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Further Theory Martingales

Subsection 1

Martingales
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Further Theory Martingales

Example

Consider the simple symmetric random walk (Xn)n≥0 on Z, which is a
Markov chain with the following diagram

The average value of the walk is constant.

In precise terms we have EXn = EX0.

Indeed, the average value of the walk at some future time is always
simply the current value.

This stronger property says that, for n ≥ m,

E(Xn − Xm|X0 = i0, . . . ,Xm = im) = 0.

The stronger property expresses that (Xn)n≥0 is a martingale.
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Further Theory Martingales

Filtration

Let us fix for definiteness a Markov chain (Xn)n≥0.

Write Fn for the collection of all sets depending only on X0, . . . ,Xn.

The sequence (Fn)n≥0 is called the filtration of (Xn)n≥0.

We think of Fn as representing the state of knowledge, or history, of
the chain up to time n.
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Further Theory Martingales

Martingales

A process (Mn)n≥0 is called adapted if Mn depends only on
X0, . . . ,Xn.

A process (Mn)n≥0 is called integrable if

E|Mn| <∞, for all n.

An adapted integrable process (Mn)n≥0 is called a martingale if, for
all n and all A ∈ Fn,

E[(Mn+1 −Mn)1A] = 0.
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Further Theory Martingales

Martingales: Second Formulation

Note that the collection Fn consists of countable unions of
elementary events, such as

{X0 = i0,X1 = i1, . . . ,Xn = in}.

It follows that the martingale property is equivalent to saying that, for
all n and all i0, . . . , in,

E(Mn+1 −Mn|X0 = i0, . . . ,Xn = in) = 0.
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Further Theory Martingales

Martingales: Third Formulation

Given an integrable random variable Y , we define

E(Y |Fn) =
∑

i0,...,in

E(Y |X0 = i0, . . . ,Xn = in)1{X0=i0,...,Xn=in}.

The random variable E(Y |Fn) is called the conditional expectation

of Y given Fn.

In passing from Y to E(Y |Fn), we replace, on each elementary event
A ∈ Fn, the random variable Y by its average value E(Y |A).
It is easy to check that an adapted integrable process (Mn)n≥0 is a
martingale if and only if, for all n,

E(Mn+1|Fn) = Mn.
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Further Theory Martingales

Martingales: Third Formulation (Cont’d)

Conditional expectation is a partial averaging.

So, if we complete the process and average the conditional
expectation, we should get the full expectation

E(E(Y |Fn)) = E(Y ).

In particular, for a martingale

E(Mn) = E(E(Mn+1|Fn)) = E(Mn+1).

So, by induction,
E(Mn) = E(M0).

This was already clear on taking A = Ω in our original definition of a
martingale.
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Further Theory Martingales

Optional Stopping Theorem

Recall that a random variable T : Ω → {0, 1, 2, . . .} ∪ {∞} is a
stopping time if

{T = n} ∈ Fn, for all n <∞.

An equivalent condition is that {T ≤ n} ∈ Fn, for all n <∞.

Recall that all sorts of hitting times are stopping times.

Theorem (Optional Stopping Theorem)

Let (Mn)n≥0 be a martingale and let T be a stopping time. Suppose that
at least one of the following conditions holds:

(i) T ≤ n, for some n;

(ii) T <∞ and |Mn| ≤ C whenever n ≤ T .

Then EMT = EM0.
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Further Theory Martingales

Optional Stopping Theorem (Cont’d)

Assume that Condition (i) holds. Then

MT −M0 = (MT −MT−1) + · · ·+ (M1 −M0)

=
∑n−1

k=0(Mk+1 −Mk)1k<T .

Since T is a stopping time, {k < T} = {T ≤ k}c ∈ Fk .

Since (Mk)k≥0 is a martingale, E[(Mk+1 −Mk)1k<T ] = 0.

Hence,

EMT − EM0 =

n−1∑

k=0

E[(Mk+1 −Mk)1k<T ] = 0.
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Further Theory Martingales

Optional Stopping Theorem (Cont’d)

Next, suppose Condition (ii) holds.

The preceding argument applies to the stopping time T ∧ n.

So
EMT∧n = EM0.

Then, for all n,

|EMT − EM0| = |EMT − EMT∧n|
≤ E|MT −MT∧n|
≤ 2CP(T > n).

But P(T > n) → 0 as n → ∞.

So
EMT = EM0.
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Further Theory Martingales

Application to Simple Symmetric Random Walk

Consider the simple symmetric random walk (Xn)n≥0.

Suppose that X0 = 0 and a, b ∈ N given.

Take
T = inf {n ≥ 0 : Xn = −a or Xn = b}.

Then:

T is a stopping time;
T <∞ by recurrence of finite closed classes.

Thus, Condition (ii) of the Optional Stopping Theorem applies with
Mn = Xn and C = a ∨ b.

We deduce that
EXT = EX0 = 0.
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Further Theory Martingales

Application to Simple Symmetric Random Walk (Cont’d)

Now we can compute

p = P(Xn hits −a before b).

We have:

XT = −a with probability p;
XT = b with probability 1− p.

So
0 = EXT = p(−a) + (1− p)b.

Thus, p = b
a+b

.

The intuition behind the result EXT = 0 is very clear:

A gambler, playing a fair game, leaves the casino once losses reach a or
winnings reach b, whichever is sooner.
Since the game is fair, the average gain should be zero.
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Further Theory Martingales

Comparison with Gambler’s Ruin

We discussed previously the counter-intuitive case of a gambler who
keeps on playing a fair game against an infinitely rich casino, with the
certain outcome of ruin.

This game ends at the finite stopping time

T = inf {n ≥ 0 : Xn = −a},

where a is the gambler’s initial fortune.

We have XT = −a.

So EXT 6= 0 = EX0.

This does not contradict the Optional Stopping Theorem because
neither Condition (i) nor Condition (ii) is satisfied.

Thus, while intuition might suggest that EXT = EX0 is rather
obvious, some care is needed as it is not always true.
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Further Theory Martingales

Martingales and Markov Chains

We recall that, given a function f : I → R and a Markov chain
(Xn)n≥0 with transition matrix P , we have

(Pnf )(i) =
∑

j∈I

p
(n)
ij fj = Ei(f (Xn)).

Theorem

Let (Xn)n≥0 be a random process with values in I and let P be a
stochastic matrix. Write (Fn)n≥0 for the filtration of (Xn)n≥0. Then the
following are equivalent:

(i) (Xn)n≥0 is a Markov chain with transition matrix P ;

(ii) For all bounded functions f : I → R, the following process is a
martingale:

M f
n = f (Xn)− f (X0)−

n−1∑

m=0

(P − I )f (Xm).
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Further Theory Martingales

Martingales and Markov Chains (Cont’d)

Suppose Condition (i) holds. Let f be a bounded function.

Clearly (M f
n ) is adapted.

We show it is also integrable.

We have

|(Pf )(i)| =

∣∣∣∣∣∣

∑

j∈I

pij fj

∣∣∣∣∣∣
≤ sup

j

|fj |.

So
|M f

n | ≤ 2(n + 1) sup
j

|fj | <∞.

This shows that M f
n is integrable for all n.

Let A = {X0 = i0, . . . ,Xn = in}.
By the Markov Property,

E(f (Xn+1)|A) = Ein(f (X1)) = (Pf )(in).
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Further Theory Martingales

Martingales and Markov Chains (Cont’d)

So we get

E(M f
n+1 −M f

n |A) = E(f (Xn+1)− f (X0)−
∑n

m=0(P − I )f (Xm)

− f (Xn) + f (X0) +
∑n−1

m=0(P − I )f (Xm)|A)
= E(f (Xn+1)− (P − I )f (Xn)− f (Xn)|A)
= E[f (Xn+1)− (Pf )(Xn)|A] = 0.

Thus, (M f
n )n≥0 is a martingale.

Conversely, suppose Condition (ii) holds.

Then, for all bounded functions f ,

E[f (Xn+1)− (Pf )(Xn)|X0 = i0, . . . ,Xn = in] = 0.

Take f = 1{in+1}. Then we obtain

P(Xn+1 = in+1|X0 = i0, . . . ,Xn = in) = pinin+1 .

So (Xn)n≥0 is Markov with transition matrix P .
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Further Theory Martingales

More on Markov Chains and Martingales

Theorem

Let (Xn)n≥0 be a Markov chain with transition matrix P . Suppose that a
function f : Z+ × I → R satisfies, for all n ≥ 0:

E |f (n,Xn)| <∞;

(Pf )(n + 1, i) =
∑

j∈I pij f (n + 1, j) = f (n, i).

Then Mn = f (n,Xn) is a martingale.

We have assumed that Mn is integrable for all n.

Then, by the Markov Property

E(Mn+1 −Mn|X0 = i0, . . . ,Xn = in)

= Ein[f (n + 1,X1)− f (n,X0)]

= (Pf )(n + 1, in)− f (n, in) = 0.

So (Mn)n≥0 is a martingale.
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Further Theory Martingales

Application to a Simple Random Walk

Suppose (Xn)n≥0 is a simple random walk on Z, starting from 0.

Define
f (i) = i ;

g(n, i) = i2 − n.

Now |Xn| ≤ n for all n.

Thus:

E|f (Xn)| <∞;
E|g(n,Xn)| <∞.

Also

(Pf )(i) = i−1
2 + i+1

2 = i = f (i);

(Pg)(n + 1, i) = (i−1)2

2 + (i+1)2

2 − (n + 1) = i2 − n = g(n, i).

Hence both Xn = f (Xn) and Yn = g(n,Xn) are martingales.
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Further Theory Martingales

Application to a Simple Random Walk (Cont’d)

Consider again, for a, b ∈ N the stopping time

T = inf {n ≥ 0 : Xn = −a or Xn = b}.

By the Optional Stopping Theorem

0 = E(Y0) = E(YT∧n) = E(X 2
T∧n)− E(T ∧ n).

Hence, E(T ∧ n) = E(X 2
T∧n).

Let n → ∞.
The left side converges to E(T ), by Monotone Convergence;
The right side converges to E(X 2

T ) by Bounded Convergence.

So we obtain

E(T ) = E(X 2
T ) = a2p + b2(1− p)

p = b
a+b

= ab.

George Voutsadakis (LSSU) Markov Chains April 2024 21 / 127



Further Theory Potential Theory

Subsection 2

Potential Theory
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Further Theory Potential Theory

Example

Consider the discrete-time random walk on the directed graph shown.

At each step it chooses among the
allowable transitions with equal probability.

Suppose that on each visit to states
i = 1, 2, 3, 4 a cost ci is incurred, where
ci = i .

What is the fair price to move from state 3 to state 4?

We denote by φi the expected total cost starting from i .

The fair price is always the difference in the expected total cost.
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Further Theory Potential Theory

Example (Cont’d)

Obviously, φ5 = 0.

The effect of a single step gives:

φ1 = 1 + φ2,
φ2 = 2 + φ3,
φ3 = 3 + 1

3φ1 +
1
3φ4,

φ4 = 4.

Hence φ3 = 8.

So the fair price to move from 3 to 4 is 4.
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Further Theory Potential Theory

Example: A Variation

Suppose our process is, instead, the continuous-time random walk
(Xt)t≥0 on the same directed graph.

Assume it makes each allowable transition at rate 1.

A cost is incurred at rate ci = i in state i for i = 1, 2, 3, 4.

The total cost is now ∫ ∞

0
c(Xs)ds .

We wish to find the fair price to move from 3 to 4.
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Further Theory Potential Theory

Example: A Variation (Cont’d)

The expected cost incurred on each visit to i is given by

ci

qi
,

where
q1 = 1, q2 = 1, q3 = 3, q4 = 1.

So we see, as before:

φ1 = 1 + φ2;
φ2 = 2 + φ3;
φ3 = 3

3 + 1
3φ1 +

1
3φ4;

φ4 = 4.

Hence φ3 = 5.

So the fair price to move from 3 to 4 is 1.
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Further Theory Potential Theory

Example: Another Variation

We consider the discrete time random walk (Xn)n≥0 on the modified
graph shown.

Where there is no arrow, transitions are
allowed in both directions.

Obviously, states 1 and 5 are absorbing.

We impose a cost ci = i on each visit to i for i = 2, 3, 4.

There is a final cost fi on arrival at i = 1 or 5, where fi = i .

Thus, the total cost is now

T−1∑

n=0

c(Xn) + f (XT ),

where T is the hitting time of {1, 5}.
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Further Theory Potential Theory

Example: Another Variation (Cont’d)

Write, as before, φi for the expected total cost starting from i .

Then φ1 = 1 and φ5 = 5.

Moreover:
φ2 = 2 + 1

2(φ1 + φ3);

φ3 = 3 + 1
4(φ1 + φ2 + φ4 + φ5);

φ4 = 4 + 1
2(φ3 + φ5).

On solving these equations we obtain

φ2 = 7, φ3 = 9, φ4 = 11.

So in this case the fair price to move from 3 to 4 is −2.
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Further Theory Potential Theory

Example

Consider the simple discrete time random walk on Z with transition
probabilities pi ,i−1 = q < p = pi ,i+1.

Let c > 0.

Suppose that a cost c i is incurred every time the walk visits state i .

We would like to compute the expected total cost φ0 incurred by the
walk starting from 0.

We must be prepared to find that φ0 = ∞ for some values of c , as
the total cost is a sum over infinitely many times.

Indeed, we know that the walk Xn → ∞ with probability 1.

So, for c ≥ 1, we shall certainly have φ0 = ∞.
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Further Theory Potential Theory

Example (Cont’d)

Let φi denote the expected total cost starting from i .

On moving one step to the right, all costs are multiplied by c .

So we must have
φi+1 = cφi .

By considering what happens on the first step, we see

φ0 = 1 + pφ1 + qφ−1 = 1 +
(
cp +

q

c

)
φ0.

Note that φ0 = ∞ always satisfies this equation.

We shall see in the general theory that φ0 is the minimal non-negative
solution.
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Further Theory Potential Theory

Example (Cont’d)

Let us look for a finite solution.

We obtained φ0 = 1 +
(
cp + q

c

)
φ0.

Thus,
−(c2p − c + q)φ0 = c .

So
φ0 =

c

c − c2p − q
.

The quadratic c2p − c + q has roots at q
p
and 1, and takes negative

values in between.

Hence, the expected total cost is given by

φ0 =

{ c
c−c2p−q

, if c ∈ (q
p
, 1),

∞, otherwise.
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Further Theory Potential Theory

The Potentials

Let (Xn)n≥0 be a discrete time chain with transition matrix P .

Let (Xt)t≥0 be a continuous time chain with generator matrix Q.

As usual, we insist that (Xt)t≥0 be minimal.

We partition the state-space I into two disjoint sets D and ∂D.

We call ∂D the boundary.
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Further Theory Potential Theory

The Potentials (Cont’d)

We suppose that we are given functions:

(ci : i ∈ D);
(fi : i ∈ ∂D).

We denote by T the hitting time of ∂D.

Then the associated potential is defined by:

In discrete time,

φi = Ei

(
∑

n<T

c(Xn) + f (XT )1T<∞

)
;

In continuous time,

φi = Ei

(∫ T

0

c(Xt)dt + f (XT )1T<∞

)
.
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Further Theory Potential Theory

Positivity of Costs

To be sure that the sums and integrals in the potential formulas are
well defined, we shall assume for the most part that c and f are
non-negative:

ci ≥ 0, for all i ∈ D;
fi ≥ 0, for all i ∈ ∂D.

More generally, φ is the difference of the potentials associated with
the positive and negative parts of c and f .

So the positivity assumption is not too restrictive.

In the explosive case we always set c(∞) = 0.

So no further costs are incurred after explosion.
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Further Theory Potential Theory

Interpretation of Potential as Cost

The most obvious interpretation of the potentials is in terms of cost.

The chain wanders around in D until it hits the boundary.

Whilst in D, at state i say, it incurs a cost ci per unit time;
When and if it hits the boundary, at j say, a final cost fj is incurred.

Note that we do not assume the chain will hit the boundary.

We do not even assume that the boundary is nonempty.
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Further Theory Potential Theory

Properties of Potential

Theorem

Suppose that (ci : i ∈ D) and (fi : i ∈ ∂D) are nonnegative. Set

φi = Ei

(
∑

n<T

c(Xn) + f (XT )1T<∞

)
,

where T denotes the hitting time of ∂D. Then:

(i) The potential φ = (φi : i ∈ I ) satisfies

{
φ = Pφ+ c in D

φ = f in ∂D;
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Further Theory Potential Theory

Properties of Potential (Cont’d)

Theorem (Cont’d)

(ii) If ψ = (ψi : i ∈ I ) satisfies

{
ψ ≥ Pψ + c in D

ψ ≥ f in ∂D

and ψi ≥ 0 for all i , then ψi ≥ φi for all i ;

(iii) If Pi(T <∞) = 1 for all i , then the system

{
φ = Pφ+ c in D

φ = f in ∂D;

has at most one bounded solution.
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Further Theory Potential Theory

Properties of Potential (i)

(i) Obviously, φ = f on ∂D.

For i ∈ D, by the Markov Property

Ei(
∑

1≤n<T c(Xn) + f (XT )1T<∞|X1 = j)

= Ej(
∑

n<T c(Xn) + f (XT )1T<∞)

= φj .

So we have

φi = ci +
∑

j∈I pijE(
∑

1≤n<T c(Xn) + f (XT )1T<∞|X1 = j)

= ci +
∑

j∈I pijφj .
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Further Theory Potential Theory

Properties of Potential (ii)

(ii) Consider the expected cost up to time n:

φi (n) = Ei

(
n∑

k=0

c(Xk)1k<T + f (XT )1T≤n

)
.

By Monotone Convergence, φi (n) ր φi as n → ∞.

Also, by the argument used in Part (i), we find
{
φ(n + 1) = c + Pφ(n) in D

φ(n + 1) = f in ∂D.

Suppose that ψ satisfies the system in (ii) and ψ ≥ 0 = φ(0).
In D, ψ ≥ Pψ + c ≥ Pφ(0) + c = φ(1);
In ∂D, ψ ≥ f = φ(1).

So ψ ≥ φ(1).

Similarly and by induction, ψ ≥ φ(n), for all n.

Hence ψ ≥ φ.
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Further Theory Potential Theory

Properties of Potential (iii)

(iii) Suppose ψ satisfies the system in Part (ii).

We show that, then,

ψi ≥ φi (n − 1) + Ei(ψ(Xn)1T≥n),

with equality if equality holds in Part (ii).

This is another proof of Part (ii).

But also, in the case of equality, if |ψi | ≤ M and Pi (T <∞) = 1, for
all i , then, as n → ∞,

|Ei(ψ(Xn)1T≥n)| ≤ MPi(T ≥ n) → 0.

So
ψ = lim

n→∞
φ(n) = φ.

This proves Part (iii).
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Further Theory Potential Theory

Properties of Potential ((iii) Cont’d)

For i ∈ D, we have

ψi ≥ ci +
∑

j∈∂D

pij fj +
∑

j∈D

pijψj .

By repeated substitution for ψ on the right

ψi ≥ ci +
∑

j∈∂D pij fj +
∑

j∈D pijcj
+ · · ·+∑j1∈D

· · ·∑jn−1∈D
pij1 · · · pjn−2jn−1cjn−1

+
∑

j1∈D
· · ·∑jn−1∈D

∑
jn∈∂D

pij1 · · · pjn−1jn fjn
+
∑

j1∈D
· · ·
∑

jn∈D
pij1 · · · pjn−1jnψjn

= Ei(c(X0)1T>0 + f (X1)1T=1 + c(X1)1T>1

+ · · ·+ c(Xn−1)1T>n−1 + f (Xn)1T=n + ψ(Xn)1T>n)

= φi(n − 1) + Ei(ψ(Xn)1T≥n).

Equality holds when equality holds in Part (ii).
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Further Theory Potential Theory

Recasting in Terms of Martingales

We look at the calculation we have just done in terms of martingales.

Consider

Mn =
n−1∑

k=0

c(Xk)1k<T + f (XT )1T<n + ψ(Xn)1n≤T .

Then

E(Mn+1|Fn) =
∑n−1

k=0 c(Xk)1k<T + f (XT )1T<n

+ (Pψ + c)(Xn)1T>n + f (Xn)1T=n

≤ Mn,

with equality if equality holds in Part (ii).

We note that Mn is not necessarily integrable.

Nevertheless, it still follows that

ψi = Ei(M0) ≥ Ei(Mn) = φi(n − 1) + Ei(ψ(Xn)1T≥n),

with equality if equality holds in Part (ii).
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Further Theory Potential Theory

Restricting to States Accessible from i

For continuous time chains there is a result analogous to the
preceding theorem.

We have to state it slightly differently because, when φ takes infinite
values, the preceding equations may involve subtraction of infinities,
and therefore not make sense.

Although the conclusion then appears to depend on the finiteness of
φ, which is a priori unknown, we can still use the result to determine
φi in all cases.

To do this we restrict our attention to the set of states J accessible
from i .

If the linear equations have a finite non-negative solution on J, then
(φj : j ∈ J) is the minimal such solution.

If not, then φj = ∞, for some j ∈ J, which forces φi = ∞, since i

leads to j .
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Further Theory Potential Theory

Characterization of Potential in Continuous Time

Theorem

Assume that (Xt)t≥0 is minimal, and that (ci : i ∈ D) and (fi : i ∈ ∂D)
are non-negative. Set

φi = Ei

(∫ T

0
c(Xt)dt + f (XT )1T<∞

)
,

where T is the hitting time of ∂D. Then φ = (φi : i ∈ I ), if finite, is the
minimal non-negative solution to

{
−Qφ = c in D,

φ = f in ∂D.

If φi = ∞ for some i , then this system has no finite non-negative
solution. Moreover, if Pi(T <∞) = 1 for all i , then the system has at
most one bounded solution.
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Further Theory Potential Theory

Characterization of Potential in Continuous Time (Cont’d)

We use the following notation related to the process (Xt)t≥0:
(Yn)n≥0 is the jump chain;
S1, S2, . . . are the holding times;
Π is the jump matrix.

We use the convention 0×∞ = 0.

We then have
∫ T

0
c(Xt)dt + f (XT )1T<∞ =

∑

n<N

c(Yn)Sn+1 + f (YN)1N<∞,

where N is the first time (Yn)n≥0 hits ∂D.

Moreover,

E(c(Yn)Sn+1|Yn = j) = c̃j =

{
cj
qj

if cj > 0,

0, if cj = 0.
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Characterization of Potential in Continuous Time (Cont’d)

So, by Fubini’s Theorem

φi = Ei

(
∑

n<N

c̃(Yn) + f (YN)1N<∞

)
.

By the preceding theorem, φ is therefore the minimal non-negative
solution to {

φ = Πφ+ c̃ in D,
φ = f in ∂D,

which has at most one bounded solution if Pi(N <∞) = 1, for all i .

But the finite solutions of the last system are exactly the finite
solutions of the system in the statement.

Moreover, N is finite whenever T is finite.

So this proves the result.
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Potentials With Discounted Costs

Potentials with discounted costs are obtained by applying to future
costs a discount factor α ∈ (0, 1) or rate λ ∈ (0,∞), corresponding to
an interest rate.

Theorem

Suppose that (ci : i ∈ I ) is bounded. Set

φi = Ei

∞∑

n=0

αnc(Xn).

Then φ = (φi : i ∈ I ) is the unique bounded solution to

φ = αPφ+ c .
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Potentials With Discounted Costs (Cont’d)

Suppose that |ci | ≤ C , for all i .

Then

|φi | ≤ C

∞∑

n=0

αn =
C

1− α
.

So φ is bounded.

By the Markov Property

E

(
∞∑

n=1

αn−1c(Xn)|X1 = j

)
= Ej

∞∑

n=0

αnc(Xn) = φj .

Then

φi = Ei

∑∞
n=0 α

nc(Xn)

= ci + α
∑

j∈I pijE(
∑∞

n=1 α
n−1c(Xn)|X1 = j)

= ci + α
∑

j∈I pijφj .

So φ = c + αPφ.
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Potentials With Discounted Costs (Cont’d)

Suppose, next, that ψ is bounded and

ψ = c + αPψ.

Set
M = sup

i

|ψi − φi |.

Then M <∞.

But ψ − φ = αP(ψ − φ).

So
|ψi − φi | ≤ α

∑

j∈I

pij |ψj − φj | ≤ αM.

Hence, M ≤ αM.

This forces M = 0 and ψ = φ.
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Characterizations of Potentials With Discounted Costs

Theorem

Assume that (Xt)t≥0 is non-explosive. Suppose that (ci : i ∈ I ) is
bounded. Set

φi = Ei

∫ ∞

0
e−λtc(Xt)dt.

Then φ = (φi : i ∈ I ) is the unique bounded solution to

(λI − Q)φ = c .
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Characterizations of Potentials With Discounts (Cont’d)

Assume, for now, that c is non-negative.

Introduce a new state ∂ with c∂ = 0.

Let T be an independent E (λ) random variable.

Define

X̃t =

{
Xt for t < T

∂ for t ≥ T .

Then (X̃t)t≥0 is a Markov chain on I ∪ {∂}, with modified transition
rates

q̃i = qi + λ, q̃i∂ = λ, q̃∂ = 0.

Also T is the hitting time of ∂, and is finite with probability 1.
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Characterizations of Potentials With Discounts (Cont’d)

By Fubini’s Theorem

φi = Ei

∫ T

0
c(X̃t)dt.

Suppose ci ≤ C , for all i .

Then

φi ≤ C

∫ ∞

0
e−λtdt ≤ C

λ
.

So φ is bounded.

Hence, by a previous theorem, φ is the unique bounded solution to

−Q̃φ = c .

This yields the same solution as the equation in the statement (with a
0 appended).
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Characterizations of Potentials With Discounts (Cont’d)

Now suppose c takes negative values.

We can apply the preceding argument to the potentials

φ±i = Ei

∫ ∞

0
e−λtc±(Xt)dt,

where c±i = (±c) ∨ 0.

Then φ = φ+ − φ−.

So φ is bounded.

We have (λI − Q)φ± = c±.

So, subtracting, we get (λI − Q)φ = c .

Finally, suppose ψ is bounded and (λI − Q)ψ = c .

Then (λI − Q)(ψ − φ) = 0.

So ψ − φ is the unique bounded solution for the case when c = 0,
which is 0.
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Potentials Without Boundary

We consider potentials with non-negative costs c , and without
boundary.

In discrete time, the potential is defined by

φi = Ei

∞∑

n=0

c(Xn).

In continuous time, it is defined by

φi = Ei

∫ ∞

0
c(Xt)dt.
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The Green Matrix

In discrete time, by Fubini’s Theorem, we have

φi =

∞∑

n=0

Eic(Xn) =

∞∑

n=0

(Pnc)i = (Gc)i ,

where G = (gij : i , j ∈ I ) is the Green matrix

G =

∞∑

n=0

Pn.

Similarly, in continuous time

φ = Gc ,

with

G =

∫ ∞

0
P(t)dt.
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The Fundamental Solution

We found that:

φi = (Gc)i , where G =
∑∞

n=0 P
n, in the discrete case;

φ = Gc , where G =
∫∞

0
P(t)dt, in the continuous case.

Thus, once we know the Green matrix, we have explicit expressions
for all potentials of the Markov chain.

The Green matrix is also called the fundamental solution of the
systems of the previous theorems.
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The Green Matrix, Transience and Recurrence

The j-th column (gij : i ∈ I ) is itself a potential.

We have:
gij = Ei

∑∞

n=0 1Xn=j in discrete time;
gij = Ei

∫∞

0
1Xt=jdt in continuous time.

Thus gij is the expected total time in j starting from i .

These quantities are related to transience and recurrence.

We know that gij = ∞ if and only if i leads to j and j is recurrent.
In discrete time

gij =
h
j
i

1− fj
,

where h
j
i is the probability of hitting j from i , and fj is the return

probability for j .
In continuous time,

gij =
h
j
i

qj(1− fj)
.
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The Case of Discounted Costs

For potentials with discounted costs the situation is similar.

In discrete time,

φi = Ei

∞∑

n=0

αnc(Xn) =

∞∑

n=0

αn
Eic(Xn) = (Rαc)i ,

where

Rα =

∞∑

n=0

αnPn.

In continuous time,

φi = Ei

∫ ∞

0

e−λtc(Xt)dt =

∫ ∞

0

e−λt
Eic(Xt)dt = (Rλc)i ,

where

Rλ =

∫ ∞

0

e−λtP(t)dt.
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Resolvents

We found that

φi = (Rαc)i , where Rα =
∑∞

n=0 α
nPn, in discrete time;

φi = (Rλc)i , where Rλ =
∫∞

0
e−λtP(t)dt , in continuous time.

We call (Rα : α ∈ (0, 1)) and (Rλ : λ ∈ (0,∞)) the resolvent of the
Markov chain.

Unlike the Green matrix the resolvent is always finite.

For finite state space we have:

Rα = (I − αP)−1;
Rλ = (λI − Q)−1.
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Harmonic Functions

We consider the general case, with boundary ∂D.

Any bounded function (φi : i ∈ I ) for which

φ = Pφ, in D,

is called harmonic in D.
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Example (Absorbing Boundary)

Consider a random walk (Xn)n≥0 on the graph shown.

Each allowable transition is made with equal
probability.

States a and b are absorbing.

We set ∂D = {a, b}.

Let hai denote the absorption probability for a, starting from i .

By a method used previously we find

ha =




3
5

1
2

2
5

7
10

1
2

3
10

1 1
2 0


 ,

where we have written the vector ha as a matrix, corresponding in an
obvious way to the state space.
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Example (Absorbing Boundary Cont’d)

The linear equations for the vector ha read

{
ha = Pha, in D

haa = 1, hab = 0.

Thus we can find two non-negative functions ha and hb, harmonic in
D, but with different boundary values.

The most general non-negative harmonic function φ in D satisfies{
φ = Pφ in D

φ = f in ∂D,
where fa, fb ≥ 0.

This implies
φ = fah

a + fbh
b.

Thus the boundary points a and b give us extremal generators ha and
hb of the set of all nonnegative harmonic functions.
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Example (No Boundary)

Consider the random walk (Xn)n≥0 on Z which:

Jumps towards 0 with probability q;
Jumps away from 0 with probability p = 1− q;
At 0 it jumps to −1 or 1 with probability 1

2 .

We choose p > q so that the walk is transient.

In fact, starting from 0, we can show that (Xn)n≥0 is equally likely to
end up drifting to the left or to the right, at speed p − q.

Consider the problem of determining for (Xn)n≥0 the set C of all
non-negative harmonic functions φ.

We must have:

φi = pφi+1 + qφi−1, for i = 1, 2, . . .

φ0 = 1
2φ1 +

1
2φ−1,

φi = qφi+1 + pφi−1, for i = −1,−2, . . . .
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Example (No Boundary Cont’d)

The first equation has general solution

φi = A+ B

(
1−

(
q

p

)i
)
, i = 0, 1, 2, . . . .

It is non-negative provided A+ B ≥ 0.

Similarly, the third equation has general solution

φi = A′ + B ′

(
1−

(
q

p

)−i
)
, i = 0,−1,−2, . . . .

It is non-negative provided A′ + B ′ ≥ 0.

To obtain a general harmonic function we must match the values φ0
and satisfy

φ0 =
φ1 + φ−1

2
.
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Example (No Boundary Cont’d)

We found:

φi = A+ B(1 − ( q
p
)i ), for i = 0, 1, 2, . . .;

φi = A′ + B ′(1− ( q
p
)−i), for i = 0,−1,−2, . . .;

φ0 =
φ1+φ

−1

2 .

This forces A = A′ and B + B ′ = 0.

It follows that all non-negative harmonic functions have the form

φ = f −h− + f +h+,

where f −, f + ≥ 0, h−i = h+−i and

h+i =

{
1
2 +

1
2 (1− (q

p
)i ) for i = 0, 1, 2, . . . ,

1
2 − 1

2 (1− (q
p
)−i ) for i = −1,−2, . . . .
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Generalized Boundary and Limiting Behavior

In the first example the generators of C were in one-to-one
correspondence with the points of the boundary - the possible places
for the chain to end up.

In the last example there is no boundary, but the generators of C still

correspond to the two possibilities for the long-time behavior of the

chain.

We have
h+i = Pi(Xn → ∞ as n → ∞).

This suggests that the set of non-negative harmonic functions may be
used to identify a generalized notion of boundary for Markov chains.

Sometimes it just consists of points in the state space.
More generally, it corresponds to the varieties of possible limiting
behavior for Xn as n → ∞.
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The Case of Absorbing Boundary

Consider a Markov chain (Xn)n≥0 with absorbing boundary ∂D.

Set h∂i = Pi(T <∞), where T is the hitting time of ∂D.

Then by the methods used in the discrete case, we have

{
h∂ = Ph∂ , in D,
h∂ = 1, in ∂D.

Note that h∂i = 1, for all i , always gives a possible solution.

Hence, if the system has a unique bounded solution, then

h∂i = Pi(T <∞) = 1, for all i .
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The Case of Absorbing Boundary (Cont’d)

Conversely, suppose

Pi(T <∞) = 1, for all i .

Then, as we showed in a previous theorem, the system has a unique
bounded solution.

Indeed, we showed more generally that this condition implies that

{
φ = Pφ+ c , in D

φ = f , in ∂D

has at most one bounded solution.
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The Case of Absorbing Boundary (Cont’d)

Recall that

φi = Ei

(
∑

n<T

c(Xn) + f (XT )1T<∞

)

is the minimal solution.

Thus, any bounded solution is given by this formula.

Suppose from now on that Pi(T <∞) = 1, for all i .

Let φ be a bounded non-negative function, harmonic in D, with
boundary values φi = fi , for i ∈ ∂D.

Then, by Monotone Convergence,

φi = Ei(f (XT )) =
∑

j∈∂D

fjPi(XT = j).

Hence, every bounded harmonic function is determined by its
boundary values.
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The Case of Absorbing Boundary (Cont’d)

We have
φ =

∑

j∈∂D

fjh
j ,

where
h
j
i = Pi(XT = j).

The hitting probabilities for boundary states form a set of extremal
generators for the set of all bounded non-negative harmonic functions.
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Subsection 3

Electrical Networks
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Electrical Networks

An electrical network has a countable set I of nodes.

Each node i has a capacity πi > 0.

Some nodes are joined by wires.

The wire between i and j has conductivity aij = aji ≥ 0.

When there is no wire joining i to j we take aij = 0.

In practice, each “wire” contains a resistor, which determines the
conductivity as the reciprocal of its resistance.
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Ohm’s Law

Each node i holds a certain charge χi .

This determines its potential φi by

χi = φiπi .

A current or flow of charge is any matrix (γij : i , j ∈ I ) with

γij = −γji .

Physically, the current γij from i to j obeys Ohm’s Law:

γij = aij(φi − φj).

Thus, charge flows from nodes of high to nodes of low potential.
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External Connections and Equilibrium

The first problem in electrical networks is to determine equilibrium
flows and potentials, subject to given external conditions.

The nodes are partitioned into two sets D and ∂D.

External connections are made at the nodes in ∂D and possibly at
some of the nodes in D.

These have the effect that:

Each node i ∈ ∂D is held at a given potential fi ;
A given current gi enters the network at each node i ∈ D.

If gi = 0, then a node has no external connection.

In equilibrium, current may also enter or leave through ∂D.

Here, however, it is not the current but the potential which is
determined externally.
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Equilibrium Flow

Given a flow (γij : i , j ∈ I ) we shall write γi for the total flow from i

to the network:
γi =

∑

j∈I

γij .

In equilibrium the charge at each node is constant,

γi = gi , for i ∈ D.

Therefore, by Ohm’s Law, any equilibrium potential φ = (φi : i ∈ I )
must satisfy

{ ∑
j∈I aij(φi − φj) = gi , i ∈ D,

φi = fi , i ∈ ∂D.

There is a simple correspondence between electrical networks and
reversible Markov chains in continuous time, given by

aij = πiqij , i 6= j .
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Equilibrium Potentials and Non-Uniqueness

We assume that the total conductivity at each node is finite:

ai =
∑

j 6=i

aij <∞.

Then ai = πiqi = −πiqii .
The capacities πi are the components of an invariant measure.

The symmetry of aij corresponds to the detailed balance equations.

The equations for an equilibrium potential may now be written in a
form familiar from the preceding section:

{
−Qφ = c in D,

φ = f in ∂D,
, where ci =

gi
πi
.

Note that ct and f have the same physical dimensions.

We know that these equations may fail to have a unique solution.

So there may be more than one equilibrium potential.
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Equilibrium Potentials: Conditions for Uniqueness

For simplification purposes, we shall assume that:

I is finite;
The network is connected;
∂D is non-empty.

This is enough to ensure uniqueness of potentials.

Then, by a previous theorem, the equilibrium potential is given by

φi = Ei

(∫ T

0
c(Xt)dt + f (XT )

)
,

where T is the hitting time of ∂D.
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Equilibrium Potentials: Empty Boundary

The case where ∂D is empty may be reduced to the nonempty
boundary case.

A necessary condition for the existence of an equilibrium is

∑

i∈I

gi = 0.

Pick one node k .

Set
∂D = {k}.

Replace the condition γk = gk by

φk = 0.

The new problem is equivalent to the old, but now ∂D is non-empty.
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Example

We determine the equilibrium current
in the network shown.

A unit current enters at A and leaves
at F .

The conductivities are as shown.

We obtain the system of equations:

φA − φB + 2φA − 2φD = 1
φB − φA + 2φB − 2φC + φB − φE = 0

2φC − 2φB + 2φC − 2φF = 0
2φD − 2φA + 2φD − 2φE = 0

φE − φB + 2φE − 2φD + φE − φF = 0
2φF − 2φC + φF − φE = −1
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Example (Cont’d)

They can be rewritten as:

3φA − φB − 2φD = 1
− φA + 4φB − 2φC − φE = 0

− 2φB + 4φC − 2φF = 0
− 2φA + 4φD − 2φE = 0

− φB − 2φD + 4φE − φF = 0
− 2φC − φE + 3φF = −1

Setting φF = 0, we get:

3φA − φB − 2φD = 1
− φA + 3φB − φE = 0

− 2φB + 4φC = 0
− 2φA + 4φD − 2φE = 0
− φB − 2φD + 4φE = 0

φF = 0
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Example (Cont’d)

The last four give:

φB = 2φC
φA = 2φD − φE
φB = −2φD + 4φE
φF = 0

Plugging into the first two we get:

6φD − 7φE = 1
− 8φD + 12φE = 0

Solving the latter, we get φE = 1
2 , φD = 3

4 .

Finally, φA = 1, φB = 1
2 and φC = 1

4 .
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Remarks

Note that the node capacities did not affect the problem.

Let us arbitrarily assign to each node a capacity 1.

Then there is an associated Markov chain.

Let T be the hitting time of {A,F}.
According to

φi = Ei

(∫ T

0
c(Xt)dt + f (XT )

)
,

the equilibrium potential is given by

φi = Ei(1XT=A) = Pi(XT = A).

Different node capacities result in different Markov chains.

However, the jump chain and hitting probabilities remain the same.
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Potentials and Flows and in terms of Markov Chains

Theorem

Consider a finite network with external connections at two nodes A and B ,
and the associated Markov chain (Xt)t≥0.

(a) The unique equilibrium potential φ with φA = 1 and φB = 0 is given
by

φi = Pi(TA < TB),

where TA and TB are the hitting times of A and B .
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Charges in terms of Markov Chains (Cont’d)

Theorem (Cont’d)

(b) The unique equilibrium flow γ with γA = 1 and γB = −1 is given by

γij = EA(Γij − Γji ),

where Γij is the number of times that (Xt)t≥0 jumps from i to j

before hitting B .

(c) The charge χ associated with γ, subject to χB = 0, is given by

χi = EA

∫ TB

0
1{Xt=i}dt.
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Proof of the Theorem

The formula for φ is a special case of

φi = Ei

(∫ T

0
c(Xt)dt + f (XT )

)
,

where c = 0 and f = 1{A}.

We prove Parts (b) and (c) together.

Suppose X0 = A.

Then we have

∑

j 6=i

(Γij − Γji) =





1, if i = A

0, if i 6∈ {A,B},
−1, if i = B .

So, if γij = EA(Γij − Γji), then γ is a unit flow from A to B .
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Proof of the Theorem (Cont’d)

We found that, if X0 = A and

γij = EA(Γij − Γji ),

then γ is a unit flow from A to B .

We have

Γij =

∞∑

n=0

1{Yn=i ,Yn+1=j ,n<NB},

where NB is the hitting time of B for the jump chain (Yn)n≥0.

So, by the Markov Property of the jump chain,

EA(Γij ) =
∑∞

n=0 PA(Yn = i ,Yn+1 = j , n < NB)

=
∑∞

n=0 PA(Yn = i , n < NB)πij .
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Proof of the Theorem (Cont’d)

Set

χi = EA

∫ TB

0
1{Xt=i}dt.

Consider the associated potential ψi =
χi

πi
.

Then

χiqij = χiqiπij =

∞∑

n=0

PA(Yn = i , n < NB)πij = EA(Γij).

So
(ψi − ψj)aij = χiqij − χjqij = γij .

Hence ψ = φ, γ is the equilibrium unit flow and χ the associated
charge, as required.
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Energy

Suppose:

φ = (φi : i ∈ I ) is a potential;
γ = (γij : i , j ∈ I ) is a flow.

Define the following quantities:

E (φ) =
1

2

∑

i ,j∈I

(φi − φj)
2aij ; I (γ) =

1

2

∑

i ,j∈I

γ2ija
−1
ij .

The 1
2 signifies that each wire is counted once.
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Energy and Ohm’s Law

When φ and γ are related by Ohm’s law we have

E (φ) = 1
2

∑
i ,j(φi − φj)

2aij

= 1
2

∑
i ,j(φi − φj)γij

= 1
2

∑
i ,j

γ2
ij

aij

= I (γ).

E (φ) is found physically to give the rate of dissipation of energy, as
heat, by the network.

We will see that certain equilibrium potentials and flows determined
by Ohm’s law minimize these energy functions.

This characteristic of energy minimization can indeed replace Ohm’s
law as the fundamental physical principle.
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Further Theory Electrical Networks

Potential, Flow and Energy

Theorem

The equilibrium potential and flow may be determined as follows.

(a) The equilibrium potential φ = (φi : i ∈ I ), with boundary values
φi = fi , for i ∈ ∂D, and no current sources in D, is the unique
solution to

minimize E (φ) subject to φi = fi , for i ∈ ∂D.

(b) The equilibrium flow γ = (γij : i , j ∈ I ), with current sources γi = gi ,
for i ∈ D, and boundary potential zero, is the unique solution to

minimize I (γ) subject to γi = gi for i ∈ D.
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Further Theory Electrical Networks

Potential, Flow and Energy (Part (a))

For any potential φ = (φi : i ∈ I ) and any flow γ = (γij : i , j ∈ I ) we
have ∑

i ,j∈I

(φi − φj)γij = 2
∑

i∈I

φiγi .

(a) Denote by φ = (φi : i ∈ I ) and by γ = (γij : i , j ∈ I ) the equilibrium
potential and flow.

By hypothesis, γi = 0, for i ∈ D.

We can write any potential in the minimization problem in the form
φ+ ε, where ε = (εi : i ∈ I ), with εi = 0, for i ∈ ∂D.

Then
∑

i ,j∈I

(εi − εj)(φi − φj)aij =
∑

i ,j∈I

(εi − εj)γij = 2
∑

i∈I

εiγi = 0.

So E (φ+ ε) = E (φ) + E (ε) ≥ E (φ).

Equality holds only if ε = 0.
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Further Theory Electrical Networks

Potential, Flow and Energy (Part (b))

(b) Denote by φ = (φi : i ∈ I ) and by γ = (γij : i , j ∈ I ) the equilibrium
potential and flow.

By hypothesis, φi = 0, for i ∈ ∂D.

We can write any flow in the minimization problem in the form γ + δ,
where δ = (δij : i , j ∈ I ) is a flow, with δi = 0, for i ∈ D.

Then ∑

i ,j∈I

γijδija
−1
ij =

∑

i ,j∈I

(φi − φj)δij = 2
∑

i∈I

φiδi = 0.

So
I (γ + δ) = I (γ) + I (δ) ≥ I (δ).

Equality holds only if δ = 0.
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Further Theory Electrical Networks

Reformulation of Part (a)

The following reformulation of Part (a) of the preceding result states
that harmonic functions minimize energy.

Corollary

Suppose that φ = (φi : i ∈ I ) satisfies

{
Qφ = 0 in D,
φ = f in ∂D.

Then φ is the unique solution to

“minimize E (φ) subject to φ = f in ∂D”.
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Further Theory Electrical Networks

Effective Conductivities

Let J ⊆ I .

We say that a = (aij : i , j ∈ J) is an effective conductivity on J if,
for all potentials f = (fi : i ∈ J), the external currents into J when J

is held at potential f are the same for (J, a) as for (I , a).

We know that f determines an equilibrium potential φ = (φi : i ∈ I )
by { ∑

j∈I (φi − φj)aij = 0 for i 6∈ J

φi = fi for i ∈ J.

Then a is an effective conductivity if, for all f , for i ∈ J we have

∑

j∈I

(φi − φj )aij =
∑

j∈J

(fi − fj)aij .
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Further Theory Electrical Networks

Effective Conductivities and Energy

For a conductivity matrix a on J, for a potential f = (fi : i ∈ J) and a
flow δ = (δij : i , j ∈ J), we set

E (f ) =
1

2

∑

i ,j∈J

(fi − fj)
2aij

and

I (δ) =
1

2

∑

i ,j∈J

δ2ija
−1
ij .
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Further Theory Electrical Networks

Existence and Uniqueness of Effective Conductivity

Theorem

There is a unique effective conductivity a given by aij = aij +
∑

k 6∈J aikφ
j
k ,

where for each j ∈ J, φj = (φji : i ∈ I ) is the potential defined by

{ ∑
k∈I (φ

j
i − φjk)aik = 0 for i 6∈ J,

φji = δij for i ∈ J.

Moreover, a is characterized by the Dirichlet variational principle

E (f ) = inf
φi=fi on J

E (φ),

and also by the Thompson variational principle

inf
δi=gi on J

I (δ) = inf
γi =

{

gi on J

0 off J

I (γ).
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Further Theory Electrical Networks

Proof of Existence and Uniqueness

Let f = (fi : i ∈ J) be given.

Define φ = (φi : i ∈ I ) by

φi =
∑

j∈J

fjφ
j
i .

Then we have, for i 6∈ J,
∑

j∈I aij(φi − φj) =
∑

j∈I aij [
∑

k∈J fkφ
k
i −

∑
ℓ∈J fℓφ

ℓ
j ]

=
∑

j∈I aij
∑

k∈J fk(φ
k
i − φkj )

=
∑

k∈J fk
∑

J∈I aij(φ
k
i − φkj ) = 0.

Moreover, for i ∈ J, φi =
∑

j∈I fjφ
j
i =

∑
j∈J fjδij = fi .

So φ is the equilibrium potential given by
{ ∑

j∈I aij(φi − φj) = 0 for i 6∈ J,

φi = fi for i ∈ J.
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Further Theory Electrical Networks

Proof of Existence and Uniqueness (Cont’d)

By a previous corollary, φ solves

minimize E (φ) subject to φi = fi for i ∈ J.

We have, for i ∈ J,

∑

j∈I

aijφj =
∑

j∈J

aij fj +
∑

k 6∈J

∑

j∈J

aikφ
j
k fj =

∑

j∈J

aij fj .

In particular, taking f ≡ 1 we obtain
∑

j∈I aij =
∑

j∈J aij .

Hence we have equality of external currents:

∑

j∈I

(φi − φj )aij =
∑

j∈J

(fi − fj)aij .
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Further Theory Electrical Networks

Proof of Existence and Uniqueness (Cont’d)

Moreover, we also have equality of energies.
∑

i ,j∈I (φi − φj)
2aij = 2

∑
i∈I φi

∑
j∈I (φi − φj)aij

= 2
∑

i∈J fi
∑

j∈J(fi − fj)aij

=
∑

i ,j∈J(fi − fj)
2aij .

Finally, let gij = (fi − fj)aij and γij = (φi − φj)aij .
∑

i ,j∈I γ
2
ija

−1
ij =

∑
i ,j∈I (φi − φj)

2aij

=
∑

i ,j∈J(fi − fj)
2aij

=
∑

i ,j∈J g
2
ij a

−1
ij .

So, by the preceding theorem, for any flow δ = (δij : i , j ∈ I ) with
δi = gi for i ∈ J and δi = 0 for i 6∈ J,

∑

i ,j∈I

δ2ija
−1
ij ≥

∑

i ,j∈J

g2
ij a

−1
ij .
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Further Theory Electrical Networks

Effective Conductivity and Associated Markov Chain

Consider again the associated Markov chain (Xt)t≥0.

Define the time spent in J

At =

∫ t

0
1{Xs∈J}ds.

Define a time-changed process (X t)t≥0 by

X t = Xτ(t),

where τ(t) = inf {s ≥ 0 : As > t}.
We obtain (X t)t≥0 by observing (Xt)t≥0 whilst in J, and stopping the
clock whilst (Xt)t≥0 makes excursions outside J.

This is really a transformation of the jump chain.
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Further Theory Electrical Networks

Effective Conductivity and Markov Chain (Cont’d)

By applying the strong Markov property to the jump chain we find
that (X t)t≥0 is itself a Markov chain, with jump matrix Π given by

πij = πij +
∑

k 6∈J

πikφ
j
k , i , j ∈ J,

where φjk = Pk(XT = j) and T denotes the hitting time of J.

Hence (X t)t≥0 has Q-matrix given by

qij = qij +
∑

k 6∈J

qikφ
j
k .

Since φj = (φjk : k ∈ I ) is the unique solution to the system in the
preceding theorem, this shows that πiqij = aij .

So (X t)t≥0 is the Markov chain on J associated with the effective
conductivity a.
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Further Theory Brownian Motion

Subsection 4

Brownian Motion
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Further Theory Brownian Motion

The Idea of Brownian Motion

Imagine a symmetric random walk in Euclidean space which takes
infinitesimal jumps with infinite frequency and you will have some
idea of Brownian motion.

A discrete approximation to Euclidean space R
d is provided by

c−1/2
Z

d = {c−1/2z : z ∈ Z
d},

where c is a large positive number.

The simple symmetric random walk (Xn)n≥0 on Z
d is a Markov chain.

We shall show that the scaled-down and speeded-up process

X
(c)
t = c−1/2Xct

is a good approximation to Brownian motion.
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Further Theory Brownian Motion

The Rescaling

We explain why space is rescaled by the square root of the time
scaling.

A desideratum is that X
(c)
t converges, in some sense, as c → ∞ to a

non-degenerate limit.

A least requirement is that E[|X (c)
t |2] converges to a non-degenerate

limit.

For ct ∈ Z
+, we have

E[|Xct |2] = ctE[|X1|2].

So the square root scaling gives

E[|X (c)
t |2] = E[|c−1/2Xct |2] = c−1

E[|Xct |2] = tE[|X1|2].

This is independent of c .
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Further Theory Brownian Motion

Gaussian Distributions

A real-valued random variable is said to have Gaussian distribution

with mean 0 and variance t if it has density function

φt(x) = (2πt)−1/2 exp {−x2/2t} =
1√
2πt

e−x2/2t .

The fundamental role of Gaussian distributions in probability derives
from the Central Limit Theorem.
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Further Theory Brownian Motion

The Central Limit Theorem

Theorem (Central Limit Theorem)

Let X1,X2, . . . be a sequence of independent and identically distributed
real-valued random variables with mean 0 and variance t ∈ (0,∞).
Then, for all bounded continuous functions f , as n → ∞ we have

E

[
f

(
X1 + · · ·+ Xn√

n

)]
→
∫

R

f (x)φt(x)dx .

We shall take this result and a few other standard properties of the
Gaussian distribution for granted in this section.
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Further Theory Brownian Motion

Brownian Motion

A real-valued process (Xt)t≥0 is said to be continuous if

P({ω : t 7→ Xt(ω) is continuous}) = 1.

A continuous real-valued process (Bt)t≥0 is called a Brownian
motion if:

B0 = 0
For all 0 = t0 < t1 < · · · < tn, the increments

Bt1 − Bt0 , . . . ,Btn − Btn−1

are independent Gaussian random variables of mean 0 and variance
t1 − t0, . . . , tn − tn−1.

The conditions made on (Bt)t≥0 are enough to determine all the
probabilities associated with the process.

To put it properly, the law of Brownian motion, which is a measure
on the set of continuous paths, is uniquely determined.
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Further Theory Brownian Motion

Wiener’s Theorem: Existence of Brownian Motion

Theorem (Wiener’s Theorem)

Brownian motion exists.

For N = 0, 1, 2, . . ., denote by DN the set of integer multiples of 2−N

in [0,∞), and denote by D the union of these sets.
We say (Bt : t ∈ DN) is a Brownian motion indexed by DN if:

B0 = 0;
For all 0 = t0 < t1 < · · · < tn in DN , the increments Bt1 − Bt0 , . . . ,
Btn − Btn−1 are independent Gaussian random variables of mean 0 and
variance t1 − t0, . . . , tn − tn−1.

We suppose given, for each t ∈ D, an independent Gaussian random
variable Yt of mean 0 and variance 1.

For t ∈ D0 = Z
+, set

Bt = Y1 + Y2 + · · · + Yt .
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Further Theory Brownian Motion

Wiener’s Theorem (Strategy)

Note that (Bt : t ∈ D0), with

Bt = Y1 + Y2 + · · ·+ Yt , t ∈ D0 = Z
+,

is a Brownian motion indexed by D0.

We shall show how to extend this process successively to Brownian
motions (Bt : t ∈ DN) indexed by DN .

Then (Bt : t ∈ D) is a Brownian motion indexed by D.

(Bt : t ∈ D) extends continuously to t ∈ [0,∞).

Finally, we check that this extension is a Brownian motion.
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Further Theory Brownian Motion

Wiener’s Theorem: Extension to DN

Suppose we have constructed

(Bt : t ∈ DN−1),

a Brownian motion indexed by DN−1.

For t ∈ DN\DN−1, set

r = t − 2−N and s = t + 2−N .

Note that r , s ∈ DN−1.

Define

Zt = 2−(N+1)/2Yt , Bt =
1

2
(Br + Bs) + Zt .

We obtain two new increments:

Bt − Br = 1
2 (Bs − Br ) + Zt ;

Bs − Bt = 1
2 (Bs − Br )− Zt .
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Further Theory Brownian Motion

Wiener’s Theorem: Extension to DN (Cont’d)

We compute

E[(Bt − Br )
2] = E[(Bs − Bt)

2]

= 1
42

−(N−1) + 2−(N+1)

= 2−N ;

E[(Bt − Br )(Bs − Bt)] = 1
42

−(N−1) − 2−(N+1)

= 0.

The two new increments, being Gaussian, are therefore independent
and of the required variance.

Moreover, being constructed from Bs − Br and Yt , they are certainly
independent of increments over intervals disjoint from (r , s).

Hence, (Bt : t ∈ DN) is a Brownian motion indexed by DN .

By induction, we obtain a Brownian motion (Bt : t ∈ D).
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Further Theory Brownian Motion

Wiener’s Theorem: Extension to t ≥ 0 (Cont’d)

For each N denote by

(B
(N)
t )t≥0

the continuous process obtained by linear interpolation from
(Bt : t ∈ DN).

Set
Z

(N)
t = B

(N)
t − B

(N−1)
t .

For t ∈ DN−1 we have Z
(N)
t = 0.

For t ∈ DN\DN−1, by construction, we have

Z
(N)
t = Bt − 1

2(Bt−2−N + Bt+2−N )

= Zt

= 2−(N+1)/2Yt ,

with Yt Gaussian of mean 0 and variance 1.
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Further Theory Brownian Motion

Wiener’s Theorem: Extension to t ≥ 0 (Cont’d)

Set
MN = sup

t∈[0,1]
|Z (N)

t |.

Now (Z
(N)
t )t≥0 interpolates linearly between its values on DN .

So we obtain

MN = sup
t∈(DN\DN−1)∩[0,1]

2−(N+1)/2|Yt |.
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Further Theory Brownian Motion

Wiener’s Theorem: Extension to t ≥ 0 (Cont’d)

There are 2N−1 points in (DN\DN−1) ∩ [0, 1].

So, for λ > 0, we have

P(MN > λ2−(N+1)/2) ≤ 2N−1
P(|Y1| > λ).

For a random variable X ≥ 0 and p > 0, we have the formula

E(X p) = E

∫ ∞

0
1{X>λ}pλ

p−1dλ =

∫ ∞

0
pλp−1

P(X > λ)dλ.

Hence,

2p(N+1)/2
E(Mp

N) =
∫∞
0 pλp−1

P(2(N+1)/2MN > λ)dλ

≤ 2N−1
∫∞
0 pλp−1

P(|Y1| > λ)dλ

= 2N−1
E(|Y1|p).
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Further Theory Brownian Motion

Wiener’s Theorem: Extension to t ≥ 0 (Cont’d)

Hence, for any p > 2,

E
∑∞

N=0 Mn =
∑∞

N=0 E(MN)

≤ ∑∞
N=0 E(M

p
N)

1/p

≤ E(|Y1|p)1/p
∑∞

N=0(2
(p−2)/2p)−N

< ∞.

It follows that, with probability 1, as N → ∞,

B
(N)
t = B

(0)
t + Z

(1)
t + · · · + Z

(N)
t

converges uniformly in t ∈ [0, 1].
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Further Theory Brownian Motion

Wiener’s Theorem: Extension to t ≥ 0 (Cont’d)

By a similar argument with probability 1, as N → ∞,

B
(N)
t = B

(0)
t + Z

(1)
t + · · · + Z

(N)
t

converges uniformly for t in any bounded interval.

Now B
(N)
t eventually equals Bt for any t ∈ D.

But the uniform limit of continuous functions is continuous.

So (Bt : t ∈ D) has a continuous extension (Bt)t≥0, as claimed.
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Further Theory Brownian Motion

Wiener’s Theorem: Extension to t ≥ 0 (Cont’d)

It remains to show that the increments of (Bt)t≥0 have the required
joint distribution.

Consider given 0 < t1 < · · · < tn.

We can find sequences (tmk )m∈N in D such that:

0 < tm1 < · · · < tmn , for all m;
tmk → tk , for all k .

Set t0 = tm0 = 0.

We know that the increments

Btm1
− Btm0

, . . . ,Btmn − Btmn−1

are Gaussian of mean 0 and variance tm1 − tm0 , . . . , t
m
n − tmn−1.

Hence, using continuity of (Bt)t≥0, we can let m → ∞ to obtain the
desired distribution for the increments Bt1 − Bt0 , . . . ,Btn − Btn−1 .
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Further Theory Brownian Motion

Brownian Motion as a Scaling Limit of Random Walks

Theorem

Let (Xn)n≥0 be a discrete time, real valued random walk with steps of
mean 0 and variance σ2 ∈ (0,∞). For c > 0 consider the rescaled process

X
(c)
t = c−1/2Xct ,

where the value of Xct , when ct is not an integer, is found by linear
interpolation. Then, for all m, for all bounded continuous functions
f : Rm → R and all 0 ≤ t1 < · · · < tm, we have

E[f (X
(c)
t1
, . . . ,X

(c)
tm )] → E[f (σBt1 , . . . , σBtm)],

as c → ∞, where (Bt)t≥0 is a Brownian motion.
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Further Theory Brownian Motion

Brownian Motion and Random Walks (Cont’d)

The claim is that, as c → ∞, (X
(c)
t1
, . . . ,X

(c)
tm ) converges weakly to

(σBt1 , . . . , σBtm).

We take for granted some basic properties of weak convergence.

First define X̃
(c)
t = c−1/2X[ct], with [ct] the integer part of ct.

Then

|(X (c)
t1
, . . . ,X

(c)
tm )− (X̃

(c)
t1
, . . . , X̃

(c)
tm )| ≤ c−1/2|(Y[ct1]+1, . . . ,Y[ctn]+1)|,

where Yn denotes the n-th step of (Xn)n≥0.

The right side converges weakly to 0.

So it suffices to prove the claim with X̃
(c)
t replacing X

(c)
t .

Consider the increments

U
(c)
k = X̃

(c)
tk − X̃

(c)
tk−1

, Zk = σ(Btk − Btk−1
), k = 1, . . . ,m.

We have X̃
(c)
0 = B0 = 0. So it suffices to show that (U

(c)
1 , . . . ,U

(c)
m )

converges weakly to (Z1, . . . ,Zm).
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Further Theory Brownian Motion

Brownian Motion and Random Walks (Cont’d)

But both sets of increments are independent.

So it suffices to show that U
(c)
k converges weakly to Zk , for each k .

Now, with Nk(c) = [ctk ]− [ctk−1], we have

U
(c)
k = c−1/2

∑[ctk ]
n=[ctk−1]+1 Yn

∼ (c−1/2Nk(c)
1/2)Nk(c)

−1/2(Y1 + · · ·+ YN(c)).

By the Central Limit Theorem, we have:
Nk(c)

−1/2(Y1 + · · ·+ YN(c)) converges weakly to (tk − tk−1)
−1/2Zk ,;

(c−1/2Nk(c)
1/2) → (tk − tk−1)

1/2.

Hence, we obtain

U
(c)
k ∼ (c−1/2Nk(c)

1/2)Nk(c)
−1/2(Y1 + · · ·+ YN(c))

w→ ((tk − tk−1)
−1/2Zk)((tk − tk−1)

1/2)

= Zk .
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Further Theory Brownian Motion

Brownian Motion in Rd

Let (B1
t )t≥0, . . . , (B

d
t )t≥0 be d independent Brownian motions

Consider the R
d -valued process

Bt = (B1
t , . . . ,B

d
t ).

We call (Bt)t≥0 a Brownian motion in R
d .

There is a multidimensional version of the Central Limit Theorem
which leads to a multidimensional version of the preceding theorem.

Thus, if (Xn)n≥0 is a random walk in R
d , with steps of mean 0 and

covariance matrix V = E(X1X
T
1 ), and if V is finite, then for all

bounded continuous functions f : (Rd )m → R, as c → ∞, we have

E[f (X
(c)
t1
, . . . ,X

(c)
tm )] → E[f (

√
VBt1 , . . . ,

√
VBtm)].
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Further Theory Brownian Motion

Scaling Invariance

Brownian motion (Bt)t≥0 satisfies the following scaling invariance
property, which can checked from the definition.

For any c > 0, the process (B
(c)
t )t≥0 defined by

B
(c)
t = c−1/2Bct

is a Brownian motion.

Thus Brownian motion appears as a fixed point of the scaling
transformation.

The scaling transformation attracts all other finite variance symmetric
random walks as c → ∞.
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Further Theory Brownian Motion

Transition Density in Brownian Motion

Brownian motion starting from x is any process (Bt)t≥0 such that:

B0 = x ;
(Bt − B0)t≥0 is a Brownian motion (starting from 0).

In looking in Brownian motion for the structure of a Markov process
we look for:

A transition semigroup (Pt)t≥0;
A generator G .

For any bounded measurable function f : Rd → R we have

Ex [f (Bt)] = E0[f (x + Bt)]

=
∫
Rd f (x + y)φt(y1) · · · φt(yd )dy1 · · · dyd

=
∫
Rd p(t, x , y)f (y)dy ,

where p(t, x , y) = (2πt)−d/2 exp {−|y − x |2/2t}.
This is the transition density for Brownian motion.
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Further Theory Brownian Motion

Transition Semigroup in Brownian Motion

The transition semigroup is given by

(Pt f )(x) =

∫

Rd

p(t, x , y)f (y)dy = Ex [f (Bt)].

To check the semigroup property PsPt = Ps+t , note that

Ex [f (Bs+t)] = Ex [f (Bs + (Bs+t − Bs))]

= Ex [Pt f (Bs)]

= (PsPt f )(x).

Here, we first took the expectation over the independent increment
Bs+t − Bs .
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Further Theory Brownian Motion

Generator in Brownian Motion

For t > 0 it is easy to check that

∂

∂t
p(t, x , y) =

1

2
∆xp(t, x , y),

where ∆x = ∂2

∂x21
+ · · ·+ ∂2

∂x2
d

.

Hence, if f has two bounded derivatives, we have

∂
∂t (Pt f )(x) =

∫
Rd

1
2∆xp(t, x , y)f (y)dy

=
∫
Rd

1
2∆yp(t, x , y)f (y)dy

=
∫
Rd p(t, x , y)(

1
2∆f )(y)dy

= Ex [(
1
2∆f )(Bt)]

tց0−→ 1
2∆f (x).

By analogy with continuous-time chains, the generator, a term we
have not defined precisely, should be given by G = 1

2∆.
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Further Theory Brownian Motion

Comparison with Markov Chains and the Laplacian

Where formerly we considered vectors (fi : i ∈ I ), now there are
functions f : Rd → R, required to have various degrees of local
regularity, such as measurability and differentiability.

Where formerly we considered matrices Pt and Q, now we have linear
operators on functions:

Pt is an integral operator;
G is a differential operator.

We explain the appearance of the Laplacian ∆ by reference to the
random walk approximation.

Denote by (Xn)n≥0 the simple symmetric random walk in Z
d .

Consider, for N = 1, 2, . . ., the rescaled process

X
(N)
t = N−1/2XNt

, t = 0,
1

N
,
2

N
, . . . .

George Voutsadakis (LSSU) Markov Chains April 2024 126 / 127



Further Theory Brownian Motion

The Laplacian (Cont’d)

For a bounded continuous function f : Rd → R, set

(P
(N)
t f )(x) = Ex [f (X

(N)
t )], x ∈ N−1/2

Z
d .

The closest thing to a derivative in t at 0, for (P
(N)
t )t=0, 1

N
, 2
N
,..., is

N(P
(N)
1/N f − f )(x) = NEx [f (X

(N)
1/N)− f (X

(N)
0 )]

= NEN1/2x [f (N
−1/2X1)− f (N−1/2X0)]

= N
2 {f (x − N−1/2)− 2f (x) + f (x + N−1/2)}.

Assume that f has two bounded derivatives.

By Taylor’s Theorem, as N → ∞,

f (x − N−1/2)− 2f (x) + f (x + N−1/2) = N−1(∆f (x) + o(N)).

So N(P
(N)
1/N f − f )(x) → 1

2∆f (x).
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