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Extension of Measures Properties of Induced Measures

Subsection 1

Properties of Induced Measures
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Extension of Measures Properties of Induced Measures

The Framework

Suppose we start with a measure µ.

We form the induced outer measure µ∗.

We then form the measure µ.

Our goal is to study the relation between µ and µ.

Throughout, we assume that:

µ is a measure on a ring R;
µ∗ is the induced outer measure on H(R);
µ is the measure induced by µ∗ on the σ-ring S of all µ∗-measurable
sets.
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Extension of Measures Properties of Induced Measures

Measurability of Sets in S(R)

Theorem

Every set in S(R) is µ∗-measurable.

Suppose E ∈ R, A ∈ H(R), and ǫ > 0.

By the definition of µ∗, there exists a sequence {En} of sets in R,
such that A ⊆

⋃

∞

n=1 En and

µ∗(A) + ǫ ≥
∑

∞

n=1 µ(En)

=
∑

∞

n=1(µ(En ∩ E ) + µ(En ∩ E ′))

≥ µ∗(A ∩ E ) + µ∗(A ∩ E ′).

Since this is true for every ǫ, it follows that E is µ∗-measurable.

I.e., we have proved that R ⊆ S.

It follows from the fact that S is a σ-ring that S(R) ⊆ S.
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Extension of Measures Properties of Induced Measures

The Outer Measure and the Measure it Induces

Theorem

If E ∈ H(R), then

µ∗(E ) = inf {µ(F ) : E ⊆ F ∈ S} = inf {µ(F ) : E ⊆ F ∈ S(R)}.

Equivalently, the outer measure induced by µ on S(R) and the outer
measure induced by µ on S both coincide with µ∗.

For F in R, µ(F ) = µ(F ) (by the definition of µ and the first theorem
of the preceding set).

Hence,

µ∗(E ) = inf {
∑

∞

n=1 µ(En) : E ⊆
⋃

∞

n=1 En,En ∈ R, n = 1, 2, . . .}

≥ inf {
∑

∞

n=1 µ(En) : E ⊆
⋃

∞

n=1 En,En ∈ S(R),
n = 1, 2, . . .}.
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Extension of Measures Properties of Induced Measures

The Outer Measure and the Measure it Induces (Cont’d)

Note that the following also hold:

Every sequence {En} of sets in S(R) for which E ⊆
⋃

∞

n=1 En = F may
be replaced by a disjoint sequence with the same property, without
increasing the sum of the measures of the terms of the sequence;
µ(F ) = µ∗(F ) for F in S , by the definition of µ.

Hence, we get

µ∗(E ) ≥ inf {µ(F ) : E ⊆ F ∈ S(R)}

≥ inf {µ(F ) : E ⊆ F ∈ S}

≥ µ∗(E ).
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Extension of Measures Properties of Induced Measures

Measurable Cover

Suppose E ∈ H(R) and F ∈ S(R).

We say that F is a measurable cover of E if:

E ⊆ F ;
For every set G in S(R) for which G ⊆ F − E ,

µ(G) = 0.

Loosely speaking, a measurable cover of a set E in H(R) is a minimal
set in S(R) which covers E .

George Voutsadakis (LSSU) Measure Theory January 2023 8 / 47



Extension of Measures Properties of Induced Measures

Measurable Cover for Sets of σ-Finite Outer Measure

Theorem

If a set E in H(R) is of σ-finite outer measure, then there exists a set F in
S(R), such that µ∗(E ) = µ(F ) and F is a measurable cover of E .

If µ∗(E ) = ∞, and E ⊆ F ∈ S(R), then clearly µ(F ) = ∞.

So it is sufficient to prove the assertion µ∗(E ) = µ(F ) only in the
case in which µ∗(E ) < ∞.

Since a set of σ-finite outer measure is a countable disjoint union of
sets of finite outer measure, it is sufficient to prove the entire theorem
under the added assumption that µ∗(E ) < ∞.
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Extension of Measures Properties of Induced Measures

Proof of the Theorem

By the preceding theorem, for every n = 1, 2, . . ., there exists a set Fn
in S(R), such that

E ⊆ Fn and µ(Fn) ≤ µ∗(E ) +
1

n
.

Write F =
⋂

∞

n=1 Fn.

Then E ⊆ F ∈ S(R) and

µ∗(E ) ≤ µ(F ) ≤ µ(Fn) ≤ µ∗(E ) +
1

n
.

Since n is arbitrary, µ∗(E ) = µ(F ).

If G ∈ S(R) and G ⊆ F − E , then E ⊆ F − G .

Therefore,

µ(F ) = µ∗(E ) ≤ µ(F − G ) = µ(F )− µ(G ) ≤ µ(F ).

The fact that F is a measurable cover of E follows from the finiteness
of µ(F ).
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Extension of Measures Properties of Induced Measures

Outer Measure, Induced Measure and Measurable Covers

Theorem

If E ∈ H(R) and F is a measurable cover of E , then µ∗(E ) = µ(F ).
If both F1 and F2 are measurable covers of E , then µ(F1 △ F2) = 0.

Note E ⊆ F1 ∩ F2 ⊆ F1 implies F1 − (F1 ∩ F2) ⊆ F1 − E .

Since F1 is a measurable cover of E , µ(F1 − (F1 ∩ F2)) = 0.

Similarly, µ(F2 − (F1 ∩ F2)) = 0.

Thus, we have µ(F1 △ F2) = 0.

If µ∗(E ) = ∞, then the relation µ∗(E ) = µ(F ) is trivial.

If µ∗(E ) < ∞, then it follows from the preceding theorem that there
exists a measurable cover F0 of E with µ(F0) = µ∗(E ).

The result just shown implies that every two measurable covers have
the same measure.
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Extension of Measures Properties of Induced Measures

σ-Finiteness of Induced Measures

Theorem

If µ on R is σ-finite, then so are the measures µ on S(R) and µ on S .

We know that, if µ is σ-finite, then so is µ∗.

Hence, for every E in S , there exists a sequence {Ei} of sets in
H(R), such that E ⊆

⋃

∞

i=1 Ei and µ∗(Ei ) < ∞, i = 1, 2, . . ..

An application of the third theorem of the set to each set Ei

concludes the proof.

George Voutsadakis (LSSU) Measure Theory January 2023 12 / 47



Extension of Measures Properties of Induced Measures

Induced and Regular Outer Measures

Suppose that:
We start with an outer measure µ∗.
We form the induced measure µ.
Then form the outer measure µ∗ induced by µ.

In general µ∗ and µ∗ are not equal.

If the induced outer measure µ∗ does coincide with the original outer
measure µ∗, then µ∗ is called regular.

The assertion of the second theorem is exactly that the outer measure
induced by a measure on a ring is always regular.

The converse of this last statement is also true:

If µ∗ is regular, then µ∗ = µ∗ is induced by a measure on
a ring, namely by µ on the class of µ∗-measurable sets.

Thus, the notions of induced outer measure and regular outer
measure are coextensive.
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Extension of Measures Extension, Completion and Approximation

Subsection 2

Extension, Completion and Approximation
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Extension of Measures Extension, Completion and Approximation

The Extension Theorem

Theorem

If µ is a σ-finite measure on a ring R, then there is a unique measure µ on
the σ-ring S(R), such that, for E in R, µ(E ) = µ(E ). The measure µ is
σ-finite.

The measure µ is called the extension of µ. Unless confusion is
likely, we write µ(E ) instead of µ(E ) even for sets E in S(R).

The existence of µ (even without the restriction of σ-finiteness) has
been established.
To prove uniqueness, suppose that µ1 and µ2 are two measures on
S(R), such that µ1(E ) = µ2(E ), whenever E ∈ R . Let M be the
class of all sets E in S(R) for which µ1(E ) = µ2(E ).

If one of the two measures is finite, and if {En} is a monotone
sequence of sets in M , then, since µi (limn En) = limn µi (En), i = 1, 2,
we have limn En ∈ M. Therefore, M is a monotone class. But M

contains R, whence M contains S(R).
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Extension of Measures Extension, Completion and Approximation

Proof of the Extension Theorem

For the general, not necessarily finite, case, let A be any fixed set in R,
of finite measure with respect to one of the two measures µ1 and µ2.
Since R ∩ A is a ring and S(R) ∩ A is the σ-ring it generates, it follows
that the reasoning of the preceding paragraph applies to R ∩ A and
S(R) ∩ A, and proves that if E ∈ S(R) ∩ A, then µ1(E ) = µ2(E ).
Since every E in S(R) may be covered by a countable, disjoint union
of sets of finite measure in R (with respect to either of the measures
µ1 and µ2), the proof is complete.

The extension procedure employed in the proofs of the preceding
subsection yields slightly more than what the theorem states:

The given measure µ can actually be extended to a class (the class of
all µ∗-measurable sets) which is in general larger than the generated
σ-ring.

It turns out it is not necessary to make use of the theory of outer
measures in order to obtain this slight enlargement of the domain of
µ.
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Extension of Measures Extension, Completion and Approximation

Second Extension Theorem

Theorem

If µ is a measure on a σ-ring S, then the class S of all sets of the form
E △ N, where E ∈ S and N is a subset of a set of measure zero in S, is a
σ-ring, and the set function µ, defined by µ(E △ N) = µ(E ) is a complete
measure on S.

The measure µ is called the completion of µ.

If E ∈ S , N ⊆ A ∈ S, and µ(A) = 0, then
E ∪ N = (E − A)△ [A ∩ (E ∪ N)];
E △ N = (E − A) ∪ [A ∩ (E △ N)].

Thus, S may also be described as the class of all sets of the form
E ∪ N, where E ∈ S and N is a subset of a set of measure zero in S.
Since this implies that the class S, which is obviously closed under
the formation of symmetric differences, is closed also under the
formation of countable unions, it follows that S is a σ-ring.
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Extension of Measures Extension, Completion and Approximation

Proof of the Second Extension Theorem

If E1 △ N1 = E2 △ N2, where Ei ∈ S and Ni is a subset of a set of
measure zero in S , i = 1, 2, then E1 △ E2 = N1 △ N2. Therefore
µ(E1 △ E2) = 0. It follows that µ(E1) = µ(E2). Hence, µ is
unambiguously defined by the relations

µ(E △ N) = µ(E ∪ N) = µ(E ).

Using the union (instead of the symmetric difference) representation
of sets in S , it is easy to verify that µ is a measure.

The completeness of µ is an immediate consequence of the fact that
S contains all subsets of sets of measure zero in S.
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Extension of Measures Extension, Completion and Approximation

Completion and Complete Extension

Theorem

If µ is a σ-finite measure on a ring R, and if µ∗ is the outer measure
induced by µ, then the completion of the extension of µ to S(R) is
identical with µ∗ on the class of all µ∗-measurable sets.

Let us denote the class of all µ∗-measurable sets by S
∗ and the

domain of the completion µ of µ by S. Since µ∗ on S
∗ is a complete

measure, it follows that S is contained in S
∗ and that µ and µ∗

coincide on S.

It suffces to show that S
∗ is contained in S. In view of the

σ-finiteness of µ∗ on S
∗, it is sufficient to prove that if E ∈ S

∗ and
µ∗(E ) < ∞, then E ∈ S .
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Extension of Measures Extension, Completion and Approximation

Completion and Complete Extension (Cont’d)

If E ∈ S
∗ and µ∗(E ) < ∞, then E ∈ S.

By the third theorem of the preceding subsection, E has a measurable
cover F . Since µ∗(F ) = µ(F ) = µ∗(E ), it follows from the finiteness
of µ∗(E ) and the fact that µ∗ is a measure on S

∗, that
µ∗(F − E ) = 0. But F − E also has a measurable cover G , and
µ(G ) = µ∗(F − E ) = 0. Thus, the relation E = (F − G ) ∪ (E ∩ G )
exhibits E as a union of a set in S(R) and a set which is a subset of a
set of measure zero in S(R). This shows that E ∈ S, and thus
completes the proof.

Loosely speaking, the theorem says that in the σ-finite case the σ-ring
of all µ∗-measurable sets and the generated σ-ring S(R) are not very
different: Every µ∗-measurable set suitably modified by a set of
measure zero belongs to S(R).
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Extension of Measures Extension, Completion and Approximation

Measure and Extension to the Generated σ-Ring

Theorem

If µ is a σ-finite measure on a ring R, then, for every set E of finite
measure in S(R) and for every positive number ǫ, there exists a set E0 in
R such that µ(E △ E0) ≤ ǫ.

Results of the preceding three subsections, together with the first
theorem, imply that

µ(E ) = inf

{

∞
∑

i=1

µ(Ei ) : E ⊆
∞
⋃

i=1

Ei ,Ei ∈ R , i = 1, 2, . . .

}

.

Consequently there exists a sequence {Ei} of sets in R, such that
E ⊆

⋃

∞

i=1 Ei and µ(
⋃

∞

i=1 Ei) ≤ µ(E ) + ǫ

2 . Since
limn µ(

⋃n
i=1 Ei ) = µ(

⋃

∞

i=1 Ei ), there exists a positive integer n, such
that if E0 =

⋃n
i=1 Ei , then µ(

⋃

∞

i=1 Ei ) ≤ µ(E0) +
ǫ

2 . Clearly E0 ∈ R.
Since µ(E − E0) ≤ µ(

⋃

∞

i=1 Ei − E0) = µ(
⋃

∞

i=1 Ei)− µ(E0) ≤
ǫ

2 and
µ(E0 − E ) ≤ µ(

⋃

∞

i=1 Ei − E ) = µ(
⋃

∞

i=1 Ei )− µ(E ) ≤ ǫ

2 , the proof of
is complete.
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Extension of Measures Inner Measures

Subsection 3

Inner Measures
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Extension of Measures Inner Measures

The Inner Measure Induced by a Measure

We have seen that if µ is a measure on a σ-ring S, then the set
function µ∗ defined for every E in the hereditary σ-ring H(S) by
µ∗(E ) = inf {µ(F ) : E ⊆ F ∈ S} is an outer measure.

In the σ-finite case the induced measure µ on the σ-ring S of all
µ∗-measurable sets is the completion of µ.

Analogously we now define the inner measure µ∗ induced by µ: For
every E in H(S), we write

µ∗(E ) = sup {µ(F ) : E ⊇ F ∈ S}.

We study µ∗ and its relation to µ∗.

We show that the properties of µ∗ are in a very legitimate sense the
duals of those of µ∗.

It is very easy to see that the set function µ∗ is non negative,
monotone, and such that µ∗(∅) = 0.
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Extension of Measures Inner Measures

Notation and Characterization of the Inner Measure

We adopt the following general assumptions:
µ is a σ-finite measure on a σ-ring S , µ∗ and µ∗ are the outer measure
and the inner measure induced by µ, respectively, and µ on S is the
completion of µ.

Recall that µ on S coincides with µ∗ on the class of all µ∗-measurable
sets.

Theorem

If E ∈ H(S), then µ∗(E ) = sup {µ(F ) : E ⊇ F ∈ S}.

Since S ⊆ S, it is clear from the definition of µ∗ that
µ∗(E ) ≤ sup {µ(F ) : E ⊇ F ∈ S}.

On the other hand the second theorem of the preceding subsection
implies that, for every F in S, there is a G in S , with G ⊆ F and
µ(F ) = µ(G ). Since this means that every value of µ on subsets of E
in S is also attained by µ on subsets of E in S, the proof is complete.
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Extension of Measures Inner Measures

Measurable Kernels

If E ∈ H(S) and F ∈ S, we say that F is a measurable kernel of E
if F ⊆ E and if, for every set G in S for which G ⊆ E − F , we have
µ(G ) = 0.

Loosely speaking a measurable kernel of a set E in H(S) is a maximal
set in S which is contained in E .

Theorem

Every set E in H(S) has a measurable kernel.

Let Ê be a measurable cover of E , let N be a measurable cover of
Ê − E and write F = Ê − N. We have

F = Ê − N ⊆ Ê − (Ê − E ) = E .

Moreover, if G ⊆ E − F ,

G ⊆ E − (Ê − N) = E ∩ N ⊆ N − (Ê − E ).

It follows (since N is a measurable cover of Ê − E ), that F is a
measurable kernel of E .
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Extension of Measures Inner Measures

Measure and Measurable Kernels

Theorem

If E ∈ H(S), and F is a measurable kernel of E , then µ(F ) = µ∗(E ). If
both F1 and F2 are measurable kernels of E , then µ(F1 △ F2) = 0.

Since F ⊆ E , it is clear that µ(F ) ≤ µ∗(E ). If µ(F ) < µ∗(E ), then
µ(F ) is finite and, by the definition of µ∗(E ), there exists a set F0 in
S, such that F0 ⊆ E and µ(F0) > µ(F ). Since F0 − F ⊆ E − F and
µ(F0 − F ) ≥ µ(F0)− µ(F ) > 0, this contradicts the hypothesis.
Thus, µ(F ) = µ∗(E ).

Since the relation F1 ⊆ F1 ∪ F2 ⊆ E implies that
(F1 ∪ F2)− F1 ⊆ E − F1, it follows from the fact that F1 is a
measurable kernel of E that µ((F1 ∪ F2)− F1) = 0. Similarly,
µ((F1 ∪ F2)− F2) = 0. Therefore, µ(F1 △ F2) = 0.
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Extension of Measures Inner Measures

The Outer Measure on the Hereditary Ring

Theorem

If {En} is a disjoint sequence of sets in H(S), then
µ∗(

⋃

∞

n=1 En) ≥
∑

∞

n=1 µ∗(En).

If Fn is a measurable kernel of En, n = 1, 2, . . ., the countable
additivity of µ implies that
∑

∞

n=1 µ∗(En) =
∑

∞

n=1 µ(Fn) = µ(
⋃

∞

n=1 Fn) ≤ µ∗(
⋃

∞

n=1 En).

Theorem

If A ∈ H(S) and if {En} is a disjoint sequence of sets in S, with
⋃

∞

n=1 En = E , then µ∗(A ∩ E ) =
∑

∞

n=1 µ∗(A ∩ En).

If F is a measurable kernel of A ∩ E , then
µ∗(A ∩ E ) = µ(F ) =

∑

∞

n=1 µ(F ∩ En) ≤
∑

∞

n=1 µ∗(A ∩ En). The
preceding theorem concludes the proof.
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Extension of Measures Inner Measures

Measure and Inner and Outer Measure

Theorem

If E ∈ S, then µ∗(E ) = µ∗(E ) = µ(E ). Conversely, if E ∈ H(S) and
µ∗(E ) = µ∗(E ) < ∞, then E ∈ S.

If E ∈ S , then both the supremum in the first theorem and the
infimum seen previously are attained by µ(E ).

To prove the converse, let A and B be a measurable kernel and a
measurable cover of E , respectively. Since µ(A) = µ∗(E ) < ∞, we
have µ(B − A) = µ(B)− µ(A) = µ∗(E )− µ∗(E ) = 0. The desired
conclusion follows from the completeness of µ on S .
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Extension of Measures Inner Measures

Relation Between Inner and Outer Measures

Theorem

If E and F are disjoint sets in H(S), then

µ∗(E ∪ F ) ≤ µ∗(E ) + µ∗(F ) ≤ µ∗(E ∪ F ).

Let A be a measurable cover of F and let B be a measurable kernel of
E ∪ F . Since B − A ⊆ E , it follows that
µ∗(E ∪ F ) = µ(B) ≤ µ(B − A) + µ(A) ≤ µ∗(E ) + µ∗(F ).

Dually, let A be a measurable kernel of E and let B be a measurable
cover of E ∪ F . Since B − A ⊇ F , it follows that
µ∗(E ∪ F ) = µ(B) = µ(A) + µ(B − A) ≥ µ∗(E ) + µ∗(F ).

Theorem

If E ∈ S, then, for every subset A of X ,

µ∗(A ∩ E ) + µ∗(A′ ∩ E ) = µ(E ).

Applying the preceding theorem to A ∩ E and A′ ∩ E , we obtain
µ∗(E ) ≤ µ∗(A ∩ E ) + µ∗(A′ ∩ E ) ≤ µ∗(E ). Since E ∈ S , we have, by
the pre-preceding theorem, µ∗(E ) = µ∗(E ) = µ(E ).
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Extension of Measures Inner Measures

Alternative Approach to the Extension Theorem

If µ is a σ-finite measure on a ring R, and if µ∗ is the induced outer
measure on H(R), then, for every set E in R , with µ(E ) < ∞, and
for every A in H(R), we have

µ∗(A ∩ E ) = µ(E )− µ∗(A′ ∩ E ).

If we prove that whenever E and F are two sets of finite measure in R,

A ∩ E = A ∩ F implies µ(E )− µ∗(A′ ∩ E ) = µ(F )− µ∗(A′ ∩ F ),

then we may use the equation for µ∗(A ∩ E ) as a definition of inner
measure.

We may then define a set E in H(R) of finite outer measure to be
µ∗-measurable if and only if µ∗(E ) = µ∗(E ).
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Extension of Measures Lebesgue Measure

Subsection 4

Lebesgue Measure
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Extension of Measures Lebesgue Measure

Borel Sets

The purpose of this section is to apply the general extension theory to
the special measure based on the ring of the semi-closed intervals.

We assume that:

X is the real line;
P is the class of all bounded, semi-closed intervals of the form [a, b);
S is the σ-ring generated by P;
µ is the set function on P defined by µ([a, b)) = b − a.

The sets of the σ-ring S are called the Borel sets of the line.

According to the extension theorems, we may assume that µ is
defined for all Borel sets.
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Extension of Measures Lebesgue Measure

Lebesgue Measure

We assume that µ is defined for all Borel sets.

If µ on S is the completion of µ on S, the sets of S are the
Lebesgue measurable sets of the line.

The measure µ is the Lebesgue measure.

The incomplete measure µ∗ on the class S of all Borel sets is usually
called Lebesgue measure also.

Since the entire line X is the union of countably many sets in P, we
see that X ∈ S . So the σ-rings S and S are σ-algebras.

Since µ(X ) = ∞, µ is not finite on S .

But µ∗ is finite on P.

So both µ on S and µ on S are totally σ-finite.
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Extension of Measures Lebesgue Measure

Countable Borel Sets are of Measure Zero

Theorem

Every countable set is a Borel set of measure zero.

For any a, −∞ < a < ∞, we have

{a} = {x : x = a} =

∞
⋂

n=1

{x : a ≤ x < a +
1

n
}.

Therefore,

µ({a}) = lim
n

µ([a, a +
1

n
)) = lim

n

1

n
= 0.

Thus, every one-point set is a Borel set of measure zero.

Since the Borel sets form a σ-ring and since µ is countably additive,
the theorem follows.
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Extension of Measures Lebesgue Measure

Alternative Characterization of Borel Sets

Theorem

The class S of all Borel sets coincides with the σ-ring generated by the
class U of all open sets.

Since, for every real number a, the set {a} is a Borel set, it follows
from the relation (a, b) = [a, b)− {a}, that every bounded open
interval is a Borel set.

Since every open set on the line is a countable union of bounded open
intervals, it follows that S ⊇ U . Consequently, S ⊇ S(U).

To prove the reverse inequality, we observe that, for every real
number a, {a} =

⋂

∞

n=1(a −
1
n
, a + 1

n
), so that {a} ∈ S(U). It follows

from the relation [a, b) = (a, b) ∪ {a} that P ⊆ S(U). Consequently,
S = S(P) ⊆ S(U).
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Extension of Measures Lebesgue Measure

Calculation of Outer Measure Based on Open Sets

Theorem

If U is the class of all open sets, then, for every E in X ,

µ∗(E ) = inf {µ(U) : E ⊆ U ∈ U}.

Since µ∗(E ) = inf {µ(F ) : E ⊆ F ∈ S}, it follows from the fact that
U ⊆ S that µ∗(E ) ≤ inf {µ(U) : E ⊆ U ∈ U}.

If, on the other hand, ǫ is any positive number, then it follows from
the definition of µ∗ that there exists a sequence {[an, bn)} of sets in
P, such that E ⊆

⋃

∞

n=1[an, bn) and
∑

∞

n=1(bn − an) ≤ µ∗(E ) + ǫ

2 .
Consequently E ⊆

⋃

∞

n=1(an −
ǫ

2n+1 , bn) = U ∈ U and
µ(U) ≤

∑

∞

n=1(bn − an) +
ǫ

2 ≤ µ∗(E ) + ǫ.

The desired result follows from the arbitrariness of ǫ.
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Extension of Measures Lebesgue Measure

Lebesgue Measure and Linear Transformations

Theorem

Let T be the one to one transformation of the entire real line onto itself,
defined by T (x) = αx + β, where α and β are real numbers and α 6= 0. If,
for every subset E of X , T (E ) denotes the set of all points of the form
T (x), with x in E , i.e. T (E ) = {αx + β : x ∈ E}, then

µ∗(T (E )) = |α|µ∗(E ) and µ∗(T (E )) = |α|µ∗(E ).

The set T (E ) is a Borel set or a Lebesgue measurable set if and only if E
is a Borel set or a Lebesgue measurable set, respectively.

It is sufficient to prove the theorem for α > 0: If α < 0, then the
transformation T is the result of composing the transformations T1

and T2, T (x) = T1(T2(x)), where T1(x) = |α|x + β and
T2(x) = −x . The transformation T2 sends Borel sets and Lebesgue
measurable sets into Borel sets and Lebesgue measurable sets,
respectively, and preserves the inner and outer measures of all sets.
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Extension of Measures Lebesgue Measure

Lebesgue Measure and Linear Transformations (Cont’d)

Suppose, now, that α > 0, and let T (S) be the class of all sets of the
form T (E ) with E in S. It is clear that T (S) is a σ-ring. We are to
prove that T (S) = S .

If E = [a, b) ∈ P, then E = T (F ), where F = [ a−β
α

, b−β
α

) ∈ P. Thus,
E ∈ T (S) and, therefore, S ⊆ T (S).
By the same reasoning applied to T−1(x) = x−β

α
, we may conclude

that S ⊆ T−1(S). Applying the transformation T to both sides, we
obtain, T (S) ⊆ S .

Therefore, T (S) = S .

If, for every Borel set E we write µ1(E ) = µ(T (E )) and
µ2(E ) = αµ(E ), then both µ1 and µ2 are measures on S.

If E = [a, b) ∈ P, then T (E ) = [αa + β, αb + β), and
µ1(E ) = µ(T (E )) = (αb+β)−(αa+β) = α(b−a) = αµ(E ) = µ2(E ).
Hence, µ(T (E )) = αµ(E ), for every E in S.
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Extension of Measures Lebesgue Measure

Lebesgue Measure and Transformations (Conclusion)

Applying the results of the preceding two paragraphs to the
transformation T−1, we obtain the relations

µ∗(T (E )) = inf {µ(F ) : T (E ) ⊆ F ∈ S}
= inf {αµ(T−1(F )) : E ⊆ T−1(F ) ∈ S}
= α inf {µ(G ) : E ⊆ G ∈ S}
= αµ∗(E ),

and, replacing inf by sup, µ∗ by µ∗, and ⊆ by ⊇ throughout,
µ∗(T (E )) = αµ∗(E ), for every set E .

If E is a Lebesgue measurable set and A is any set, then

µ∗(A ∩ T (E )) + µ∗(A ∩ (T (E ))′)
= µ∗(T (T−1(A) ∩ E )) + µ∗(T (T−1(A) ∩ E ′))
= α[µ∗(T−1(A) ∩ E ) + µ∗(T−1(A) ∩ E ′)]
= αµ∗(T−1(A)) = µ∗(A),

so that T (E ) is Lebesgue measurable. This result applied to T−1

proves its own converse and completes the proof of the theorem.
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Extension of Measures Non-Measurable Sets

Subsection 5

Non-Measurable Sets
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Extension of Measures Non-Measurable Sets

Measurable Sets and Open Intervals

If E is any subset of the real line and a is any real number, then
E + a denotes the set of all numbers of the form x + a, with x in E .

If E and F are both subsets of the real line, then E + F denotes the
set of all numbers of the form x + y with x in E and y in F .

The symbol D(E ) will be used to denote the difference set of E ,
i.e., the set of all numbers of the form x − y with x in E and y in E .

Theorem

If E is a Lebesgue measurable set of positive, finite measure, 0 ≤ α < 1,
then there exists an open interval U, such that µ(E ∩ U) ≥ αµ(U).

Let U be the class of all open sets. µ(E ) = inf {µ(U) : E ⊆ U ∈ U},
implies the existence of an open set U0, such that E ⊆ U0 and
αµ(U0) ≤ µ(E ). If {Un} is the disjoint sequence of open intervals
whose union is U0, then α

∑

∞

n=1 µ(Un) ≤
∑

∞

n=1 µ(E ∩ Un).
Consequently, we must have αµ(Un) ≤ µ(E ∩ Un), for at least one
value of n. The interval Un may be chosen for U.
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Extension of Measures Non-Measurable Sets

Different Sets and Open Intervals

Theorem

If E is a Lebesgue measurable set of positive measure, then there exists an
open interval, containing 0, lying entirely in the difference set D(E ).

If E is, or at least contains, an open interval, the result is trivial.

In the general case we make use of the preceding theorem, which
asserts that a suitable subset of E is arbitrarily close to an interval, to
find a bounded open interval U, such that µ(E ∩ U) ≥ 3

4µ(U). If
−1

2µ(U) < x < 1
2µ(U), then the set (E ∩ U) ∪ ((E ∩ U) + x) is

contained in an interval, namely U ∪ (U + x), whose length is less
than 3

2µ(U). If E ∩ U and (E ∩ U) + x were disjoint, then, since they
have the same measure, we should have
µ((E ∩ U) ∪ [(E ∩ U) + x ]) = 2µ(E ∩ U) ≥ 3

2µ(U). Hence, at least
one point of E ∩ U belongs also to (E ∩ U) + x , which proves that
x ∈ D(E ). I.e., the interval (−1

2µ(U), 12µ(U)) satisfies the conditions
stated in the theorem.
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Extension of Measures Non-Measurable Sets

A Dense Set on the Real Line

Theorem

If ξ is an irrational number, then the set A of all numbers of the form
n +mξ, where n and m are arbitrary integers, is everywhere dense on the
line. The same is true of the subset B of all numbers of the form n +mξ

with n even, and the subset C of numbers of the form n +mξ with n odd.

For every positive integer i , there exists a unique integer ni (positive,
negative, or zero), such that 0 ≤ ni + iξ < 1. We write xi = ni + iξ.
If U is any open interval, then there is a positive integer k , such that
µ(U) > 1

k
. Among the k + 1 numbers x1, x2, . . . , xk+1 in the unit

interval, there must be at least two, say xi and xj , such that
|xi − xj | <

1
k
. It follows that some integral multiple of xi − xj , i.e.,

some element of A, belongs to the interval U.

For B , we have to replace the unit interval by the interval [0, 2).

For C , note that C = B + 1.
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Extension of Measures Non-Measurable Sets

Existence of Nonmeasurable Sets

Theorem

There exists at least one set E0 which is not Lebesgue measurable.

For any two real numbers x and y , we write x ∼ y if x − y ∈ A,
where A is the set described in the preceding theorem:

A = {n +mξ : n,m ∈ Z}, ξ a fixed irrational.

The relation ∼ is reflexive, symmetric and transitive. Therefore, the
set of all real numbers is the union of a disjoint class of sets, each set
consisting of all those numbers which are in the relation ∼ with a
given number. By the axiom of choice, we may find a set E0

containing exactly one point from each such set.
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Extension of Measures Non-Measurable Sets

Existence of Nonmeasurable Sets

Claim

E0 is not measurable.

Suppose that F is a Borel set, such that F ⊆ E0. Since the difference
set D(F ) cannot contain any non zero elements of the dense set A, it
follows from the second theorem that F must have measure zero, so
that µ∗(E0) = 0. I.e., if E0 is Lebesgue measurable, then its measure
must be zero. But, if a1 and a2 are two different elements of A, then
the sets E0 + a1 and E0 + a2 are disjoint:

If x1 + a1 = x2 + a2, with x1 in E0 and x2 in E0, then
x1 − x2 = a2 − a1 ∈ A.

The countable class of sets of the form E0 + a, where a ∈ A, covers
the entire real line, i.e., E0 + A = X . Moreover, the Lebesgue
measurability of E0 would imply that each E0 + a is Lebesgue
measurable and of the same measure as E0. Hence, the Lebesgue
measurability of E0 would imply the nonsensical result µ(X ) = 0.
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Extension of Measures Non-Measurable Sets

Refinement on the Existence of Nonmeasurable Sets

Theorem

There exists a subset M of the real line such that, for every Lebesgue
measurable set E , µ∗(M ∩ E ) = 0 and µ∗(M ∩ E ) = µ(E ).

Write A = B ∪ C (A, B , C as in the third theorem), and, if E0 is the
set constructed in the proof of the preceding theorem, write
M = E0 + B . If F is a Borel set, such that F ⊆ M, then the
difference set D(F ) cannot contain any elements of the dense set C .
It follows from the second theorem that µ∗(M) = 0. The relations
M ′ = E0 +C = E0 + (B +1) = M +1 imply that µ∗(M

′) = 0. If E is
any Lebesgue measurable set, then the monotone character of µ∗

implies that µ∗(M ∩ E ) = µ∗(M
′ ∩ E ) = 0. Since, by a preceding

theorem, µ∗(M
′ ∩ E ) + µ∗(M ∩ E ) = µ(E ), µ∗(M ∩ E ) = µ(E ).
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Impossibility of Extension

The preceding results imply that it is impossible to extend Lebesgue
measure to the class of all subsets of the real line so that the extended
set function is still a measure and is invariant under translations.
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