### Introduction to Markov Chains

### George Voutsadakis<sup>1</sup>

<sup>1</sup>Mathematics and Computer Science Lake Superior State University

LSSU Math 500

- Further Theory
  - Martingales
  - Potential Theory
  - Electrical Networks
  - Brownian Motion

### Subsection 1

Martingales

### Example

• Consider the simple symmetric random walk  $(X_n)_{n\geq 0}$  on  $\mathbb{Z}$ , which is a Markov chain with the following diagram



- The average value of the walk is constant.
- In precise terms we have  $\mathbb{E}X_n = \mathbb{E}X_0$ .
- Indeed, the average value of the walk at some future time is always simply the current value.
- This stronger property says that, for  $n \ge m$ ,

$$\mathbb{E}(X_n-X_m|X_0=i_0,\ldots,X_m=i_m)=0.$$

• The stronger property expresses that  $(X_n)_{n\geq 0}$  is a martingale.

### $\mathsf{Filtratior}$

- Let us fix for definiteness a Markov chain  $(X_n)_{n\geq 0}$ .
- Write  $\mathcal{F}_n$  for the collection of all sets depending only on  $X_0, \ldots, X_n$ .
- The sequence  $(\mathcal{F}_n)_{n\geq 0}$  is called the **filtration** of  $(X_n)_{n\geq 0}$ .
- We think of  $\mathcal{F}_n$  as representing the state of knowledge, or history, of the chain up to time n.

### Martingales

- A process  $(M_n)_{n\geq 0}$  is called **adapted** if  $M_n$  depends only on  $X_0,\ldots,X_n$ .
- A process  $(M_n)_{n\geq 0}$  is called **integrable** if

$$\mathbb{E}|M_n|<\infty,\quad \text{for all } n.$$

• An adapted integrable process  $(M_n)_{n\geq 0}$  is called a **martingale** if, for all n and all  $A\in \mathcal{F}_n$ ,

$$\mathbb{E}[(M_{n+1}-M_n)1_A]=0.$$

### Martingales: Second Formulation

• Note that the collection  $\mathcal{F}_n$  consists of countable unions of elementary events, such as

$${X_0 = i_0, X_1 = i_1, \dots, X_n = i_n}.$$

• It follows that the martingale property is equivalent to saying that, for all n and all  $i_0, \ldots, i_n$ ,

$$\mathbb{E}(M_{n+1}-M_n|X_0=i_0,\ldots,X_n=i_n)=0.$$

### Martingales: Third Formulation

Given an integrable random variable Y, we define

$$\mathbb{E}(Y|\mathcal{F}_n) = \sum_{i_0,...,i_n} \mathbb{E}(Y|X_0 = i_0,...,X_n = i_n) \mathbb{1}_{\{X_0 = i_0,...,X_n = i_n\}}.$$

- The random variable  $\mathbb{E}(Y|\mathcal{F}_n)$  is called the **conditional expectation** of Y given  $\mathcal{F}_n$ .
- In passing from Y to  $\mathbb{E}(Y|\mathcal{F}_n)$ , we replace, on each elementary event  $A \in \mathcal{F}_n$ , the random variable Y by its average value  $\mathbb{E}(Y|A)$ .
- It is easy to check that an adapted integrable process  $(M_n)_{n\geq 0}$  is a martingale if and only if, for all n,

$$\mathbb{E}(M_{n+1}|\mathcal{F}_n)=M_n.$$

## Martingales: Third Formulation (Cont'd)

- Conditional expectation is a partial averaging.
- So, if we complete the process and average the conditional expectation, we should get the full expectation

$$\mathbb{E}(\mathbb{E}(Y|\mathcal{F}_n)) = \mathbb{E}(Y).$$

In particular, for a martingale

$$\mathbb{E}(M_n) = \mathbb{E}(\mathbb{E}(M_{n+1}|\mathcal{F}_n)) = \mathbb{E}(M_{n+1}).$$

So, by induction,

$$\mathbb{E}(M_n) = \mathbb{E}(M_0).$$

• This was already clear on taking  $A = \Omega$  in our original definition of a martingale.

## Optional Stopping Theorem

• Recall that a random variable  $T:\Omega \to \{0,1,2,\ldots\} \cup \{\infty\}$  is a **stopping time** if

$$\{T=n\}\in\mathcal{F}_n,\quad \text{for all }n<\infty.$$

- An equivalent condition is that  $\{T \leq n\} \in \mathcal{F}_n$ , for all  $n < \infty$ .
- Recall that all sorts of hitting times are stopping times.

### Theorem (Optional Stopping Theorem)

Let  $(M_n)_{n\geq 0}$  be a martingale and let T be a stopping time. Suppose that at least one of the following conditions holds:

- (i)  $T \leq n$ , for some n;
- (ii)  $T < \infty$  and  $|M_n| \le C$  whenever  $n \le T$ .

Then  $\mathbb{E}M_T = \mathbb{E}M_0$ .

# Optional Stopping Theorem (Cont'd)

Assume that Condition (i) holds. Then

$$M_T - M_0 = (M_T - M_{T-1}) + \dots + (M_1 - M_0)$$
  
= 
$$\sum_{k=0}^{n-1} (M_{k+1} - M_k) 1_{k < T}.$$

Since T is a stopping time,  $\{k < T\} = \{T \le k\}^c \in \mathcal{F}_k$ . Since  $(M_k)_{k \ge 0}$  is a martingale,  $\mathbb{E}[(M_{k+1} - M_k)1_{k < T}] = 0$ . Hence,

$$\mathbb{E}M_{T} - \mathbb{E}M_{0} = \sum_{k=0}^{n-1} \mathbb{E}[(M_{k+1} - M_{k})1_{k < T}] = 0.$$

# Optional Stopping Theorem (Cont'd)

• Next, suppose Condition (ii) holds. The preceding argument applies to the stopping time  $T \wedge n$ . So

$$\mathbb{E}M_{T\wedge n}=\mathbb{E}M_0.$$

Then, for all n,

$$|\mathbb{E}M_{T} - \mathbb{E}M_{0}| = |\mathbb{E}M_{T} - \mathbb{E}M_{T \wedge n}|$$

$$\leq \mathbb{E}|M_{T} - M_{T \wedge n}|$$

$$\leq 2C\mathbb{P}(T > n).$$

But 
$$\mathbb{P}(T > n) \to 0$$
 as  $n \to \infty$ .  
So

$$\mathbb{E}M_{\mathcal{T}}=\mathbb{E}M_{0}.$$

## Application to Simple Symmetric Random Walk

- Consider the simple symmetric random walk  $(X_n)_{n\geq 0}$ .
- Suppose that  $X_0 = 0$  and  $a, b \in \mathbb{N}$  given.
- Take

$$T = \inf \{ n \ge 0 : X_n = -a \text{ or } X_n = b \}.$$

- Then:
  - T is a stopping time;
  - $T < \infty$  by recurrence of finite closed classes.
- Thus, Condition (ii) of the Optional Stopping Theorem applies with  $M_n = X_n$  and  $C = a \lor b$ .
- We deduce that

$$\mathbb{E}X_T = \mathbb{E}X_0 = 0.$$

# Application to Simple Symmetric Random Walk (Cont'd)

Now we can compute

$$p = \mathbb{P}(X_n \text{ hits } -a \text{ before } b).$$

- We have:
  - $X_T = -a$  with probability p;
  - $X_T = b$  with probability 1 p.
- So

$$0 = \mathbb{E}X_T = p(-a) + (1-p)b.$$

- Thus,  $p = \frac{b}{a+b}$ .
- The intuition behind the result  $\mathbb{E}X_T = 0$  is very clear:
  - A gambler, playing a fair game, leaves the casino once losses reach a or winnings reach b, whichever is sooner.
  - Since the game is fair, the average gain should be zero.

### Comparison with Gambler's Ruin

- We discussed previously the counter-intuitive case of a gambler who keeps on playing a fair game against an infinitely rich casino, with the certain outcome of ruin.
- This game ends at the finite stopping time

$$T=\inf\{n\geq 0: X_n=-a\},\,$$

where a is the gambler's initial fortune.

- We have  $X_T = -a$ .
- So  $\mathbb{E}X_T \neq 0 = \mathbb{E}X_0$ .
- This does not contradict the Optional Stopping Theorem because neither Condition (i) nor Condition (ii) is satisfied.
- Thus, while intuition might suggest that  $\mathbb{E}X_T = \mathbb{E}X_0$  is rather obvious, some care is needed as it is not always true.

### Martingales and Markov Chains

• We recall that, given a function  $f:I\to\mathbb{R}$  and a Markov chain  $(X_n)_{n\geq 0}$  with transition matrix P, we have

$$(P^n f)(i) = \sum_{j \in I} p_{ij}^{(n)} f_j = \mathbb{E}_i(f(X_n)).$$

#### Theorem

Let  $(X_n)_{n\geq 0}$  be a random process with values in I and let P be a stochastic matrix. Write  $(\mathcal{F}_n)_{n\geq 0}$  for the filtration of  $(X_n)_{n\geq 0}$ . Then the following are equivalent:

- (i)  $(X_n)_{n\geq 0}$  is a Markov chain with transition matrix P;
- (ii) For all bounded functions  $f:I\to\mathbb{R}$ , the following process is a martingale:

$$M_n^f = f(X_n) - f(X_0) - \sum_{m=0}^{n-1} (P - I)f(X_m).$$

# Martingales and Markov Chains (Cont'd)

• Suppose Condition (i) holds. Let f be a bounded function. Clearly  $(M_n^f)$  is adapted.

We show it is also integrable.

We have

$$|(Pf)(i)| = \left|\sum_{j\in I} p_{ij}f_j\right| \leq \sup_j |f_j|.$$

So

$$|M_n^f| \le 2(n+1) \sup_{j} |f_j| < \infty.$$

This shows that  $M_n^f$  is integrable for all n.

Let 
$$A = \{X_0 = i_0, \dots, X_n = i_n\}.$$

By the Markov Property,

$$\mathbb{E}(f(X_{n+1})|A) = \mathbb{E}_{i_n}(f(X_1)) = (Pf)(i_n).$$

## Martingales and Markov Chains (Cont'd)

So we get

$$\mathbb{E}(M_{n+1}^{f} - M_{n}^{f}|A) = \mathbb{E}(f(X_{n+1}) - f(X_{0}) - \sum_{m=0}^{n} (P - I)f(X_{m}) - f(X_{n}) + f(X_{0}) + \sum_{m=0}^{n-1} (P - I)f(X_{m})|A)$$

$$= \mathbb{E}(f(X_{n+1}) - (P - I)f(X_{n}) - f(X_{n})|A)$$

$$= \mathbb{E}[f(X_{n+1}) - (Pf)(X_{n})|A] = 0.$$

Thus,  $(M_n^f)_{n\geq 0}$  is a martingale.

Conversely, suppose Condition (ii) holds.

Then, for all bounded functions f,

$$\mathbb{E}[f(X_{n+1}) - (Pf)(X_n)|X_0 = i_0, \dots, X_n = i_n] = 0.$$

Take  $f = 1_{\{i_{n+1}\}}$ . Then we obtain

$$\mathbb{P}(X_{n+1}=i_{n+1}|X_0=i_0,\ldots,X_n=i_n)=p_{i_ni_{n+1}}.$$

So  $(X_n)_{n\geq 0}$  is Markov with transition matrix P.

### More on Markov Chains and Martingales

#### Theorem

Let  $(X_n)_{n\geq 0}$  be a Markov chain with transition matrix P. Suppose that a function  $f: \mathbb{Z}_+ \times I \to \mathbb{R}$  satisfies, for all  $n \geq 0$ :

- $E|f(n,X_n)| < \infty$ ;
- $(Pf)(n+1,i) = \sum_{j \in I} p_{ij} f(n+1,j) = f(n,i).$

Then  $M_n = f(n, X_n)$  is a martingale.

• We have assumed that  $M_n$  is integrable for all n. Then, by the Markov Property

$$\mathbb{E}(M_{n+1} - M_n | X_0 = i_0, \dots, X_n = i_n)$$

$$= \mathbb{E}_{i_n}[f(n+1, X_1) - f(n, X_0)]$$

$$= (Pf)(n+1, i_n) - f(n, i_n) = 0.$$

So  $(M_n)_{n\geq 0}$  is a martingale.

## Application to a Simple Random Walk

- Suppose  $(X_n)_{n\geq 0}$  is a simple random walk on  $\mathbb{Z}$ , starting from 0.
- Define

$$f(i) = i;$$
  

$$g(n,i) = i^2 - n.$$

- Now  $|X_n| \le n$  for all n.
- Thus:
  - $\mathbb{E}|f(X_n)| < \infty$ ;
  - $\mathbb{E}|g(n,X_n)|<\infty$ .
- Also

$$(Pf)(i) = \frac{i-1}{2} + \frac{i+1}{2} = i = f(i);$$
  

$$(Pg)(n+1,i) = \frac{(i-1)^2}{2} + \frac{(i+1)^2}{2} - (n+1) = i^2 - n = g(n,i).$$

• Hence both  $X_n = f(X_n)$  and  $Y_n = g(n, X_n)$  are martingales.

# Application to a Simple Random Walk (Cont'd)

ullet Consider again, for  $a,b\in\mathbb{N}$  the stopping time

$$T = \inf \{ n \ge 0 : X_n = -a \text{ or } X_n = b \}.$$

By the Optional Stopping Theorem

$$0 = \mathbb{E}(Y_0) = \mathbb{E}(Y_{T \wedge n}) = \mathbb{E}(X_{T \wedge n}^2) - \mathbb{E}(T \wedge n).$$

- Hence,  $\mathbb{E}(T \wedge n) = \mathbb{E}(X_{T \wedge n}^2)$ .
- Let  $n \to \infty$ .
  - The left side converges to  $\mathbb{E}(T)$ , by Monotone Convergence;
  - The right side converges to  $\mathbb{E}(X_T^2)$  by Bounded Convergence.
- So we obtain

$$\mathbb{E}(T) = \mathbb{E}(X_T^2) = a^2p + b^2(1-p) \stackrel{p = \frac{b}{a+b}}{=} ab.$$

### Subsection 2

Potential Theory

### Example

- Consider the discrete-time random walk on the directed graph shown.
- At each step it chooses among the allowable transitions with equal probability.
- Suppose that on each visit to states i = 1, 2, 3, 4 a cost  $c_i$  is incurred, where  $c_i = i$ .



- What is the fair price to move from state 3 to state 4?
- We denote by  $\phi_i$  the expected total cost starting from i.
- The fair price is always the difference in the expected total cost.

# Example (Cont'd)



- Obviously,  $\phi_5 = 0$ .
- The effect of a single step gives:

$$\begin{array}{rcl} \phi_1 & = & 1+\phi_2, \\ \phi_2 & = & 2+\phi_3, \\ \phi_3 & = & 3+\frac{1}{3}\phi_1+\frac{1}{3}\phi_4, \\ \phi_4 & = & 4. \end{array}$$

- Hence  $\phi_3 = 8$ .
- So the fair price to move from 3 to 4 is 4.

### Example: A Variation

- Suppose our process is, instead, the continuous-time random walk  $(X_t)_{t\geq 0}$  on the same directed graph.
- Assume it makes each allowable transition at rate 1.
- A cost is incurred at rate  $c_i = i$  in state i for i = 1, 2, 3, 4.

Further Theory

The total cost is now

$$\int_0^\infty c(X_s)ds.$$

• We wish to find the fair price to move from 3 to 4.

## Example: A Variation (Cont'd)

The expected cost incurred on each visit to i is given by

$$\frac{c_i}{q_i}$$

where

$$q_1 = 1$$
,  $q_2 = 1$ ,  $q_3 = 3$ ,  $q_4 = 1$ .

So we see, as before:

$$\phi_1 = 1 + \phi_2; 
\phi_2 = 2 + \phi_3; 
\phi_3 = \frac{3}{3} + \frac{1}{3}\phi_1 + \frac{1}{3}\phi_4; 
\phi_4 = 4.$$

- Hence  $\phi_3 = 5$ .
- So the fair price to move from 3 to 4 is 1.

## **Example: Another Variation**

- We consider the discrete time random walk  $(X_n)_{n\geq 0}$  on the modified graph shown.
- Where there is no arrow, transitions are allowed in both directions.
- Obviously, states 1 and 5 are absorbing.



- We impose a cost  $c_i = i$  on each visit to i for i = 2, 3, 4.
- There is a final cost  $f_i$  on arrival at i = 1 or 5, where  $f_i = i$ .
- Thus, the total cost is now

$$\sum_{n=0}^{T-1} c(X_n) + f(X_T),$$

where T is the hitting time of  $\{1,5\}$ .

## Example: Another Variation (Cont'd)

- Write, as before,  $\phi_i$  for the expected total cost starting from i.
- Then  $\phi_1 = 1$  and  $\phi_5 = 5$ .
- Moreover:

$$\phi_2 = 2 + \frac{1}{2}(\phi_1 + \phi_3); 
\phi_3 = 3 + \frac{1}{4}(\phi_1 + \phi_2 + \phi_4 + \phi_5); 
\phi_4 = 4 + \frac{1}{2}(\phi_3 + \phi_5).$$

On solving these equations we obtain

$$\phi_2 = 7$$
,  $\phi_3 = 9$ ,  $\phi_4 = 11$ .

• So in this case the fair price to move from 3 to 4 is -2.

### Example

- Consider the simple discrete time random walk on  $\mathbb{Z}$  with transition probabilities  $p_{i,i-1} = q .$
- Let c > 0.
- Suppose that a cost  $c^i$  is incurred every time the walk visits state i.
- We would like to compute the expected total cost  $\phi_0$  incurred by the walk starting from 0.
- We must be prepared to find that  $\phi_0 = \infty$  for some values of c, as the total cost is a sum over infinitely many times.
- Indeed, we know that the walk  $X_n \to \infty$  with probability 1.
- So, for  $c \ge 1$ , we shall certainly have  $\phi_0 = \infty$ .

# Example (Cont'd)

- Let  $\phi_i$  denote the expected total cost starting from i.
- On moving one step to the right, all costs are multiplied by c.
- So we must have

$$\phi_{i+1} = c\phi_i$$
.

By considering what happens on the first step, we see

$$\phi_0 = 1 + p\phi_1 + q\phi_{-1} = 1 + \left(cp + \frac{q}{c}\right)\phi_0.$$

- Note that  $\phi_0 = \infty$  always satisfies this equation.
- We shall see in the general theory that  $\phi_0$  is the minimal non-negative solution.

# Example (Cont'd)

- Let us look for a finite solution.
- We obtained  $\phi_0 = 1 + \left(cp + \frac{q}{c}\right)\phi_0$ .
- Thus,

$$-(c^2p-c+q)\phi_0=c.$$

So

$$\phi_0 = \frac{c}{c - c^2 p - q}.$$

- The quadratic  $c^2p c + q$  has roots at  $\frac{q}{p}$  and 1, and takes negative values in between.
- Hence, the expected total cost is given by

$$\phi_0 = \left\{ \begin{array}{ll} \frac{c}{c-c^2p-q}, & \text{if } c \in \left(\frac{q}{p},1\right), \\ \infty, & \text{otherwise}. \end{array} \right.$$

### The Potentials

- Let  $(X_n)_{n>0}$  be a discrete time chain with transition matrix P.
- Let  $(X_t)_{t\geq 0}$  be a continuous time chain with generator matrix Q.
- As usual, we insist that  $(X_t)_{t>0}$  be minimal.
- We partition the state-space I into two disjoint sets D and  $\partial D$ .
- We call  $\partial D$  the **boundary**.

## The Potentials (Cont'd)

- We suppose that we are given functions:
  - $(c_i : i \in D);$
  - $(f_i: i \in \partial D)$ .
- We denote by T the hitting time of  $\partial D$ .
- Then the associated potential is defined by:
  - In discrete time.

$$\phi_i = \mathbb{E}_i \left( \sum_{n < T} c(X_n) + f(X_T) 1_{T < \infty} \right);$$

In continuous time,

$$\phi_i = \mathbb{E}_i \left( \int_0^T c(X_t) dt + f(X_T) 1_{T < \infty} \right).$$

## Positivity of Costs

- To be sure that the sums and integrals in the potential formulas are well defined, we shall assume for the most part that c and f are non-negative:
  - $c_i \geq 0$ , for all  $i \in D$ ;
  - $f_i \geq 0$ , for all  $i \in \partial D$ .
- More generally,  $\phi$  is the difference of the potentials associated with the positive and negative parts of c and f.
- So the positivity assumption is not too restrictive.
- In the explosive case we always set  $c(\infty) = 0$ .
- So no further costs are incurred after explosion.

### Interpretation of Potential as Cost

- The most obvious interpretation of the potentials is in terms of cost.
- The chain wanders around in *D* until it hits the boundary.
  - Whilst in D, at state i say, it incurs a **cost**  $c_i$  per unit time;
  - When and if it hits the boundary, at j say, a **final cost**  $f_i$  is incurred.
- Note that we do not assume the chain will hit the boundary.
- We do not even assume that the boundary is nonempty.

### Properties of Potential

#### Theorem

Suppose that  $(c_i : i \in D)$  and  $(f_i : i \in \partial D)$  are nonnegative. Set

$$\phi_i = \mathbb{E}_i \left( \sum_{n < T} c(X_n) + f(X_T) 1_{T < \infty} \right),$$

where T denotes the hitting time of  $\partial D$ . Then:

(i) The potential  $\phi = (\phi_i : i \in I)$  satisfies

$$\begin{cases} \phi = P\phi + c & \text{in } D \\ \phi = f & \text{in } \partial D; \end{cases}$$

# Properties of Potential (Cont'd)

#### Theorem (Cont'd)

(ii) If  $\psi = (\psi_i : i \in I)$  satisfies

$$\left\{ \begin{array}{ll} \psi \geq P\psi + c & \text{in } D \\ \psi \geq f & \text{in } \partial D \end{array} \right.$$

and  $\psi_i > 0$  for all i, then  $\psi_i \geq \phi_i$  for all i;

(iii) If  $\mathbb{P}_i(T < \infty) = 1$  for all i, then the system

$$\begin{cases} \phi = P\phi + c & \text{in } D \\ \phi = f & \text{in } \partial D; \end{cases}$$

has at most one bounded solution.

# Properties of Potential (i)

(i) Obviously,  $\phi = f$  on  $\partial D$ . For  $i \in D$ , by the Markov Property

$$\mathbb{E}_{i}\left(\sum_{1\leq n< T} c(X_{n}) + f(X_{T})1_{T<\infty} | X_{1} = j\right)$$

$$= \mathbb{E}_{j}\left(\sum_{n< T} c(X_{n}) + f(X_{T})1_{T<\infty}\right)$$

$$= \phi_{j}.$$

So we have

$$\phi_i = c_i + \sum_{j \in I} p_{ij} \mathbb{E}(\sum_{1 \leq n < T} c(X_n) + f(X_T) 1_{T < \infty} | X_1 = j)$$

$$= c_i + \sum_{j \in I} p_{ij} \phi_j.$$

# Properties of Potential (ii)

(ii) Consider the expected cost up to time *n*:

$$\phi_i(n) = \mathbb{E}_i \left( \sum_{k=0}^n c(X_k) 1_{k < T} + f(X_T) 1_{T \le n} \right).$$

By Monotone Convergence,  $\phi_i(n) \nearrow \phi_i$  as  $n \to \infty$ .

Also, by the argument used in Part (i), we find

$$\begin{cases} \phi(n+1) = c + P\phi(n) & \text{in } D \\ \phi(n+1) = f & \text{in } \partial D. \end{cases}$$

Suppose that  $\psi$  satisfies the system in (ii) and  $\psi \geq 0 = \phi(0)$ .

- In D,  $\psi \ge P\psi + c \ge P\phi(0) + c = \phi(1)$ ;
- In  $\partial D$ ,  $\psi \geq f = \phi(1)$ .

So  $\psi \geq \phi(1)$ .

Similarly and by induction,  $\psi \geq \phi(n)$ , for all n.

Hence  $\psi > \phi$ .

# Properties of Potential (iii)

(iii) Suppose  $\psi$  satisfies the system in Part (ii). We show that, then,

$$\psi_i \geq \phi_i(n-1) + \mathbb{E}_i(\psi(X_n)1_{T \geq n}),$$

with equality if equality holds in Part (ii).

This is another proof of Part (ii).

But also, in the case of equality, if  $|\psi_i| \leq M$  and  $\mathbb{P}_i(T < \infty) = 1$ , for all i, then, as  $n \to \infty$ ,

$$|\mathbb{E}_i(\psi(X_n)1_{T\geq n})| \leq M\mathbb{P}_i(T\geq n) \to 0.$$

So

$$\psi = \lim_{n \to \infty} \phi(n) = \phi.$$

This proves Part (iii).

# Properties of Potential ((iii) Cont'd)

• For  $i \in D$ , we have

$$\psi_i \geq c_i + \sum_{j \in \partial D} p_{ij} f_j + \sum_{j \in D} p_{ij} \psi_j.$$

By repeated substitution for  $\psi$  on the right

$$\psi_{i} \geq c_{i} + \sum_{j \in \partial D} p_{ij} f_{j} + \sum_{j \in D} p_{ij} c_{j} \\
+ \cdots + \sum_{j_{1} \in D} \cdots \sum_{j_{n-1} \in D} p_{ij_{1}} \cdots p_{j_{n-2} j_{n-1}} c_{j_{n-1}} \\
+ \sum_{j_{1} \in D} \cdots \sum_{j_{n-1} \in D} \sum_{j_{n} \in \partial D} p_{ij_{1}} \cdots p_{j_{n-1} j_{n}} f_{j_{n}} \\
+ \sum_{j_{1} \in D} \cdots \sum_{j_{n} \in D} p_{ij_{1}} \cdots p_{j_{n-1} j_{n}} \psi_{j_{n}} \\
= \mathbb{E}_{i}(c(X_{0}) 1_{T>0} + f(X_{1}) 1_{T=1} + c(X_{1}) 1_{T>1} \\
+ \cdots + c(X_{n-1}) 1_{T>n-1} + f(X_{n}) 1_{T=n} + \psi(X_{n}) 1_{T>n}) \\
= \phi_{i}(n-1) + \mathbb{E}_{i}(\psi(X_{n}) 1_{T>n}).$$

Equality holds when equality holds in Part (ii).

# Recasting in Terms of Martingales

- We look at the calculation we have just done in terms of martingales.
- Consider

$$M_n = \sum_{k=0}^{n-1} c(X_k) 1_{k < T} + f(X_T) 1_{T < n} + \psi(X_n) 1_{n \le T}.$$

Then

$$\mathbb{E}(M_{n+1}|\mathcal{F}_n) = \sum_{k=0}^{n-1} c(X_k) 1_{k < T} + f(X_T) 1_{T < n} + (P\psi + c)(X_n) 1_{T > n} + f(X_n) 1_{T = n} < M_n,$$

with equality if equality holds in Part (ii).

- We note that  $M_n$  is not necessarily integrable.
- Nevertheless, it still follows that

$$\psi_i = \mathbb{E}_i(M_0) \ge \mathbb{E}_i(M_n) = \phi_i(n-1) + \mathbb{E}_i(\psi(X_n)1_{T \ge n}),$$

with equality if equality holds in Part (ii).

# Restricting to States Accessible from

- For continuous time chains there is a result analogous to the preceding theorem.
- We have to state it slightly differently because, when  $\phi$  takes infinite values, the preceding equations may involve subtraction of infinities, and therefore not make sense.
- Although the conclusion then appears to depend on the finiteness of  $\phi$ , which is a priori unknown, we can still use the result to determine  $\phi_i$  in all cases.
- To do this we restrict our attention to the set of states J accessible from i.
- If the linear equations have a finite non-negative solution on J, then  $(\phi_j : j \in J)$  is the minimal such solution.
- If not, then  $\phi_j = \infty$ , for some  $j \in J$ , which forces  $\phi_i = \infty$ , since i leads to j.

## Characterization of Potential in Continuous Time

#### Theorem

Assume that  $(X_t)_{t\geq 0}$  is minimal, and that  $(c_i:i\in D)$  and  $(f_i:i\in\partial D)$ are non-negative. Set

$$\phi_i = \mathbb{E}_i \left( \int_0^T c(X_t) dt + f(X_T) 1_{T < \infty} \right),$$

where T is the hitting time of  $\partial D$ . Then  $\phi = (\phi_i : i \in I)$ , if finite, is the minimal non-negative solution to

$$\left\{ \begin{array}{cc} -Q\phi = c & \text{in } D, \\ \phi = f & \text{in } \partial D. \end{array} \right.$$

If  $\phi_i = \infty$  for some i, then this system has no finite non-negative solution. Moreover, if  $\mathbb{P}_i(T<\infty)=1$  for all i, then the system has at most one bounded solution.

# Characterization of Potential in Continuous Time (Cont'd)

- We use the following notation related to the process  $(X_t)_{t\geq 0}$ :
  - $(Y_n)_{n\geq 0}$  is the jump chain;
  - $S_1, S_2, \ldots$  are the holding times;
  - Π is the jump matrix.

We use the convention  $0 \times \infty = 0$ .

We then have

$$\int_0^T c(X_t)dt + f(X_T)1_{T<\infty} = \sum_{n< N} c(Y_n)S_{n+1} + f(Y_N)1_{N<\infty},$$

where N is the first time  $(Y_n)_{n\geq 0}$  hits  $\partial D$ .

Moreover,

$$\mathbb{E}(c(Y_n)S_{n+1}|Y_n=j)=\widetilde{c}_j=\left\{\begin{array}{ll}\frac{c_j}{q_j} & \text{if } c_j>0,\\ 0, & \text{if } c_j=0.\end{array}\right.$$

So, by Fubini's Theorem

$$\phi_i = \mathbb{E}_i \left( \sum_{n < N} \widetilde{c}(Y_n) + f(Y_N) \mathbb{1}_{N < \infty} \right).$$

By the preceding theorem,  $\phi$  is therefore the minimal non-negative solution to

$$\left\{ \begin{array}{ll} \phi = \Pi \phi + \widetilde{c} & \text{in } D, \\ \phi = f & \text{in } \partial D, \end{array} \right.$$

which has at most one bounded solution if  $\mathbb{P}_i(N < \infty) = 1$ , for all i.

But the finite solutions of the last system are exactly the finite solutions of the system in the statement.

Moreover, N is finite whenever T is finite.

So this proves the result.

### Potentials With Discounted Costs

• Potentials with discounted costs are obtained by applying to future costs a discount factor  $\alpha \in (0,1)$  or rate  $\lambda \in (0,\infty)$ , corresponding to an interest rate.

#### **Theorem**

Suppose that  $(c_i : i \in I)$  is bounded. Set

$$\phi_i = \mathbb{E}_i \sum_{n=0}^{\infty} \alpha^n c(X_n).$$

Then  $\phi = (\phi_i : i \in I)$  is the unique bounded solution to

$$\phi = \alpha P \phi + c.$$

# Potentials With Discounted Costs (Cont'd)

• Suppose that  $|c_i| \leq C$ , for all i.

Then

$$|\phi_i| \le C \sum_{n=0}^{\infty} \alpha^n = \frac{C}{1-\alpha}.$$

So  $\phi$  is bounded.

By the Markov Property

$$\mathbb{E}\left(\sum_{n=1}^{\infty}\alpha^{n-1}c(X_n)|X_1=j\right)=\mathbb{E}_j\sum_{n=0}^{\infty}\alpha^nc(X_n)=\phi_j.$$

Then

$$\phi_{i} = \mathbb{E}_{i} \sum_{n=0}^{\infty} \alpha^{n} c(X_{n})$$

$$= c_{i} + \alpha \sum_{j \in I} p_{ij} \mathbb{E}(\sum_{n=1}^{\infty} \alpha^{n-1} c(X_{n}) | X_{1} = j)$$

$$= c_{i} + \alpha \sum_{j \in I} p_{ij} \phi_{j}.$$

So  $\phi = c + \alpha P \phi$ .

# Potentials With Discounted Costs (Cont'd)

ullet Suppose, next, that  $\psi$  is bounded and

$$\psi = \mathbf{c} + \alpha \mathbf{P} \psi.$$

Set

$$M=\sup_{i}|\psi_{i}-\phi_{i}|.$$

Then  $M < \infty$ .

But  $\psi - \phi = \alpha P(\psi - \phi)$ .

So

$$|\psi_i - \phi_i| \le \alpha \sum_{i \in I} p_{ij} |\psi_j - \phi_j| \le \alpha M.$$

Hence,  $M \leq \alpha M$ .

This forces M=0 and  $\psi=\phi$ .

## Characterizations of Potentials With Discounted Costs

#### Theorem

Assume that  $(X_t)_{t\geq 0}$  is non-explosive. Suppose that  $(c_i:i\in I)$  is bounded. Set

$$\phi_i = \mathbb{E}_i \int_0^\infty e^{-\lambda t} c(X_t) dt.$$

Then  $\phi = (\phi_i : i \in I)$  is the unique bounded solution to

$$(\lambda I - Q)\phi = c.$$

# Characterizations of Potentials With Discounts (Cont'd)

• Assume, for now, that c is non-negative.

Introduce a new state  $\partial$  with  $c_{\partial} = 0$ .

Let T be an independent  $E(\lambda)$  random variable.

Define

$$\widetilde{X}_t = \left\{ egin{array}{ll} X_t & ext{for } t < T \ \partial & ext{for } t \geq T. \end{array} 
ight.$$

Then  $(\widetilde{X}_t)_{t\geq 0}$  is a Markov chain on  $I\cup\{\partial\}$ , with modified transition rates

$$\widetilde{q}_i = q_i + \lambda, \quad \widetilde{q}_{i\partial} = \lambda, \quad \widetilde{q}_{\partial} = 0.$$

Also T is the hitting time of  $\partial$ , and is finite with probability 1.

# Characterizations of Potentials With Discounts (Cont'd)

By Fubini's Theorem

$$\phi_i = \mathbb{E}_i \int_0^T c(\widetilde{X}_t) dt.$$

Suppose  $c_i \leq C$ , for all i.

Then

$$\phi_i \leq C \int_0^\infty e^{-\lambda t} dt \leq \frac{C}{\lambda}.$$

So  $\phi$  is bounded.

Hence, by a previous theorem,  $\phi$  is the unique bounded solution to

$$-\widetilde{Q}\phi=c.$$

This yields the same solution as the equation in the statement (with a 0 appended).

# Characterizations of Potentials With Discounts (Cont'd)

Now suppose c takes negative values.

We can apply the preceding argument to the potentials

$$\phi_i^{\pm} = \mathbb{E}_i \int_0^{\infty} e^{-\lambda t} c^{\pm}(X_t) dt,$$

where  $c_i^{\pm} = (\pm c) \vee 0$ .

Then  $\phi = \phi^+ - \phi^-$ .

So  $\phi$  is bounded.

We have  $(\lambda I - Q)\phi^{\pm} = c^{\pm}$ .

So, subtracting, we get  $(\lambda I - Q)\phi = c$ .

Finally, suppose  $\psi$  is bounded and  $(\lambda I - Q)\psi = c$ .

Then  $(\lambda I - Q)(\psi - \phi) = 0$ .

So  $\psi-\phi$  is the unique bounded solution for the case when c=0, which is 0.

# Potentials Without Boundary

- We consider potentials with non-negative costs *c*, and without boundary.
- In discrete time, the potential is defined by

$$\phi_i = \mathbb{E}_i \sum_{n=0}^{\infty} c(X_n).$$

In continuous time, it is defined by

$$\phi_i = \mathbb{E}_i \int_0^\infty c(X_t) dt.$$

## The Green Matrix

In discrete time, by Fubini's Theorem, we have

$$\phi_i = \sum_{n=0}^{\infty} \mathbb{E}_i c(X_n) = \sum_{n=0}^{\infty} (P^n c)_i = (Gc)_i,$$

where  $G = (g_{ij} : i, j \in I)$  is the **Green matrix** 

$$G=\sum_{n=0}^{\infty}P^{n}.$$

Similarly, in continuous time

$$\phi = Gc$$
,

with

$$G=\int_0^\infty P(t)dt.$$

### The Fundamental Solution

- We found that:
  - $\phi_i = (Gc)_i$ , where  $G = \sum_{n=0}^{\infty} P^n$ , in the discrete case;
  - $\phi = Gc$ , where  $G = \int_0^\infty P(t) dt$ , in the continuous case.
- Thus, once we know the Green matrix, we have explicit expressions for all potentials of the Markov chain.
- The Green matrix is also called the **fundamental solution** of the systems of the previous theorems.

## The Green Matrix, Transience and Recurrence

- The j-th column  $(g_{ii}: i \in I)$  is itself a potential.
- We have:

  - $g_{ij} = \mathbb{E}_i \sum_{n=0}^{\infty} 1_{X_n=j}$  in discrete time;  $g_{ij} = \mathbb{E}_i \int_0^{\infty} 1_{X_t=j} dt$  in continuous time.
- Thus  $g_{ij}$  is the expected total time in j starting from i.
- These quantities are related to transience and recurrence.
- We know that  $g_{ij} = \infty$  if and only if i leads to j and j is recurrent.
  - In discrete time

$$g_{ij}=\frac{h_i^j}{1-f_j},$$

where  $h_i^j$  is the probability of hitting j from i, and  $f_i$  is the return probability for j.

In continuous time,

$$g_{ij} = \frac{h_i^j}{q_j(1-f_j)}.$$

### The Case of Discounted Costs

- For potentials with discounted costs the situation is similar.
  - In discrete time,

$$\phi_i = \mathbb{E}_i \sum_{n=0}^{\infty} \alpha^n c(X_n) = \sum_{n=0}^{\infty} \alpha^n \mathbb{E}_i c(X_n) = (R_{\alpha} c)_i,$$

where

$$R_{\alpha} = \sum_{n=0}^{\infty} \alpha^n P^n.$$

In continuous time,

$$\phi_i = \mathbb{E}_i \int_0^\infty e^{-\lambda t} c(X_t) dt = \int_0^\infty e^{-\lambda t} \mathbb{E}_i c(X_t) dt = (R_{\lambda} c)_i,$$

where

$$R_{\lambda} = \int_{0}^{\infty} e^{-\lambda t} P(t) dt.$$

- We found that

  - $\phi_i = (R_{\alpha}c)_i$ , where  $R_{\alpha} = \sum_{n=0}^{\infty} \alpha^n P^n$ , in discrete time;  $\phi_i = (R_{\lambda}c)_i$ , where  $R_{\lambda} = \int_0^{\infty} e^{-\lambda t} P(t) dt$ , in continuous time.
- We call  $(R_{\alpha}: \alpha \in (0,1))$  and  $(R_{\lambda}: \lambda \in (0,\infty))$  the **resolvent** of the Markov chain.
- Unlike the Green matrix the resolvent is always finite.
- For finite state space we have:
  - $R_{\alpha} = (I \alpha P)^{-1}$ :
  - $R_{\lambda} = (\lambda I Q)^{-1}$ .

#### Harmonic Functions

- We consider the general case, with boundary  $\partial D$ .
- Any bounded function  $(\phi_i : i \in I)$  for which

$$\phi = P\phi$$
, in  $D$ ,

is called **harmonic** in *D*.

# Example (Absorbing Boundary)

- Consider a random walk  $(X_n)_{n\geq 0}$  on the graph shown.
- Each allowable transition is made with equal probability.



• We set 
$$\partial D = \{a, b\}$$
.



- Let  $h_i^a$  denote the absorption probability for a, starting from i.
- By a method used previously we find

$$h^{a} = \begin{pmatrix} \frac{\frac{3}{5}}{\frac{1}{5}} & \frac{1}{2} & \frac{2}{5} \\ \frac{7}{10} & \frac{1}{2} & \frac{3}{10} \\ 1 & \frac{1}{2} & 0 \end{pmatrix},$$

where we have written the vector  $h^a$  as a matrix, corresponding in an obvious way to the state space.

# Example (Absorbing Boundary Cont'd)

The linear equations for the vector h<sup>a</sup> read

$$\left\{ \begin{array}{ll} h^a=Ph^a, & \text{in } D\\ h^a_a=1, h^a_b=0. \end{array} \right.$$

- Thus we can find two non-negative functions  $h^a$  and  $h^b$ , harmonic in D, but with different boundary values.
- The most general non-negative harmonic function  $\phi$  in D satisfies  $\left\{ \begin{array}{ll} \phi = P\phi & \text{in } D \\ \phi = f & \text{in } \partial D, \end{array} \right. \text{ where } f_{a}, f_{b} \geq 0.$
- This implies

$$\phi = f_a h^a + f_b h^b.$$

• Thus the boundary points a and b give us extremal generators  $h^a$  and  $h^b$  of the set of all nonnegative harmonic functions.

# Example (No Boundary)

- Consider the random walk  $(X_n)_{n\geq 0}$  on  $\mathbb Z$  which:
  - Jumps towards 0 with probability q;
  - Jumps away from 0 with probability p = 1 q;
  - At 0 it jumps to -1 or 1 with probability  $\frac{1}{2}$ .
- We choose p > q so that the walk is transient.
- In fact, starting from 0, we can show that  $(X_n)_{n\geq 0}$  is equally likely to end up drifting to the left or to the right, at speed p-q.
- Consider the problem of determining for  $(X_n)_{n\geq 0}$  the set C of all non-negative harmonic functions  $\phi$ .
- We must have:

$$\begin{array}{rcl} \phi_i & = & p\phi_{i+1} + q\phi_{i-1}, & \text{for } i = 1, 2, \dots \\ \phi_0 & = & \frac{1}{2}\phi_1 + \frac{1}{2}\phi_{-1}, \\ \phi_i & = & q\phi_{i+1} + p\phi_{i-1}, & \text{for } i = -1, -2, \dots . \end{array}$$

The first equation has general solution

$$\phi_i = A + B \left( 1 - \left( \frac{q}{p} \right)^i \right), \quad i = 0, 1, 2, \dots$$

- It is non-negative provided  $A + B \ge 0$ .
- Similarly, the third equation has general solution

$$\phi_i=A'+B'\left(1-\left(rac{q}{p}
ight)^{-i}
ight),\quad i=0,-1,-2,\ldots.$$

- It is non-negative provided A' + B' > 0.
- To obtain a general harmonic function we must match the values  $\phi_0$ and satisfy

$$\phi_0 = \frac{\phi_1 + \phi_{-1}}{2}.$$

# Example (No Boundary Cont'd)

- We found:
  - $\phi_i = A + B(1 (\frac{q}{p})^i)$ , for i = 0, 1, 2, ...;
  - $\phi_i = A' + B'(1 (\frac{q}{p})^{-i})$ , for i = 0, -1, -2, ...;
  - $\phi_0 = \frac{\phi_1 + \phi_{-1}}{2}$ .
- This forces A = A' and B + B' = 0.
- It follows that all non-negative harmonic functions have the form

$$\phi = f^- h^- + f^+ h^+$$

where  $f^-, f^+ \ge 0$ ,  $h_i^- = h_{-i}^+$  and

$$h_i^+ = \begin{cases} \frac{1}{2} + \frac{1}{2} (1 - (\frac{q}{p})^i) & \text{for } i = 0, 1, 2, \dots, \\ \frac{1}{2} - \frac{1}{2} (1 - (\frac{q}{p})^{-i}) & \text{for } i = -1, -2, \dots. \end{cases}$$

# Generalized Boundary and Limiting Behavior

- In the first example the generators of C were in one-to-one correspondence with the points of the boundary - the possible places for the chain to end up.
- In the last example there is no boundary, but the generators of C still correspond to the two possibilities for the long-time behavior of the chain.
- We have

$$h_i^+ = \mathbb{P}_i(X_n \to \infty \text{ as } n \to \infty).$$

- This suggests that the set of non-negative harmonic functions may be used to identify a generalized notion of boundary for Markov chains.
  - Sometimes it just consists of points in the state space.
  - More generally, it corresponds to the varieties of possible limiting behavior for  $X_n$  as  $n \to \infty$ .

# The Case of Absorbing Boundary

- Consider a Markov chain  $(X_n)_{n>0}$  with absorbing boundary  $\partial D$ .
- Set  $h_i^{\partial} = \mathbb{P}_i(T < \infty)$ , where T is the hitting time of  $\partial D$ .
- Then by the methods used in the discrete case, we have

$$\left\{ \begin{array}{ll} h^{\partial} = Ph^{\partial}, & \text{in } D, \\ h^{\partial} = 1, & \text{in } \partial D. \end{array} \right.$$

- Note that  $h_i^{\partial} = 1$ , for all i, always gives a possible solution.
- Hence, if the system has a unique bounded solution, then

$$h_i^{\partial} = \mathbb{P}_i(T < \infty) = 1$$
, for all  $i$ .

# The Case of Absorbing Boundary (Cont'd

Conversely, suppose

$$\mathbb{P}_i(T < \infty) = 1$$
, for all  $i$ .

- Then, as we showed in a previous theorem, the system has a unique bounded solution.
- Indeed, we showed more generally that this condition implies that

$$\begin{cases} \phi = P\phi + c, & \text{in } D \\ \phi = f, & \text{in } \partial D \end{cases}$$

has at most one bounded solution.

# The Case of Absorbing Boundary (Cont'd

Recall that

$$\phi_i = \mathbb{E}_i \left( \sum_{n < T} c(X_n) + f(X_T) 1_{T < \infty} \right)$$

is the minimal solution.

- Thus, any bounded solution is given by this formula.
- Suppose from now on that  $\mathbb{P}_i(T < \infty) = 1$ , for all i.
- Let  $\phi$  be a bounded non-negative function, harmonic in D, with boundary values  $\phi_i = f_i$ , for  $i \in \partial D$ .
- Then, by Monotone Convergence,

$$\phi_i = \mathbb{E}_i(f(X_T)) = \sum_{i \in \partial D} f_j \mathbb{P}_i(X_T = j).$$

 Hence, every bounded harmonic function is determined by its boundary values.

# The Case of Absorbing Boundary (Cont'd)

We have

$$\phi = \sum_{j \in \partial D} f_j h^j,$$

where

$$h_i^j = \mathbb{P}_i(X_T = j).$$

• The hitting probabilities for boundary states form a set of extremal generators for the set of all bounded non-negative harmonic functions.

#### Subsection 3

Electrical Networks

### Electrical Networks

- An electrical network has a countable set I of **nodes**.
- Each node *i* has a **capacity**  $\pi_i > 0$ .
- Some nodes are joined by wires.
- The wire between i and j has **conductivity**  $a_{ij} = a_{ji} \ge 0$ .
- When there is no wire joining i to j we take  $a_{ij} = 0$ .
- In practice, each "wire" contains a resistor, which determines the conductivity as the reciprocal of its resistance.

### Ohm's Law

- Each node *i* holds a certain **charge**  $\chi_i$ .
- This determines its **potential**  $\phi_i$  by

$$\chi_i = \phi_i \pi_i$$
.

• A current or flow of charge is any matrix  $(\gamma_{ij}: i, j \in I)$  with

$$\gamma_{ij} = -\gamma_{ji}$$
.

• Physically, the current  $\gamma_{ij}$  from i to j obeys **Ohm's Law**:

$$\gamma_{ij}=a_{ij}(\phi_i-\phi_j).$$

• Thus, charge flows from nodes of high to nodes of low potential.

## External Connections and Equilibrium

- The first problem in electrical networks is to determine equilibrium flows and potentials, subject to given external conditions.
- The nodes are partitioned into two sets D and  $\partial D$ .
- External connections are made at the nodes in  $\partial D$  and possibly at some of the nodes in D.
- These have the effect that:
  - Each node  $i \in \partial D$  is held at a given potential  $f_i$ ;
  - A given current  $g_i$  enters the network at each node  $i \in D$ .
- If  $g_i = 0$ , then a node has no external connection.
- In equilibrium, current may also enter or leave through  $\partial D$ .
- Here, however, it is not the current but the potential which is determined externally.

## Equilibrium Flow

• Given a flow  $(\gamma_{ij}: i, j \in I)$  we shall write  $\gamma_i$  for the **total flow from** i **to the network**:

$$\gamma_i = \sum_{j \in I} \gamma_{ij}.$$

In equilibrium the charge at each node is constant,

$$\gamma_i = g_i, \quad \text{for } i \in D.$$

• Therefore, by Ohm's Law, any equilibrium potential  $\phi = (\phi_i : i \in I)$  must satisfy

$$\begin{cases} \sum_{j\in I} a_{ij} (\phi_i - \phi_j) = g_i, & i \in D, \\ \phi_i = f_i, & i \in \partial D. \end{cases}$$

 There is a simple correspondence between electrical networks and reversible Markov chains in continuous time, given by

$$a_{ij} = \pi_i q_{ij}, \quad i \neq j.$$

• We assume that the total conductivity at each node is finite:

$$a_i = \sum_{j \neq i} a_{ij} < \infty.$$

- Then  $a_i = \pi_i q_i = -\pi_i q_{ii}$ .
- The capacities  $\pi_i$  are the components of an invariant measure.
- The symmetry of  $a_{ii}$  corresponds to the detailed balance equations.
- The equations for an equilibrium potential may now be written in a form familiar from the preceding section:

$$\begin{cases} -Q\phi = c & \text{in } D, \\ \phi = f & \text{in } \partial D, \end{cases}, \text{ where } c_i = \frac{g_i}{\pi_i}.$$

- Note that ct and f have the same physical dimensions.
- We know that these equations may fail to have a unique solution.
- So there may be more than one equilibrium potential.

## Equilibrium Potentials: Conditions for Uniqueness

- For simplification purposes, we shall assume that:
  - I is finite:
  - The network is connected;
  - $\partial D$  is non-empty.
- This is enough to ensure uniqueness of potentials.
- Then, by a previous theorem, the equilibrium potential is given by

$$\phi_i = \mathbb{E}_i \left( \int_0^T c(X_t) dt + f(X_T) \right),$$

where T is the hitting time of  $\partial D$ .

## Equilibrium Potentials: Empty Boundary

- The case where  $\partial D$  is empty may be reduced to the nonempty boundary case.
- A necessary condition for the existence of an equilibrium is

$$\sum_{i\in I}g_i=0.$$

- Pick one node k.
- Set

$$\partial D = \{k\}.$$

• Replace the condition  $\gamma_k = g_k$  by

$$\phi_{k}=0.$$

• The new problem is equivalent to the old, but now  $\partial D$  is non-empty.

## Example

- We determine the equilibrium current in the network shown.
- A unit current enters at A and leaves at F.
- The conductivities are as shown.
- We obtain the system of equations:





# Example (Cont'd)

They can be rewritten as:

$$3\phi_{A} - \phi_{B} - 2\phi_{D} = 1$$

$$-\phi_{A} + 4\phi_{B} - 2\phi_{C} - \phi_{E} = 0$$

$$-2\phi_{B} + 4\phi_{C} - 2\phi_{F} = 0$$

$$-2\phi_{A} + 4\phi_{D} - 2\phi_{E} = 0$$

$$-\phi_{B} - 2\phi_{D} + 4\phi_{E} - \phi_{F} = 0$$

$$-2\phi_{C} - \phi_{E} + 3\phi_{F} = -1$$

Setting  $\phi_F = 0$ , we get:

$$3\phi_{A} - \phi_{B} - 2\phi_{D} = 1$$

$$-\phi_{A} + 3\phi_{B} - \phi_{E} = 0$$

$$-2\phi_{B} + 4\phi_{C} = 0$$

$$-2\phi_{A} + 4\phi_{D} - 2\phi_{E} = 0$$

$$-\phi_{B} - 2\phi_{D} + 4\phi_{E} = 0$$

$$\phi_{F} = 0$$

Further Theory

The last four give:

$$\phi_B = 2\phi_C$$

$$\phi_A = 2\phi_D - \phi_E$$

$$\phi_B = -2\phi_D + 4\phi_E$$

$$\phi_F = 0$$

• Plugging into the first two we get:

$$6\phi_D - 7\phi_E = 1$$
$$-8\phi_D + 12\phi_E = 0$$

- Solving the latter, we get  $\phi_E = \frac{1}{2}$ ,  $\phi_D = \frac{3}{4}$ .
- Finally,  $\phi_A = 1$ ,  $\phi_B = \frac{1}{2}$  and  $\phi_C = \frac{1}{4}$ .

#### Remarks

- Note that the node capacities did not affect the problem.
- Let us arbitrarily assign to each node a capacity 1.
- Then there is an associated Markov chain.
- Let T be the hitting time of  $\{A, F\}$ .
- According to

$$\phi_i = \mathbb{E}_i \left( \int_0^T c(X_t) dt + f(X_T) \right),$$

the equilibrium potential is given by

$$\phi_i = \mathbb{E}_i(1_{X_T = A}) = \mathbb{P}_i(X_T = A).$$

- Different node capacities result in different Markov chains.
- However, the jump chain and hitting probabilities remain the same.

## Potentials and Flows and in terms of Markov Chains

#### **T**heorem

Consider a finite network with external connections at two nodes A and B, and the associated Markov chain  $(X_t)_{t>0}$ .

(a) The unique equilibrium potential  $\phi$  with  $\phi_A=1$  and  $\phi_B=0$  is given by

$$\phi_i = \mathbb{P}_i(T_A < T_B),$$

where  $T_A$  and  $T_B$  are the hitting times of A and B.

## Charges in terms of Markov Chains (Cont'd)

#### Theorem (Cont'd)

(b) The unique equilibrium flow  $\gamma$  with  $\gamma_{\mathcal{A}}=1$  and  $\gamma_{\mathcal{B}}=-1$  is given by

$$\gamma_{ij} = \mathbb{E}_{A}(\Gamma_{ij} - \Gamma_{ji}),$$

where  $\Gamma_{ij}$  is the number of times that  $(X_t)_{t\geq 0}$  jumps from i to j before hitting B.

(c) The charge  $\chi$  associated with  $\gamma$ , subject to  $\chi_B = 0$ , is given by

$$\chi_i = \mathbb{E}_A \int_0^{T_B} 1_{\{X_t=i\}} dt.$$

### Proof of the Theorem

ullet The formula for  $\phi$  is a special case of

$$\phi_i = \mathbb{E}_i \left( \int_0^T c(X_t) dt + f(X_T) \right),$$

where c = 0 and  $f = 1_{\{A\}}$ .

We prove Parts (b) and (c) together.

Suppose  $X_0 = A$ .

Then we have

$$\sum_{j\neq i} (\Gamma_{ij} - \Gamma_{ji}) = \begin{cases} 1, & \text{if } i = A \\ 0, & \text{if } i \notin \{A, B\}, \\ -1, & \text{if } i = B. \end{cases}$$

So, if  $\gamma_{ij} = \mathbb{E}_A(\Gamma_{ij} - \Gamma_{ji})$ , then  $\gamma$  is a unit flow from A to B.

## Proof of the Theorem (Cont'd)

• We found that, if  $X_0 = A$  and

$$\gamma_{ij} = \mathbb{E}_{A}(\Gamma_{ij} - \Gamma_{ji}),$$

then  $\gamma$  is a unit flow from A to B.

We have

$$\Gamma_{ij} = \sum_{n=0}^{\infty} 1_{\{Y_n = i, Y_{n+1} = j, n < N_B\}},$$

where  $N_B$  is the hitting time of B for the jump chain  $(Y_n)_{n\geq 0}$ . So, by the Markov Property of the jump chain,

$$\begin{array}{rcl} \mathbb{E}_{A}(\Gamma_{ij}) & = & \sum_{n=0}^{\infty} \mathbb{P}_{A}(Y_{n}=i,Y_{n+1}=j,n< N_{B}) \\ & = & \sum_{n=0}^{\infty} \mathbb{P}_{A}(Y_{n}=i,n< N_{B})\pi_{ij}. \end{array}$$

## Proof of the Theorem (Cont'd)

Set

$$\chi_i = \mathbb{E}_A \int_0^{T_B} 1_{\{X_t = i\}} dt.$$

Consider the associated potential  $\psi_i = \frac{\chi_i}{\pi_i}$ .

Then

$$\chi_i q_{ij} = \chi_i q_i \pi_{ij} = \sum_{n=0}^{\infty} \mathbb{P}_A(Y_n = i, n < N_B) \pi_{ij} = \mathbb{E}_A(\Gamma_{ij}).$$

So

$$(\psi_i - \psi_j)a_{ij} = \chi_i q_{ij} - \chi_j q_{ij} = \gamma_{ij}.$$

Hence  $\psi=\phi$ ,  $\gamma$  is the equilibrium unit flow and  $\chi$  the associated charge, as required.

## Energy

- Suppose:
  - $\phi = (\phi_i : i \in I)$  is a potential;
  - $\gamma = (\gamma_{ij} : i, j \in I)$  is a flow.
- Define the following quantities:

$$E(\phi) = \frac{1}{2} \sum_{i,j \in I} (\phi_i - \phi_j)^2 a_{ij}; \quad I(\gamma) = \frac{1}{2} \sum_{i,j \in I} \gamma_{ij}^2 a_{ij}^{-1}.$$

• The  $\frac{1}{2}$  signifies that each wire is counted once.

## Energy and Ohm's Law

ullet When  $\phi$  and  $\gamma$  are related by Ohm's law we have

$$E(\phi) = \frac{1}{2} \sum_{i,j} (\phi_i - \phi_j)^2 a_{ij}$$

$$= \frac{1}{2} \sum_{i,j} (\phi_i - \phi_j) \gamma_{ij}$$

$$= \frac{1}{2} \sum_{i,j} \frac{\gamma_{ij}^2}{a_{ij}}$$

$$= I(\gamma).$$

- $E(\phi)$  is found physically to give the rate of dissipation of energy, as heat, by the network.
- We will see that certain equilibrium potentials and flows determined by Ohm's law minimize these energy functions.
- This characteristic of energy minimization can indeed replace Ohm's law as the fundamental physical principle.

## Potential, Flow and Energy

#### Theorem

The equilibrium potential and flow may be determined as follows.

(a) The equilibrium potential  $\phi = (\phi_i : i \in I)$ , with boundary values  $\phi_i = f_i$ , for  $i \in \partial D$ , and no current sources in D, is the unique solution to

minimize  $E(\phi)$  subject to  $\phi_i = f_i$ , for  $i \in \partial D$ .

(b) The equilibrium flow  $\gamma = (\gamma_{ij} : i, j \in I)$ , with current sources  $\gamma_i = g_i$ , for  $i \in D$ , and boundary potential zero, is the unique solution to

minimize  $I(\gamma)$  subject to  $\gamma_i = g_i$  for  $i \in D$ .

# Potential, Flow and Energy (Part (a))

• For any potential  $\phi = (\phi_i : i \in I)$  and any flow  $\gamma = (\gamma_{ij} : i, j \in I)$  we have

$$\sum_{i,j\in I} (\phi_i - \phi_j)\gamma_{ij} = 2\sum_{i\in I} \phi_i\gamma_i.$$

(a) Denote by  $\phi = (\phi_i : i \in I)$  and by  $\gamma = (\gamma_{ij} : i, j \in I)$  the equilibrium potential and flow.

By hypothesis,  $\gamma_i = 0$ , for  $i \in D$ .

We can write any potential in the minimization problem in the form  $\phi + \varepsilon$ , where  $\varepsilon = (\varepsilon_i : i \in I)$ , with  $\varepsilon_i = 0$ , for  $i \in \partial D$ .

Then

$$\sum_{i,j\in I} (\varepsilon_i - \varepsilon_j)(\phi_i - \phi_j)a_{ij} = \sum_{i,j\in I} (\varepsilon_i - \varepsilon_j)\gamma_{ij} = 2\sum_{i\in I} \varepsilon_i\gamma_i = 0.$$

So 
$$E(\phi + \varepsilon) = E(\phi) + E(\varepsilon) \ge E(\phi)$$
.

Equality holds only if  $\varepsilon = 0$ .

# Potential, Flow and Energy (Part (b))

(b) Denote by  $\phi = (\phi_i : i \in I)$  and by  $\gamma = (\gamma_{ij} : i, j \in I)$  the equilibrium potential and flow.

By hypothesis,  $\phi_i = 0$ , for  $i \in \partial D$ .

We can write any flow in the minimization problem in the form  $\gamma + \delta$ , where  $\delta = (\delta_{ij} : i, j \in I)$  is a flow, with  $\delta_i = 0$ , for  $i \in D$ .

Then

$$\sum_{i,j\in I} \gamma_{ij} \delta_{ij} a_{ij}^{-1} = \sum_{i,j\in I} (\phi_i - \phi_j) \delta_{ij} = 2 \sum_{i\in I} \phi_i \delta_i = 0.$$

So

$$I(\gamma + \delta) = I(\gamma) + I(\delta) \ge I(\delta).$$

Equality holds only if  $\delta = 0$ .

# Reformulation of Part (a)

• The following reformulation of Part (a) of the preceding result states that harmonic functions minimize energy.

## Corollary

Suppose that  $\phi = (\phi_i : i \in I)$  satisfies

$$\left\{ \begin{array}{ll} Q\phi = 0 & \text{in } D, \\ \phi = f & \text{in } \partial D. \end{array} \right.$$

Then  $\phi$  is the unique solution to

"minimize  $E(\phi)$  subject to  $\phi = f$  in  $\partial D$ ".

### **Effective Conductivities**

- Let  $J \subseteq I$ .
- We say that  $\overline{a} = (\overline{a}_{ij} : i, j \in J)$  is an **effective conductivity** on J if, for all potentials  $f = (f_i : i \in J)$ , the external currents into J when J is held at potential f are the same for  $(J, \overline{a})$  as for (I, a).
- We know that f determines an equilibrium potential  $\phi = (\phi_i : i \in I)$  by

$$\begin{cases} \sum_{j \in I} (\phi_i - \phi_j) a_{ij} = 0 & \text{for } i \notin J \\ \phi_i = f_i & \text{for } i \in J. \end{cases}$$

• Then  $\overline{a}$  is an effective conductivity if, for all f, for  $i \in J$  we have

$$\sum_{j\in I} (\phi_i - \phi_j) a_{ij} = \sum_{j\in J} (f_i - f_j) \overline{a}_{ij}.$$

## Effective Conductivities and Energy

• For a conductivity matrix  $\overline{a}$  on J, for a potential  $f=(f_i:i\in J)$  and a flow  $\delta=(\delta_{ij}:i,j\in J)$ , we set

$$\overline{E}(f) = \frac{1}{2} \sum_{i,j \in J} (f_i - f_j)^2 \overline{a}_{ij}$$

and

$$\overline{I}(\delta) = \frac{1}{2} \sum_{i,j \in J} \delta_{ij}^2 \overline{a}_{ij}^{-1}.$$

#### Theorem

There is a unique effective conductivity  $\overline{a}$  given by  $\overline{a}_{ij} = a_{ij} + \sum_{k \notin I} a_{ik} \phi_k'$ , where for each  $j \in J$ ,  $\phi^j = (\phi^j_i : i \in I)$  is the potential defined by

$$\begin{cases} \sum_{k \in I} (\phi_i^j - \phi_k^j) a_{ik} = 0 & \text{for } i \notin J, \\ \phi_i^j = \delta_{ij} & \text{for } i \in J. \end{cases}$$

Moreover,  $\overline{a}$  is characterized by the **Dirichlet variational principle** 

$$\overline{E}(f) = \inf_{\phi_i = f_i \text{ on } J} E(\phi),$$

and also by the Thompson variational principle

$$\inf_{\delta_i = g_i \text{ on } J} \overline{I}(\delta) = \inf_{\gamma_i = \left\{ \begin{array}{c} g_i \text{ on } J \\ 0 \text{ off } J \end{array} \right.} I(\gamma).$$

## Proof of Existence and Uniqueness

• Let  $f = (f_i : i \in J)$  be given. Define  $\phi = (\phi_i : i \in I)$  by

$$\phi_i = \sum_{j \in J} f_j \phi_i^j.$$

Then we have, for  $i \notin J$ ,

$$\sum_{j \in I} a_{ij} (\phi_i - \phi_j) = \sum_{j \in I} a_{ij} \left[ \sum_{k \in J} f_k \phi_i^k - \sum_{\ell \in J} f_\ell \phi_j^\ell \right]$$

$$= \sum_{j \in I} a_{ij} \sum_{k \in J} f_k (\phi_i^k - \phi_j^k)$$

$$= \sum_{k \in J} f_k \sum_{J \in I} a_{ij} (\phi_i^k - \phi_i^k) = 0.$$

Moreover, for  $i \in J$ ,  $\phi_i = \sum_{j \in I} f_j \phi_i^j = \sum_{j \in J} f_j \delta_{ij} = f_i$ . So  $\phi$  is the equilibrium potential given by

$$\begin{cases} \sum_{j \in I} a_{ij} (\phi_i - \phi_j) = 0 & \text{for } i \notin J, \\ \phi_i = f_i & \text{for } i \in J. \end{cases}$$

## Proof of Existence and Uniqueness (Cont'd)

ullet By a previous corollary,  $\phi$  solves

minimize 
$$E(\phi)$$
 subject to  $\phi_i = f_i$  for  $i \in J$ .

We have, for  $i \in J$ ,

$$\sum_{j\in I} a_{ij}\phi_j = \sum_{j\in J} a_{ij}f_j + \sum_{k\notin J} \sum_{j\in J} a_{ik}\phi_k^j f_j = \sum_{j\in J} \overline{a}_{ij}f_j.$$

In particular, taking  $f \equiv 1$  we obtain  $\sum_{j \in I} a_{ij} = \sum_{j \in J} \overline{a}_{ij}$ . Hence we have equality of external currents:

$$\sum_{j\in I} (\phi_i - \phi_j) a_{ij} = \sum_{j\in J} (f_i - f_j) \overline{a}_{ij}.$$

Moreover, we also have equality of energies.

$$\sum_{i,j\in I} (\phi_i - \phi_j)^2 a_{ij} = 2 \sum_{i\in I} \phi_i \sum_{j\in I} (\phi_i - \phi_j) a_{ij} 
= 2 \sum_{i\in J} f_i \sum_{j\in J} (f_i - f_j) \overline{a}_{ij} 
= \sum_{i,j\in J} (f_i - f_j)^2 \overline{a}_{ij}.$$

Finally, let 
$$g_{ij} = (f_i - f_j)\overline{a}_{ij}$$
 and  $\gamma_{ij} = (\phi_i - \phi_j)a_{ij}$ .  

$$\sum_{i,j \in I} \gamma_{ij}^2 a_{ij}^{-1} = \sum_{i,j \in I} (\phi_i - \phi_j)^2 a_{ij}$$

$$= \sum_{i,j \in I} (f_i - f_j)^2 \overline{a}_{ij}$$

$$= \sum_{i,j\in J} (f_i - f_j)^2 a$$
$$= \sum_{i,j\in J} g_{ij}^2 \overline{a}_{ij}^{-1}.$$

So, by the preceding theorem, for any flow  $\delta = (\delta_{ii} : i, j \in I)$  with  $\delta_i = g_i$  for  $i \in J$  and  $\delta_i = 0$  for  $i \notin J$ ,

$$\sum_{i,j\in I} \delta_{ij}^2 a_{ij}^{-1} \geq \sum_{i,j\in J} g_{ij}^2 \overline{a}_{ij}^{-1}.$$

## Effective Conductivity and Associated Markov Chain

- Consider again the associated Markov chain  $(X_t)_{t\geq 0}$ .
- Define the **time spent in** *J*

$$A_t = \int_0^t 1_{\{X_s \in J\}} ds.$$

• Define a time-changed process  $(\overline{X}_t)_{t\geq 0}$  by

$$\overline{X}_t = X_{\tau(t)},$$

where  $\tau(t) = \inf \{ s \geq 0 : A_s > t \}$ .

- We obtain  $(\overline{X}_t)_{t\geq 0}$  by observing  $(X_t)_{t\geq 0}$  whilst in J, and stopping the clock whilst  $(X_t)_{t\geq 0}$  makes excursions outside J.
- This is really a transformation of the jump chain.

# Effective Conductivity and Markov Chain (Cont'd)

• By applying the strong Markov property to the jump chain we find that  $(\overline{X}_t)_{t\geq 0}$  is itself a Markov chain, with jump matrix  $\overline{\Pi}$  given by

$$\overline{\pi}_{ij} = \pi_{ij} + \sum_{k \notin J} \pi_{ik} \phi_k^j, \quad i, j \in J,$$

where  $\phi_k^j = \mathbb{P}_k(X_T = j)$  and T denotes the hitting time of J.

• Hence  $(\overline{X}_t)_{t\geq 0}$  has Q-matrix given by

$$\overline{q}_{ij} = q_{ij} + \sum_{k \notin J} q_{ik} \phi_k^j.$$

- Since  $\phi^j = (\phi^j_k : k \in I)$  is the unique solution to the system in the preceding theorem, this shows that  $\pi_i \overline{q}_{ij} = \overline{a}_{ij}$ .
- So  $(\overline{X}_t)_{t\geq 0}$  is the Markov chain on J associated with the effective conductivity  $\overline{a}$ .

#### Subsection 4

Brownian Motion

### The Idea of Brownian Motion

- Imagine a symmetric random walk in Euclidean space which takes infinitesimal jumps with infinite frequency and you will have some idea of Brownian motion.
- ullet A discrete approximation to Euclidean space  $\mathbb{R}^d$  is provided by

$$c^{-1/2}\mathbb{Z}^d = \{c^{-1/2}z : z \in \mathbb{Z}^d\},$$

where c is a large positive number.

- The simple symmetric random walk  $(X_n)_{n\geq 0}$  on  $\mathbb{Z}^d$  is a Markov chain.
- We shall show that the scaled-down and speeded-up process

$$X_t^{(c)} = c^{-1/2} X_{ct}$$

is a good approximation to Brownian motion.

## The Rescaling

- We explain why space is rescaled by the square root of the time scaling.
- A desideratum is that  $X_t^{(c)}$  converges, in some sense, as  $c \to \infty$  to a non-degenerate limit.
- A least requirement is that  $\mathbb{E}[|X_t^{(c)}|^2]$  converges to a non-degenerate limit.
- For  $ct \in \mathbb{Z}^+$ , we have

$$\mathbb{E}[|X_{ct}|^2] = ct\mathbb{E}[|X_1|^2].$$

So the square root scaling gives

$$\mathbb{E}[|X_t^{(c)}|^2] = \mathbb{E}[|c^{-1/2}X_{ct}|^2] = c^{-1}\mathbb{E}[|X_{ct}|^2] = t\mathbb{E}[|X_1|^2].$$

• This is independent of c.

## Gaussian Distributions

A real-valued random variable is said to have Gaussian distribution
 with mean 0 and variance t if it has density function

$$\phi_t(x) = (2\pi t)^{-1/2} \exp\left\{-x^2/2t\right\} = \frac{1}{\sqrt{2\pi t}} e^{-x^2/2t}.$$

• The fundamental role of Gaussian distributions in probability derives from the Central Limit Theorem.

#### The Central Limit Theorem

#### Theorem (Central Limit Theorem)

Let  $X_1, X_2, \ldots$  be a sequence of independent and identically distributed real-valued random variables with mean 0 and variance  $t \in (0, \infty)$ . Then, for all bounded continuous functions f, as  $n \to \infty$  we have

$$\mathbb{E}\left[f\left(\frac{X_1+\cdots+X_n}{\sqrt{n}}\right)\right]\to\int_{\mathbb{R}}f(x)\phi_t(x)dx.$$

 We shall take this result and a few other standard properties of the Gaussian distribution for granted in this section.

### Brownian Motion

• A real-valued process  $(X_t)_{t\geq 0}$  is said to be **continuous** if

$$\mathbb{P}(\{\omega: t \mapsto X_t(\omega) \text{ is continuous}\}) = 1.$$

- A continuous real-valued process  $(B_t)_{t\geq 0}$  is called a **Brownian** motion if:
  - $B_0 = 0$
  - For all  $0 = t_0 < t_1 < \cdots < t_n$ , the increments

$$B_{t_1} - B_{t_0}, \ldots, B_{t_n} - B_{t_{n-1}}$$

are independent Gaussian random variables of mean 0 and variance  $t_1 - t_0, \dots, t_n - t_{n-1}$ .

- The conditions made on  $(B_t)_{t\geq 0}$  are enough to determine all the probabilities associated with the process.
- To put it properly, the law of Brownian motion, which is a measure on the set of continuous paths, is uniquely determined.

## Wiener's Theorem: Existence of Brownian Motion

#### Theorem (Wiener's Theorem)

#### Brownian motion exists.

• For N = 0, 1, 2, ..., denote by  $D_N$  the set of integer multiples of  $2^{-N}$  in  $[0, \infty)$ , and denote by D the union of these sets.

We say  $(B_t : t \in D_N)$  is a **Brownian motion indexed by**  $D_N$  if:

- $B_0 = 0$ ;
- For all  $0 = t_0 < t_1 < \dots < t_n$  in  $D_N$ , the increments  $B_{t_1} B_{t_0}, \dots$ ,  $B_{t_n} B_{t_{n-1}}$  are independent Gaussian random variables of mean 0 and variance  $t_1 t_0, \dots, t_n t_{n-1}$ .

We suppose given, for each  $t \in D$ , an independent Gaussian random variable  $Y_t$  of mean 0 and variance 1.

For 
$$t \in D_0 = \mathbb{Z}^+$$
, set

$$B_t = Y_1 + Y_2 + \cdots + Y_t.$$

# Wiener's Theorem (Strategy)

• Note that  $(B_t : t \in D_0)$ , with

$$B_t = Y_1 + Y_2 + \cdots + Y_t, \quad t \in D_0 = \mathbb{Z}^+,$$

is a Brownian motion indexed by  $D_0$ .

- We shall show how to extend this process successively to Brownian motions  $(B_t : t \in D_N)$  indexed by  $D_N$ .
- Then  $(B_t : t \in D)$  is a Brownian motion indexed by D.
- $(B_t : t \in D)$  extends continuously to  $t \in [0, \infty)$ .
- Finally, we check that this extension is a Brownian motion.

#### Wiener's Theorem: Extension to $D_N$

Suppose we have constructed

$$(B_t: t \in D_{N-1}),$$

a Brownian motion indexed by  $D_{N-1}$ .

For  $t \in D_N \backslash D_{N-1}$ , set

$$r = t - 2^{-N}$$
 and  $s = t + 2^{-N}$ .

Note that  $r, s \in D_{N-1}$ .

Define

$$Z_t = 2^{-(N+1)/2} Y_t, \quad B_t = \frac{1}{2} (B_r + B_s) + Z_t.$$

We obtain two new increments:

$$B_t - B_r = \frac{1}{2}(B_s - B_r) + Z_t;$$
  
 $B_s - B_t = \frac{1}{2}(B_s - B_r) - Z_t.$ 

#### We compute

$$\mathbb{E}[(B_t - B_r)^2] = \mathbb{E}[(B_s - B_t)^2]$$

$$= \frac{1}{4}2^{-(N-1)} + 2^{-(N+1)}$$

$$= 2^{-N};$$

$$\mathbb{E}[(B_t - B_r)(B_s - B_t)] = \frac{1}{4}2^{-(N-1)} - 2^{-(N+1)}$$

$$= 0.$$

The two new increments, being Gaussian, are therefore independent and of the required variance.

Moreover, being constructed from  $B_s - B_r$  and  $Y_t$ , they are certainly independent of increments over intervals disjoint from (r, s).

Hence,  $(B_t : t \in D_N)$  is a Brownian motion indexed by  $D_N$ .

By induction, we obtain a Brownian motion  $(B_t : t \in D)$ .

For each N denote by

$$(B_t^{(N)})_{t\geq 0}$$

the continuous process obtained by linear interpolation from  $(B_t: t \in D_N).$ 

Set

$$Z_t^{(N)} = B_t^{(N)} - B_t^{(N-1)}.$$

For  $t \in D_{N-1}$  we have  $Z_t^{(N)} = 0$ .

For  $t \in D_N \backslash D_{N-1}$ , by construction, we have

$$Z_t^{(N)} = B_t - \frac{1}{2}(B_{t-2^{-N}} + B_{t+2^{-N}})$$
  
=  $Z_t$   
=  $2^{-(N+1)/2} Y_t$ ,

with  $Y_t$  Gaussian of mean 0 and variance 1.

Set

$$M_N = \sup_{t \in [0,1]} |Z_t^{(N)}|.$$

Now  $(Z_t^{(N)})_{t>0}$  interpolates linearly between its values on  $D_N$ . So we obtain

$$M_N = \sup_{t \in (D_N \setminus D_{N-1}) \cap [0,1]} 2^{-(N+1)/2} |Y_t|.$$

• There are  $2^{N-1}$  points in  $(D_N \setminus D_{N-1}) \cap [0,1]$ . So, for  $\lambda > 0$ , we have

$$\mathbb{P}(M_N > \lambda 2^{-(N+1)/2}) \le 2^{N-1} \mathbb{P}(|Y_1| > \lambda).$$

For a random variable X > 0 and p > 0, we have the formula

$$\mathbb{E}(X^p) = \mathbb{E} \int_0^\infty 1_{\{X > \lambda\}} p \lambda^{p-1} d\lambda = \int_0^\infty p \lambda^{p-1} \mathbb{P}(X > \lambda) d\lambda.$$

Hence.

$$\begin{array}{lcl} 2^{\rho(N+1)/2}\mathbb{E}(M_N^\rho) & = & \int_0^\infty \rho \lambda^{\rho-1}\mathbb{P}(2^{(N+1)/2}M_N > \lambda)d\lambda \\ & \leq & 2^{N-1}\int_0^\infty \rho \lambda^{\rho-1}\mathbb{P}(|Y_1| > \lambda)d\lambda \\ & = & 2^{N-1}\mathbb{E}(|Y_1|^\rho). \end{array}$$

• Hence, for any p > 2,

$$\mathbb{E} \sum_{N=0}^{\infty} M_{n} = \sum_{N=0}^{\infty} \mathbb{E}(M_{N}) \\
\leq \sum_{N=0}^{\infty} \mathbb{E}(M_{N}^{p})^{1/p} \\
\leq \mathbb{E}(|Y_{1}|^{p})^{1/p} \sum_{N=0}^{\infty} (2^{(p-2)/2p})^{-N} \\
< \infty.$$

It follows that, with probability 1, as  $N \to \infty$ ,

$$B_t^{(N)} = B_t^{(0)} + Z_t^{(1)} + \cdots + Z_t^{(N)}$$

converges uniformly in  $t \in [0, 1]$ .

• By a similar argument with probability 1, as  $N \to \infty$ ,

$$B_t^{(N)} = B_t^{(0)} + Z_t^{(1)} + \dots + Z_t^{(N)}$$

converges uniformly for t in any bounded interval.

Now  $B_t^{(N)}$  eventually equals  $B_t$  for any  $t \in D$ .

But the uniform limit of continuous functions is continuous.

So  $(B_t: t \in D)$  has a continuous extension  $(B_t)_{t \geq 0}$ , as claimed.

• It remains to show that the increments of  $(B_t)_{t\geq 0}$  have the required joint distribution.

Consider given  $0 < t_1 < \cdots < t_n$ .

We can find sequences  $(t_k^m)_{m\in\mathbb{N}}$  in D such that:

- $0 < t_1^m < \cdots < t_n^m$ , for all m;
- $t_k^m \to t_k$ , for all k.

Set  $t_0 = t_0^m = 0$ .

We know that the increments

$$B_{t_1^m} - B_{t_0^m}, \dots, B_{t_n^m} - B_{t_{n-1}^m}$$

are Gaussian of mean 0 and variance  $t_1^m - t_0^m, \dots, t_n^m - t_{n-1}^m$ .

Hence, using continuity of  $(B_t)_{t\geq 0}$ , we can let  $m\to\infty$  to obtain the desired distribution for the increments  $B_{t_1}-B_{t_0},\ldots,B_{t_n}-B_{t_{n-1}}$ .

#### Brownian Motion as a Scaling Limit of Random Walks

#### Theorem

Let  $(X_n)_{n\geq 0}$  be a discrete time, real valued random walk with steps of mean 0 and variance  $\sigma^2\in(0,\infty)$ . For c>0 consider the rescaled process

$$X_t^{(c)} = c^{-1/2} X_{ct},$$

where the value of  $X_{ct}$ , when ct is not an integer, is found by linear interpolation. Then, for all m, for all bounded continuous functions  $f: \mathbb{R}^m \to \mathbb{R}$  and all  $0 \le t_1 < \cdots < t_m$ , we have

$$\mathbb{E}[f(X_{t_1}^{(c)},\ldots,X_{t_m}^{(c)})] \to \mathbb{E}[f(\sigma B_{t_1},\ldots,\sigma B_{t_m})],$$

as  $c \to \infty$ , where  $(B_t)_{t>0}$  is a Brownian motion.

• The claim is that, as  $c \to \infty$ ,  $(X_{t_1}^{(c)}, \dots, X_{t_m}^{(c)})$  converges weakly to  $(\sigma B_{t_1},\ldots,\sigma B_{t_m}).$ 

We take for granted some basic properties of weak convergence.

First define  $\widetilde{X}_t^{(c)} = c^{-1/2} X_{[ct]}$ , with [ct] the integer part of ct.

Then

$$|(X_{t_1}^{(c)},\ldots,X_{t_m}^{(c)})-(\widetilde{X}_{t_1}^{(c)},\ldots,\widetilde{X}_{t_m}^{(c)})|\leq c^{-1/2}|(Y_{[ct_1]+1},\ldots,Y_{[ct_n]+1})|,$$

where  $Y_n$  denotes the *n*-th step of  $(X_n)_{n>0}$ .

The right side converges weakly to 0.

So it suffices to prove the claim with  $\widetilde{X}_{t}^{(c)}$  replacing  $X_{t}^{(c)}$ .

Consider the increments

$$U_k^{(c)} = \widetilde{X}_{tk}^{(c)} - \widetilde{X}_{t_{k-1}}^{(c)}, \ Z_k = \sigma(B_{t_k} - B_{t_{k-1}}), \ k = 1, \ldots, m.$$

We have  $\widetilde{X}_0^{(c)} = B_0 = 0$ . So it suffices to show that  $(U_1^{(c)}, \dots, U_m^{(c)})$ converges weakly to  $(Z_1, \ldots, Z_m)$ .

# Brownian Motion and Random Walks (Cont'd)

But both sets of increments are independent.

So it suffices to show that  $U_{k}^{(c)}$  converges weakly to  $Z_{k}$ , for each k.

Now, with  $N_k(c) = [ct_k] - [ct_{k-1}]$ , we have

$$U_k^{(c)} = c^{-1/2} \sum_{n=[ct_{k-1}]+1}^{[ct_k]} Y_n$$

$$\sim (c^{-1/2} N_k(c)^{1/2}) N_k(c)^{-1/2} (Y_1 + \dots + Y_{N(c)}).$$

By the Central Limit Theorem, we have:

• 
$$N_k(c)^{-1/2}(Y_1 + \cdots + Y_{N(c)})$$
 converges weakly to  $(t_k - t_{k-1})^{-1/2}Z_k$ ;  
•  $(c^{-1/2}N_k(c)^{1/2}) \to (t_k - t_{k-1})^{1/2}$ .

Hence, we obtain

$$U_k^{(c)} \sim (c^{-1/2}N_k(c)^{1/2})N_k(c)^{-1/2}(Y_1 + \cdots + Y_{N(c)})$$

$$\stackrel{w}{\to} ((t_k - t_{k-1})^{-1/2}Z_k)((t_k - t_{k-1})^{1/2})$$

$$= Z_k.$$

- Let  $(B_t^1)_{t\geq 0},\ldots,(B_t^d)_{t\geq 0}$  be d independent Brownian motions
- ullet Consider the  $\mathbb{R}^d$ -valued process

$$B_t = (B_t^1, \ldots, B_t^d).$$

- We call  $(B_t)_{t\geq 0}$  a **Brownian motion in**  $\mathbb{R}^d$ .
- There is a multidimensional version of the Central Limit Theorem which leads to a multidimensional version of the preceding theorem.
- Thus, if  $(X_n)_{n\geq 0}$  is a random walk in  $\mathbb{R}^d$ , with steps of mean 0 and covariance matrix  $V=\mathbb{E}(X_1X_1^T)$ , and if V is finite, then for all bounded continuous functions  $f:(\mathbb{R}^d)^m\to\mathbb{R}$ , as  $c\to\infty$ , we have

$$\mathbb{E}[f(X_{t_1}^{(c)},\ldots,X_{t_m}^{(c)})] \to \mathbb{E}[f(\sqrt{V}B_{t_1},\ldots,\sqrt{V}B_{t_m})].$$

# Scaling Invariance

- Brownian motion  $(B_t)_{t\geq 0}$  satisfies the following scaling invariance property, which can checked from the definition.
- For any c>0, the process  $(B_t^{(c)})_{t\geq 0}$  defined by

$$B_t^{(c)} = c^{-1/2} B_{ct}$$

is a Brownian motion.

- Thus Brownian motion appears as a fixed point of the scaling transformation.
- The scaling transformation attracts all other finite variance symmetric random walks as  $c \to \infty$ .

#### Transition Density in Brownian Motion

- Brownian motion starting from x is any process  $(B_t)_{t>0}$  such that:
  - $\bullet$   $B_0 = x$ :
  - $(B_t B_0)_{t>0}$  is a Brownian motion (starting from 0).
- In looking in Brownian motion for the structure of a Markov process we look for:
  - A transition semigroup  $(P_t)_{t>0}$ ;
  - A generator G.
- ullet For any bounded measurable function  $f:\mathbb{R}^d o \mathbb{R}$  we have

$$\mathbb{E}_{x}[f(B_{t})] = \mathbb{E}_{0}[f(x+B_{t})]$$

$$= \int_{\mathbb{R}^{d}} f(x+y)\phi_{t}(y_{1})\cdots\phi_{t}(y_{d})dy_{1}\cdots dy_{d}$$

$$= \int_{\mathbb{R}^{d}} \rho(t,x,y)f(y)dy,$$

where 
$$p(t, x, y) = (2\pi t)^{-d/2} \exp\{-|y - x|^2/2t\}$$
.

This is the transition density for Brownian motion.

#### Transition Semigroup in Brownian Motion

The transition semigroup is given by

$$(P_t f)(x) = \int_{\mathbb{R}^d} p(t, x, y) f(y) dy = \mathbb{E}_x [f(B_t)].$$

To check the semigroup property  $P_sP_t=P_{s+t}$ , note that

$$\mathbb{E}_{x}[f(B_{s+t})] = \mathbb{E}_{x}[f(B_{s} + (B_{s+t} - B_{s}))]$$

$$= \mathbb{E}_{x}[P_{t}f(B_{s})]$$

$$= (P_{s}P_{t}f)(x).$$

Here, we first took the expectation over the independent increment  $B_{s+t} - B_s$ .

#### Generator in Brownian Motion

• For t > 0 it is easy to check that

$$\frac{\partial}{\partial t}p(t,x,y)=\frac{1}{2}\Delta_{x}p(t,x,y),$$

where 
$$\Delta_X = \frac{\partial^2}{\partial x_1^2} + \cdots + \frac{\partial^2}{\partial x_d^2}$$
.

Hence, if f has two bounded derivatives, we have

$$\frac{\partial}{\partial t}(P_t f)(x) = \int_{\mathbb{R}^d} \frac{1}{2} \Delta_x p(t, x, y) f(y) dy 
= \int_{\mathbb{R}^d} \frac{1}{2} \Delta_y p(t, x, y) f(y) dy 
= \int_{\mathbb{R}^d} p(t, x, y) (\frac{1}{2} \Delta f)(y) dy 
= \mathbb{E}_x [(\frac{1}{2} \Delta f)(B_t)] \xrightarrow{t \searrow 0} \frac{1}{2} \Delta f(x).$$

By analogy with continuous-time chains, the generator, a term we have not defined precisely, should be given by  $G = \frac{1}{2}\Delta$ .

- Where formerly we considered vectors  $(f_i : i \in I)$ , now there are functions  $f: \mathbb{R}^d \to \mathbb{R}$ , required to have various degrees of local regularity, such as measurability and differentiability.
- Where formerly we considered matrices  $P_t$  and Q, now we have linear operators on functions:
  - $\circ$   $P_t$  is an integral operator;
  - G is a differential operator.
- We explain the appearance of the Laplacian  $\Delta$  by reference to the random walk approximation.
- Denote by  $(X_n)_{n\geq 0}$  the simple symmetric random walk in  $\mathbb{Z}^d$ .
- Consider, for N = 1, 2, ..., the rescaled process

$$X_t^{(N)} = N^{-1/2} X_{N_t}, \quad t = 0, \frac{1}{N}, \frac{2}{N}, \dots$$

# The Laplacian (Cont'd)

ullet For a bounded continuous function  $f:\mathbb{R}^d o \mathbb{R}$ , set

$$(P_t^{(N)}f)(x) = \mathbb{E}_x[f(X_t^{(N)})], \quad x \in N^{-1/2}\mathbb{Z}^d.$$

• The closest thing to a derivative in t at 0, for  $(P_t^{(N)})_{t=0,\frac{1}{N},\frac{2}{N},\dots}$ , is

$$N(P_{1/N}^{(N)}f - f)(x) = N\mathbb{E}_{x}[f(X_{1/N}^{(N)}) - f(X_{0}^{(N)})]$$

$$= N\mathbb{E}_{N^{1/2}x}[f(N^{-1/2}X_{1}) - f(N^{-1/2}X_{0})]$$

$$= \frac{N}{2}\{f(x - N^{-1/2}) - 2f(x) + f(x + N^{-1/2})\}.$$

- Assume that f has two bounded derivatives.
- By Taylor's Theorem, as  $N \to \infty$ ,

$$f(x - N^{-1/2}) - 2f(x) + f(x + N^{-1/2}) = N^{-1}(\Delta f(x) + o(N)).$$

• So  $N(P_{1/N}^{(N)}f - f)(x) \to \frac{1}{2}\Delta f(x)$ .