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Further Theory Martingales

Subsection 1

Martingales
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Further Theory

o Consider the simple symmetric random walk (X,)n>0 on Z, which is a
Markov chain with the following diagram

o The average value of the walk is constant.
o In precise terms we have EX,, = EXj.

o Indeed, the average value of the walk at some future time is always
simply the current value.

o This stronger property says that, for n > m,
E(X, — Xm|Xo =0y, Xm = im) = 0.
o The stronger property expresses that (X,),>0 is a martingale.
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Further Theory

o Let us fix for definiteness a Markov chain (X,)n>o0.
o Write F,, for the collection of all sets depending only on X, ..., X,.
o The sequence (F,)n>0 is called the filtration of (X;)n>0.

o We think of F,, as representing the state of knowledge, or history, of
the chain up to time n.
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Further Theory

o A process (Mp),>0 is called adapted if M, depends only on
Xo, ., X,

o A process (Mp),>0 is called integrable if
E|Mp| < oo, for all n.

o An adapted integrable process (M,),>0 is called a martingale if, for
all nand all A € F,,,

IE[(I\/In—l—l - Mn)lA] = 0.
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Further Theory

o Note that the collection F,, consists of countable unions of
elementary events, such as

{Xo=lo, X1 =i1,..., Xy = in}.

o It follows that the martingale property is equivalent to saying that, for
all nand all iy, ..., ip,

E(Mpy1 — Mol Xo = io, - .., Xn = in) = 0.
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Further Theory

o Given an integrable random variable Y, we define

E(Y|Fn) = D> E(Y|Xo =10, Xn = in)L{Xo—ip, ... Xoiv}

i0,.-0n

o The random variable E(Y|F},) is called the conditional expectation
of Y given F,,.

o In passing from Y to E(Y|F,), we replace, on each elementary event
A € F,, the random variable Y by its average value E(Y|A).

o It is easy to check that an adapted integrable process (M,)n>0 is a
martingale if and only if, for all n,

E(Mpi1|Fn) = M,.

George Voutsadakis (LSSU)



Further Theory

o Conditional expectation is a partial averaging.

o So, if we complete the process and average the conditional
expectation, we should get the full expectation

E(E(Y|F,)) = E(Y).
o In particular, for a martingale
E(Mn) = E(E(Mn+1’fn)) = E(Mn+1)-

o So, by induction,
IE(I\/’n) = IE(I\/’O)

o This was already clear on taking A = €2 in our original definition of a
martingale.
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Further Theory

o Recall that a random variable T : Q — {0,1,2,...} U {oo} is a
stopping time if

{T =n} e F, foralln<oo.

o An equivalent condition is that {T < n} € F,,, for all n < occ.

o Recall that all sorts of hitting times are stopping times.

Theorem (Optional Stopping Theorem)

Let (M,)n>0 be a martingale and let T be a stopping time. Suppose that
at least one of the following conditions holds:

T < n, for some n;
T < oo and |M,| < C whenever n < T.
Then EM7 = EM,.
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Further Theory

o Assume that Condition (i) holds. Then

Mr—My = (Mr—Mr_1)+--+ (M — M)
= Yico(Mir1 — M)licr.

Since T is a stopping time, {k < T} ={T < k}€ € Fi.

Since (My)k>0 is a martingale, E[(My+1 — M)1k<7] = 0.
Hence,

n—1
EMr —EMo = Y E[(Mit1 — Mi)leer] = 0.
k=0
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Further Theory

o Next, suppose Condition (ii) holds.
The preceding argument applies to the stopping time T A n.

So
EMy,, = EM,.

Then, for all n,
[EM1 —EMo| = [EM7r —EMr7n,|
< IE|IMT - MT/\n|
< 2CP(T > n).

But P(T > n) — 0 as n— oo.

So
EM; = EM.
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Further Theory

o Consider the simple symmetric random walk (X;)n>o0.
o Suppose that Xp = 0 and a, b € IN given.
o Take

T=inf{n>0:X,=—aor X, =b}.
o Then:

o T is a stopping time;
o T < oo by recurrence of finite closed classes.

o Thus, Condition (ii) of the Optional Stopping Theorem applies with
M, =X, and C = aV b.

o We deduce that
EXT+ =EXp; = 0.
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Further Theory

o Now we can compute
p = P(X, hits —a before b).

o We have:
o X7 = —a with probability p;
o X7 = b with probability 1 — p.
o So
0=EXr =p(—a)+ (1 — p)b.

o Thus, p= ﬁ.

o The intuition behind the result EX7 = 0 is very clear:
o A gambler, playing a fair game, leaves the casino once losses reach a or
winnings reach b, whichever is sooner.
o Since the game is fair, the average gain should be zero.
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Further Theory

o We discussed previously the counter-intuitive case of a gambler who
keeps on playing a fair game against an infinitely rich casino, with the
certain outcome of ruin.

o This game ends at the finite stopping time
T=inf{n>0:X,=—-a},

where a is the gambler’s initial fortune.
o We have X7 = —a.
o So EXT 7& 0= EX().

o This does not contradict the Optional Stopping Theorem because
neither Condition (i) nor Condition (ii) is satisfied.

o Thus, while intuition might suggest that EX7 = EXj is rather
obvious, some care is needed as it is not always true.

George Voutsadakis (LSSU)



Further Theory

o We recall that, given a function f : | — R and a Markov chain
(Xn)n>0 with transition matrix P, we have

i) =" P = Eif(Xn))-

jel

Let (Xn)n>0 be a random process with values in / and let P be a
stochastic matrix. Write (F,)n>0 for the filtration of (X,),>0. Then the
following are equivalent:

(Xn)n>0 is a Markov chain with transition matrix P;

For all bounded functions f : | — IR, the following process is a
martingale:

M = £(X,) — f(Xo) — Z(P—l)f(X)
=0
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Further Theory

o Suppose Condition (i) holds. Let f be a bounded function.
Clearly (Mf) is adapted.
We show it is also integrable.
We have

(PR = |>_ pifi| <suplfl.
Jjel J
So
IME] < 2(n+ 1) sup [§] < oo.
J

This shows that M is integrable for all n.
Let A= {Xo =1ip,...,Xp=in}.
By the Markov Property,

E(f(Xnt1)|A) = Ei, (f(X1)) = (PF)(in)-
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Further Theory

o So we get
E(ML — M{JA) = E(F(Xor1) — F(Xo) — o(P — 1)F(Xm)
— F(Xa) + £(X0) + X pZo(P — 1)f (Xim)|A)
= E(f(Xa1) = (P = Nf(Xy) = £(Xn)[A)
= E[f(Xat1) — (PF)(Xn)|A] = 0.
Thus, (Mf),>0 is a martingale.

Conversely, suppose Condition (ii) holds.
Then, for all bounded functions f,

E[f(Xntr1) — (PF)(Xn)|Xo = ios - .., Xn = in] = 0.
Take f =1y 1. Then we obtain
P(Xn-i-l = i,,+1|X0 = io, v ,X,, = i,,) = p,'n,'nﬂ.

So (Xn)n>0 is Markov with transition matrix P.
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Further Theory

Theorem

Let (Xn)n>0 be a Markov chain with transition matrix P. Suppose that a
function f : Z, x | — R satisfies, for all n > 0:

o E|f(n,X,)| < oc;
C (Pf)(n+ 17’) = Zjel pl_/f(n+ 17./) = f(nv l)
Then M, = f(n, X;) is a martingale.

o We have assumed that M, is integrable for all n.
Then, by the Markov Property
E(Mpt1 — Mp|Xo = doy ..., Xn = i)
=E;[f(n+1,X1) — f(n, Xo)]
= (Pf)(n+1,in) — f(n,ip) =0.

So (Mp)n>0 is @ martingale.
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Further Theory

o Suppose (X,)n>0 is a simple random walk on Z, starting from 0.

o Define
(i) = i
g(n,i) = i>—n.
o Now |X,| < n for all n.
o Thus:
o E|f(Xn)| < o0;
o Elg(n, Xy)| < 0.
o Also
(PAG) = 5+ 5 =i = ()
(Pe)(n+1,i) = WL B (1) =2 n=g(ni)

o Hence both X, = f(X,) and Y, = g(n, X,,) are martingales.
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Further Theory

o Consider again, for a, b € IN the stopping time
T=inf{n>0:X,=—aor X, = b}
o By the Optional Stopping Theorem

0 =E(Yo) = E(Y7rnan) = E(X%,,) — E(T A n).

o Hence, E(T A n) = E(X%,,).
o Let n — oo.

o The left side converges to E(T), by Monotone Convergence;
o The right side converges to E(X2) by Bounded Convergence.

o So we obtain

E(T)=E(X2)=a’p+ b*(1—p) =" ab.

George Voutsadakis (LSSU)



Further Theory Potential Theory

Subsection 2

Potential Theory
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Further Theory

o Consider the discrete-time random walk on the directed graph shown.

o At each step it chooses among the 1 4
allowable transitions with equal probability.

o Suppose that on each visit to states
i=1,2,3,4 a cost ¢; is incurred, where
Ci = i 2

ot

o What is the fair price to move from state 3 to state 47
o We denote by ¢; the expected total cost starting from /.

o The fair price is always the difference in the expected total cost.
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Further Theory Potential Theory

Example (Cont'd)

o Obviously, ¢5 = 0.
o The effect of a single step gives:

o1 = 1+ ¢,

¢2 = 2 +¢37

$3 = 34361+ 304,
¢y = 4.

o Hence ¢3 = 8.
o So the fair price to move from 3 to 4 is 4.

George Voutsadakis (LSSU) Markov Chains April 2024 24 /127



Further Theory

o Suppose our process is, instead, the continuous-time random walk
(Xt)t>0 on the same directed graph.

o Assume it makes each allowable transition at rate 1.

o A cost is incurred at rate ¢; = i in state j for i =1,2,3,4.

/OOO c(Xs)ds.

o We wish to find the fair price to move from 3 to 4.

o The total cost is now
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Further Theory Potential Theory

Example: A Variation (Cont'd)

o The expected cost incurred on each visit to i is given by
Ci
E’
where
a=1 qgq=1 q¢=3 q=1L

o So we see, as before:

¢1 = 1+ ¢2;

¢ = 2+ ¢3;

¢3 = 3+ 361+ 304
¢y = 4

o Hence ¢3 = 5.
o So the fair price to move from 3 to 4 is 1.
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Further Theory

o We consider the discrete time random walk (X,)n>0 on the modified
graph shown.

1 4
o Where there is no arrow, transitions are
allowed in both directions.
o Obviously, states 1 and 5 are absorbing. 3
2 5

o We impose a cost ¢; = i on each visit to i for i = 2,3, 4.
o There is a final cost f; on arrival at i = 1 or 5, where f; = i.
o Thus, the total cost is now

T-1

> c(Xn) + F(X7),

n=0
where T is the hitting time of {1,5}.



Further Theory

o Write, as before, ¢; for the expected total cost starting from i.
o Then d)l =1 and ¢5 =b.

o Moreover: L
$2 = 2+ 5(¢1 + #3);

¢3 = 3+ 1(d1+ b2+ da+ P5);
$a = 4+ 5(d3+ ¢s).
o On solving these equations we obtain

¢2 = 77 ¢3 = 97 ¢4 =11

o So in this case the fair price to move from 3 to 4 is —2.
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Further Theory

o Consider the simple discrete time random walk on Z with transition
probabilities Pii-1=q < p = Pjit+1-

o Let ¢ > 0.

o Suppose that a cost ¢’ is incurred every time the walk visits state .

o We would like to compute the expected total cost ¢g incurred by the
walk starting from 0.

o We must be prepared to find that ¢g = oo for some values of ¢, as
the total cost is a sum over infinitely many times.

o Indeed, we know that the walk X, — co with probability 1.

o So, for ¢ > 1, we shall certainly have ¢g = .
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Further Theory

o Let ¢; denote the expected total cost starting from /.
o On moving one step to the right, all costs are multiplied by c.
o So we must have

dit1 = CP;.

o By considering what happens on the first step, we see

d0=1+po1+q6-1 =1+ (cp+2) gu.

o Note that ¢9 = co always satisfies this equation.

o We shall see in the general theory that ¢ is the minimal non-negative
solution.
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Further Theory

o Let us look for a finite solution.
o We obtained ¢ =1+ (cp+ ) ¢o.

o Thus,
—(c’p—c+q)po =c.
o So c
Po= 73—
c—cp—gq

o The quadratic ¢?p — ¢ + g has roots at % and 1, and takes negative
values in between.

o Hence, the expected total cost is given by

do = chp_q, if c e (%, 1),
00, otherwise.

George Voutsadakis (LSSU) Markov Chains



Further Theory

o Let (X,)n>0 be a discrete time chain with transition matrix P.

o Let (X¢)t>0 be a continuous time chain with generator matrix Q.
o As usual, we insist that (X;)¢>0 be minimal.

o We partition the state-space / into two disjoint sets D and 9D.
o We call 9D the boundary.
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Further Theory

o We suppose that we are given functions:
o (¢i: i€ D)
o (f:i€dD).

o We denote by T the hitting time of 0D.

o Then the associated potential is defined by:
o In discrete time,

i =E; (Z c(Xn) + f(XT)1T<oo> ;

n<T

o In continuous time,

.
¢i = E; (/0 c(X¢)dt + f(XT)]-T<oo> .
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Further Theory

o To be sure that the sums and integrals in the potential formulas are
well defined, we shall assume for the most part that ¢ and f are
non-negative:

o ¢ >0, forall i eD;
o f; >0, forall i € OD.

o More generally, ¢ is the difference of the potentials associated with
the positive and negative parts of ¢ and f.

o So the positivity assumption is not too restrictive.
o In the explosive case we always set c(oc0) = 0.

o So no further costs are incurred after explosion.
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Further Theory

o The most obvious interpretation of the potentials is in terms of cost.
o The chain wanders around in D until it hits the boundary.

o Whilst in D, at state / say, it incurs a cost ¢; per unit time;
o When and if it hits the boundary, at j say, a final cost f; is incurred.

o Note that we do not assume the chain will hit the boundary.

o We do not even assume that the boundary is nonempty.
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Further Theory

Suppose that (¢j : i € D) and (f; : i € OD) are nonnegative. Set

¢i =E; (Z c(Xn) + f(XT)1T<oo) ;

n<T
where T denotes the hitting time of dD. Then:
The potential ¢ = (¢; : i € I) satisfies

¢p=Pop+c inD
¢p="F in OD;
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Further Theory Potential Theory

Properties of Potential (Cont'd)

Theorem (Cont'd)
o If = (i : i € 1) satisfies

Y >Pyp+c inD
v >f in D

and v; > 0 for all i, then v¥; > ¢; for all i;
0 IfPi(T < 00) =1 for all i, then the system

¢=Pp+c inD
¢o="f in OD;

has at most one bounded solution.
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Further Theory Potential Theory

Properties of Potential (i)

') Obviously, ¢ = f on 9D.

For i € D, by the Markov Property
Ei(21§n<T C(Xn) + f(XT)1T<OO|X1 :J)
=E;j(Q 7 c(Xn) + F(XT)17T<c0)
== QSJ'

So we have

¢ = i+ 2jer P 1<peT €(Xn) + F(XT)17<00| X0 =)
= G+ 2e Pid)
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Further Theory

Consider the expected cost up to time n:

n

¢i(n) = Ei (Z c(Xi)lk<T + f(XT)]-Tgn) -
k=0

By Monotone Convergence, ¢;(n)  ¢; as n — oc.

Also, by the argument used in Part (i), we find

{ ¢p(n+1)=c+ Pp(n) inD
p(n+1)="f in dD.
Suppose that 1 satisfies the system in (ii) and ¢» > 0 = ¢(0).
o In D, ¥ > P+ c> Pp0)+c = ¢(1);
o In 3D, ¢ > f = ¢(1).
So ¢ > ¢(1).
Similarly and by induction, 1 > ¢(n), for all n.
Hence ¢ > ¢.



Further Theory

Suppose 1) satisfies the system in Part (ii).
We show that, then,

i > ¢i(n— 1) + Ei(p(Xn)l7>n),

with equality if equality holds in Part (ii).
This is another proof of Part (ii).

But also, in the case of equality, if |¢j| < M and P;(T < o0) =1, for
all i, then, as n — oo,

[Ei(4(Xn)112n)| < MPi(T > n) = .

So
b= lim ¢(n) = .
This proves Part (iii).



Further Theory

o For i € D, we have

Vi G+ Y pifi+ ) Pyl

jeab jeb

By repeated substitution for ¢ on the right

Vi = G+ Yeop Piifi + 2jep PiiSi
Tt ZJ'1€D o Zjn—leD Pijy = Pjn—2jn—1%n1
+ ZJIED o Zjn—lED Z'neao Pijy ** Pjo—1jnTin
+ Z_/'1€D T Zj,,eD Pijy *** Pjo—1ja Vi
= Ej(c(Xo)lrso + f(X1)lr=1 + c(X1)l7>1
++ c(Xnm1)lrsno1 + F(Xa)lr=n + U(Xn)17>0)
= ¢i(n— 1) + Ei((Xn)11>n).

Equality holds when equality holds in Part (ii).



Further Theory

o We look at the calculation we have just done in terms of martingales.

o Consider
n—1
Mn =" c(Xi) ket + F(XT)17<n + $(Xn) LnsT
k=0
o Then
E(Mny1|Fn) = 15 c(Xi) ket + F(XT) 1720
+ (P¢ + C)(Xn)1T>n + f(Xn)lT:n
< M,

with equality if equality holds in Part (ii).
o We note that M, is not necessarily integrable.
o Nevertheless, it still follows that

Yi = Ei(Mo) > Ei(M,) = ¢i(n — 1) + E;i(¥(Xa)110),

with equality if equality holds in Part (ii).



Further Theory

o For continuous time chains there is a result analogous to the
preceding theorem.

o We have to state it slightly differently because, when ¢ takes infinite
values, the preceding equations may involve subtraction of infinities,
and therefore not make sense.

o Although the conclusion then appears to depend on the finiteness of
¢, which is a priori unknown, we can still use the result to determine
¢; in all cases.

o To do this we restrict our attention to the set of states J accessible
from i.

o If the linear equations have a finite non-negative solution on J, then
(¢j : j € J) is the minimal such solution.

o If not, then ¢; = oo, for some j € J, which forces ¢; = oo, since i
leads to j.
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Further Theory

Assume that (X¢)r>0 is minimal, and that (¢; : i € D) and (f; : i € OD)
are non-negative. Set

i =E; (/OT c(Xe)dt + f(XT)17<OO) ,

where T is the hitting time of D. Then ¢ = (¢; : i € 1), if finite, is the
minimal non-negative solution to

—Qp=c inD,
¢=f indD.

If ; = oo for some i, then this system has no finite non-negative
solution. Moreover, if Pi(T < oco) =1 for all i, then the system has at
most one bounded solution.
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Further Theory

o We use the following notation related to the process (X;)¢>0:

o (Yn)n>o0 is the jump chain;
o 51,5, ... are the holding times;

o [ is the jump matrix.
We use the convention 0 x oo = 0.

We then have
T
/ C(Xt)dt i f(XT)]-T<oo = Z C(Yn)sn-i-l + f(YN)]-N<007
0

n<N

where N is the first time (Y},)n>0 hits OD.

Moreover,
E(c(Yn)SnalYn=J) = G = 0, ifg=0.
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Further Theory

o So, by Fubini's Theorem

¢i =E; (Z c(Ya) + f(YN)1N<oo> .

n<N

By the preceding theorem, ¢ is therefore the minimal non-negative

solution to
¢=T¢p+¢ inD,
b=Ff in AD,
which has at most one bounded solution if P;(N < co) = 1, for all i.

But the finite solutions of the last system are exactly the finite
solutions of the system in the statement.

Moreover, N is finite whenever T is finite.

So this proves the result.
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Further Theory

o Potentials with discounted costs are obtained by applying to future
costs a discount factor a € (0, 1) or rate A € (0,00), corresponding to
an interest rate.

Suppose that (¢j : i € I) is bounded. Set

(Z),' = IE,' i a"c(X,,).
n=0

Then ¢ = (¢; : i € 1) is the unique bounded solution to

¢ =aP¢+ c.
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Further Theory

o Suppose that |¢;| < C, for all /.

Then -
i < CY a"=
n=0

So ¢ is bounded.
By the Markov Property

(Za |X1—j) ,Za c(Xn)

Then
¢i = Ei)}Zoac(Xn)
= ctad g pE( i a"te(X) X1 = J)
= Gta) i pid
So ¢ = c+ aP¢.
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Further Theory Potential Theory

Potentials With Discounted Costs (Cont'd)

o Suppose, next, that v is bounded and

Y =c+aPy.
Set
M = sup |4 — ¢il.
Then M < .
But ¢ — ¢ = aP(y) — ¢).
So
i — ¢il < il — ¢l < aM.
jel
Hence, M < aM.

This forces M = 0 and ¢ = ¢.
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Further Theory Potential Theory

Characterizations of Potentials With Discounted Costs

Theorem

Assume that (X:)r>0 is non-explosive. Suppose that (¢ : i € /) is
bounded. Set

o
¢i = ]E,'/ e_Atc(Xt)dt.
0
Then ¢ = (¢; : i € 1) is the unique bounded solution to

(M= Q)p=c.
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Further Theory

o Assume, for now, that c is non-negative.
Introduce a new state 0 with ¢y = 0.
Let T be an independent E()\) random variable.

Define
)"<’ o Xt fort < T
P10 fort>T.

Then ()?t)tzo is a Markov chain on / U {0}, with modified transition
rates

g=qgi+A Gga=2X qga=0.
Also T is the hitting time of 0, and is finite with probability 1.
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Further Theory

o By Fubini's Theorem

.
¢H=ECA c(Xe)dt.

Suppose ¢; < C, for all J.
Then -
¢ < C/ e Mdt < E
0 A
So ¢ is bounded.
Hence, by a previous theorem, ¢ is the unique bounded solution to

~Qp=c.

This yields the same solution as the equation in the statement (with a
0 appended).
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Further Theory

o Now suppose c takes negative values.
We can apply the preceding argument to the potentials

(ﬁ?: = E,/ e_AtC:t(Xt)dt,
0

where ¢ = (£¢) V0.

Then ¢ = ¢ — ¢~

So ¢ is bounded.

We have (A — Q)¢T = c*.

So, subtracting, we get (Al — Q)¢ = c.

Finally, suppose % is bounded and (Al — Q)¥ = c.

Then (A — Q)(¢v — ¢) = 0.

So 1) — ¢ is the unique bounded solution for the case when ¢ = 0,
which is 0.



Further Theory Potential Theory

Potentials Without Boundary

o We consider potentials with non-negative costs ¢, and without
boundary.

o In discrete time, the potential is defined by
o
¢i =E; Y c(Xn).
n=0
o In continuous time, it is defined by

¢;i = E; /0°° C(Xt)dt.

George Voutsadakis (LSSU) Markov Chains April 2024 54 /127



Further Theory Potential Theory

The Green Matrix

o In discrete time, by Fubini’'s Theorem, we have

¢i =Y Eic(Xp) = Y (P"c)i = (Gc)i,
n=0

n=0

where G = (gjj : i,j € I) is the Green matrix

o0
G=) P
n=0
o Similarly, in continuous time
¢ = Gc,
with

G = /Ooo P(t)dt.
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Further Theory

o We found that:

o ¢i = (Gc)i, where G = >~ P", in the discrete case;
o ¢ = Gc, where G = fooo P(t)dt, in the continuous case.

o Thus, once we know the Green matrix, we have explicit expressions
for all potentials of the Markov chain.

o The Green matrix is also called the fundamental solution of the
systems of the previous theorems.
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Further Theory

o The j-th column (gj : i € /) is itself a potential.

o We have:
o gij =Ei> 2, 1x,~; in discrete time;
o gj=E; [, 1x—jdt in continuous time.

o Thus gj is the expected total time in j starting from /.

o These quantities are related to transience and recurrence.

o We know that gjj = oo if and only if i leads to j and j is recurrent.
o In discrete time .

hi
1-f’

8ij =
where h{ is the probability of hitting j from i, and f; is the return

probability for j.
o In continuous time,

Gy = ———
Y q(1-6)
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Further Theory Potential Theory

The Case of Discounted Costs

o For potentials with discounted costs the situation is similar.
o In discrete time,

¢,‘ = ]E,-ia"c(x,,) = ian]E,'C(Xn) = (RaC),',
n=0

n=0

where

o In continuous time,
¢ =E; / e Mc(X)dt = / e ME;c(X;)dt = (Rxc)i,
0 0

where -
R\ = / e MP(t)dt.
0
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Further Theory

o We found that
o ¢; = (Rnc)i, where R, = ZZ‘;O a"P", in discrete time;
o ¢i = (Rxc)i, where Ry = fooo e~ P(t)dt, in continuous time.
o We call (Ry:a€(0,1)) and (Ry : A € (0,00)) the resolvent of the
Markov chain.
o Unlike the Green matrix the resolvent is always finite.
o For finite state space we have:
o Ry=(—-aP)™;
o R\=(\-Q)L
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Further Theory Potential Theory

Harmonic Functions

o We consider the general case, with boundary 0D.
o Any bounded function (¢; : i € I) for which

¢=P¢p, inD,

is called harmonic in D.
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Further Theory

o Consider a random walk (X,),>0 on the graph shown.

o Each allowable transition is made with equal
probability.

o States a and b are absorbing.
o We set 9D = {a, b}.

a b
o Let h? denote the absorption probability for a, starting from i.
o By a method used previously we find

h? =

—
= S|~eiw
SIS
o Blwain

where we have written the vector h? as a matrix, corresponding in an
obvious way to the state space.
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Further Theory

o The linear equations for the vector h? read

h? = Ph?, in D
h2=1,h2 =0.

o Thus we can find two non-negative functions h? and h?, harmonic in
D, but with different boundary values.

o The most general non-negative harmonic function ¢ in D satisfies

{ i i f¢ :2 gD where f,, f, > 0.

o This implies
¢ = fLh? + fih".

o Thus the boundary points a and b give us extremal generators h® and
h? of the set of all nonnegative harmonic functions.
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Further Theory

o Consider the random walk (X;)s>0 on Z which:

o Jumps towards 0 with probability g;
o Jumps away from 0 with probability p =1 — g;
o At 0 it jumps to —1 or 1 with probability %

o We choose p > g so that the walk is transient.

o In fact, starting from 0, we can show that (X,)n>0 is equally likely to
end up drifting to the left or to the right, at speed p — g.

o Consider the problem of determining for (X,),>0 the set C of all
non-negative harmonic functions ¢.

o We must have:

(bl' = p¢i+1 + q(bi—la for i = 1727 000
do = o1+ 301,
(bl' = q¢i+1 +p¢i—17 for i = _17_27""
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Further Theory

o The first equation has general solution

i
¢;:A+B<1—(%)), i=0,1,2,....

o It is non-negative provided A+ B > 0.
o Similarly, the third equation has general solution

—i
¢ =A + B (1—(3> ) i=0,-1,-2,....
p

o It is non-negative provided A’ + B’ > 0.

o To obtain a general harmonic function we must match the values ¢q
and satisfy

_ 1t o

%o 5
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Further Theory

o We found:
o¢,—A+B(1—(%)) ori=0,1,2,.
o pi=A+B(1- (1) 1, for i =0, 1—2,...;
o ¢p= ¢1+¢1
0 =

o This forces A =A"and B+ B’ =0.

o It follows that all non-negative harmonic functions have the form
d=Ff"h +ftht,

where f~,fT >0, h- = h"; and

h,.+:{

George Voutsadakis (LSSU)
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Further Theory

o In the first example the generators of C were in one-to-one
correspondence with the points of the boundary - the possible places
for the chain to end up.

o In the last example there is no boundary, but the generators of C still
correspond to the two possibilities for the long-time behavior of the
chain.

o We have

h =Pi(X, — 0o as n — o).

o This suggests that the set of non-negative harmonic functions may be

used to identify a generalized notion of boundary for Markov chains.

o Sometimes it just consists of points in the state space.
o More generally, it corresponds to the varieties of possible limiting
behavior for X, as n — oo.
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Further Theory

o Consider a Markov chain (X,)n>0 with absorbing boundary 9D.
o Set h? = P;(T < o), where T is the hitting time of 9D.

o Then by the methods used in the discrete case, we have

h? = PR?, in D,
ho =1, in OD.

o Note that h? = 1, for all i, always gives a possible solution.
i ys 8

o Hence, if the system has a unique bounded solution, then

W =Pi(T <o0)=1, foralli.
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Further Theory

o Conversely, suppose
Pi(T < o0) =1, foralli.

o Then, as we showed in a previous theorem, the system has a unique
bounded solution.

o Indeed, we showed more generally that this condition implies that

¢=Pp+c, inD
¢o=f, in 0D

has at most one bounded solution.
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Further Theory

o Recall that
¢i = E; (Z c(Xa) + f(XT)1T<oo>
n<T
is the minimal solution.
o Thus, any bounded solution is given by this formula.
o Suppose from now on that P;(T < o0) = 1, for all i.

o Let ¢ be a bounded non-negative function, harmonic in D, with
boundary values ¢; = f;, for i € dD.

o Then, by Monotone Convergence,

¢ =Bi(F(X7)) = D fiPi(X1 =),

jeob

o Hence, every bounded harmonic function is determined by its
boundary values.
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Further Theory Potential Theory

The Case of Absorbing Boundary (Cont'd)

o We have )
¢ = Z fJ-hI’
jedb
where '
hi = Pi(XT = ).

o The hitting probabilities for boundary states form a set of extremal
generators for the set of all bounded non-negative harmonic functions.
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Further Theory Electrical Networks

Subsection 3

Electrical Networks
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Further Theory

o An electrical network has a countable set / of nodes.

o Each node i has a capacity 7; > 0.

o Some nodes are joined by wires.

o The wire between i and j has conductivity a; = a;; > 0.
o When there is no wire joining / to j we take a;; = 0.

o In practice, each “wire” contains a resistor, which determines the
conductivity as the reciprocal of its resistance.
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Further Theory

o Each node i holds a certain charge ;.
o This determines its potential ¢; by

Xi = ¢imj.
o A current or flow of charge is any matrix (v; : i,/ € /) with
Vi = ~Vji-
o Physically, the current vj; from i to j obeys Ohm’s Law:
i = aij(¢i — &)

o Thus, charge flows from nodes of high to nodes of low potential.
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Further Theory

o The first problem in electrical networks is to determine equilibrium
flows and potentials, subject to given external conditions.

o The nodes are partitioned into two sets D and 9D.

o External connections are made at the nodes in 9D and possibly at
some of the nodes in D.

o These have the effect that:

o Each node i € 9D is held at a given potential f;
o A given current g; enters the network at each node i € D.

o If gi =0, then a node has no external connection.
o In equilibrium, current may also enter or leave through dD.

o Here, however, it is not the current but the potential which is
determined externally.
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Further Theory

o Given a flow (vjj : i,j € I) we shall write v; for the total flow from i

to the network:
R
Jjel
o In equilibrium the charge at each node is constant,
vi = gi, forieD.

o Therefore, by Ohm's Law, any equilibrium potential ¢ = (¢; : i € /)
must satisfy

¢i="f, i€dD.

o There is a simple correspondence between electrical networks and
reversible Markov chains in continuous time, given by

{ >jer 2ij(#i — ¢;) =g, €D,

aj = miqij, % J.
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Further Theory

o We assume that the total conductivity at each node is finite:

aj = Z ajj < Q.
J#i
o Then ai = Tiq; = —T;qj.
o The capacities 7; are the components of an invariant measure.
o The symmetry of a;; corresponds to the detailed balance equations.

o The equations for an equilibrium potential may now be written in a
form familiar from the preceding section:

—QRQo=c inD,
¢o=1Ff indD, ’

where ¢; = £

o Note that ct and f have the same physical dimensions.

o We know that these equations may fail to have a unique solution.
o So there may be more than one equilibrium potential.
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Further Theory

o For simplification purposes, we shall assume that:
o [ is finite;
o The network is connected;
o 0D is non-empty.

o This is enough to ensure uniqueness of potentials.
o Then, by a previous theorem, the equilibrium potential is given by

¢i = E; (/OT c(Xe)dt + f(XT)) :

where T is the hitting time of 0D.
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Further Theory

o The case where 9D is empty may be reduced to the nonempty
boundary case.

o A necessary condition for the existence of an equilibrium is
Sa=o0
i€l

o Pick one node k.

o Set
oD = {k}.

o Replace the condition v, = gk by
ok = 0.

o The new problem is equivalent to the old, but now 0D is non-empty.

George Voutsadakis (LSSU) Markov Chains



Further Theory

YVVVY

o We determine the equilibrium current 4 = B
in the network shown. 1 o
o A unit current enters at A and leaves 2 §§ §
at F. it L
o The conductivities are as shown. Do W WWW
o We obtain the system of equations:
¢a— B +20a—2¢9p = 1
¢ — A+ 208 —20c + 9 — ¢ = 0
2¢9c —2¢p +2¢c —2¢Fr = 0
20p —2¢0a+2¢p — 20 = O
¢ — ¢ +20E—20p+ e —¢F = 0
20F —2¢c+¢Fr — 9 = -1
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Further Theory Electrical Networks

Example (Cont'd)

o They can be rewritten as:

36a— ¢ —20p =

— ¢a+498 — 2¢c — ¢E
—2¢p +4dc — 29F
—2¢a+4¢p — 2¢¢

— ¢ — 2¢p + 4dE — OF
—2¢c — 9 +3¢F = -1

Setting ¢ = 0, we get:

Il
cooor

36a— o —20p =

— ¢a+ 3¢ — ¢E
—2¢p +4¢c
—2¢a+4¢p — 2¢¢
— ¢ —2¢p + 4¢E
oF =
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Further Theory Electrical Networks

Example (Cont'd)

o The last four give:

¢ = 2¢c

da = 2¢p — ¢E
o = —2¢p +49E
¢r = 0

o Plugging into the first two we get:

6op —T9pe = 1
—8¢p + 12¢¢

I
o

o Solving the latter, we get ¢ = % ¢p = %.
o Finally, pa =1, ¢g = % and ¢¢c = 1.
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Further Theory

o Note that the node capacities did not affect the problem.
o Let us arbitrarily assign to each node a capacity 1.

o Then there is an associated Markov chain.

o Let T be the hitting time of {A, F}.

o According to .
¢i = E; (/0 c(Xe)dt + f(XT)> ;
the equilibrium potential is given by
¢i = Ei(1x,=a) = Pi(XT = A).

o Different node capacities result in different Markov chains.

o However, the jump chain and hitting probabilities remain the same.
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Further Theory

Consider a finite network with external connections at two nodes A and B,
and the associated Markov chain (X)¢>o.

The unique equilibrium potential ¢ with ¢4 =1 and ¢g = 0 is given
by
¢i =Pi(Ta < Tg),

where T4 and Tg are the hitting times of A and B.
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Further Theory

Theorem (Cont'd)

The unique equilibrium flow v with y4 =1 and v = —1 is given by

vij = Ea(lyj — Tji),

where ['j; is the number of times that (X;)¢>0 jumps from i to j
before hitting B.

The charge x associated with v, subject to xg = 0, is given by

Tg
Xi = EA/ Lix,=ipdt.
0
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Further Theory

o The formula for ¢ is a special case of

¢i = E; (/OT c(Xe)dt + f(XT)) ,

where ¢ =0 and f = 114.

We prove Parts (b) and (c) together.
Suppose Xy = A.

Then we have

1, ifi=A
d(Mi—Ti)=4 0, ifi¢g{AB}
J#i -1, ifi=B.

So, if vjj = Ea(lj — Tji), then « is a unit flow from A to B.
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Further Theory

o We found that, if Xop = A and

vij = Ea(lyj — Tji),

then ~y is a unit flow from A to B.
We have

o0
i = LiYumi,Yo—jin<Na}
n=0

where Np is the hitting time of B for the jump chain (Y,)n>o0.
So, by the Markov Property of the jump chain,

IEA(I_U) = ZEOZO IPA(YH = ia Yn+1 :ja n < NB)
= Y oloPa(Ya=i,n < Np)mj.
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Further Theory

o Set
Tg
Xi = EA/ Lix,=ipdt.
0

Consider the associated potential ¢; = ﬁ—:
Then
00
Xiqij = XiqiTij = Z]P)A(Yn = i, n < NB)TFU = EA(I'U).
n=0
So

(Vi —bj)ay = Xiqij — X;9i = Vij-

Hence v = ¢, «y is the equilibrium unit flow and x the associated
charge, as required.

George Voutsadakis (LSSU) Markov Chains



Further Theory Electrical Networks

o Suppose:
¢ = (¢;: i €1)is a potential;
v =(vj:i,j€l)is a flow.

o Define the following quantities:

E(¢) = %Z(¢i—¢1)2ayi I(7) = sz =

ijel I,JEI

o The 3 5 signifies that each wire is counted once.
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Further Theory

o When ¢ and ~ are related by Ohm's law we have

E(¢) =

2 ZI,J( )2aU
2 Zi,j( = )i
2 ZI,J ajj

1(7)-

o E(¢) is found physically to give the rate of dissipation of energy, as

heat, by the network.

o We will see that certain equilibrium potentials and flows determined
by Ohm's law minimize these energy functions.

o This characteristic of energy minimization can indeed replace Ohm's
law as the fundamental physical principle.
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Further Theory

The equilibrium potential and flow may be determined as follows.

The equilibrium potential ¢ = (¢; : i € 1), with boundary values
¢; = f;, for i € D, and no current sources in D, is the unique
solution to

minimize E(¢) subject to ¢; = f;, for i € OD.

The equilibrium flow v = (vj; : i,j € ), with current sources ; = gj,
for i € D, and boundary potential zero, is the unique solution to

minimize /(-y) subject to v; = gj for i € D.
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Further Theory

o For any potential ¢ = (¢; : i € I) and any flow v = (v : i,j € I) we

have
D (6 — )i =2 divi

ijel i€l
Denote by ¢ = (¢; : i € I) and by v = (vjj : i,j € I) the equilibrium
potential and flow.
By hypothesis, v; =0, for i € D.
We can write any potential in the minimization problem in the form
¢ +e¢e, wheree = (g;: i €l), withg; =0, for i € ID.
Then

Z(gi —&j)(¢i — ¢j)aj = 2(51 — &)= 2251’)’: =0.

ijel ijel i€l
So E(¢ +¢€) = E(p) + E(e) > E(9).
Equality holds only if £ = 0.



Further Theory

Denote by ¢ = (¢; : i € I) and by v = (vjj : i,j € I) the equilibrium
potential and flow.

By hypothesis, ¢; =0, for i € dD.

We can write any flow in the minimization problem in the form ~ + 6,
where 0 = (6;; : i,j € 1) is a flow, with 6; =0, for i € D.

Then
D byt =Y (6 —¢)6; =2 ¢:6i =0.
ijel ijel icl
So
1(y +0) = I() + 1(8) = 1(9).

Equality holds only if 6 = 0.
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Further Theory

o The following reformulation of Part (a) of the preceding result states
that harmonic functions minimize energy.

Corollary

Suppose that ¢ = (¢; : i € 1) satisfies

Qp=0 inD,
¢=f indD.

Then ¢ is the unique solution to

“minimize E(¢) subject to ¢ = f in OD".
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Further Theory

o Let JC /.

o We say that 3= (3 : i,j € J) is an effective conductivity on J if,
for all potentials f = (f; : i € J), the external currents into J when J
is held at potential f are the same for (J,3) as for (/, a).

o We know that f determines an equilibrium potential ¢ = (¢; : i € /)

by
Zje/(¢i —¢j)aj=0 fori¢gJ
¢i=f; forieJ.
o Then 3 is an effective conductivity if, for all f, for i € J we have

Z — ¢j)ajj = Z(f fi)aij.

jel jeJ
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Further Theory Electrical Networks

Effective Conductivities and Energy

o For a conductivity matrix @ on J, for a potential f = (fi: i € J) and a
flow § = (0j : i,j € J), we set

— 1 _
E(f) = 5 3 (fi— )73
ijed

and

1(6) = Z o%ay "

I,JEJ
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Further Theory

There is a unique effective conductivity a given by 3;; = aj; + Zng a,-k(ﬁ’,;,
where for each j € J, ¢/ = ((ﬁ{ i € 1) is the potential defined by

Zke/(ﬁf’{: - ¢j/'<)a!'k =0 fori¢J,
¢ =38 forieJ.

Moreover, 3 is characterized by the Dirichlet variational principle

E(f)=, inf E(9).

i=fj on

and also by the Thompson variational principle

inf  1(8) = inf 1(~).
TR P
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Further Theory

o Let f = (fi: i € J) be given.
Define ¢ = (¢; : i € I) by

Then we have, for i & J,
Yerai(di— &) = Yier il ey fidf — ey fid]]
= Yjer i ks fu(dF — 6))
= Pkey k2 ser ai(oF — ¢Jk) =0.

Moreover, for i € J, ¢; = Zjel 5¢{ = ZjeJ f;8; = fi.
So ¢ is the equilibrium potential given by

> jer aij(¢i —¢;) =0 fori ¢ J,
¢ =1 forieJ.
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Further Theory

o By a previous corollary, ¢ solves
minimize E(¢) subject to ¢; = f; for i € J.

We have, for i € J,
D20 =Y aifi+Y Y audfi= D 3
jel jed k&J jed jed

In particular, taking f =1 we obtain 3., a; = ajj.

jed
Hence we have equality of external currents:

> (6 — dp)ag = Y _(fi — £)3y.

jel jeJ
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Further Theory

o Moreover, we also have equality of energies.

Zi,je/(¢i —¢j)ay = 23 e G Zje/(¢i — &j)ajj
= 2 e, fid e fi — fi)aj
= Yijesfi— )%

Finally, let gj = (fi — f;)3; and v;j = (¢i — ¢))aj;.

1 2
Yy = Dijeldi — 6)ay
= Yijesfi— 63
_ 21
Zi,jngijaij 0

So, by the preceding theorem, for any flow § = (d; : i,j € I) with
6 =gjforie Jand d; =0 for i & J,

2. —1 2—1
Y Gt =) giayt
ijel ijed
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Further Theory

o Consider again the associated Markov chain (X;)¢>o.

o Define the time spent in J

t
At=/ l{XSEJ}dS'
0

o Define a time-changed process (X )i>0 by
Xt = X1,

where 7(t) =inf {s > 0: As > t}.
o We obtain (X;)s>0 by observing (X;)s>o whilst in J, and stopping the
clock whilst (X;)¢>0 makes excursions outside J.

o This is really a transformation of the jump chain.
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Further Theory

o By applying the strong Markov property to the jump chain we find
that (X¢)e>o is itself a Markov chain, with jump matrix I given by

f,'j:ﬂ',j-l-ZW,'k(ﬁi, i,j € J,
k)
where ¢’k = Py(X7 =) and T denotes the hitting time of J.
o Hence (X¢)¢>0 has @-matrix given by

G =qi+ Y Gk

kgJ

o Since ¢/ = (qbfk : k € 1) is the unique solution to the system in the
preceding theorem, this shows that 7;q; = 3j;.

o So (X¢)r>0 is the Markov chain on J associated with the effective
conductivity a.
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Further Theory Brownian Motion

Subsection 4

Brownian Motion
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Further Theory

o Imagine a symmetric random walk in Euclidean space which takes
infinitesimal jumps with infinite frequency and you will have some
idea of Brownian motion.

o A discrete approximation to Euclidean space RY is provided by
c 274 = {7 z € 79},

where c is a large positive number.
o The simple symmetric random walk (X,)n>0 on Z¢9 is a Markov chain.

o We shall show that the scaled-down and speeded-up process
X = 12,

is a good approximation to Brownian motion.
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Further Theory

o We explain why space is rescaled by the square root of the time
scaling.

o A desideratum is that Xt(c) converges, in some sense, as ¢ — 00 to a
non-degenerate limit.

o A least requirement is that E[]Xt(c)lz] converges to a non-degenerate
limit.
o For ct € Z™, we have
21 2
E[|Xct[?] = ctB[X 2]
o So the square root scaling gives

E[XV1?] = E[lc Y2 X ] = ¢ 'E[|Xet?] = B[ X0 [2]-

o This is independent of c.



Further Theory

o A real-valued random variable is said to have Gaussian distribution
with mean 0 and variance t if it has density function

¢t(X) = (27Tt)_1/2 exp{—x2/2t} = —; te_x2/2t.
V £T

o The fundamental role of Gaussian distributions in probability derives
from the Central Limit Theorem.
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Further Theory

Theorem (Central Limit Theorem)

Let X1, Xs, ... be a sequence of independent and identically distributed
real-valued random variables with mean 0 and variance t € (0, c0).
Then, for all bounded continuous functions f, as n — co we have

E [f (%N —>/]Rf(x)¢>t(x)dx.

o We shall take this result and a few other standard properties of the
Gaussian distribution for granted in this section.
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Further Theory

o A real-valued process (X;)¢>0 is said to be continuous if
P({w : t — X¢(w) is continuous}) = 1.

o A continuous real-valued process (B;)¢>q is called a Brownian
motion if:

Qo BO = O
o Forall 0 =ty < t; < --- < t,, the increments

By, — By, ..., By, — B, ,
are independent Gaussian random variables of mean 0 and variance
th — to,...,th — th—1.

o The conditions made on (B:):>0 are enough to determine all the
probabilities associated with the process.

o To put it properly, the law of Brownian motion, which is a measure
on the set of continuous paths, is uniquely determined.
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Further Theory

Theorem (Wiener's Theorem)

Brownian motion exists.

o For N=0,1,2,..., denote by Dy the set of integer multiples of 2=V
in [0,00), and denote by D the union of these sets.
We say (B; : t € Dy) is a Brownian motion indexed by Dy if:
4] Bo =0;
o Forall 0 =ty < t; <--- <t,in Dy, the increments By, — By, ...,
B:, — B:, , are independent Gaussian random variables of mean 0 and

variance t; — tg, ..., th — th_1.
We suppose given, for each t € D, an independent Gaussian random
variable Y; of mean 0 and variance 1.
Fort € Dy =77, set

Bi=Yi+Yo+---+ Ye
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Further Theory

o Note that (B; : t € Dy), with
Be=Yi+Ya+---4 Yy, teDy=17",

is a Brownian motion indexed by Dy.

o We shall show how to extend this process successively to Brownian
motions (B; : t € Dy) indexed by Dy.

o Then (B; : t € D) is a Brownian motion indexed by D.
o (B;: t € D) extends continuously to t € [0, c0).

o Finally, we check that this extension is a Brownian motion.
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Further Theory

o Suppose we have constructed

(Bt 1t e DN—1)7
a Brownian motion indexed by Dy_;.
For t € DN\DN—L set
r=t—2"N and s=t+27N

Note that r,s € Dy_1.
Define

Z,=2-(N+)2y, B, = %(B, + Bs) + Z.
We obtain two new increments:
B:—B, = 3(Bs—B)+Zs
Bs— By = %(Bs—B)—Z.
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Further Theory

o We compute

E[(B: — B,)’] = E[(Bs - B:)’]
Lp=(N-1) 4 p~(N+1)
EAE

]E[(Bt — Br)(Bs — Bt)] = 2_(N_1) — 2_(N+1)

1
Z
= 0

The two new increments, being Gaussian, are therefore independent
and of the required variance.

Moreover, being constructed from Bs — B, and Y, they are certainly
independent of increments over intervals disjoint from (r,s).

Hence, (B : t € Dy) is a Brownian motion indexed by Dy.
By induction, we obtain a Brownian motion (B; : t € D).
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Further Theory

o For each N denote by

N
(BM)es0
the continuous process obtained by linear interpolation from
(Bt t e DN)
Set

ZM _ g™ _ gn-1)

For t € Dy_1 we have Z™) = 0.
For t € Dy\Dpn—1, by construction, we have

N
Zt( ) = B - 3(Bi_o-n + Bip-n)
- Z
2—(N+1)/2 Y,

with Y; Gaussian of mean 0 and variance 1.

George Voutsadakis (LSSU) Markov Chains



Further Theory Brownian Motion

Wiener's Theorem: Extension to t > 0 (Cont'd)

o Set
My = sup [ZI"V)].
t€[0,1]

Now (Z,SN))QO interpolates linearly between its values on Dy.

So we obtain

My = sup 2~ (N+1)/2)y, |
te(Dy\Dn—1)N[0,1]
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Further Theory

o There are 2V=1 points in (Dy\Dn_1) N [0, 1].
So, for A > 0, we have

P(My > A2-(N+1)/2) < oN=1p(|yy| > ).

For a random variable X > 0 and p > 0, we have the formula

E(XP)=E / Lixsa PAP dA = / PAPTIP(X > A)dA.
0 0
Hence,
2P(N+1)/2E(M;\JI) _ fooo p)\p_IP(2(N+1)/2MN > A)dA

IN

2N=1 [ pAPTIP(|Y1| > A)dA
= 2N-IE(|v|P).
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Further Theory Brownian Motion

Wiener's Theorem: Extension to t > 0 (Cont'd)

o Hence, for any p > 2,

E> N=oMn

IA A

A\

> N0 E(Mn)

> h—o E(MR)'P

E(| Y1[P)Y/P Yo (20P~2/2P) =N

Q.

It follows that, with probability 1, as N — oo,

B _

BO 4z ¢

converges uniformly in t € [0,1].
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Further Theory

o By a similar argument with probability 1, as N — oo,
Bt(N) _ 850) +Zt(1) +___+Z§N)

converges uniformly for t in any bounded interval.
Now BEN) eventually equals B; for any t € D.
But the uniform limit of continuous functions is continuous.

So (B; : t € D) has a continuous extension (B;):>0, as claimed.
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Further Theory

o It remains to show that the increments of (B;):>o have the required
joint distribution.

Consider given 0 < t; < --- < tp,.
We can find sequences (t;")mew in D such that:

o 0t < - <ty forall m;
o t' — ti, for all k.

Set to = t§" = 0.
We know that the increments

Btl - Btén, ey Bt,’,n - Bt,T,l

are Gaussian of mean 0 and variance t{" — tg",..., t7 —t[" ;.

Hence, using continuity of (Bt)¢>0, we can let m — oo to obtain the
desired distribution for the increments By, — By,..., By, — B, .
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Further Theory

Let (X,)n>0 be a discrete time, real valued random walk with steps of
mean 0 and variance 02 € (0,00). For ¢ > 0 consider the rescaled process

X9 = i,

where the value of X, when ct is not an integer, is found by linear
interpolation. Then, for all m, for all bounded continuous functions
f:R™" > Randall0 <ty <--- < t,, we have

EIF(X, ..., X! — E[f (0B, .., 0B,

as ¢ — 00, where (Bt)¢>g is a Brownian motion.
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Further Theory

o The claim is that, as ¢ — oo, (Xt b Xt(,,,)) converges weakly to
(0B, ...,0B,).
We take for granted some basic properties of weak convergence.
First define )N(t(c) = c‘l/zX[ct], with [ct] the integer part of ct.
Then

(XD, XD — (XD X < VA (Vg Viewgo)s
where Y}, denotes the n-th step of (Xj)s>o0.
The right side converges weakly to 0.

So it suffices to prove the claim with X(©) replacing X .
Consider the increments

U = %O _ %19

tk—1°

Zk :U(Btk 7Btk71)’ k = 1,...,m

We have Xé ) = = By = 0. So it suffices to show that (U(C) o U,(,,C))
converges weakly to (Z1,...,2Zn).
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Further Theory

o But both sets of increments are independent.

So it suffices to show that U,((C) converges weakly to Z, for each k.
Now, with Ni(c) = [ctk] — [ctk—1], we have

Uﬁc) - C_1/22Lc:tk[]ctk,1]+1 Y,

~ (PN ()2)N(e) T2 (Ve + -+ Vi)

By the Central Limit Theorem, we have:
o Ni(c)7Y2(Yi 4+ Yi(c)) converges weakly to (tx — te—1)"Y/2Zk,;
° (c_1/2Nk(c)1/2) — (tk = tk_1)1/2.
Hence, we obtain
U~ (V2N )V N () V(i + - + Vi)
5 (b= toe1) "2 Z0) (1 — te—1)M?)
- Z.
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Further Theory

o Let (B})¢>0,---,(B)t>0 be d independent Brownian motions

o Consider the R?-valued process
B: = (B},...,BY).

o We call (B;):>0 a Brownian motion in R?.

o There is a multidimensional version of the Central Limit Theorem
which leads to a multidimensional version of the preceding theorem.

o Thus, if (X,)n>0 is a random walk in R9, with steps of mean 0 and
covariance matrix V = E(X;X;"), and if V is finite, then for all
bounded continuous functions f : (R9)™ — R, as ¢ — oo, we have

E[f (X', ..., X\ = E[f(VVBy,...,VVBy).

1 )
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Further Theory

o Brownian motion (B;):>o satisfies the following scaling invariance
property, which can checked from the definition.

o For any ¢ > 0, the process (Bt(c))tzo defined by
BlEC) = C_1/2Bct

is a Brownian motion.

o Thus Brownian motion appears as a fixed point of the scaling
transformation.

o The scaling transformation attracts all other finite variance symmetric
random walks as ¢ — co.
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Further Theory

o Brownian motion starting from x is any process (B;):>o such that:
o By = x;
o (Bt — Bp)t>0 is a Brownian motion (starting from 0).

o In looking in Brownian motion for the structure of a Markov process
we look for:

o A transition semigroup (P:):>o0;
o A generator G.

o For any bounded measurable function f : RY — R we have

Ex[f(B:)] = Eolf(x+ B:)l
= Jpe Fix+y)pe(y1) - delya)dyr - - dya
= f]Rd p(t,X,y)f(y)dy,

where p(t,x,y) = (2rt)=9/2 exp {—|y — x|?/2t}.
o This is the transition density for Brownian motion.
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Further Theory

o The transition semigroup is given by

(Pef)) = [ plex ) )y = Ex{F(BOL
To check the semigroup property PsP; = P+, note that

Ex[f(Bs+t)] = Ex[f(Bs + (Bs+t - BS))]
= E,[P:f(Bs)]
= (PsP:f)(x).

Here, we first took the expectation over the independent increment
Bsit — Bs.
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Further Theory

o For t > 0 it is easy to check that

0 1
a. - _AX tv ) )
8tp(t,x,y) 5 p(t, x,y)

_ o2 52
where A, = 6—)(12-1—----1—6—)([21.
Hence, if f has two bounded derivatives, we have
L(PF)x) = [go3Dxp(t,x,y)f(y)dy
= Jpo 3Dyp(t,x,y)f(y)dy
= f]Rd p(t,X,y)(%Af)(y)dy
0
= EJGANB)] 23 1af(x).

By analogy with continuous-time chains, the generator, a term we
have not defined precisely, should be given by G = %A.
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Further Theory

o Where formerly we considered vectors (fj : i € I), now there are
functions f : RY — R, required to have various degrees of local
regularity, such as measurability and differentiability.

o Where formerly we considered matrices P; and @, now we have linear
operators on functions:

o Py is an integral operator;
o G is a differential operator.

o We explain the appearance of the Laplacian A by reference to the

random walk approximation.

o Denote by (X,)n>0 the simple symmetric random walk in Z9.

o Consider, for N =1,2,..., the rescaled process

2
Xt(N) = N_1/2XNt7 t= 07 7N7

=~
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Further Theory

o For a bounded continuous function f : RY — R, set

(PA)x) = BN, x e N2z,

o The closest thing to a derivative in t at 0, for (PgN))t:07%7%7___, is
N N N
NPUNE =)0 = NEJF(XN) — FOE™)]

= NEpu2, [F(N7H2X;) — F(NTY2X0)]

= N{f(x— N7V2) = 2f(x) + f(x + N~/2)}.
o Assume that f has two bounded derivatives.
o By Taylor's Theorem, as N — oo,

f(x — N~Y2) = 2f(x) + f(x + N=Y2) = N"Y(AF(x) 4 o(N)).

o So N(PINF — F)(x) = 3AF(x).
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