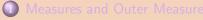
Introduction to Measure Theory

George Voutsadakis¹

¹Mathematics and Computer Science Lake Superior State University

LSSU Math 422

George Voutsadakis (LSSU)



- Measure on Rings
- Measure on Intervals
- Properties of Measures
- Outer Measures
- Measurable Sets

Subsection 1

Measure on Rings

Finitely Additive and Countably Additive Set Functions

- A set function is a function whose domain is a class of sets.
- An extended real valued set function μ defined on a class \boldsymbol{E} of sets is **additive** if, whenever $E \in \boldsymbol{E}$, $F \in \boldsymbol{E}$, $E \cup F \in \boldsymbol{E}$ and $E \cap F = \emptyset$, then $\mu(E \cup F) = \mu(E) + \mu(F)$.
- An extended real valued set function μ defined on a class *E* is finitely additive if, for every finite, disjoint class {*E*₁,...,*E_n*} of sets in *E* whose union is also in *E*, we have

$$\iota\left(\bigcup_{i=1}^{n} E_{i}\right) = \sum_{i=1}^{n} \mu(E_{i}).$$

An extended real valued set function μ defined on a class *E* is countably additive if, for every disjoint sequence {*E_n*} of sets in *E*, whose union is also in *E*, we have

$$\mu\left(\bigcup_{n=1}^{\infty}E_n\right)=\sum_{n=1}^{\infty}\mu(E_n).$$

Measures

- A measure is an extended real valued, non negative, and countably additive set function μ , defined on a ring **R**, and such that $\mu(\emptyset) = 0$.
- Rephrasing, a measure on a ring R is a function

$$\mu: \boldsymbol{R} o [0,\infty],$$

such that:

•
$$\mu(\emptyset) = 0;$$

- μ is countably additive.
- In view of the identity

$$\bigcup_{i=1}^n E_i = E_1 \cup \cdots \cup E_n \cup \emptyset \cup \cdots,$$

a measure is always finitely additive.

An Example of a Measure

- A (rather trivial) measure may be obtained as follows:
 - Let f be an extended real valued, non negative function defined on X:

 $f: X \to [0,\infty].$

Let the ring \boldsymbol{R} consist of all finite subsets of X. Define $\mu : \boldsymbol{R} \to [0,\infty]$ by:

$$\mu(\emptyset) = 0;$$

$$\mu(\{x_1,\ldots,x_n\}) = \sum_{i=1}^n f(x_i).$$

Types of Measures

- If μ is a measure on a ring *R*, a set *E* in *R* is said to have finite measure if μ(*E*) < ∞.
- The measure of *E* is σ -finite if there exists a sequence $\{E_n\}$ of sets in *R* such that $E \subseteq \bigcup_{n=1}^{\infty} E_n$ and $\mu(E_n) < \infty$, n = 1, 2, ...
- If the measure of every set E in R is finite or σ-finite, the measure μ is called finite or σ-finite, respectively, on R.
- If $X \in \mathbf{R}$ (i.e., if \mathbf{R} is an algebra) and $\mu(X)$ is finite or σ -finite, then μ is called **totally finite** or **totally** σ -finite, respectively.
- The measure µ is called complete if the conditions E ∈ R, F ⊆ E and µ(E) = 0 imply that F ∈ R.

Subsection 2

Measure on Intervals

Semi-Closed Internals of Real Numbers

- In this section the underlying space X is to be the real line.
- We denote by *P* the class of all bounded, left closed, and right open intervals, i.e. the class of all sets of the form

$$\{x: -\infty < a \le x < b < \infty\}.$$

• We denote by **R** the class of all finite, disjoint unions of sets of **P**, i.e., the class of all sets of the form

$$\bigcup_{i=1}^n \{x: -\infty < a_i \le x < b_i < \infty\}.$$

A union of this form may be written as a disjoint union of the same form.

• For simplicity of language, we shall always use the expression "semi-closed interval" instead of "bounded, left closed, and right open interval".

George Voutsadakis (LSSU)

Why Semi-Closed Internals

- The consideration of semi-closed intervals, instead of open intervals or closed intervals is done for convenience:
 - For instance, if *a*, *b*, *c* and *d* are real numbers,

 $-\infty < a < b < c < d < \infty$, then the difference between the open intervals $\{x : a < x < d\}$ and $\{x : b < x < c\}$ is neither an open interval nor a finite union of open intervals.

- The same negative statement holds for the closed intervals.
- The fact that semi-closed intervals are better behaved in this respect is what makes them desirable.
- We write, for $a \leq b$:
 - [a, b] for the closed interval, $[a, b] = \{x : a \le x \le b\};$
 - [a, b) for the semiclosed interval, $[a, b) = \{x : a \le x < b\};$
 - (a, b) for the open interval, $(a, b) = \{x : a < x < b\}$.

A Set Function on Semi-Closed Intervals

• On the class ${m P}$ of semi-closed intervals we define a set function

$$\mu([a,b))=b-a.$$

• When a = b, the interval reduces to the empty set:

 $\mu(\emptyset) = 0.$

A Property of μ

Theorem

If $\{E_1, \ldots, E_n\}$ is a finite, disjoint class of sets in P, each contained in a given set E_0 in P, then

$$\sum_{i=1}^n \mu(E_i) \leq \mu(E_0).$$

• Write $E_i = [a_i, b_i)$, i = 0, 1, ..., n. Without loss of generality, assume $a_1 \le a_2 \le \cdots \le a_n$. It follows from the assumption on $\{E_1, \ldots, E_n\}$ that $a_0 \le a_1 \le b_1 \le \cdots \le a_n \le b_n \le b_0$. Thus,

$$\begin{array}{rcl} \sum_{i=1}^{n} \mu(E_i) & = & \sum_{i=1}^{n} (b_i - a_i) \\ & \leq & \sum_{i=1}^{n} (b_i - a_i) + \sum_{i=1}^{n-1} (a_{i+1} - b_i) \\ & = & b_n - a_1 \leq b_0 - a_0 = \mu(E_0). \end{array}$$

A Closed Interval in the Union of Open Intervals

Theorem

0

If a closed interval F_0 , $F_0 = [a_0, b_0]$, is contained in the union of a finite number of bounded, open intervals, U_1, \ldots, U_n , $U_i = (a_i, b_i)$, $i = 1, \ldots, n$, then $b_0 - a_0 < \sum_{i=1}^{n} (b_i - a_i)$.

Let
$$k_1$$
 be such that $a_0 \in U_{k_1}$.
If $b_{k_1} \leq b_0$, then let k_2 be such that $b_{k_1} \in U_{k_2}$.
If $b_{k_2} \leq b_0$, then let k_3 be such that $b_{k_2} \in U_{k_3}$.
Continue in the same way, by induction.
The process stops with k_m if $b_{k_m} > b_0$.
Without loss of generality, assume $m = n$ and $U_{k_i} = U_i$, $i = 1, \ldots, n$.
This state of affairs may be achieved merely by omitting superfluous
 U_i 's and changing the notation.

A Closed Interval in the Union of Open Intervals (Cont'd)

• In other words we may (and do) assume that:

• $a_1 < a_0 < b_1$; • $a_n < b_0 < b_n$; • $a_{i+1} < b_i < b_{i+1}$ for $i = 1, \dots, n-1, n > 1$.

It follows that

$$egin{array}{rcl} b_0-a_0&<&b_n-a_1\ &=&(b_1-a_1)+\sum_{1\leq i\leq n-1}(b_{i+1}-b_i)\ &\leq&\sum_{i=1}^n(b_i-a_i). \end{array}$$

Domination of the Sum of a Covering

Theorem

If $\{E_0, E_1, E_2, \ldots\}$ is a sequence of sets in P, such that $E_0 \subseteq \bigcup_{i=1}^{\infty} E_i$, then $\mu(E_0) \leq \sum_{i=1}^{\infty} \mu(E_i).$

We write E_i = [a_i, b_i), i = 0, 1, 2, If a₀ = b₀, the theorem is trivial. Otherwise let ε be a positive number such that ε < b₀ - a₀. For any δ > 0, set F₀ = [a₀, b₀ - ε] and U_i = (a_i - δ/2ⁱ, b_i), i = 1, 2, Then we get F₀ ⊆ ⋃_{i=1}[∞] U_i. By the Heine-Borel Theorem, there is a positive integer n, such that F₀ ⊆ ⋃_{i=1}ⁿ U_i. By the preceding theorem,

$$\mu(E_0)-\epsilon=(b_0-a_0)-\epsilon<\sum_{i=1}^n(b_i-a_i+\frac{\delta}{2^i})\leq\sum_{i=1}^\infty\mu(E_i)+\delta.$$

Since ϵ and δ are arbitrary, the conclusion follows.

Countable Additivity of the Measure on **P**

Theorem

The set function μ is countably additive on **P**.

• Let $\{E_i\}$ be a disjoint sequence of sets in P whose union, E, is also in P.

By a preceding theorem, we have

$$\sum_{i=1}^n \mu(E_i) \leq \mu(E), \quad n = 1, 2, \dots$$

It follows that $\sum_{i=1}^{\infty} \mu(E_i) \leq \mu(E)$. But, by the preceding theorem $\mu(E) \leq \sum_{i=1}^{\infty} \mu(E_i)$. Therefore, we get equality.

The Measure $\overline{\mu}$ on \boldsymbol{R}

Theorem

There exists a unique, finite measure $\overline{\mu}$ on the ring **R**, such that,

$$\overline{\mu}(E) = \mu(E)$$
, for all $E \in \mathbf{P}$.

• We know that every set *E* in *R* may be represented as a finite, disjoint union of sets in *P*. Suppose that

$$E = \bigcup_{i=1}^{n} E_i$$
 and $E = \bigcup_{j=1}^{m} F_j$

are two such representations of the same set E. Then, for each $i = 1, \ldots, n$,

$$E_i = \bigcup_{j=1}^{m} (E_i \cap F_j)$$

is a representation of $E_i \in \mathbf{P}$ as a finite, disjoint union of sets in \mathbf{P} .

Fhe Measure $\overline{\mu}$ on $oldsymbol{R}$ (Cont'd)

• Therefore, since μ is finitely additive,

$$\sum_{i=1}^n \mu(E_i) = \sum_{i=1}^n \sum_{j=1}^m \mu(E_i \cap F_j).$$

Similarly,

$$\sum_{j=1}^m \mu(F_j) = \sum_{j=1}^m \sum_{i=1}^n \mu(E_i \cap F_j).$$

It follows that, for every *E* in *R*, the function $\overline{\mu}$ is unambiguously defined by the equation

$$\overline{\mu}(E) = \sum_{i=1}^{n} \mu(E_i),$$

where $\{E_1, \ldots, E_n\}$ is a finite, disjoint class of sets in P whose union is E.

The Measure $\overline{\mu}$ on $oldsymbol{R}$ (Uniqueness)

- Clearly, we have:
 - The function $\overline{\mu}$ coincides with μ on P;
 - The function $\overline{\mu}$ is finitely additive.

Any function satisfying these conditions must be finitely additive when the terms of the union are in P.

It follows that $\overline{\mu}$ is unique.

The Measure $\overline{\mu}$ on $oldsymbol{R}$ (Countable Additivity)

- We are left with showing that $\overline{\mu}$ is countably additive.
 - Let $\{E_i\}$ be a disjoint sequence of sets in \mathbf{R} whose union E is in \mathbf{R} . Then, each E_i is a finite, disjoint union of sets in \mathbf{P} , $E_i = \bigcup_j E_{ij}$ and $\overline{\mu}(E_i) = \sum_j \mu(E_{ij})$.
 - If E ∈ P, then, since the class of all E_n is countable and disjoint, it follows from the countable additivity of μ that

$$\overline{\mu}(E) = \mu(E) = \sum_{i} \sum_{j} \mu(E_{ij}) = \sum_{i} \overline{\mu}(E_{i}).$$

• In the general case, *E* is a finite, disjoint union of sets in *P*, $E = \bigcup_k F_k$. Using the result just obtained, we have

$$\overline{\mu}(E) = \sum_{k} \overline{\mu}(F_{k}) = \sum_{k} \sum_{i} \overline{\mu}(E_{i} \cap F_{k}) = \sum_{i} \sum_{k} \overline{\mu}(E_{i} \cap F_{k}) = \sum_{i} \overline{\mu}(E_{i}).$$

 We may now, without any possibility of confusion, write μ(E) instead of μ(E) even for sets E which are in R but not in P.

Subsection 3

Properties of Measures

Monotone and Subtractive Set Functions

 An extended real valued set function µ on a class *E* is monotone if, whenever *E* ∈ *E*, *F* ∈ *E*,

$$E \subseteq F$$
 implies $\mu(E) \leq \mu(F)$.

An extended real valued set function µ on a class *E* is subtractive if, whenever *E* ∈ *E*, *F* ∈ *E*, such that *E* ⊆ *F*,

 $F-E\in \boldsymbol{E}$ and $|\mu(E)|<\infty$ imply $\mu(F-E)=\mu(F)-\mu(E).$

Measures are Monotone and Subtractive

Theorem

If μ is a measure on a ring \pmb{R} , then μ is monotone and subtractive.

Suppose E ∈ R, F ∈ R, and E ⊆ F.
Since R is a ring, F − E ∈ R.
Since µ is a measure,

$$\mu(F) = \mu(E) + \mu(F - E).$$

By nonnegativity,

$$\mu(F) = \mu(E) + \mu(F - E) \le \mu(E).$$

• If $|\mu(E)| < \infty$, then

$$\mu(F) - \mu(E) = \mu(F - E).$$

Hence, μ is subtractive.

George Voutsadakis (LSSU)

The Measure of a Set Included in a Union

Theorem

If μ is a measure on a ring \mathbf{R} , if $E \in \mathbf{R}$, and if $\{E_i\}$ is a finite or infinite sequence of sets in \mathbf{R} , such that $E \subseteq \bigcup_i E_i$, then

$$\mu(E) \leq \sum_{i} \mu(E_i).$$

If {F_i} is any sequence of sets in a ring *R*, then there exists a disjoint sequence {G_i} of sets in *R*, such that G_i ⊆ F_i and ⋃_i G_i = ⋃_i F_i: E.g., set G_i = F_i - ⋃{F_j : 1 ≤ j < i}. We apply this result to the sequence {E ∩ E_i}:

$$\mu(E) = \mu(E \cap \bigcup_i E_i) = \mu(\bigcup_i (E \cap E_i))$$

= $\mu(\bigcup_i G_i) = \sum_i \mu(G_i)$
 $\leq \sum_i \mu(E \cap E_i) \leq \sum_i \mu(E_i).$

The Measure of a Set Covering a Union

Theorem

If μ is a measure on a ring \mathbf{R} , if $E \in \mathbf{R}$, and if E_i is a finite or infinite disjoint sequence of sets in \mathbf{R} , such that $\bigcup_i E_i \subseteq E$, then

$$\sum_{i} \mu(E_i) \leq \mu(E).$$

• If the sequence $\{E_i\}$ is finite, then $\bigcup_i E_i \in \mathbf{R}$, It follows that

$$\sum_{i} \mu(E_i) = \mu\left(\bigcup_{i} E_i\right) \leq \mu(E).$$

The validity of the inequality for an infinite sequence of sets is a consequence of its validity for every finite subsequence.

Measure of the Limit of an Increasing Sequence

Theorem

If μ is a measure on a ring R and if $\{E_n\}$ is an increasing sequence of sets in R for which $\lim_n E_n \in R$, then

$$\mu\left(\lim_{n} E_{n}\right) = \lim_{n} \mu(E_{n}).$$

• If we write $E_0 = \emptyset$, then $\mu(\lim_n E_n) = \mu(\bigcup_{i=1}^{\infty} E_i)$ $= \mu(\bigcup_{i=1}^{\infty} (E_i - E_{i-1}))$ $= \lim_n \sum_{i=1}^{n} \mu(E_i - E_{i-1})$ $= \lim_n \mu(\bigcup_{i=1}^{n} (E_i - E_{i-1}))$ $= \lim_n \mu(\bigcup_{i=1}^{n} (E_i - E_{i-1}))$

Measure of the Limit of a Decreasing Sequence

Theorem

If μ is a measure on a ring \mathbf{R} , and if $\{E_n\}$ is a decreasing sequence of sets in \mathbf{R} of which at least one has finite measure and for which $\lim_n E_n \in \mathbf{R}$, then

$$\mu\left(\lim_{n} E_{n}\right) = \lim_{n} \mu(E_{n}).$$

• If $\mu(E_m) < \infty$, then $\mu(E_n) \le \mu(E_m) < \infty$, for $n \ge m$. Therefore, $\mu(\lim_n E_n) < \infty$. Note that $\{E_m - E_n\}$ is an increasing sequence:

$$\mu(E_m) - \mu(\lim_n E_n) = \mu(E_m - \lim_n E_n)$$

= $\mu(\lim_n (E_m - E_n))$
= $\lim_n \mu(E_m - E_n)$
= $\lim_n (\mu(E_m) - \mu(E_n))$
= $\mu(E_m) - \lim_n \mu(E_n).$

Since $\mu(E_m) < \infty$, the proof of the theorem is complete.

Continuity from Below/from Above

We shall say that an extended real valued set function µ defined on a class *E* is continuous from below at a set *E* (in *E*) if, for every increasing sequence {*E_n*} of sets in *E* for which lim_n *E_n* = *E*, we have

$$\lim_n \mu(E_n) = \mu(E).$$

• Similarly μ is **continuous from above** at E if, for every decreasing sequence $\{E_n\}$ of sets in E for which $|\mu(E_m)| < \infty$, for at least one value of m, and for which $\lim_n E_n = E$, we have

$$\lim_n \mu(E_n) = \mu(E).$$

 The preceding two theorems assert that, if μ is a measure, then μ is continuous from above and from below (at every set in the ring of definition of μ).

Continuity and Measures

Theorem

Let μ be a finite, nonnegative, and additive set function on a ring \mathbf{R} . If μ is either continuous from below at every E in \mathbf{R} , or continuous from above at \emptyset , then μ is a measure on \mathbf{R} .

The additivity of μ, together with the fact that *R* is a ring, implies, by mathematical induction, that μ is finitely additive.
 Let {*E_n*} be a disjoint sequence of sets in *R*, whose union *E* is in *R*.
 Write

$$F_n = \bigcup_{i=1}^n E_i$$
 and $G_n = E - F_n$.

Continuity and Measures (Cont'd)

Suppose μ is continuous from below.
 {*F_n*} is an increasing sequence of sets in *R* with lim_n *F_n* = *E*.

$$\mu(E) = \lim_{n} \mu(F_n) = \lim_{n} \sum_{i=1}^{n} \mu(E_i) = \sum_{i=1}^{\infty} \mu(E_i).$$

Suppose μ is continuous from above at Ø.
 {G_n} is a decreasing sequence of sets in **R**, with lim_n G_n = Ø, and μ is finite.

$$\mu(E) = \left(\sum_{i=1}^{n} \mu(E_i)\right) + \mu(G_n) = \lim_{n} \sum_{i=1}^{n} \mu(E_i) + \lim_{n} \mu(G_n) = \sum_{i=1}^{\infty} \mu(E_i).$$

In either case μ is countably additive.

Subsection 4

Outer Measures

Hereditary Classes

• A non empty class *E* of sets is hereditary if,

```
E \in \mathbf{E} and F \subseteq E imply F \in \mathbf{E}.
```

Example: The class of all subsets of some subset E of X is a typical example of a hereditary class.

- The intersection of every collection of hereditary classes is again a hereditary class.
- Thus, corresponding to any class of sets, there is a smallest hereditary class containing it.
- A hereditary class is a σ -ring if and only if it is closed under the formation of countable unions.

Hereditary σ -Ring Generated by a Class

- If *E* is any class of sets, the hereditary *σ*-ring generated by *E*, i.e., the smallest hereditary *σ*-ring containing *E*, is denoted by *H*(*E*).
- The hereditary *σ*-ring generated by *E* is, in fact, the class of all sets which can be covered by countably many sets in *E*.
- Thus, if *E* is a non empty class closed under the formation of countable unions (e.g., if *E* is a σ-ring), then *H*(*E*) is the class of all sets which are subsets of some set in *E*.

Subadditivity

An extended real valued set function µ^{*} defined on a class *E* of sets is subadditive if, whenever *E* ∈ *E*, *F* ∈ *E*, and *E* ∪ *F* ∈ *E*, then

$$\mu^*(E\cup F) \leq \mu^*(E) + \mu^*(F).$$

An extended real valued set function µ* on *E* is finitely subadditive if, for every finite class {*E*₁,...,*E_n*} of sets in *E* whose union is also in *E*, we have

$$\mu^*\left(\bigcup_{i=1}^n E_i\right) \leq \sum_{i=1}^n \mu^*(E_i).$$

An extended real valued set function μ* on *E* is countably subadditive if, for every sequence {*E_i*} of sets in *E* whose union is also in *E*, we have

$$\mu^*\left(\bigcup_{i=1}^{\infty} E_i\right) \leq \sum_{i=1}^{\infty} \mu^*(E_i).$$

Outer Measures

- An **outer measure** is an extended real valued, non negative, set function μ^* , defined on a hereditary σ -ring **H**, such that:
 - $\mu^*(\emptyset) = 0;$
 - μ^* is monotone;
 - μ^* is countably subadditive.
- An outer measure is necessarily finitely subadditive.
- The same terminology concerning [total] finiteness and *σ*-finiteness is used for outer measures as for measures.
- Outer measures arise naturally in the attempt to extend measures from rings to larger classes of sets.

Extensions of Measures

Theorem

If μ is a measure on a ring **R** and if, for every **E** in **H**(**R**),

$$\mu^*(E) = \inf \left\{ \sum_{n=1}^{\infty} \mu(E_n) : E_n \in \mathbf{R}, n = 1, 2, \dots, E \subseteq \bigcup_{n=1}^{\infty} E_n \right\},\$$

then μ^* is an extension of μ to an outer measure on $H(\mathbf{R})$. If μ is [totally] σ -finite, then so is μ^* .

- $\mu^*(E)$ is the lower bound of sums of the type $\sum_{n=1}^{\infty} \mu(E_n)$, where $\{E_n\}$ is a sequence of sets in **R** whose union contains *E*.
- μ^* is called the **outer measure induced by** the measure μ .

Extensions of Measures (Extension)

• Suppose $E \in \mathbf{R}$.

- On the one hand, $E \subseteq E \cup \emptyset \cup \emptyset \cup \cdots$. Therefore, $\mu^*(E) \le \mu(E) + \mu(\emptyset) + \mu(\emptyset) + \cdots = \mu(E)$.
- On the other, if $E_n \in \mathbf{R}$, $n = 1, 2, ..., and <math>E \subseteq \bigcup_{n=1}^{\infty} E_n$, then

$$\mu(E) \leq \sum_{n=1}^{\infty} \mu(E_n).$$

Thus, $\mu(E) \leq \mu^*(E)$.

This proves that μ^* is indeed an extension of μ , i.e., that, if $E \in \mathbf{R}$, then $\mu^*(E) = \mu(E)$. In particular, $\mu^*(\emptyset) = 0$.

Extensions of Measures (Countable Subadditivity)

- Suppose E ∈ H(R), F ∈ H(R), such that E ⊆ F. Let {E_n} be a sequence of sets in R which covers F. Then {E_n} also covers E. So μ*(E) ≤ μ*(F), i.e., μ* is monotone.
- To prove that μ* is countably subadditive, suppose that E and E_i are sets in H(R), such that E ⊆ U[∞]_{i=1} E_i. By the definition of μ*(E_i), there exists, for every ε > 0 and all i = 1, 2, ..., a sequence E_{ii} of sets in R, such that

$$E_i \subseteq igcup_{j=1}^\infty E_{ij} \quad ext{and} \quad \sum_{j=1}^\infty \mu(E_{ij}) \leq \mu^*(E_i) + rac{\epsilon}{2^i}.$$

Then, since the E_{ij} 's form a countable class of sets in R covering E,

$$\mu^*(E) \leq \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \mu(E_{ij}) \leq \sum_{i=1}^{\infty} \mu^*(E_i) + \epsilon.$$

 ϵ arbitrary implies that $\mu^*(E) \leq \sum_{i=1}^{\infty} \mu^*(E_i)$.

Extensions of Measures (Finiteness)

- Suppose, finally, that μ is σ -finite.
 - Let E be any set in H(R).

By the definition of $H(\mathbf{R})$, there exists a sequence $\{E_i\}$ of sets in \mathbf{R} , such that $E \subseteq \bigcup_{i=1}^{\infty} E_i$.

Since μ is σ -finite, there exists, for each i = 1, 2, ..., a sequence $\{E_{ij}\}$ of sets in R, such that

$$E_i \subseteq \bigcup_{j=1}^{\infty} E_{ij}$$
 and $\mu(E_{ij}) < \infty$.

Consequently, $E \subseteq \bigcup_{i=1}^{\infty} \bigcup_{j=1}^{\infty} E_{ij}$ and $\mu^*(E_{ij}) = \mu(E_{ij}) < \infty$. Thus, μ^* is σ -finite.

Subsection 5

Measurable Sets

μ^* -Measurability

Let μ* be an outer measure on a hereditary σ-ring H.
 A set E in H is μ*-measurable if, for every set A in H,

$$\mu^*(A) = \mu^*(A \cap E) + \mu^*(A \cap E').$$

- The concept of μ^* -measurability is the most important one in the theory of outer measures.
- An outer measure is not necessarily a countably, nor even finitely, additive set function.
- In an attempt to satisfy the reasonable requirement of additivity, we single out those sets which split every other set additively, giving rise to the definition of μ*-measurability.
- The greatest justification of this concept is its success as a tool in proving the important and useful extension theorem for measures.

The Ring of Measurable Sets

Theorem

If μ^* is an outer measure on a hereditary σ -ring H and if \overline{S} is the class of all μ^* -measurable sets, then \overline{S} is a ring.

• If *E* and *F* are in
$$\overline{S}$$
 and $A \in H$, then:
(a) $\mu^*(A) = \mu^*(A \cap E) + \mu^*(A \cap E')$;
(b) $\mu^*(A \cap E) = \mu^*(A \cap E \cap F) + \mu^*(A \cap E \cap F')$;
(c) $\mu^*(A \cap E') = \mu^*(A \cap E' \cap F) + \mu^*(A \cap E' \cap F')$.
Substituting (b) and (c) into (a) we obtain
(d) $\mu^*(A) = \mu^*(A \cap E \cap F) + \mu^*(A \cap E \cap F') + \mu^*(A \cap E' \cap F) + \mu^*(A \cap E' \cap F) + \mu^*(A \cap E' \cap F')$.

Measurable Sets

The Ring of Measurable Sets (Cont'd)

We got

d) $\mu^*(A) = \mu^*(A \cap E \cap F) + \mu^*(A \cap E \cap F') + \mu^*(A \cap E' \cap F) + \mu^*(A \cap E' \cap F').$

If in equation (d) we replace A by $A \cap (E \cup F)$, the first three terms of the right hand side remain unaltered and the last term drops out: (e) $\mu^*(A \cap (E \cup F)) = \mu^*(A \cap E \cap F) + \mu^*(A \cap E \cap F') + \mu^*(A \cap E' \cap F)$. Since $E' \cap F' = (E \cup F)'$, substituting (e) into (d) yields (f) $\mu^*(A) = \mu^*(A \cap (E \cup F)) + \mu^*(A \cap (E \cup F)')$.

This proves that $E \cup F \in \overline{S}$.

Aeasurable Sets

The Ring of Measurable Sets (Cont'd)

We got

(d) $\mu^*(A) = \mu^*(A \cap E \cap F) + \mu^*(A \cap E \cap F') + \mu^*(A \cap E' \cap F) + \mu^*(A \cap E' \cap F')$. If we replace A in equation (d) by $A \cap (E - F)' = A \cap (E' \cup F)$, we get (g) $\mu^*(A \cap (E - F)') = \mu^*(A \cap E \cap F) + \mu^*(A \cap E' \cap F) + \mu^*(A \cap E' \cap F')$. Since $E \cap F' = E - F$, substituting (g) into (d) yields (h) $\mu^*(A) = \mu^*(A \cap (E - F)) + \mu^*(A \cap (E - F)')$. This proves that $E - F \in \overline{S}$. Since it is clear that $E = \emptyset$ satisfies (a), it follows that \overline{S} is a ring.

Remark

Suppose μ* is an outer measure on a hereditary σ-ring H.
 Let E in H be such that, for every A in H,

$$\mu^*(A) \geq \mu^*(A \cap E) + \mu^*(A \cap E').$$

- Then *E* is μ^* -measurable.
- For the proof, recall that

$$\mu^*(A) \leq \mu^*(A \cap E) + \mu^*(A \cap E')$$

is an automatic consequence of the subadditivity of μ^* .

Structure of Measurable Sets on a Hereditary σ -Ring

Theorem

If μ^* is an outer measure on a hereditary σ -ring \boldsymbol{H} and if $\overline{\boldsymbol{S}}$ is the class of all μ^* -measurable sets, then $\overline{\boldsymbol{S}}$ is a σ -ring. If $A \in \boldsymbol{H}$ and if $\{E_n\}$ is a disjoint sequence of sets in $\overline{\boldsymbol{S}}$, with $\bigcup_{n=1}^{\infty} E_n = E$, then

$$\mu^*(A\cap E)=\sum_{n=1}^{\infty}\mu^*(A\cap E_n).$$

In the preceding proof, we showed
(e) µ*(A∩(E∪F)) = µ*(A∩E∩F) + µ*(A∩E∩F') + µ*(A∩E'∩F).
Replacing E and F in (e) by E₁ and E₂, respectively, we get
µ*(A∩(E₁∪E₂)) = µ*(A∩E₁) + µ*(A∩E₂).

The Proof

 From μ^{*}(A ∩ (E₁ ∪ E₂)) = μ^{*}(A ∩ E₁) + μ^{*}(A ∩ E₂), it follows by mathematical induction, that

$$\mu^*\left(A\cap\bigcup_{i=1}^n E_i\right)=\sum_{i=1}^n\mu^*(A\cap E_i),$$

for every positive integer *n*. Write $F_n = \bigcup_{i=1}^n E_i$, i = 1, 2, ...Then, by the preceding theorem,

$$\begin{array}{ll} \mu^{*}(A) & = & \mu^{*}(A \cap F_{n}) + \mu^{*}(A \cap F_{n}') \\ & \geq & \sum_{i=1}^{n} \mu^{*}(A \cap E_{i}) + \mu^{*}(A \cap E'). \end{array}$$

Since this is true for every n, we obtain

(i) $\mu^*(A) \ge \sum_{i=1}^{\infty} \mu(A \cap E_i) + \mu^*(A \cap E') \ge \mu^*(A \cap E) + \mu^*(A \cap E').$ Thus $E \in \overline{S}$. So \overline{S} is closed under the formation of disjoint countable unions.

The Proof (Cont'd)

• Since $E \in \overline{S}$,

$$)) \sum_{i=1}^{\infty} \mu^{*}(A \cap E_{i}) + \mu^{*}(A \cap E') = \mu^{*}(A \cap E) + \mu^{*}(A \cap E').$$

Replacing A by $A \cap E$ in (j), we obtain that, if $A \in H$ and if $\{E_n\}$ is a disjoint sequence of sets in \overline{S} with $\bigcup_{i=1}^n E_n = E$, then

$$\mu^*(A\cap E)=\sum_{n=1}^\infty \mu^*(A\cap E_n).$$

Since every countable union of sets in a ring may be written as a disjoint countable union of sets, we see also that \overline{S} is a σ -ring.

Measures Induced by Outer Measures

Theorem

If μ^* is an outer measure on a hereditary σ -ring H and if \overline{S} is the class of all μ^* -measurable sets, then:

- Every set of outer measure zero belongs to \overline{S} ;
- The set function $\overline{\mu}$, defined for E in \overline{S} by $\overline{\mu}(E) = \mu^*(E)$, is a complete measure on \overline{S} .
- $\overline{\mu}$ is called the measure induced by the outer measure $\mu^*.$
- Suppose $E \in H$ and $\mu^*(E) = 0$. For every A in H, we have

$$\mu^*(A) = \mu^*(E) + \mu^*(A) \ge \mu^*(A \cap E) + \mu^*(A \cap E').$$

Thus, $E \in \overline{S}$.

- Countable additivity of $\overline{\mu}$ on \overline{S} follows from (j) upon replacing A by E.
- For completeness, suppose $E \in \overline{S}$, $F \subseteq E$ and $\overline{\mu}(E) = \mu^*(E) = 0$. Then $\mu^*(F) = 0$. So $F \in \overline{S}$.