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Measure Spaces
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Measurable Functions Measure Spaces

Measurable Spaces

A measurable space is a set X and a σ-ring S of subsets of X with
the property that

⋃

S = X .

Usually, we denote a measurable space by the same symbol as the
underlying set X .

On the occasions when attention is focused on the particular σ-ring
under consideration, we write (X ,S) for X .

We call a subset E of X measurable if and only if it belongs to the
σ-ring S.

This is not meant to indicate that S is the σ-ring of all
µ∗-measurable sets with respect to some outer measure µ∗, nor even
that a non trivial measure is or may be defined on S .
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Measurable Functions Measure Spaces

Measurable Spaces: A Comment

In the language of measurable sets, the condition in the definition of
measurable spaces may be expressed by saying that the union of all
measurable sets is the entire space.

Equivalently, every point is contained in some measurable set.

The purpose of this restriction is to eliminate certain obvious and not
at all useful pathological considerations.
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Measurable Functions Measure Spaces

Measure Spaces

A measure space is a measurable space (X ,S) and a measure µ on
S.

We also confuse a measure space whose underlying set is X with the
set X .

To focus on the particular σ-ring and measure under consideration,
we write (X ,S , µ) for X .

The measure space X is called [totally] finite, σ-finite, or complete,
according as the measure µ is [totally] finite, σ-finite, or complete.

For measure spaces we make use of the outer measure µ∗ and (in the
σ-finite case) the inner measure µ∗ induced by µ on the hereditary
σ-ring H(S).
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Measurable Functions Measure Spaces

Measurable Subsets of Measure Spaces

A measurable subset X0 of a measure space (X ,S , µ) may itself be
considered as a measure space (X0,S0, µ0), where S0 is the class of
all measurable subsets of X0, and, for E in S0, µ0(E ) = µ(E ).

Conversely, if a subset X0 of a set X is a measure space (X0,S0, µ0),
then X may be made into a measure space (X ,S , µ), where S is the
class of all those subsets of X whose intersection with X0 is in S0,
and, for E in S , µ(E ) = µ0(E ∩ X0).

A modification of this construction is frequently useful even if X is
already a measure space:

If X0 is a measurable subset of X , a new measure µ0 may be defined
on the class of all measurable subsets E of X by the equation
µ0(E ) = µ(E ∩ X0).

It is easy to verify that (X ,S , µ0) is indeed a measure space.
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Measurable Functions Measure Spaces

Thick Subsets of Measure Spaces

A subset X0 of a measure space (X ,S , µ) is thick if µ∗(E − X0) = 0,
for every measurable set E .

If X itself is measurable, then X0 is thick if and only if
µ∗(X − X0) = 0.

If µ is totally finite, then X0 is thick if and only if µ∗(X0) = µ(X ).
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Measurable Functions Measure Spaces

Nonmeasurable Subsets of Measure Spaces

Theorem

If X0 is a thick subset of a measure space (X ,S , µ), if S0 = S ∩ X0, and
if, for E in S, µ0(E ∩ X0) = µ(E ), then (X0,S0, µ0) is a measure space.

If two sets, E1 and E2, in S are such that E1 ∩ X0 = E2 ∩ X0, then
(E1 △ E2) ∩ X0 = ∅, so µ(E1 △ E2) = 0 and, hence, µ(E1) = µ(E2).
Thus, µ0 is unambiguously defined on S0.

Suppose next that {Fn} is a disjoint sequence of sets in S0, and let
En be a set in S, such that Fn = En ∩ X0, n = 1, 2, . . ..

If Ẽn = En −
⋃

{Ei : 1 ≤ i < n}, n = 1, 2, . . ., then
(Ẽn △ En) ∩ X0 = (Fn −

⋃

{Fi : 1 ≤ i < n})△ Fn = Fn △ Fn = ∅, so
that µ(Ẽn △ En) = 0, and, therefore,

∑

∞

n=1 µ0(Fn) =
∑

∞

n=1 µ(En) =
∑

∞

n=1 µ(Ẽn) = µ(
⋃

∞

n=1 Ẽn) = µ(
⋃

∞

n=1 En) = µ0(
⋃

∞

n=1 Fn), i.e., µ0 is
indeed a measure.
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Subsection 2

Measurable Functions
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The Inverse Image of a Set Under a Function

Suppose that f is a real valued function on a set X and let M be any
subset of the real line.

We write
f −1(M) = {x : f (x) ∈ M}.

i.e., f −1(M) is the set of all those points of X which are mapped into
M by f .

The set f −1(M) is called the inverse image (under f , or with respect
to f ) of the set M.

Example: If f is the characteristic function of a set E in X , then

f −1({1}) = E and f −1({0}) = E ′.

More generally, f −1(M) = ∅,E ,E ′ or X , according as M contains
neither 0 nor 1, 1 but not 0, 0 but not 1, or both 0 and 1.
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Properties of the Inverse Image Mapping

It is easy to verify that, for every f :

f −1(
⋃∞

n=1 Mn) =
⋃∞

n=1 f
−1(Mn);

f −1(M − N) = f −1(M)− f −1(N),

i.e., the mapping f −1 from subsets of the line to subsets of X
preserves all set operations.

It follows that if E is a class of subsets of the line (such as a ring or a
σ-ring) with certain algebraic properties, then f −1(E ) (= the class of
all those subsets of X which have the form f −1(M), for some M in
E ) is a class with the same algebraic properties.

Of particular interest for later applications is the case in which E is
the class of all Borel sets on the line.
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Measurable Functions

Suppose that in addition to the set X we are given also a σ-ring S of
subsets of X so that (X ,S) is a measurable space.

For every real valued (and also for every extended real valued)
function f on X , we shall write N(f ) = {x : f (x) 6= 0}.

If a real valued function f is such that, for every Borel subset M of
the real line the set N(f ) ∩ f −1(M) is measurable, then f is called a
measurable function.

The special role played by the value 0 should be emphasized:

The reason for singling out 0 lies in the fact that it is the identity
element of the additive group of real numbers.
In the next chapter we shall introduce the concept of integral, defined
for certain measurable functions; the fact that integration (the most
important concept in measure theory) may be viewed as generalized
addition necessitates treating 0 differently from other real numbers.
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Measurability and Preservation of Sets

If f is a measurable function on X , then N(f ) is a measurable set.

Simply take for M the entire real line (which is a Borel set).

Then N(f ) ∩ f −1(R) = N(f ) is measurable.

If E is a measurable subset of X and if M is a Borel subset of the real
line, then E ∩ f −1(M) is measurable.

Note that

E ∩ f −1(M) = [E ∩ N(f ) ∩ f −1(M)] ∪ [(E − N(f )) ∩ f −1(M)],

where the second term in the union is either empty or else equal to
E − N(f )).

Suppose we say that a real valued function f defined on a measurable
set E is to be called measurable on E whenever E ∩ f −1(M) is
measurable, for every Borel set M.

Then we have proved that a measurable function is measurable on
every measurable set.
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Measurability and Preservation of Sets (Cont’d)

If, in particular, the entire space X happens to be measurable, then
the requirement of measurability on f is simply that f −1(M) be
measurable for every Borel subset M of the real line.

I.e., in case X is measurable, a measurable function is one whose
inverse maps the sets of one prescribed σ-ring (namely the Borel sets
on the line) into the sets of another prescribed σ-ring (namely S).
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Measurability With Respect to a σ-Ring

The concept of measurability for a function depends on the σ-ring S .

So we may say that a function is measurable with respect to S , or,
more concisely, that it is measurable (S).

Suppose X is the real line, and S and S are the class of Borel sets
and the class of Lebesgue measurable sets, respectively.

A Borel measurable function is a function measurable with respect
to S .
A Lebesgue measurable function is a function measurable with
respect to S .

It is important to emphasize also that the concept of measurability for
functions does not depend on the numerical values of a prescribed
measure µ, but merely on the prescribed σ-ring S .
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Measurability for Extended Real Functions

We shall need the concept of measurability for extended real functions
also.

We make the convention that the one-point sets {∞} and {−∞} of
the extended real line are to be regarded as Borel sets.

Then the definition given before for real valued functions is repeated:

A possibly infinite valued function f is measurable, if, for every Borel
set M of real numbers, each of the three sets f −1({∞}), f −1({−∞})
and N(f ) ∩ f −1(M) is measurable.

For the extended concept of Borel set, it is no longer true that the
class of Borel sets is the σ-ring generated by semi-closed intervals.
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Characterization of Measurability of Real Functions

Theorem

A real function f on a measurable space (X ,S) is measurable if and only
if, for every real number c , the set N(f ) ∩ {x : f (x) < c} is measurable.

If M = {t : t < c}, then M is Borel and f −1(M) = {x : f (x) < c}.

Therefore, the stated condition is necessary.

Suppose next that the condition is satisfied. If c1 and c2 are real
numbers, c1 ≤ c2, then {x : f (x) < c2} − {x : f (x) < c1} =
{x : c1 ≤ f (x) < c2}. I.e., if M is any semiclosed interval, then
N(f ) ∩ f −1(M) is the difference of two measurable sets and is
therefore measurable. Let E be the class of all those subsets M of the
extended real line for which N(f ) ∩ f −1(M) is measurable. E is a
σ-ring and it contains all semiclosed intervals. Therefore, it contains
also all Borel sets.
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Subsection 3

Combinations of Measurable Functions
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Measurable Functions Combinations of Measurable Functions

Measurability of Some Intersections

Theorem

If f and g are extended real valued measurable functions on a measurable
space (X ,S), and if c is any real number, then each of the three sets

A = {x : f (x) < g(x) + c};

B = {x : f (x) ≤ g(x) + c};

C = {x : f (x) = g(x) + c}

has a measurable intersection with every measurable set.

Let M be the set of rational numbers on the line. Note that

A =
⋃

r∈M

({x : f (x) < r} ∩ {x : r − c < g(x)}).

It follows that A has the desired property. The conclusions for B and
C are consequences, respectively, of the relations

B = X − {x : g(x) < f (x) − c} and C = B − A.
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Measurable Functions Combinations of Measurable Functions

Measurability of Composites

Theorem

If φ is an extended real valued Borel measurable function on the extended
real line such that φ(0) = 0, and if f is an extended real valued
measurable function on a measurable space X , then the function f̃ ,
defined by f̃ (x) = φ(f (x)), is a measurable function on X .

It is convenient to use here the definition of measurability.

If M is any Borel set on the extended real line, then

N(f̃ ) ∩ f̃ −1(M) = {x : φ(f (x)) ∈ M − {0}}
= {x : f (x) ∈ φ−1(M − {0})}.

Since φ(0) = 0, we have φ−1(M − {0}) = φ−1(M − {0}) − {0}.

Since φ is Borel measurable, φ−1(M − {0}) is a Borel set.

So the measurability of N(f̃ ) ∩ f̃ −1(M) = N(f )∩ f −1(φ−1(M − {0}))
follows from the measurability of f .
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Measurability of Composites: A Consequence

For any fixed real number α,

t 7→ |t|α and t 7→ αt

are Borel measurable.

It follows that

if f is measurable, then so are |f |α and αf .
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Sums and Products of Measurable Functions

Theorem

If f and g are extended real valued measurable functions on a measurable
space X , then so also are f + g and fg .

We restrict our attention to finite valued functions.

Since, if f and g are finite and if c is a real number, then

{x : f (x) + g(x) < c} = {x : f (x) < c − g(x)},

the measurability of f + g follows from the first theorem (with −g in
place of g).

The measurability of fg is a consequence of the identity.

fg =
1

4

[

(f + g)2 − (f − g)2
]

.
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Positive and Negative Parts of a Function

Since if f and g are finite we have

f ∪ g =
1

2
(f + g + |f − g |) and f ∩ g =

1

2
(f + g − |f − g |),

the second and third theorems show that the measurability of f and g

implies that of f ∪ g and f ∩ g .

If for every extended real valued function f we write

f + = f ∪ 0 and f − = −(f ∩ 0),

then
f = f + − f − and |f | = f + + f −.

The functions f + and f − are called the positive part and the
negative part of f , respectively.

The positive and negative parts of a measurable function are both
measurable and, conversely, a function with measurable positive and
negative parts is itself measurable.
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Subsection 4

Sequences of Measurable Functions
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Measurable Functions Sequences of Measurable Functions

Measurability of Suprema and Infima

Theorem

If {fn} is a sequence of extended real valued, measurable functions on a
measurable space X , then each of the four functions h, g , f ∗ and f∗,
defined by

h(x) = sup {fn(x) : n = 1, 2, . . .},
g(x) = inf {fn(x) : n = 1, 2, . . .},
f ∗(x) = lim supn fn(x),
f∗(x) = lim infn fn(x),

is measurable.

We can reduce the general case to that of finite valued functions.
The equation {x : g(x) < c} =

⋃∞

n=1{x : fn(x) < c} implies the
measurability of g .
For h, note that h(x) = − inf {−fn(x) : n = 1, 2, . . .}.
The measurability of f ∗ and f∗ is a consequence of the relations
f ∗(x) = infn≥1 supm≥n fm(x) and f∗(x) = supn≥1 infm≥n fm(x).
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Limit of a Sequence of Measurable Functions

The theorem implies that the set of points of convergence of a
sequence {fn} of measurable functions, i.e., the set

{x : lim sup
n

fn(x) = lim inf
n

fn(x)},

has a measurable intersection with every measurable set.

Thus, the function f , defined by

f (x) = lim
n

fn(x)

at every x for which the limit exists, is a measurable function.
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Simple Functions

A function f , defined on a measurable space X , is called simple if
there is a finite, disjoint class {E1, . . . ,En} of measurable sets and a
finite set {α1, . . . , αn} of real numbers such that

f (x) =

{

αi , if x ∈ Ei , i = 1, 2, . . .
0, if x 6∈ E1 ∪ · · · ∪ En

In other words a simple function takes on only a finite number of
values different from zero, each on a measurable set.

Example: The characteristic function χE of a measurable set E ,

χE =

{

1, if x ∈ E

0, if x 6∈ E
,

is a simple function.
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Elementary Properties of Simple Functions

A simple function

f (x) =

{

αi , if x ∈ Ei , i = 1, 2, . . .
0, if x 6∈ E1 ∪ · · · ∪ En

is always measurable.

In fact we have

f (x) =

n
∑

i=1

αiχEi
(x).

The product of two simple functions, and any finite linear
combination of simple functions, are again simple functions.
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Measurable Functions as Limits of Simple Functions

Theorem

Every extended real valued measurable function f is the limit of a
sequence {fn} of simple functions. If f is non negative, then each fn may
be taken non negative and the sequence {fn} may be assumed increasing.

Suppose first that f ≥ 0. For every n = 1, 2, . . ., and for every x in X ,
we write

fn(x) =

{

i−1
2n , if i−1

2n ≤ f (x) < i
2n , i = 1, . . . , 2nn

n, if f (x) ≥ n

Clearly, fn is a non negative simple function and the sequence {fn} is
increasing. If f (x) < ∞, then, for some n, 0 ≤ f (x) − fn(x) ≤

1
2n . If

f (x) = ∞, then fn(x) = n, for every n. This proves the second half of
the theorem.
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The General Case

For f arbitrary, recall that

f = f + − f −,

where f + ≥ 0 and f − ≥ 0.

Apply the result for positive functions to obtain increasing sequences
of simple functions {f +n } and {f −n }, such that

lim
n

f +n = f + and lim
n

f −n = f −.

Then, since the difference of two simple functions is a simple
function, {f +n − f −n } is a sequence of simple functions, such that

f = lim
n

(f +n − f −n ).
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Subsection 5

Pointwise Convergence
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Almost Everywhere

We developed the theory of measurable functions as far as it is
convenient to do so without mentioning measure.

We assume, next, that the space X is a measure space (X ,S , µ).

We say that a proposition is true for almost every point, or that it
is true almost everywhere, in a measure space if it is true for every
point, with the exception of at most a set of points which form a
measurable set of measure zero.

The abbreviation a.e. means “almost everywhere”.

Example: A function is constant a.e. means that there exists a real
number c , such that {x : f (x) 6= c} is a set of measure zero.
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Essential Boundedness

A function f is called essentially bounded if it is bounded a.e.,

i.e., if there exists a positive, finite constant c , such that

{x : |f (x)| > c}

is a set of measure zero.

The infimum of the values of c for which this statement is true is
called the essential supremum of |f |, abbreviated to ess.sup|f |.
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Convergence a.e.

Let {fn} be a sequence of extended real valued functions which
converges a.e. on the measure space to a limit function f .

Thus, there exists a set E0 of measure zero (which may be empty),
such that, if x 6∈ E0 and ǫ > 0, then an integer n0 = n0(x , ǫ) can be
found with the property that, for all n ≥ n0,

fn(x) < −1
ǫ
, if f (x) = −∞,

|fn(x)− f (x)| < ǫ, if −∞ < f (x) < ∞,

fn(x) >
1
ǫ
, if f (x) = ∞.
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Fundamental a.e. Sequences

We say that a sequence {fn} of real valued functions is fundamental

a.e. if there exists a set E0 of measure zero such that, if x 6∈ E0 and
ǫ > 0, then there exists an integer n0 = n0(x , ǫ), such that

n ≥ n0 and m ≥ n0 imply |fn(x)− fm(x)| < ǫ.

In the theory of real sequences one also distinguishes between:

a sequence {an} of extended reals converging to an extended real a;
a sequence {an} of finite real numbers which is a fundamental
sequence.
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Convergence and Fundamental Sequences

It is clear that if a sequence converges to a finite valued limit function
a.e., then it is fundamental a.e..

Conversely, if a sequence is fundamental a.e., there always exists a
finite valued limit function to which it converges a.e..

If, moreover, the sequence converges a.e. to f and also converges a.e.
to g , then f (x) = g(x) a.e., i.e. the limit function is uniquely
determined to within a set of measure zero.

If we define a new kind of convergence of a sequence {fn} to a limit
f , by specifying the sense in which fn is to be near to f for large n,
then we shall use without any further explanation the notion of a
sequence which is fundamental in this sense of convergence.

The meaning is that, for large n and m, the differences fn − fm are to
be near to 0 in the specified sense of nearness.
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Uniform Convergence

The sequence {fn} converges to f uniformly a.e. if there exists a
set E0 of measure zero, such that, for every ǫ > 0, there exists an
integer n0 = n0(ǫ), such that

n ≥ n0 and x 6∈ E0 imply |fn(x) − f (x)| < ǫ.

In other words, a sequence converges uniformly to f a.e. if it
converges uniformly to f (in the ordinary sense of that phrase) on the
set X − E0.

It is true that a sequence converges uniformly a.e to some limit
function if and only if it is uniformly fundamental a.e..
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Egoroff’s Theorem

Theorem

If E is a measurable set of finite measure, and if {fn} is a sequence of a.e.
finite valued measurable functions which converges a.e. on E to a finite
valued measurable function f , then, for every ǫ > 0, there exists a
measurable subset F of E such that µ(F ) < ǫ and such that the sequence
{fn} converges to f uniformly on E − F .

By omitting, if necessary, a set of measure zero from E , we may
assume that the sequence {fn} converges to f everywhere on E .

If Em
n =

⋂

∞

i=n{x : |fi (x)− f (x)| < 1
m
}, then Em

1 ⊆ Em
2 ⊆ · · ·.

Since {fn} converges to f on E , limn E
m
n ⊇ E , for every m = 1, 2, . . ..

Hence, limn µ(E − Em
n ) = 0. So, there exists a positive integer

n0 = n0(m), such that µ(E − Em
n0(m)) <

ǫ

2m .
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Egoroff’s Theorem (Cont’d)

Let

F =
∞
⋃

m=1

(E − Em
n0(m)).

F is a measurable set;
F ⊆ E ;
µ(F ) = µ(

⋃∞

m=1(E − Em
n0(m))) ≤

∑∞

m=1 µ(E − Em
n0(m)) < ǫ.

We have E − F = E ∩
⋂

∞

m=1 E
m
n0(m).

So and for x in E − F , we have x ∈ Em
n .

It follows that, for n ≥ n0(m), |fn(x)− f (x)| < 1
m
.

Therefore, {fn} converges to f uniformly on E − F .
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Almost Uniform Convergence

Motivated by Egoroff’s theorem we introduce the concept of almost
uniform convergence.

A sequence {fn} of a.e. finite valued measurable functions will be said
to converge to the measurable function f almost uniformly if, for
every ǫ > 0, there exists a measurable set F , such that µ(F ) < ǫ and
such that the sequence {fn} converges to f uniformly on F ′.

In this language Egoroff’s theorem asserts that on a set of finite
measure convergence a.e. implies almost uniform convergence.
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Almost Uniform Convergence and Convergence a.e.

Theorem

If {fn} is a sequence of measurable functions which converges to f almost
uniformly, then {fn} converges to f a.e..

Let Fn be a measurable set such that µ(Fn) <
1
n
and such that the

sequence {fn} converges to f uniformly on F ′

n, n = 1, 2, . . ..

If F =
⋂

∞

n=1 Fn, then µ(F ) ≤ µ(Fn) <
1
n
, so that µ(F ) = 0.

Moreover, for x in F ′, {fn(x)} converges to f (x).

Almost uniform convergence and almost everywhere uniform
convergence are different concepts.

Perhaps, “nearly uniform convergence” should have been used instead
of almost uniform convergence.
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Subsection 6

Convergence in Measure

George Voutsadakis (LSSU) Measure Theory January 2023 43 / 50



Measurable Functions Convergence in Measure

Characterization of Convergence a.e.

Theorem

Suppose that f and fn, n = 1, 2, . . ., are real valued measurable functions
on a set E of finite measure, and write, for every ǫ > 0,

En(ǫ) = {x : |fn(x)− f (x)| ≥ ǫ}, n = 1, 2, . . . .

The sequence {fn} converges to f a.e. on E if and only if, for every
ǫ > 0, limn µ(E ∩

⋃

∞

m=n Em(ǫ)) = 0.

It follows from the definition of convergence that the sequence
{fn(x)} of real numbers fails to converge to the real number f (x) if
and only if, there is a positive number ǫ, such that x belongs to En(ǫ)
for an infinite number of values of n. In other words, if D is the set of
those points x at which {fn(x)} does not converge to f (x), then

D =
⋃

ǫ>0

lim sup
n

En(ǫ) =
∞
⋃

k=1

lim sup
n

En

(

1

k

)

.
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Measurable Functions Convergence in Measure

Characterization of Convergence a.e. (Cont’d)

if D is the set of those points x at which {fn(x)} does not converge
to f (x), then

D =
⋃

ǫ>0

lim sup
n

En(ǫ) =

∞
⋃

k=1

lim sup
n

En

(

1

k

)

.

Consequently, a necessary and sufficient condition that µ(E ∩D) = 0,
i.e., that the sequence {fn} converge to f a.e. on E , is that
µ(E ∩ lim supn En(ǫ)) = 0, for every ǫ > 0. The desired conclusion
follows from the relations

µ(E ∩ lim supn En(ǫ)) = µ(E ∩
⋂

∞

n=1

⋃

∞

m=n Em(ǫ))

= limn µ(E ∩
⋃

∞

m=n Em(ǫ)).
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Measurable Functions Convergence in Measure

Convergence in Measure

A sequence {fn} of a.e. finite valued, measurable functions
converges in measure to the measurable function f if

lim
n

µ({x : |fn(x)− f (x)| ≥ ǫ}) = 0, for every ǫ > 0.

We say that a sequence {fn} of a.e. finite valued, measurable
functions is fundamental in measure if, for every ǫ > 0,

µ({x : |fn(x) − fm(x)| ≥ ǫ})
n,m→∞

−→ 0.

It follows trivially from the preceding theorem that if a sequence of
finite valued measurable functions converges a.e. to a finite limit [or
is fundamental a.e.] on a set E of finite measure, then it converges in
measure [or is fundamental in measure] on E .

The following theorem is a slight strengthening of this assertion in
that it makes no assumptions of finiteness.
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Measurable Functions Convergence in Measure

Almost Uniform Convergence and Convergence in Measure

Theorem

Almost uniform convergence implies convergence in measure.

Suppose {fn} converges to f almost uniformly. Then, for any two
positive numbers ǫ and δ, there exists a measurable set F , such that:

µ(F ) < δ;
|fn(x)− f (x)| < ǫ, whenever x belongs to F ′ and n is sufficiently large.

Therefore, limn µ({x : |fn(x)− f (x)| ≥ ǫ}) = 0, for all ǫ > 0, and,
hence, {fn} converges to f in measure.
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Measurable Functions Convergence in Measure

Convergence and Fundamentality in Measure

Theorem

If {fn} converges in measure to f , then {fn} is fundamental in measure. If
also {fn} converges in measure to g , then f = g a.e..

The first assertion follows from

{x : |fn(x) − fm(x)| ≥ ǫ}
⊆ {x : |fn(x)− f (x)| ≥ ǫ

2} ∪ {x : |fm(x)− f (x)| ≥ ǫ

2}.

For the second assertion, we observe that, similarly,

{x : |f (x) − g(x)| ≥ ǫ}
⊆ {x : |fn(x)− f (x)| ≥ ǫ

2} ∪ {x : |fn(x)− g(x)| ≥ ǫ

2}.

Since, by proper choice of n, the measure of both sets on the right
can be made arbitrarily small, we have µ({x : |f (x)− g(x)| ≥ ǫ}) = 0,
for every ǫ > 0. This implies that f = g a.e..
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Measurable Functions Convergence in Measure

In Measure and Almost Uniform Fundamentality

Theorem

If {fn} is a sequence of measurable functions which is fundamental in
measure, then some subsequence {fnk} is almost uniformly fundamental.

For any positive integer k , we may find an integer n(k), such that, if
n ≥ n(k) and m ≥ n(k), then µ({x : |fn(x)− fm(x)| ≥

1
2k
}) < 1

2k
.

Write n1 = n(1), n2 = (n1 + 1) ∪ n(2), n3 = (n2 + 1) ∪ n(3), . . ..

Then n1 < n2 < n3 < · · ·. Thus, the sequence {fnk} is indeed an
infinite subsequence of {fn}. If Ek = {x : |fnk (x)− fnk+1

(x)| ≥ 1
2k
},

then, for all k ≤ i ≤ j and all x 6∈ Ek ∪ Ek+1 ∪ Ek+2 ∪ · · ·,

|fni (x)− fnj (x)| ≤
∞
∑

m=i

|fnm(x)− fnm+1(x)| <
1

2i−1
.

Hence, {fni} is uniformly fundamental on X − (Ek ∪ Ek+1 ∪ · · · ).

Finally, note that µ(Ek ∪ Ek+1 ∪ · · · ) ≤
∑

∞

m=k µ(Em) <
1

2k−1 .
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Measurable Functions Convergence in Measure

Fundamentality in Measure and Convergence in Measure

Theorem

If {fn} is a sequence of measurable functions which is fundamental in
measure, then there exists a measurable function f , such that {fn}
converges in measure to f .

By the preceding theorem, we can find a subsequence {fnk} which is
almost uniformly fundamental and, therefore, fundamental a.e.. We
write f (x) = limk fnk (x), for every x for which the limit exists. We
observe that, for every ǫ > 0,

{x : |fn(x)− f (x)| ≥ ǫ}
⊆ {x : |fn(x)− fnk (x)| ≥

ǫ

2} ∪ {x : |fnk (x) − f (x)| ≥ ǫ

2}.

The measure of the first term on the right is by hypothesis arbitrarily
small if n and nk are sufficiently large.
The measure of the second term also approaches 0 (as k → ∞), since
almost uniform convergence implies convergence in measure.
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