chains
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Step 4: Suppose, as we have throughout, that (X;)¢>0 satisfies (a).
Then, by the Markov Property

P(th+l = in+1|Xt0 = io, e ,th = In) = Pin(th+1—tn = in+1)
= pini,,+1(tn+1 - tn)-

So (Xt)e>o satisfies (b).

We complete the proof of the second theorem by the usual argument
that (b) must now imply (a) (as done in a previous proof).

George Voutsadakis (LSSU)
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Time Reversal Identity

We have

q,-n]P’(J,, <t< Jn+1’Y0 =i, Y1 =1i1,..., Yy = in)
= qioP(Jn <t< Jn+1|Y0 = in, ceey Yn—l = il: Yn = iO)'

o Conditional on Yy = ig, ..., Yy = ipn, the holding times Si,...,Sp+1

are independent with S, ~ E(qj,_,).
So the left-hand side is given by

n
/ qi, exp {—ai,(t —s1 =+ = 5a)} [ | iy exp {—ai,_, 5k} s,
A(t) k=1

where

A(t)={(s1,...,8n) :S1+ - +s,<tandsp,...,s, >0}
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o We have
n
/ qgi,exp {—qi,(t —s1 — -~ —sp)} H i, <P {—qi,_, Sk } dsk.
A(t) k=1

Substitute
uy = t—s —--—5Sp,
Ug = Sp—k+2, k=2,...,n.

We get

qin]P)(Jn <t< Jn+1|Y0 =1g,- -, Yn= in)

= fA(t) Qi exp{—qi,(t —u1 — -~ —up)}
[The1 i ror P {—0i, 4 \q Uk pdug
- qu]P)(Jn S t < J"+1|YO = in7 ceey Yn—l = I]_7 Yn = io)
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The minimal non-negative solution (P(t) : t > 0) of the backward
equation is also the minimal non-negative solution of the forward equation

P'(t) = P(t)Q, P(0)=1.

o Let (X¢)t>0 be the minimal Markov chain with generator matrix Q.

By the previous theorem, we know that

pi(t) = Pi(Xe =)
Dm0 2ok Pildn < t < Jpy1, Yao1 =k, Y = ).

George Voutsadakis (LSSU) Markov Chains
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The Forward Equation (Cont'd)

o By the preceding lemma, for n > 1, we have
]Pi(Jn <t< Jn+1|Yn—1 = k, Yn =./)
= Z_J’PJ(J" <t< Jn+1|Y1 =k, Y, = I)

- %fot qje_qjst(Jn—l <t-s< Jnlyn—l = i)dS
(by the Markov Property of (Y})n>0)
=q; fO e_qfs%]}b,'(.jn_l <t—-s< Jn|Yn_1 = k)dS.
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o Now we get
pij(t)

= 8™ + 30021 Yoy Jo Bildn-1 S t =5 < p| Vo1 = k)

XPi(Yn—1 =k, Yn = j)que~%°ds
= (5,-je‘qft +

Sy Yokt Jo Pildno1 St — 5 < Jp, Vo1 = k)qumije95ds
= 5Ue—q,-t ar fot Zk;éj Pik(t = s)qkje_qjsds,
the interchange of sum and integral by Monotone Convergence.
This is the integral form of the forward equation.

Make a change of variable u = t — s in the integral.
Then multiply by e%! to obtain

pij(t)e?" = 0 +/ Zplk u)qyje¥!du.
k#j
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o We have seen that e%*p;(t) is increasing for all i, k.
Hence, one of the following occurs:
© > 4 Pik(u)qi; converges uniformly, for u € [0, t];
© > ki Pik(u)qiy = oo, for all u > ¢.
However, the left-hand side in the previous equation is finite for all t.
So the last option would contradict the preceding equation.
So it is the former option that holds.
From the backward equation, p;j(t) is continuous for all /, .
By uniform convergence, the integrand is continuous.

So we may differentiate to obtain

pi(t) + pi(t)q; = Zplk(t ;-
k#j

Hence, P(t) solves the forward equation.
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o To establish minimality let us suppose that p;;(t) is another solution
of the forward equation.

Then we also have

pij(t) = dje” 9" + Z/ pik(t — s)qkie”¥°ds.
k#j
A similar argument leading to the formula for p;(t) shows that, for

n>0,

Pi(X; = j, t < Jny1) = dje 9t +Z/ Pi(Xe = j, t < Jn)qije” °ds.
k#j
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o If P(t) > 0, then, for all /,j and t,
P(X: =j,t < Jo) =0 < pji(t).
Suppose inductively that, for all i, and t,
Pi(Xe = j, t < Jn) < pi(t).

Then by comparing the formulas on the preceding slide, we obtain, for

all i,j and t,
Pi(X: = j,t < Jnt1) < pij(t).

So the induction proceeds.
Hence, for all i, and t,

pii(t) = nILngoP,-(Xt =j,t < Jn) < pij(t).

George Voutsadakis (LSSU)



	Outline
	Continuous Time Markov Chains I
	Q-Matrices and Their Exponentials
	Continuous Time Random Processes
	Some Properties of the Exponential Distribution
	Poisson Processes
	Birth Processes
	Jump Chain and Holding Times
	Explosion
	Forward and Backward Equation


