Introduction to Measure Theory

George Voutsadakis¹

¹Mathematics and Computer Science Lake Superior State University

LSSU Math 422

George Voutsadakis (LSSU)

Integration

- Integrable Simple Functions
- Sequences of Integrable Simple Functions
- Integrable Functions
- Sequences of Integrable Functions
- Properties of Integrals

Subsection 1

Integrable Simple Functions

Integrable Simple Functions

A simple function f = Σⁿ_{i=1} α_iχ_{E_i} on a measure space (X, S, μ) is integrable if μ(E_i) < ∞, for every index i for which α_i ≠ 0.

• The integral of f, in symbols $\int f(x)d\mu(x)$ or $\int fd\mu$ is defined by

$$\int f d\mu = \sum_{i=1}^{\infty} \alpha_i \mu(E_i).$$

• It follows easily from the additivity of μ that if f is also equal to $\sum_{j=1}^{m} \beta_j \chi_{F_j}$, then $\int f d\mu = \sum_{j=1}^{m} \beta_j \mu(F_j)$, i.e., that the value of the integral is independent of the representation of f and is, therefore, unambiguously defined.

Observations

We observe that:

- the absolute value of an integrable simple function,
- a finite, constant multiple of an integrable simple function,
- the sum of two integrable simple functions

are integrable simple functions.

Indeed, notice that, if $f = \sum_{i=1}^{n} \alpha_i \chi_{E_i}$, $g = \sum_{j=1}^{m} \beta_j \chi_{F_j}$,

$$|f| = \sum_{i=1}^{n} |\alpha_i| \chi_{E_i};$$

$$\alpha f = \sum_{i=1}^{n} (\alpha \alpha_i) \chi_{E_i};$$

$$f + g = \sum_{i=1}^{n} \sum_{j=1}^{m} (\alpha_i + \beta_j) \chi_{E_i \cap F_j}.$$

Integral of a Simple Function Over a Measurable Set

- If E is a measurable set and f is an integrable simple function, then the function $\chi_E f$ is an integrable simple function also.
 - If $f = \sum_{i=1}^{n} \alpha_i \chi_{E_i}$, then $\chi_E f = \sum_{i=1}^{n} \alpha_i \chi_{E \cap E_i}$.
- We define the **integral of** f **over** E by

$$\int_{E} \mathbf{f} d\mu = \int \chi_{E} \mathbf{f} d\mu.$$

So, using the notation above,

$$\int_{E} f d\mu = \int \chi_{E} f d\mu$$

=
$$\int \sum_{i=1}^{n} \alpha_{i} \chi_{E \cap E_{i}} d\mu$$

=
$$\sum_{i=1}^{n} \alpha_{i} \mu(E \cap E_{i}).$$

Example

• The simplest example of an integrable simple function is the characteristic function of a measurable set *E* of finite measure.

$$\int_{E} d\mu = \int \chi_{E} d\mu = \mu(E).$$

- In this subsection, we use the word "function" as an abbreviation for "simple function."
- All our definitions and theorems will make sense not only for simple functions but also for the wider class of functions we shall consider in later subsections.

Linearity

Theorem

If f and g are integrable functions and α and β are real numbers, then

$$\int (lpha f + eta g) d\mu = lpha \int f d\mu + eta \int g d\mu.$$

• Suppose
$$f = \sum_{i=1}^{n} \alpha_i \chi_{E_i}$$
 and $g = \sum_{j=1}^{m} \beta_j \chi_{F_j}$.
Then, we have

$$\int (\alpha f + \beta g) d\mu = \int \sum_{i=1}^{n} \sum_{j=1}^{m} (\alpha \alpha_i + \beta \beta_j) \chi_{E_i \cap F_j} d\mu$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{m} (\alpha \alpha_i + \beta \beta_j) \mu(E_i \cap F_j)$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{m} \alpha \alpha_i \mu(E_i \cap F_j) + \sum_{i=1}^{n} \sum_{j=1}^{m} \beta \beta_j \mu(E_i \cap F_j)$$

$$= \alpha \sum_{i=1}^{n} \alpha_i \sum_{j=1}^{m} \mu(E_i \cap F_j) + \beta \sum_{j=1}^{m} \beta_j \sum_{i=1}^{n} \mu(E_i \cap F_j)$$

$$= \alpha \sum_{i=1}^{n} \alpha_i \mu(E_i) + \beta \sum_{j=1}^{m} \beta_j \mu(F_j)$$

$$= \alpha \int f d\mu + \beta \int g d\mu.$$

Positivity

Theorem

If an integrable function f is non negative a.e., then $\int f d\mu \ge 0$.

• If f is a simple function, such that $f \ge 0$ a.e., then

$$f = \sum_{i=1}^{n} \alpha_i \chi_{E_i} + \sum_{j=1}^{m} \beta_j \chi_{F_j},$$

where $\alpha_i \ge 0$, $\beta_j < 0$ and $\mu(F_j) = 0$, j = 1, ..., m. Therefore, we get

$$\int f d\mu = \sum_{i=1}^{n} \alpha_i \mu(E_i) + \sum_{j=1}^{m} \beta_j \mu(F_j)$$

=
$$\sum_{i=1}^{n} \alpha_i \mu(E_i) + 0$$

$$\geq 0.$$

Comparison

Theorem

If f and g are integrable functions such that $f \ge g$ a.e., then

$$\int$$
 fd $\mu \geq \int$ gd μ .

• We get

$$f \ge g$$
 a.e iff $f - g \ge 0$ a.e.
implies $\int (f - g) d\mu \ge 0$
iff $\int f d\mu - \int g d\mu \ge 0$
iff $\int f d\mu \ge \int g d\mu$.

Absolute Values

Theorem

If f and g are integrable functions, then

$$\int |f+g|d\mu \leq \int |f|d\mu + \int |g|d\mu.$$

• We have $\int |f+g|d\mu \leq \int (|f|+|g|)d\mu = \int |f|d\mu + \int |g|d\mu.$

Theorem

If f is an integrable function, then

$$\int f d\mu \bigg| \leq \int |f| d\mu.$$

• Again, $\int f d\mu \leq \int |f| d\mu$ and $\int (-f) d\mu \leq \int |f| d\mu$. Combining, we get $-\int |f| d\mu \leq \int f d\mu \leq \int |f| d\mu$, i.e., $|\int f d\mu| \leq \int |f| d\mu$.

Boundedness

Theorem

If f is an integrable function, α and β are real numbers, and E is a measurable set, such that, for x in E, $\alpha \leq f(x) \leq \beta$, then $\alpha \mu(E) \leq \int_{\Gamma} f d\mu \leq \beta \mu(E).$

• The assumption is equivalent to the relation

$$\alpha \chi_{E} \leq \chi_{E} f \leq \beta \chi_{E}.$$

So the result follows from the third theorem if $\mu(E) < \infty$.

The case in which $\mu(E) = \infty$ is easily treated by direct application of the definition of integrability.

Indefinite Integral

The indefinite integral of an integrable function *f* is the set function *ν*, defined, for every measurable set *E*, by

$$u(E) = \int_E f d\mu.$$

Theorem

If an integrable function f is non negative a.e., then its indefinite integral is monotone.

• If *E* and *F* are measurable sets, such that $E \subseteq F$, then $\chi_E f \leq \chi_F f$ a.e.. The desired result follows from our third theorem.

Absolute Continuity

A finite valued set function ν, defined on the class of all measurable sets of a measure space (X, S, μ), is absolutely continuous if, for every positive number ε, there exists a positive number δ, such that, for every measurable set E,

$$\mu(E) < \delta$$
 implies $|\nu(E)| < \epsilon$.

Theorem

The indefinite integral of an integrable function is absolutely continuous.

If c is any positive number greater than all the values of |f|, then, for every measurable set E, we have | ∫_E fdμ| ≤ cμ(E).
So, given ε > 0, take δ = ^ε/_c.
Then, μ(E) < ^ε/_c implies |ν(E)| = | ∫_E fdμ| < c^ε/_c = ε.

Countable Additivity of Indefinite Integral

Lemma

The indefinite integral of a characteristic function of a measurable set E is countably additive.

• Let $\{E_i\}_{i=1}^{\infty}$ be a collection of disjoint measurable sets. Then, we have

$$\begin{aligned}
\nu(\bigcup_i E_i) &= \int_{\bigcup_i E_i} \chi_E d\mu = \mu(E \cap \bigcup_i E_i) \\
&= \mu(\bigcup_i (E \cap E_i)) = \sum_i \mu(E \cap E_i) \\
&= \sum_i \int_{E_i} \chi_E d\mu = \sum_i \nu(E_i).
\end{aligned}$$

Countable Additivity of Indefinite Integral (Cont'd)

Theorem

The indefinite integral of an integrable function is countably additive.

Let f = ∑_{i=1}ⁿ α_iχ_{E_i} be an integrable function, ν its indefinite integral and {F_j}_{j=1}[∞] a collection of disjoint measurable sets.
 Then, taking into account the Lemma, we have

$$\begin{split} \nu(\bigcup_{j} F_{j}) &= \int_{\bigcup_{j} F_{j}} \left(\sum_{i=1}^{n} \alpha_{i} \chi_{E_{i}} \right) d\mu = \sum_{i} \alpha_{i} \int_{\bigcup_{j} F_{j}} \chi_{E_{i}} d\mu \\ &= \sum_{i} \alpha_{i} \sum_{j} \int_{F_{j}} \chi_{E_{i}} d\mu = \sum_{j} \sum_{i} \alpha_{i} \int_{F_{j}} \chi_{E_{i}} d\mu \\ &= \sum_{j} \int_{F_{j}} \left(\sum_{i} \alpha_{i} \chi_{E_{i}} \right) d\mu = \sum_{j} \int_{F_{j}} f d\mu \\ &= \sum_{j} \nu(F_{j}). \end{split}$$

Distance

• If f and g are integrable functions, we define the **distance** $\rho(f,g)$ between them by the equation

$$\rho(f,g) = \int |f-g| d\mu.$$

The function ρ deserves the name "distance" in every respect but one:

• It is true and trivial that:

• It is not the case that, if $\rho(f,g) = 0$, then f = g.

The distance between two integrable functions can, for instance, vanish if they are equal almost everywhere, but not necessarily everywhere.

Subsection 2

Sequences of Integrable Simple Functions

Mean Fundamental Sequences

- We continue working with a fixed measure space (X, \mathbf{S}, μ) and abbreviating "simple function" to "function".
- A sequence {*f_n*} of integrable functions is **fundamental in the mean**, or **mean fundamental**, if

$$\rho(f_n, f_m) \stackrel{n, m \to \infty}{\longrightarrow} 0.$$

Theorem

A mean fundamental sequence $\{f_n\}$ of integrable functions is fundamental in measure.

• For fixed
$$\epsilon > 0$$
, set $E_{nm} = \{x : |f_n(x) - f_m(x)| \ge \epsilon\}$. Then

$$\rho(f_n, f_m) = \int |f_n - f_m| d\mu \geq \int_{E_{nm}} |f_n - f_m| d\mu \geq \epsilon \mu(E_{nm}),$$

so that $\mu(E_{mn}) \to 0$ as $n, m \to \infty$.

The Limit of Indefinite Integrals

Theorem

If $\{f_n\}$ is a mean fundamental sequence of integrable functions, and if the indefinite integral of f_n is ν_n , n = 1, 2, ..., then $\nu(E) = \lim_n \nu_n(E)$ exists for every measurable set E, and the set function ν is finite valued and countably additive.

Since |ν_n(E) - ν_m(E)| ≤ ∫ |f_n - f_m|dμ^{n,m→∞} 0, the existence, finiteness, and uniformity of the limit are clear. It follows, by finite additivity of limits, that ν is finitely additive. If {E_n} is a disjoint sequence of measurable sets whose union is E, then, for positive n, k,

 $\begin{aligned} |\nu(E) - \sum_{i=1}^{k} \nu(E_i)| &\leq |\nu(E) - \nu_n(E)| \\ &+ |\nu_n(E) - \sum_{i=1}^{k} \nu_n(E_i)| + |\nu_n(\bigcup_{i=1}^{k} E_i) - \nu(\bigcup_{i=1}^{k} E_i)|. \end{aligned}$

The first and third terms of the right may be made arbitrarily small by choosing *n* sufficiently large. For fixed *n*, the middle term may be made arbitrarily small by choosing *k* sufficiently large. This proves that $\nu(E) = \lim_{k} \sum_{i=1}^{k} \nu(E_i) = \sum_{i=1}^{\infty} \nu(E_i)$.

Uniform Absolute Continuity

If {ν_n} is a sequence of finite valued set functions defined for all measurable sets, we say that the terms of the sequence are **uniformly** absolutely continuous if, for every positive number *ε*, there exists a positive number *δ*, such that, for every measurable set *E* and for every positive integer *n*,

 $\mu(E) < \delta$ implies $|\nu_n(E)| < \epsilon$.

Mean Fundamentality and Uniform Absolute Continuity

Theorem

If $\{f_n\}$ is a mean fundamental sequence of integrable functions, and if the indefinite integral of f_n is ν_n , n = 1, 2, ..., then the set functions ν_n are uniformly absolutely continuous.

• Let $\epsilon > 0$.

Since $\{f_n\}$ is mean fundamental, there exists a positive integer n_0 , such that, for all $n, m > n_0$, $\int |f_n - f_m| d\mu < \frac{\epsilon}{2}$. Moreover, there exists $\delta > 0$, such that, for all $n = 1, \ldots, n_0$ and all measurable E, $\mu(E) < \delta$ implies $\int_E |f_n| d\mu < \frac{\epsilon}{2}$. Now, suppose E is measurable, such that $\mu(E) < \delta$. • If $n \le n_0$, then $|\nu_n(E)| \le \int_E |f_n| d\mu < \frac{\epsilon}{2} < \epsilon$;

• If $n > n_0$, then

$$|\nu_n(E)| \leq \int_E |f_n| d\mu \leq \int_E |f_n - f_{n_0}| d\mu + \int_E |f_{n_0}| d\mu < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

Integrals of Co-convergent Sequences of Simple Functions

Theorem

If $\{f_n\}$ and $\{g_n\}$ are mean fundamental sequences of integrable simple functions which converge in measure to the same measurable function f, if the indefinite integrals of f_n and g_n are ν_n and λ_n , respectively, and if, for every measurable set E,

$$\nu(E) = \lim_{n} \nu_n(E)$$
 and $\lambda(E) = \lim_{n} \lambda_n(E)$,

then the set functions ν and λ are identical.

• Since, for every $\epsilon > 0$,

$$E_n = \{x : |f_n(x) - g_n(x)| \ge \epsilon\}$$

$$\subseteq \{x : |f_n(x) - f(x)| \ge \frac{\epsilon}{2}\} \cup \{x : |f(x) - g_n(x)| \ge \frac{\epsilon}{2}\},\$$

it follows that $\lim_{n} \mu(E_n) = 0$.

Proof (Cont'd)

For E measurable of finite measure, consider

$$\int_{E} |f_n - g_n| d\mu \leq \int_{E - E_n} |f_n - g_n| d\mu + \int_{E \cap E_n} |f_n| d\mu + \int_{E \cap E_n} |g_n| d\mu.$$

- The first term on the right is dominated by $\epsilon \mu(E)$.
- The last two terms can be made arbitrarily small by choosing n sufficiently large, by uniform absolute continuity.

So $\lim_{n} |\nu_n(E) - \lambda_n(E)| = 0$, and, hence, $\nu(E) = \lambda(E)$. Since ν and λ are both countably additive, it follows that $\nu(E) = \lambda(E)$, for every measurable set E of σ -finite measure. Since the f_n and g_n are simple functions, each of them is defined in terms of a finite class of measurable sets of finite measure. If E_0 is the union of all sets in all these finite classes, then E_0 is a measurable set of σ -finite measure. We have, for every measurable set E, $\nu_n(E - E_0) = \lambda_n(E - E_0) = 0$, whence $\nu(E - E_0) = \lambda(E - E_0) = 0$. This implies that $\nu(E) = \nu(E \cap E_0)$ and $\lambda(E) = \lambda(E \cap E_0)$.

Subsection 3

Integrable Functions

Integrable Functions

- An a.e. finite valued, measurable function f on a measure space (X, \mathbf{S}, μ) is **integrable** if there exists a mean fundamental sequence $\{f_n\}$ of integrable simple functions which converges in measure to f.
- The **integral** of f, in symbols $\int f(x)d\mu(x)$ or $\int fd\mu$, is defined by

$$\int f d\mu = \lim_n \int f_n d\mu.$$

- It follows by a preceding result, that the value of the integral of f is uniquely determined by any particular such sequence.
- Moreover, the value of the integral is always finite.

Absolute Value of an Integrable Function

Proposition

The absolute value of an integrable function f is integrable.

- Since f is integrable, there exists a mean fundamental sequence {f_n} of integrable simple functions, such that f_n → f in measure. Consider the sequence {|f_n|}.
 - It consists of integrable simple functions.
 - It is a mean fundamental sequence, since

$$\int ||f_n| - |f_m|| d\mu \leq \int |f_n - f_m| d\mu \xrightarrow{m, n \to \infty} 0.$$

• It converges to |f| in measure, since

$$\mu(\{x: ||f_n(x)| - |f(x)|| \ge \epsilon\}) \le \mu(\{x: |f_n(x) - f(x)| \ge \epsilon\}) \xrightarrow{n \to \infty} 0.$$

Finite Constant Multiple of an Integrable Function

Proposition

A finite constant multiple of an integrable function f is integrable.

- Let f be integrable and α a finite constant. Since f is integrable, there exists a mean fundamental sequence $\{f_n\}$ of integrable simple functions, such that $f_n \to f$ in measure. Consider the sequence $\{\alpha f_n\}$.
 - It consists of integrable simple functions.
 - It is a mean fundamental sequence, since

$$\int |\alpha f_n - \alpha f_m| d\mu = |\alpha| \int |f_n - f_m| d\mu \xrightarrow{m, n \to \infty} 0.$$

• It converges to αf in measure, since

$$\mu(\{x: |\alpha f_n(x) - \alpha f(x)| \ge \epsilon\}) = \mu\left(\left\{x: |f_n(x) - f(x)| \ge \frac{\epsilon}{|\alpha|}\right\}\right) \xrightarrow{n \to \infty} 0.$$

Sum of Integrable Functions

Proposition

The sum of two integrable functions f and g is integrable.

- Since f and g are integrable, there exist mean fundamental sequences $\{f_n\}$ and $\{g_n\}$ of integrable simple functions, such that $f_n \to f$ and $g_n \to g$ in measure.
 - Consider the sequence $\{f_n + g_n\}$.
 - It consists of integrable simple functions.
 - It is a mean fundamental sequence, since

$$\int |(f_n+g_n)-(f_m+g_m)|d\mu \leq \int |f_n-f_m|d\mu + \int |g_n-g_m|d\mu \xrightarrow{m,n\to\infty} 0.$$

• It converges to f + g in measure, since $\{x : |(f_n(x) + g_n(x)) - (f(x) + g(x))| \ge \epsilon\} \subseteq \{x : |f_n(x) - f(x)| \ge \frac{\epsilon}{2}\} \cup \{x : |g_n(x) - g(x)| \ge \frac{\epsilon}{2}\}$, and, therefore

 $\begin{array}{l} \mu(\{x: |(f_n(x)+g_n(x))-(f(x)+g(x))| \geq \epsilon\}) \leq \\ \mu(\{x: |f_n(x)-f(x)| \geq \frac{\epsilon}{2}\}) + \mu(\{x: |g_n(x)-g(x)| \geq \frac{\epsilon}{2}\}) \xrightarrow{n \to \infty} 0. \end{array}$

Positive and Negative Parts of Integrable Functions

Proposition

If f is an integrable function, then f^+ and f^- are integrable.

• The results follows by the preceding results and the relations

$$f^+ = \frac{1}{2}(|f| + f)$$
 and $f^- = \frac{1}{2}(|f| - f)$.

Integral over a Set

- If *E* is a measurable set and if $\{f_n\}$ is a mean fundamental sequence of integrable simple functions converging in measure to the integrable function *f*, then it is easy to see that the sequence $\{\chi_E f_n\}$ is mean fundamental and converges in measure to $\chi_E f$.
- We define the **integral of** *f* **over** *E* by

$$\int_{E} f d\mu = \int \chi_{E} f d\mu.$$

- The theorems of the preceding subsections were stated for general integrable functions but were proved for integrable simple functions only.
 - Next, we complete their proofs.

Linearity

Theorem

If f and g are integrable functions and α and β are real numbers, then

$$\int (lpha f + eta g) d\mu = lpha \int f d\mu + eta \int g d\mu.$$

Let {f_n} and {g_n} be mean fundamental sequences of integrable simple functions, such that f_n → f and g_n → g in measure.
 Then, we have

$$\int (\alpha f + \beta g) d\mu = \lim_{n \to \infty} \int (\alpha f_n + \beta g_n) d\mu = \alpha \lim_{n \to \infty} \int f_n d\mu + \beta \lim_{n \to \infty} \int g_n d\mu = \alpha \int f d\mu + \beta \int g d\mu.$$

Positivity

Theorem

If an integrable function f is non negative a.e., then $\int f d\mu \ge 0$.

Let {f_n} be a mean fundamental sequence of integrable simple functions, such that f_n → f in measure.
 By switching to {|f_n|}, if necessary, we may assume, without loss of generality, that f_n ≥ 0, for all n.

Then $\int f_n d\mu \ge 0$, for all *n*, and therefore,

$$\int f d\mu = \lim_n \int f_n d\mu \ge 0.$$

Comparison

Theorem

If f and g are integrable functions such that $f \ge g$ a.e., then

$$\int$$
 fd $\mu \geq \int$ gd μ .

• We get

$$f \ge g$$
 a.e iff $f - g \ge 0$ a.e.
implies $\int (f - g) d\mu \ge 0$
iff $\int f d\mu - \int g d\mu \ge 0$
iff $\int f d\mu \ge \int g d\mu$.

Absolute Values

Theorem

If f and g are integrable functions, then

$$\int |f+g|d\mu \leq \int |f|d\mu + \int |g|d\mu.$$

• We have $\int |f+g|d\mu \leq \int (|f|+|g|)d\mu = \int |f|d\mu + \int |g|d\mu$.

Theorem

If f is an integrable function, then

$$\int f d\mu \bigg| \leq \int |f| d\mu.$$

• Again, $\int f d\mu \leq \int |f| d\mu$ and $\int (-f) d\mu \leq \int |f| d\mu$. Combining, we get $-\int |f| d\mu \leq \int f d\mu \leq \int |f| d\mu$, i.e., $|\int f d\mu| \leq \int |f| d\mu$.

Boundedness

Theorem

If f is an integrable function, α and β are real numbers, and E is a measurable set, such that, for x in E, $\alpha \leq f(x) \leq \beta$, then $\alpha \mu(E) \leq \int_{\Gamma} f d\mu \leq \beta \mu(E).$

• The assumption is equivalent to the relation

$$\alpha \chi_{E} \leq \chi_{E} f \leq \beta \chi_{E}.$$

So the result follows from the Comparison Theorem if $\mu(E) < \infty$. The case in which $\mu(E) = \infty$ is easily treated by direct application of the definition of integrability.

Indefinite Integral

The indefinite integral of an integrable function *f* is the set function *ν*, defined, for every measurable set *E*, by

$$u(E) = \int_E f d\mu.$$

Theorem

If an integrable function f is non negative a.e., then its indefinite integral is monotone.

• If *E* and *F* are measurable sets, such that $E \subseteq F$, then $\chi_E f \leq \chi_F f$ a.e.. The desired result follows from the Comparison Theorem.

Absolute Continuity

Theorem

The indefinite integral of an integrable function f is absolutely continuous.

• Let {*f_n*} be a mean fundamental sequence of integrable simple functions which converges in measure to *f*.

We have, for every measurable set E,

$$\left|\int_{E} f d\mu\right| \leq \left|\int_{E} f_{n} d\mu\right| + \left|\int_{E} f_{n} d\mu - \int_{E} f d\mu\right|.$$

- The f_n are simple functions. So, by uniform absolute continuity, the first term on the right becomes arbitrarily small if the measure of E is taken sufficiently small.
- The second term on the right approaches 0 as $n \to \infty$, by the definition of $\int_E f d\mu$.

Countable Additivity of Indefinite Integral

Theorem

The indefinite integral of an integrable function is countably additive.

• Let {*f_n*} be a mean fundamental sequence of integrable simple functions which converges in measure to *f*.

If ν_n is the indefinite integral of f_n , then, we know that $\nu(E) = \lim_n \nu_n(E)$ exists for every measurable E and ν is finite valued and countably additive.

So, for every disjoint sequence of measurable sets $\{E_i\}_{i=1}^{\infty}$,

$$\nu(\bigcup_{i=1}^{\infty} E_i) = \lim_{n \neq \nu} \nu_n(\lim_k \bigcup_{i=1}^k E_i) = \lim_{n,k} \nu_n(\bigcup_{i=1}^k E_i) \\ = \lim_{n,k} \sum_{i=1}^k \nu_n(E_i) = \lim_k \sum_{i=1}^k (\lim_n \nu_n(E_i)) \\ = \sum_{i=1}^{\infty} \nu(E_i).$$

Mean Fundamental Sequences

• A sequence {*f_n*} of integrable functions is **fundamental in the mean**, or **mean fundamental**, if

$$\rho(f_n, f_m) \stackrel{n, m \to \infty}{\longrightarrow} 0.$$

Theorem

A mean fundamental sequence $\{f_n\}$ of integrable functions is fundamental in measure.

• For fixed $\epsilon > 0$, set $E_{nm} = \{x : |f_n(x) - f_m(x)| \ge \epsilon\}$. Then

$$\rho(f_n, f_m) = \int |f_n - f_m| d\mu \geq \int_{E_{nm}} |f_n - f_m| d\mu \geq \epsilon \mu(E_{nm}),$$

so that $\mu(E_{mn}) \to 0$ as $n, m \to \infty$.

The Limit of Indefinite Integrals

Theorem

If $\{f_n\}$ is a mean fundamental sequence of integrable functions, and if the indefinite integral of f_n is ν_n , n = 1, 2, ..., then $\nu(E) = \lim_n \nu_n(E)$ exists for every measurable set E, and the set function ν is finite valued and countably additive.

Since |ν_n(E) - ν_m(E)| ≤ ∫ |f_n - f_m|dμ^{n,m→∞} 0, the existence, finiteness, and uniformity of the limit are clear. It follows, by finite additivity of limits, that ν is finitely additive. If {E_n} is a disjoint sequence of measurable sets whose union is E, then, for positive n, k,

 $\begin{aligned} |\nu(E) - \sum_{i=1}^{k} \nu(E_i)| &\leq |\nu(E) - \nu_n(E)| \\ &+ |\nu_n(E) - \sum_{i=1}^{k} \nu_n(E_i)| + |\nu_n(\bigcup_{i=1}^{k} E_i) - \nu(\bigcup_{i=1}^{k} E_i)|. \end{aligned}$

The first and third terms of the right may be made arbitrarily small by choosing *n* sufficiently large. For fixed *n*, the middle term may be made arbitrarily small by choosing *k* sufficiently large. This proves that $\nu(E) = \lim_{k} \sum_{i=1}^{k} \nu(E_i) = \sum_{i=1}^{\infty} \nu(E_i)$.

Convergence in the Mean

• We shall say that a sequence $\{f_n\}$ of integrable functions **converges** in the mean, or mean converges, to an integrable function f if

$$\rho(f_n,f)=\int |f_n-f|d\mu \xrightarrow{n\to\infty} 0.$$

Theorem

If $\{f_n\}$ is a sequence of integrable functions which converges in the mean to f, then $\{f_n\}$ converges to f in measure.

• For any $\epsilon > 0$, set $E_n = \{x : |f_n(x) - f(x)| \ge \epsilon\}$. Then

$$\int |f_n-f|d\mu \geq \int_{E_n} |f_n-f|d\mu \geq \epsilon \mu(E_n).$$

So $\mu(E_n) \stackrel{n \to \infty}{\longrightarrow} 0$.

/anishing a.e. and Vanishing Integral

Theorem

If f is an a.e. non negative integrable function, then a necessary and sufficient condition that $\int f d\mu = 0$ is that f = 0 a.e..

• If f = 0 a.e., then the sequence each of whose terms is identically zero is a mean fundamental sequence of integrable simple functions which converges in measure to f. It follows that $\int f d\mu = 0$.

To prove the converse, we observe that, if $\{f_n\}$ is a mean fundamental sequence of integrable simple functions which converges in measure to f, then we may assume that $f_n \ge 0$, since we may replace each f_n by its absolute value.

The assumption $\int fd\mu = 0$ implies that $\lim_n \int f_n d\mu = 0$, i.e., that $\{f_n\}$ mean converges to 0. It follows by the preceding theorem, that $\{f_n\}$ converges to 0 in measure. By a preceding result, f = 0 a.e..

Integrals over Sets of Measure Zero

Theorem

If f is an integrable function and E is a set of measure zero, then $\int_E f d\mu = 0$.

• By definition, $\int_E f d\mu = \int \chi_E f d\mu$.

But the characteristic function of a set of measure zero vanishes a.e.. Hence, the result follows from the preceding theorem.

Vanishing Integrals of Positive a.e. Functions

Theorem

If f is an integrable function which is positive a.e. on a measurable set E and if $\int_{E} f d\mu = 0$, then $\mu(E) = 0$.

We write:

$$F_0 = \{x : f(x) > 0\}; F_n = \{x : f(x) \ge \frac{1}{n}\}, \quad n = 1, 2, \dots$$

Since the assumption of positiveness implies that $E - F_0$ is a set of measure zero, it suffices to show that $E \cap F_0$ is one also.

But we have:

•
$$F_0 = \bigcup_{n=1}^{\infty} F_n;$$

• $0 \le \frac{1}{n} \mu(E \cap F_n) \le \int_{E \cap F_n} f d\mu = 0.$
Therefore, $\mu(E \cap F_0) \le \sum_{n=1}^{\infty} \mu(E \cap F_n) = 0.$

Integrable Functions

Integrals Vanishing on All Measurable Sets

Theorem

If f is an integrable function such that $\int_F f d\mu = 0$, for every measurable set F, then f = 0 a.e..

• Let $E = \{x : f(x) > 0\}.$

By hypothesis, $\int_E f d\mu = 0$.

Therefore, by the preceding theorem, E is a set of measure zero.

Applying the same reasoning to -f shows that $\{x : f(x) < 0\}$ is a set of measure zero.

Hence, f = 0 a.e..

Supports are σ -Finite in Measure

Theorem

If f is an integrable function, then the set $N(f) = \{x : f(x) \neq 0\}$ has σ -finite measure.

Let {f_n} be a mean fundamental sequence of integrable simple functions which converges in measure to f.
For n = 1, 2, ..., N(f_n) is a measurable set of finite measure.
Let E = N(f) - U[∞]_{n=1} N(f_n) and F a measurable subset of E.
We have ∫_F fdµ = lim_n ∫_F f_ndµ = 0.
By the preceding theorem, f = 0 a.e. on E. Thus, µ(E) = 0.
Now we have N(f) ⊆ U[∞]_{n=1} N(f_n) ∪ E.

Extended Real-Value Functions and Integrals

- If f is an extended real valued, measurable function such that $f \ge 0$ a.e. and if f is not integrable, then we write $\int f d\mu = \infty$.
- We may define ∫ fdµ, for the class of all extended real valued measurable functions f for which at least one of the two functions f⁺ and f⁻ is integrable:

$$\int f d\mu = \int f^+ d\mu - \int f^- d\mu.$$

- Since at most one of the two numbers ∫ f⁺dµ, ∫ f⁻dµ is infinite, the value of ∫ fdµ is always +∞, -∞, or a finite real number.
- We make free use of this extended notion of integration, but we apply the adjective "integrable" only to functions that are integrable in the sense of our former definitions.

Subsection 4

Sequences of Integrable Functions

Mean Fundamental Sequences of Simple Functions

Theorem

If $\{f_n\}$ is a mean fundamental sequence of integrable simple functions, which converges in measure to the integrable function f, then

$$\rho(f,f_n)=\int |f-f_n|d\mu \xrightarrow{n\to\infty} 0.$$

Hence, to every integrable function f and to every positive number ϵ , there corresponds an integrable simple function g, such that $\rho(f,g) < \epsilon$.

• For any fixed positive integer m, $\{|f_n - f_m|\}$ is a mean fundamental sequence of integrable simple functions which converges in measure to $|f - f_m|$. Therefore, $\int |f - f_m| d\mu = \lim_n \int |f_n - f_m| d\mu$. The fact that the sequence $\{f_n\}$ is mean fundamental implies the desired result.

Convergence of Mean Fundamental Sequences

Theorem

If $\{f_n\}$ is a mean fundamental sequence of integrable functions, then there exists an integrable function f, such that $\rho(f_n, f) \to 0$ (and, consequently, $\int f_n d\mu \to \int f d\mu$) as $n \to \infty$.

By the preceding theorem, for each positive integer n, there is an integrable simple function g_n, such that ρ(f_n, g_n) < 1/n. It follows that {g_n} is a mean fundamental sequence of integrable simple functions. Let f be a measurable (and therefore integrable) function such that {g_n} converges in measure to f. Then

$$0 \leq |\int f_n d\mu - \int f d\mu| \leq \int |f_n - f| d\mu$$

= $\rho(f_n, f) \leq \rho(f_n, g_n) + \rho(g_n, f).$

Now the desired result follows from the preceding theorem.

Continuity and Equicontinuity from Above at Zero

- A finite valued set function ν on a class *E* of sets is continuous from above at 0 if, for every decreasing sequence {*E_n*} of sets in *E*, for which lim_n *E_n* = Ø, we have lim_n ν(*E_n*) = 0.
- If $\{\nu_n\}$ is a sequence of such finite valued set functions on \boldsymbol{E} , we shall say that the terms of the sequence are **equicontinuous from above at 0** if, for every decreasing sequence $\{E_n\}$ of sets in \boldsymbol{E} , for which $\lim_n E_n = \emptyset$, and for every positive number ϵ , there exists a positive integer m_0 , such that if $m \ge m_0$, then $|v_n(E_m)| < \epsilon$, n = 1, 2, ...

Convergence in Mean in Measure and Equicontinuity

Theorem

A sequence $\{f_n\}$ of integrable functions converges in the mean to the integrable function f if and only if $\{f_n\}$ converges in measure to f and the indefinite integrals of $\{f_n\}$, n = 1, 2, ..., are uniformly absolutely continuous and equicontinuous from above at 0.

• We prove first the necessity of the conditions. Convergence in measure and uniform absolute continuity follow from preceding results. So, it suffices to show equicontinuity.

The mean convergence of $\{f_n\}$ to f implies that, to every positive number ϵ , there corresponds a positive integer n_0 , such that if $n \ge n_0$, then $\int |f_n - f| d\mu < \frac{\epsilon}{2}$. Since the indefinite integral of a non negative integrable function is a finite measure, it follows that such an indefinite integral is continuous from above at 0.

Proof of Necessity (Cont'd)

• To every positive number ϵ , there corresponds a positive integer n_0 , such that if $n \ge n_0$, then $\int |f_n - f| d\mu < \frac{\epsilon}{2}$.

By continuity from above at 0 of the indefinite integral of a non negative integrable function, if $\{E_m\}$ is a decreasing sequence of measurable sets with an empty intersection, then there exists a positive integer m_0 , such that, for $m \ge m_0$, $\int_{E_m} |f| d\mu < \frac{\epsilon}{2}$ and $\int_{E_m} |f_n - f| d\mu < \frac{\epsilon}{2}$, $n = 1, \ldots, n_0$. Hence, if $m > m_0$, then we have

$$\int_{E_m} |f_n| d\mu \leq \int_{E_m} |f_n - f| d\mu + \int_{E_m} |f| d\mu < \epsilon,$$

for every positive integer n. This is exactly the desired equicontinuity.

Proof of Sufficiency

A countable union of measurable sets of σ-finite measure is a measurable set of σ-finite measure. So E₀ = U[∞]_{n=1}{x : f_n(x) ≠ 0} is such a set.

Suppose $\{E_n\}$ is an increasing sequence of measurable sets of finite measure such that $\lim_n E_n = E_0$. If $F_n = E_0 - E_n$, n = 1, 2, ..., then $\{F_n\}$ is a decreasing sequence and $\lim_n F_n = 0$. By equicontinuity, for every $\delta > 0$, there exists an integer k > 0, such that $\int_{F_k} |f_n| d\mu < \frac{\delta}{2}$. Consequently,

$$\int_{F_k} |f_m - f_n| d\mu \leq \int_{F_k} |f_m| d\mu + \int_{F_k} |f_n| d\mu < \delta.$$

For fixed $\epsilon > 0$, write $G_{mn} = \{x : |f_m(x) - f_n(x)| \ge \epsilon\}$. Then

$$\begin{split} \int_{E_k} |f_m - f_n| d\mu &\leq \int_{E_k - G_{mn}} |f_m - f_n| d\mu + \int_{E_k \cap G_{mn}} |f_m - f_n| d\mu \\ &\leq \epsilon \mu(E_k) + \int_{E_k \cap G_{mn}} |f_m - f_n| d\mu. \end{split}$$

Proof of Sufficiency (Cont'd)

We got

$$\int_{E_k} |f_m - f_n| d\mu \leq \epsilon \mu(E_k) + \int_{E_k \cap G_{mn}} |f_m - f_n| d\mu$$

By convergence in measure and uniform absolute continuity, the second term on the right may be made arbitrarily small by choosing m and n sufficiently large. Hence, $\limsup_{m,n} \int_{E_k} |f_m - f_n| d\mu \le \epsilon \mu(E_k)$. Since ϵ is arbitrary, it follows that $\lim_{m,n} \int_{E_k} |f_m - f_n| d\mu = 0$. But

$$\int |f_m - f_n| d\mu = \int_{E_0} |f_m - f_n| d\mu$$

=
$$\int_{E_k} |f_m - f_n| d\mu + \int_{F_k} |f_m - f_n| d\mu.$$

So $\limsup_{m,n} \int |f_m - f_n| d\mu < \delta$ and, since δ is arbitrary, $\lim_{m,n} \int |f_m - f_n| d\mu = 0$. I.e., $\{f_n\}$ is fundamental in the mean. By our second theorem, that there exists an integrable function g such that $\{f_n\}$ mean converges to g. Since mean convergence implies convergence in measure, we must have f = g a.e..

George Voutsadakis (LSSU)

Measure Theory

Lebesgue's Bounded Convergence Theorem

Lebesgue's Bounded Convergence Theorem

If $\{f_n\}$ is a sequence of integrable functions which converges in measure to f (or else converges to f a.e.), and if g is an integrable function such that $|f_n(x)| \le |g(x)|$ a.e., n = 1, 2, ..., then f is integrable and the sequence $\{f_n\}$ converges to f in the mean.

• Suppose $\{f_n\}$ convergences in measure. The given inequality ensures that the indefinite integrals of $\{f_n\}$ are uniformly absolutely continuous and equicontinuous from above at 0. The conclusion now follows from the preceding theorem.

Suppose, next that $\{f_n\}$ converges a.e.. Assume, without loss of generality, that $|f_n(x)| \le |g(x)|$ and $|f(x)| \le |g(x)|$, for every x in X. Then, for every $\epsilon > 0$,

$$E_n := \bigcup_{i=n}^{\infty} \{x : |f_i(x) - f(x)| \ge \epsilon\} \subseteq \{x : |g(x)| \ge \frac{\epsilon}{2}\}.$$

Lebesgue's Bounded Convergence Theorem (Cont'd)

• We have, for all $\epsilon > 0$,

$$E_n = \bigcup_{i=n}^{\infty} \{x : |f_i(x) - f(x)| \ge \epsilon\} \subseteq \{x : |g(x)| \ge \frac{\epsilon}{2}\}.$$

Therefore, $\mu(E_n) < \infty$, n = 1, 2, ...Since $\{f_n\}$ converges a.e., $\mu(\bigcap_{n=1}^{\infty} E_n) = 0$. By one of our earlier results, $\lim_{n \to \infty} \mu(E_n) = \mu(\lim_{n \to \infty} E_n)$. Now we get

$$\limsup_{n} \mu(\{x: |f_n(x) - f(x)| \ge \epsilon\}) \le \lim_{n} \mu(E_n) = \mu(\lim_{n} E_n) = 0.$$

Thus, convergence a.e., together with being bounded by an integrable function, implies convergence in measure.

So we can rely on the preceding case.

George Voutsadakis (LSSU)

Subsection 5

Properties of Integrals

Measurability and Integrability

Theorem

If f is measurable, g is integrable, and $|f| \le |g|$ a.e., then f is integrable.

- Consideration of the positive and negative parts of f shows that it is sufficient to prove the theorem for non negative functions f.
 - If f is a simple function, the result is clear.
 - In the general case, there is an increasing sequence $\{f_n\}$ of non negative simple functions such that $\lim_n f_n(x) = f(x)$, for all x in X. Since $0 \le f_n \le |g|$, each f_n is integrable. The desired result follows from the bounded convergence theorem.

Convergence a.e. and Integrability

Theorem

If $\{f_n\}$ is an increasing sequence of extended real valued non negative measurable functions and $\lim_n f_n(x) = f(x)$ a.e., then $\lim_n \int f_n d\mu = \int f d\mu$.

- If *f* is integrable, then the result follows from the bounded convergence theorem and the preceding theorem.
- The only novel feature of the present theorem is its application to the not necessarily integrable case: We must show that if $\int fd\mu = \infty$, then $\lim_n \int f_n d\mu = \infty$, i.e., that, if $\lim_n \int f_n d\mu < \infty$, then f is integrable. From the finiteness of the limit we may conclude that $\lim_{m,n} |\int f_m d\mu \int f_n d\mu| = 0$. Since $f_m f_n$ is of constant sign, for each fixed m and n, we have $|\int f_m d\mu \int f_n d\mu| = \int |f_m f_n| d\mu$, so that the sequence $\{f_n\}$ is mean convergent. Therefore, by a preceding result, it mean convergence in measure, and therefore a.e. convergence for some subsequence. So f = g a.e..

George Voutsadakis (LSSU)

Integrability from Integrability of Absolute Value

Theorem

A measurable function is integrable if and only if its absolute value is integrable.

• The new part of this theorem is the assertion that the integrability of |f| implies that of f.

This follows from the first theorem, with |f| in place of g.

Integrability and Essential Boundedness

Theorem

If f is integrable and g is an essentially bounded measurable function, then fg is integrable.

• If $|g| \leq c$ a.e., then $|fg| \leq c|f|$ a.e..

By hypothesis and the preceding theorem, fg is integrable.

Theorem

If f is an essentially bounded measurable function and E is a measurable set of finite measure, then f is integrable over E.

• The characteristic function of a measurable set of finite measure is an integrable function.

The result follows from the preceding theorem with χ_E and f in place of f and g.

Fatou's Lemma

Theorem (Fatou's Lemma)

If $\{f_n\}$ is a sequence of non negative integrable functions for which $\lim \inf_n \int f_n d\mu < \infty$, then the function f, defined by $f(x) = \liminf_n f_n(x)$, is integrable and $\int f d\mu \leq \liminf_n \int f_n d\mu$.

• Let
$$g_n(x) = \inf \{f_i(x) : n \le i < \infty\}$$
.
• $g_n \le f_n$.
• $\{g_n\}$ is increasing.
Since $\int g_n d\mu \le \int f_n d\mu$,
 $\lim_n \int g_n d\mu \le \liminf_n \int f_n d\mu < \infty$.
But $\lim_n g_n(x) = \liminf_n f_n(x) = f(x)$.
So, by the second theorem, f is integrable and
 $\int fd\mu = \lim_n \int g_n d\mu \le \liminf_n \int f_n d\mu$.