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Measures and Outer Measures Measure on Rings

Finitely Additive and Countably Additive Set Functions

A set function is a function whose domain is a class of sets.

An extended real valued set function µ defined on a class E of sets is
additive if, whenever E ∈ E , F ∈ E , E ∪ F ∈ E and E ∩ F = ∅, then
µ(E ∪ F ) = µ(E ) + µ(F ).

An extended real valued set function µ defined on a class E is finitely
additive if, for every finite, disjoint class {E1, . . . ,En} of sets in E

whose union is also in E , we have

µ

(

n
⋃

i=1

Ei

)

=

n
∑

i=1

µ(Ei ).

An extended real valued set function µ defined on a class E is
countably additive if, for every disjoint sequence {En} of sets in E ,
whose union is also in E , we have

µ

(

∞
⋃

n=1

En

)

=

∞
∑

n=1

µ(En).
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Measures and Outer Measures Measure on Rings

Measures

A measure is an extended real valued, non negative, and countably
additive set function µ, defined on a ring R , and such that µ(∅) = 0.

Rephrasing, a measure on a ring R is a function

µ : R → [0,∞],

such that:

µ(∅) = 0;
µ is countably additive.

In view of the identity

n
⋃

i=1

Ei = E1 ∪ · · · ∪ En ∪ ∅ ∪ · · · ,

a measure is always finitely additive.
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Measures and Outer Measures Measure on Rings

An Example of a Measure

A (rather trivial) measure may be obtained as follows:

Let f be an extended real valued, non negative function defined on X :

f : X → [0,∞].

Let the ring R consist of all finite subsets of X .

Define µ : R → [0,∞] by:

µ(∅) = 0;

µ({x1, . . . , xn}) =
∑n

i=1 f (xi ).
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Measures and Outer Measures Measure on Rings

Types of Measures

If µ is a measure on a ring R, a set E in R is said to have finite

measure if µ(E ) < ∞.

The measure of E is σ-finite if there exists a sequence {En} of sets in
R such that E ⊆

⋃∞
n=1 En and µ(En) < ∞, n = 1, 2, . . ..

If the measure of every set E in R is finite or σ-finite, the measure µ

is called finite or σ-finite, respectively, on R.

If X ∈ R (i.e., if R is an algebra) and µ(X ) is finite or σ-finite, then
µ is called totally finite or totally σ-finite, respectively.

The measure µ is called complete if the conditions E ∈ R, F ⊆ E

and µ(E ) = 0 imply that F ∈ R.
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Measures and Outer Measures Measure on Intervals

Semi-Closed Internals of Real Numbers

In this section the underlying space X is to be the real line.

We denote by P the class of all bounded, left closed, and right open
intervals, i.e. the class of all sets of the form

{x : −∞ < a ≤ x < b < ∞}.

We denote by R the class of all finite, disjoint unions of sets of P ,
i.e., the class of all sets of the form

n
⋃

i=1

{x : −∞ < ai ≤ x < bi < ∞}.

A union of this form may be written as a disjoint union of the same
form.

For simplicity of language, we shall always use the expression
“semi-closed interval” instead of “bounded, left closed, and right
open interval”.
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Why Semi-Closed Internals

The consideration of semi-closed intervals, instead of open intervals
or closed intervals is done for convenience:

For instance, if a, b, c and d are real numbers,
−∞ < a < b < c < d < ∞, then the difference between the open
intervals {x : a < x < d} and {x : b < x < c} is neither an open
interval nor a finite union of open intervals.
The same negative statement holds for the closed intervals.
The fact that semi-closed intervals are better behaved in this respect is
what makes them desirable.

We write, for a ≤ b:

[a, b] for the closed interval, [a, b] = {x : a ≤ x ≤ b};
[a, b) for the semiclosed interval, [a, b) = {x : a ≤ x < b};
(a, b) for the open interval, (a, b) = {x : a < x < b}.
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Measures and Outer Measures Measure on Intervals

A Set Function on Semi-Closed Intervals

On the class P of semi-closed intervals we define a set function

µ([a, b)) = b − a.

When a = b, the interval reduces to the empty set:

µ(∅) = 0.
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Measures and Outer Measures Measure on Intervals

A Property of µ

Theorem

If {E1, . . . ,En} is a finite, disjoint class of sets in P, each contained in a
given set E0 in P, then

n
∑

i=1

µ(Ei ) ≤ µ(E0).

Write Ei = [ai , bi ), i = 0, 1, . . . , n.

Without loss of generality, assume a1 ≤ a2 ≤ · · · ≤ an.

It follows from the assumption on {E1, . . . ,En} that
a0 ≤ a1 ≤ b1 ≤ · · · ≤ an ≤ bn ≤ b0.

Thus,
∑n

i=1 µ(Ei ) =
∑n

i=1(bi − ai)

≤
∑n

i=1(bi − ai) +
∑n−1

i=1 (ai+1 − bi )
= bn − a1 ≤ b0 − a0 = µ(E0).
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Measures and Outer Measures Measure on Intervals

A Closed Interval in the Union of Open Intervals

Theorem

If a closed interval F0, F0 = [a0, b0], is contained in the union of a finite
number of bounded, open intervals, U1, . . . ,Un, Ui = (ai , bi ), i = 1, . . . , n,
then

b0 − a0 <

n
∑

i=1

(bi − ai).

Let k1 be such that a0 ∈ Uk1 .

If bk1 ≤ b0, then let k2 be such that bk1 ∈ Uk2 .

If bk2 ≤ b0, then let k3 be such that bk2 ∈ Uk3 .

Continue in the same way, by induction.

The process stops with km if bkm > b0.

Without loss of generality, assume m = n and Uki = Ui , i = 1, . . . , n.

This state of affairs may be achieved merely by omitting superfluous
Ui ’s and changing the notation.
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Measures and Outer Measures Measure on Intervals

A Closed Interval in the Union of Open Intervals (Cont’d)

In other words we may (and do) assume that:

a1 < a0 < b1;
an < b0 < bn;
ai+1 < bi < bi+1 for i = 1, . . . , n − 1, n > 1.

It follows that

b0 − a0 < bn − a1

= (b1 − a1) +
∑

1≤i≤n−1(bi+1 − bi)

≤
∑n

i=1(bi − ai).
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Domination of the Sum of a Covering

Theorem

If {E0,E1,E2, . . .} is a sequence of sets in P, such that E0 ⊆
⋃∞

i=1 Ei , then

µ(E0) ≤
∞
∑

i=1

µ(Ei ).

We write Ei = [ai , bi ), i = 0, 1, 2, . . .. If a0 = b0, the theorem is
trivial. Otherwise let ǫ be a positive number such that ǫ < b0 − a0.

For any δ > 0, set F0 = [a0, b0− ǫ] and Ui = (ai −
δ

2i
, bi ), i = 1, 2, . . ..

Then we get F0 ⊆
⋃∞

i=1Ui . By the Heine-Borel Theorem, there is a
positive integer n, such that F0 ⊆

⋃n
i=1Ui .

By the preceding theorem,

µ(E0)− ǫ = (b0 − a0)− ǫ <

n
∑

i=1

(bi − ai +
δ

2i
) ≤

∞
∑

i=1

µ(Ei ) + δ.

Since ǫ and δ are arbitrary, the conclusion follows.
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Measures and Outer Measures Measure on Intervals

Countable Additivity of the Measure on P

Theorem

The set function µ is countably additive on P.

Let {Ei} be a disjoint sequence of sets in P whose union, E , is also in
P.

By a preceding theorem, we have

n
∑

i=1

µ(Ei ) ≤ µ(E ), n = 1, 2, . . . .

It follows that
∑∞

i=1 µ(Ei ) ≤ µ(E ).

But, by the preceding theorem µ(E ) ≤
∑∞

i=1 µ(Ei ).

Therefore, we get equality.
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The Measure µ on R

Theorem

There exists a unique, finite measure µ on the ring R, such that,

µ(E ) = µ(E ), for all E ∈ P .

We know that every set E in R may be represented as a finite,
disjoint union of sets in P. Suppose that

E =

n
⋃

i=1

Ei and E =

m
⋃

j=1

Fj

are two such representations of the same set E .

Then, for each i = 1, . . . , n,

Ei =
m
⋃

j=1

(Ei ∩ Fj)

is a representation of Ei ∈ P as a finite, disjoint union of sets in P.
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Measures and Outer Measures Measure on Intervals

The Measure µ on R (Cont’d)

Therefore, since µ is finitely additive,

n
∑

i=1

µ(Ei ) =

n
∑

i=1

m
∑

j=1

µ(Ei ∩ Fj).

Similarly,
m
∑

j=1

µ(Fj) =

m
∑

j=1

n
∑

i=1

µ(Ei ∩ Fj).

It follows that, for every E in R , the function µ is unambiguously
defined by the equation

µ(E ) =
n
∑

i=1

µ(Ei ),

where {E1, . . . ,En} is a finite, disjoint class of sets in P whose union
is E .
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Measures and Outer Measures Measure on Intervals

The Measure µ on R (Uniqueness)

Clearly, we have:

The function µ coincides with µ on P;
The function µ is finitely additive.

Any function satisfying these conditions must be finitely additive
when the terms of the union are in P.

It follows that µ is unique.

George Voutsadakis (LSSU) Measure Theory January 2023 19 / 49



Measures and Outer Measures Measure on Intervals

The Measure µ on R (Countable Additivity)

We are left with showing that µ is countably additive.

Let {Ei} be a disjoint sequence of sets in R whose union E is in R.

Then, each Ei is a finite, disjoint union of sets in P, Ei =
⋃

j Eij and

µ(Ei ) =
∑

j µ(Eij ).

If E ∈ P, then, since the class of all En is countable and disjoint, it
follows from the countable additivity of µ that

µ(E ) = µ(E ) =
∑

i

∑

j

µ(Eij) =
∑

i

µ(Ei).

In the general case, E is a finite, disjoint union of sets in P, E =
⋃

k Fk .
Using the result just obtained, we have

µ(E ) =
∑

k

µ(Fk) =
∑

k

∑

i

µ(Ei ∩ Fk) =
∑

i

∑

k

µ(Ei ∩ Fk) =
∑

i

µ(Ei ).

We may now, without any possibility of confusion, write µ(E ) instead
of µ(E ) even for sets E which are in R but not in P.
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Subsection 3

Properties of Measures
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Measures and Outer Measures Properties of Measures

Monotone and Subtractive Set Functions

An extended real valued set function µ on a class E is monotone if,
whenever E ∈ E , F ∈ E ,

E ⊆ F implies µ(E ) ≤ µ(F ).

An extended real valued set function µ on a class E is subtractive if,
whenever E ∈ E , F ∈ E , such that E ⊆ F ,

F − E ∈ E and |µ(E )| < ∞ imply µ(F − E ) = µ(F )− µ(E ).
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Measures and Outer Measures Properties of Measures

Measures are Monotone and Subtractive

Theorem

If µ is a measure on a ring R, then µ is monotone and subtractive.

Suppose E ∈ R, F ∈ R, and E ⊆ F .

Since R is a ring, F − E ∈ R .

Since µ is a measure,

µ(F ) = µ(E ) + µ(F − E ).

By nonnegativity,

µ(F ) = µ(E ) + µ(F − E ) ≤ µ(E ).

If |µ(E )| < ∞, then

µ(F ) − µ(E ) = µ(F − E ).

Hence, µ is subtractive.
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Measures and Outer Measures Properties of Measures

The Measure of a Set Included in a Union

Theorem

If µ is a measure on a ring R, if E ∈ R, and if {Ei} is a finite or infinite
sequence of sets in R , such that E ⊆

⋃

i Ei , then

µ(E ) ≤
∑

i

µ(Ei ).

If {Fi} is any sequence of sets in a ring R, then there exists a disjoint
sequence {Gi} of sets in R, such that Gi ⊆ Fi and

⋃

i Gi =
⋃

i Fi :
E.g., set Gi = Fi −

⋃

{Fj : 1 ≤ j < i}.
We apply this result to the sequence {E ∩ Ei}:

µ(E ) = µ(E ∩
⋃

i Ei ) = µ(
⋃

i (E ∩ Ei ))

= µ(
⋃

i Gi) =
∑

i µ(Gi )

≤
∑

i µ(E ∩ Ei ) ≤
∑

i µ(Ei).
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Measures and Outer Measures Properties of Measures

The Measure of a Set Covering a Union

Theorem

If µ is a measure on a ring R, if E ∈ R, and if Ei is a finite or infinite
disjoint sequence of sets in R , such that

⋃

i Ei ⊆ E , then

∑

i

µ(Ei ) ≤ µ(E ).

If the sequence {Ei} is finite, then
⋃

i Ei ∈ R,

It follows that

∑

i

µ(Ei ) = µ

(

⋃

i

Ei

)

≤ µ(E ).

The validity of the inequality for an infinite sequence of sets is a
consequence of its validity for every finite subsequence.
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Measures and Outer Measures Properties of Measures

Measure of the Limit of an Increasing Sequence

Theorem

If µ is a measure on a ring R and if {En} is an increasing sequence of sets
in R for which limn En ∈ R, then

µ
(

lim
n

En

)

= lim
n

µ(En).

If we write E0 = ∅, then

µ(limn En) = µ(
⋃∞

i=1 Ei )

= µ(
⋃∞

i=1(Ei − Ei−1))

=
∑∞

i=1 µ(Ei − Ei−1)

= limn

∑n
i=1 µ(Ei − Ei−1)

= limn µ(
⋃n

i=1(Ei − Ei−1))

= limn µ(En).
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Measures and Outer Measures Properties of Measures

Measure of the Limit of a Decreasing Sequence

Theorem

If µ is a measure on a ring R, and if {En} is a decreasing sequence of sets
in R of which at least one has finite measure and for which limn En ∈ R,
then

µ
(

lim
n

En

)

= lim
n

µ(En).

If µ(Em) < ∞, then µ(En) ≤ µ(Em) < ∞, for n ≥ m. Therefore,
µ(limn En) < ∞. Note that {Em − En} is an increasing sequence:

µ(Em)− µ(limn En) = µ(Em − limn En)
= µ(limn (Em − En))
= limn µ(Em − En)
= limn (µ(Em)− µ(En))
= µ(Em)− limn µ(En).

Since µ(Em) < ∞, the proof of the theorem is complete.
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Measures and Outer Measures Properties of Measures

Continuity from Below/from Above

We shall say that an extended real valued set function µ defined on a
class E is continuous from below at a set E (in E ) if, for every
increasing sequence {En} of sets in E for which limn En = E , we have

lim
n

µ(En) = µ(E ).

Similarly µ is continuous from above at E if, for every decreasing
sequence {En} of sets in E for which |µ(Em)| < ∞, for at least one
value of m, and for which limn En = E , we have

lim
n

µ(En) = µ(E ).

The preceding two theorems assert that, if µ is a measure, then µ is
continuous from above and from below (at every set in the ring of
definition of µ).
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Measures and Outer Measures Properties of Measures

Continuity and Measures

Theorem

Let µ be a finite, nonnegative, and additive set function on a ring R. If µ
is either continuous from below at every E in R, or continuous from above
at ∅, then µ is a measure on R.

The additivity of µ, together with the fact that R is a ring, implies,
by mathematical induction, that µ is finitely additive.

Let {En} be a disjoint sequence of sets in R , whose union E is in R.

Write

Fn =

n
⋃

i=1

Ei and Gn = E − Fn.
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Continuity and Measures (Cont’d)

Suppose µ is continuous from below.
{Fn} is an increasing sequence of sets in R with limn Fn = E .

µ(E ) = lim
n
µ(Fn) = lim

n

n
∑

i=1

µ(Ei) =

∞
∑

i=1

µ(Ei).

Suppose µ is continuous from above at ∅.
{Gn} is a decreasing sequence of sets in R, with limn Gn = ∅, and µ is
finite.

µ(E ) =

(

n
∑

i=1

µ(Ei)

)

+µ(Gn) = lim
n

n
∑

i=1

µ(Ei)+lim
n
µ(Gn) =

∞
∑

i=1

µ(Ei).

In either case µ is countably additive.
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Subsection 4

Outer Measures
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Measures and Outer Measures Outer Measures

Hereditary Classes

A non empty class E of sets is hereditary if,

E ∈ E and F ⊆ E imply F ∈ E .

Example: The class of all subsets of some subset E of X is a typical
example of a hereditary class.

The intersection of every collection of hereditary classes is again a
hereditary class.

Thus, corresponding to any class of sets, there is a smallest hereditary
class containing it.

A hereditary class is a σ-ring if and only if it is closed under the
formation of countable unions.
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Measures and Outer Measures Outer Measures

Hereditary σ-Ring Generated by a Class

If E is any class of sets, the hereditary σ-ring generated by E , i.e.,
the smallest hereditary σ-ring containing E , is denoted by H(E ).

The hereditary σ-ring generated by E is, in fact, the class of all sets
which can be covered by countably many sets in E .

Thus, if E is a non empty class closed under the formation of
countable unions (e.g., if E is a σ-ring), then H(E ) is the class of all
sets which are subsets of some set in E .
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Measures and Outer Measures Outer Measures

Subadditivity

An extended real valued set function µ∗ defined on a class E of sets is
subadditive if, whenever E ∈ E , F ∈ E , and E ∪ F ∈ E , then

µ∗(E ∪ F ) ≤ µ∗(E ) + µ∗(F ).

An extended real valued set function µ∗ on E is finitely subadditive

if, for every finite class {E1, . . . ,En} of sets in E whose union is also
in E , we have

µ∗

(

n
⋃

i=1

Ei

)

≤
n
∑

i=1

µ∗(Ei ).

An extended real valued set function µ∗ on E is countably
subadditive if, for every sequence {Ei} of sets in E whose union is
also in E , we have

µ∗

(

∞
⋃

i=1

Ei

)

≤
∞
∑

i=1

µ∗(Ei ).
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Measures and Outer Measures Outer Measures

Outer Measures

An outer measure is an extended real valued, non negative, set
function µ∗, defined on a hereditary σ-ring H , such that:

µ∗(∅) = 0;
µ∗ is monotone;
µ∗ is countably subadditive.

An outer measure is necessarily finitely subadditive.

The same terminology concerning [total] finiteness and σ-finiteness
is used for outer measures as for measures.

Outer measures arise naturally in the attempt to extend measures
from rings to larger classes of sets.
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Measures and Outer Measures Outer Measures

Extensions of Measures

Theorem

If µ is a measure on a ring R and if, for every E in H(R),

µ∗(E ) = inf

{

∞
∑

n=1

µ(En) : En ∈ R, n = 1, 2, . . . ,E ⊆
∞
⋃

n=1

En

}

,

then µ∗ is an extension of µ to an outer measure on H(R).
If µ is [totally] σ-finite, then so is µ∗.

µ∗(E ) is the lower bound of sums of the type
∑∞

n=1 µ(En), where
{En} is a sequence of sets in R whose union contains E .

µ∗ is called the outer measure induced by the measure µ.
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Measures and Outer Measures Outer Measures

Extensions of Measures (Extension)

Suppose E ∈ R.

On the one hand, E ⊆ E ∪ ∅ ∪ ∅ ∪ · · ·.
Therefore, µ∗(E ) ≤ µ(E ) + µ(∅) +µ(∅) + · · · = µ(E ).
On the other, if En ∈ R, n = 1, 2, . . ., and E ⊆

⋃

∞

n=1 En, then

µ(E ) ≤
∞
∑

n=1

µ(En).

Thus, µ(E ) ≤ µ∗(E ).

This proves that µ∗ is indeed an extension of µ, i.e., that, if E ∈ R ,
then µ∗(E ) = µ(E ).

In particular, µ∗(∅) = 0.
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Extensions of Measures (Countable Subadditivity)

Suppose E ∈ H(R), F ∈ H(R), such that E ⊆ F .

Let {En} be a sequence of sets in R which covers F .

Then {En} also covers E . So µ∗(E ) ≤ µ∗(F ), i.e., µ∗ is monotone.

To prove that µ∗ is countably subadditive, suppose that E and Ei are
sets in H(R), such that E ⊆

⋃∞
i=1 Ei .

By the definition of µ∗(Ei ), there exists, for every ǫ > 0 and all
i = 1, 2, . . ., a sequence Eij of sets in R, such that

Ei ⊆
∞
⋃

j=1

Eij and

∞
∑

j=1

µ(Eij) ≤ µ∗(Ei ) +
ǫ

2i
.

Then, since the Eij ’s form a countable class of sets in R covering E ,

µ∗(E ) ≤
∞
∑

i=1

∞
∑

j=1

µ(Eij) ≤
∞
∑

i=1

µ∗(Ei ) + ǫ.

ǫ arbitrary implies that µ∗(E ) ≤
∑∞

i=1 µ
∗(Ei ).
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Measures and Outer Measures Outer Measures

Extensions of Measures (Finiteness)

Suppose, finally, that µ is σ-finite.

Let E be any set in H(R).

By the definition of H(R), there exists a sequence {Ei} of sets in R ,
such that E ⊆

⋃∞
i=1 Ei .

Since µ is σ-finite, there exists, for each i = 1, 2, . . ., a sequence {Eij}
of sets in R , such that

Ei ⊆
∞
⋃

j=1

Eij and µ(Eij) < ∞.

Consequently, E ⊆
⋃∞

i=1

⋃∞
j=1 Eij and µ∗(Eij ) = µ(Eij) < ∞.

Thus, µ∗ is σ-finite.

George Voutsadakis (LSSU) Measure Theory January 2023 39 / 49



Measures and Outer Measures Measurable Sets

Subsection 5

Measurable Sets
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Measures and Outer Measures Measurable Sets

µ
∗-Measurability

Let µ∗ be an outer measure on a hereditary σ-ring H .

A set E in H is µ∗-measurable if, for every set A in H ,

µ∗(A) = µ∗(A ∩ E ) + µ∗(A ∩ E ′).

The concept of µ∗-measurability is the most important one in the
theory of outer measures.

An outer measure is not necessarily a countably, nor even finitely,
additive set function.

In an attempt to satisfy the reasonable requirement of additivity, we
single out those sets which split every other set additively, giving rise
to the definition of µ∗-measurability.

The greatest justification of this concept is its success as a tool in
proving the important and useful extension theorem for measures.
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The Ring of Measurable Sets

Theorem

If µ∗ is an outer measure on a hereditary σ-ring H and if S is the class of
all µ∗-measurable sets, then S is a ring.

If E and F are in S and A ∈ H , then:

(a) µ∗(A) = µ∗(A ∩ E ) + µ∗(A ∩ E ′);

(b) µ∗(A ∩ E ) = µ∗(A ∩ E ∩ F ) + µ∗(A ∩ E ∩ F ′);

(c) µ∗(A ∩ E ′) = µ∗(A ∩ E ′ ∩ F ) + µ∗(A ∩ E ′ ∩ F ′).

Substituting (b) and (c) into (a) we obtain

(d) µ∗(A) = µ∗(A ∩ E ∩ F ) + µ∗(A ∩ E ∩ F ′)
+ µ∗(A ∩ E ′ ∩ F ) + µ∗(A ∩ E ′ ∩ F ′).
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The Ring of Measurable Sets (Cont’d)

We got

(d) µ∗(A) = µ∗(A∩E∩F )+µ∗(A∩E∩F ′)+µ∗(A∩E ′∩F )+µ∗(A∩E ′∩F ′).

If in equation (d) we replace A by A ∩ (E ∪ F ), the first three terms
of the right hand side remain unaltered and the last term drops out:

(e) µ∗(A ∩ (E ∪ F )) = µ∗(A ∩ E ∩ F ) + µ∗(A ∩ E ∩ F ′) + µ∗(A ∩ E ′ ∩ F ).

Since E ′ ∩ F ′ = (E ∪ F )′, substituting (e) into (d) yields

(f) µ∗(A) = µ∗(A ∩ (E ∪ F )) + µ∗(A ∩ (E ∪ F )′).

This proves that E ∪ F ∈ S.
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The Ring of Measurable Sets (Cont’d)

We got

(d) µ∗(A) = µ∗(A∩E∩F )+µ∗(A∩E∩F ′)+µ∗(A∩E ′∩F )+µ∗(A∩E ′∩F ′).

If we replace A in equation (d) by A∩ (E −F )′ = A∩ (E ′∪F ), we get

(g) µ∗(A∩ (E − F )′) = µ∗(A∩ E ∩ F ) + µ∗(A∩E ′ ∩ F ) + µ∗(A∩E ′ ∩ F ′).

Since E ∩ F ′ = E − F , substituting (g) into (d) yields

(h) µ∗(A) = µ∗(A ∩ (E − F )) + µ∗(A ∩ (E − F )′).

This proves that E − F ∈ S.

Since it is clear that E = ∅ satisfies (a), it follows that S is a ring.
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Remark

Suppose µ∗ is an outer measure on a hereditary σ-ring H .

Let E in H be such that, for every A in H ,

µ∗(A) ≥ µ∗(A ∩ E ) + µ∗(A ∩ E ′).

Then E is µ∗-measurable.

For the proof, recall that

µ∗(A) ≤ µ∗(A ∩ E ) + µ∗(A ∩ E ′)

is an automatic consequence of the subadditivity of µ∗.
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Structure of Measurable Sets on a Hereditary σ-Ring

Theorem

If µ∗ is an outer measure on a hereditary σ-ring H and if S is the class of
all µ∗-measurable sets, then S is a σ-ring. If A ∈ H and if {En} is a
disjoint sequence of sets in S , with

⋃∞
n=1 En = E , then

µ∗(A ∩ E ) =
∞
∑

n=1

µ∗(A ∩ En).

In the preceding proof, we showed

(e) µ∗(A ∩ (E ∪ F )) = µ∗(A ∩ E ∩ F ) + µ∗(A ∩ E ∩ F ′) + µ∗(A ∩ E ′ ∩ F ).

Replacing E and F in (e) by E1 and E2, respectively, we get

µ∗(A ∩ (E1 ∪ E2)) = µ∗(A ∩ E1) + µ∗(A ∩ E2).
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The Proof

From µ∗(A ∩ (E1 ∪ E2)) = µ∗(A ∩ E1) + µ∗(A ∩ E2), it follows by
mathematical induction, that

µ∗

(

A ∩
n
⋃

i=1

Ei

)

=

n
∑

i=1

µ∗(A ∩ Ei ),

for every positive integer n.

Write Fn =
⋃n

i=1 Ei , i = 1, 2, . . ..

Then, by the preceding theorem,

µ∗(A) = µ∗(A ∩ Fn) + µ∗(A ∩ F ′
n)

≥
∑n

i=1 µ
∗(A ∩ Ei ) + µ∗(A ∩ E ′).

Since this is true for every n, we obtain

(i) µ∗(A) ≥
∑

∞

i=1 µ(A ∩ Ei) + µ∗(A ∩ E ′) ≥ µ∗(A ∩ E ) + µ∗(A ∩ E ′).

Thus E ∈ S.

So S is closed under the formation of disjoint countable unions.
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The Proof (Cont’d)

Since E ∈ S ,

(j)
∑

∞

i=1 µ
∗(A ∩ Ei) + µ∗(A ∩ E ′) = µ∗(A ∩ E ) + µ∗(A ∩ E ′).

Replacing A by A ∩ E in (j), we obtain that, if A ∈ H and if {En} is a
disjoint sequence of sets in S with

⋃n
i=1 En = E , then

µ∗(A ∩ E ) =

∞
∑

n=1

µ∗(A ∩ En).

Since every countable union of sets in a ring may be written as a
disjoint countable union of sets, we see also that S is a σ-ring.
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Measures Induced by Outer Measures

Theorem

If µ∗ is an outer measure on a hereditary σ-ring H and if S is the class of
all µ∗-measurable sets, then:

Every set of outer measure zero belongs to S ;

The set function µ, defined for E in S by µ(E ) = µ∗(E ), is a
complete measure on S.

µ is called the measure induced by the outer measure µ∗.

Suppose E ∈ H and µ∗(E ) = 0. For every A in H , we have

µ∗(A) = µ∗(E ) + µ∗(A) ≥ µ∗(A ∩ E ) + µ∗(A ∩ E ′).

Thus, E ∈ S .

Countable additivity of µ on S follows from (j) upon replacing A by E .

For completeness, suppose E ∈ S, F ⊆ E and µ(E ) = µ∗(E ) = 0.

Then µ∗(F ) = 0. So F ∈ S.
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