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General Set Functions

o We generalize the notion of measure to set functions that are not
required to be non negative.

o Suppose that 1 and up are two measures on a o-ring S of subsets of
a set X. If we define, for every set E in S, u(E) = p1(E) + p2(E),
then it is clear that u is a measure.

This result, on the possibility of adding two measures, extends
immediately to any finite sum.

o Another way of manufacturing new measures is to multiply a given
measure by an arbitrary non negative constant.

o Combining these two methods, we see that, if {u1,...,us} is a finite
set of measures and {aq,...,a,} is a finite set of non negative real
numbers, then the set function y, defined,for every set E in S, by
W(E) = > 1 aipi(E), is a measure.
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General Set Functions

o The situation is different if we allow negative coefficients.

o If pg and pp are two measures on S, and if we define p by
w(E) = pi(E) — p2(E), then we face two new possibilities.
o 1 may be negative on some sets. This is an interesting phenomenon
worth investigating.
o u1(E) = p2(E) = oo. In this case, to avoid the difficulty of
indeterminate forms, we shall agree to subtract two measures only if at
least one of them is finite.

o This convention is analogous to the one we adopted in presenting the
most general definition of the symbol [ fdpu:

o It is defined for a measurable function f if and only if at least one of
the two functions £ and £~ is integrable, i.e., if and only if at least
one of the two set functions v+ and v~ defined by v*(E) = [, ftdu
and v~ (E) = [ f~dp is a finite measure.

o If f is a measurable function, such that f fdp is defined, then the set
function v, defined by v/(E) = [ fdy is the difference of two measures.
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General Set Functions

o We define a signed measure as an extended real valued function p
on the class of all measurable sets of a measurable space (X, S), such
that:

o u(0) =0;
o u is countably additive;
o 4 assumes at most one of the values +o00 and —co.
o If {E,} is a disjoint sequence of measurable sets, then the series
Y02 1 u(En) is either convergent or definitely divergent (to +oo or
—00).

In any case, the symbol Y77 . 1u(E,) makes sense.
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General Set Functions

o The words [totally] finite and [totally] o-finite will be used for
signed measures just as for measures, except that u(E) has to be
replaced by |u(E)|, or, equivalently, u(E) < oo has to be replaced by
—o00 < u(E) < oo.

o E.g., a signed measure u is totally finite if X is measurable and
(X)| < co.
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General Set Functions

o A signed measure is finitely additive.

This follows from the fact that it is countably additive.
o A signed measure is subtractive.

If F C E are measurable, then, by additivity,

p(E) = p(F) + u(E — F).

Therefore, u(E — F) = p(E) — u(F).
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General Set Functions

If E and F are measurable sets and p is a signed measure, such that
E C F and |u(F)| < oo, then |u(E)| < .

o We have u(F) = u(F — E) + p(E).
o If exactly one of the summands is infinite, then so is p(F);
o If they are both infinite, then (since p assumes at most one of the
values +00 and —o0), they are equal and again p(F) is infinite.
o Only one possibility remains, namely that both summands are finite.
Thus, every measurable subset of a set of finite signed measure has
finite signed measure.
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General Set Functions

If 1 is a signed measure and {E,} is a disjoint sequence of measurable sets
such that (|72 En)| < oo, then the series >~ 1 p(E,) is absolutely
convergent.

, : E,, ifu(E,) >0 _ E,, ifu(Ey) <0
oerteEj:{Q if u(E) < 0 and E, :{O, i u(E) >0 °
Then, (U y £5) = 00, () and p(USy Ex) = 30001 wlEy ):
Since the terms of both series are of constant sign, and since u takes
on at most one of the values +0o and —oo, at least one of these
series is convergent. Since the sum of the two series is the convergent
series Y 2, u(Epy), they both converge. Since the convergence of the
series of positive terms and the series of negative terms is equivalent
to absolute convergence, the proof is complete.
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General Set Functions

Theorem

If 1 is a signed measure, if {E,} is a monotone sequence of measurable
sets, and if, in case {E,} is a decreasing sequence, |u(Ep)| < oo, for at
least one value of n, then u(lim, E,) = lim, u(E,).

o Suppose, first, that {E,} is increasing.
Set Eg = (¢ and Fi=E—E_1,i=12,....
Then, we have

N(“mn En) = M(U?il Ei) = M(U(i)il Fi)
= 221 p(Fi) = lim, 27:1 w(Fi)
= lim, u(Ep).
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General Set Functions

o Suppose, next, that {E,} is decreasing and |u(Ep)| < oc.
By the first theorem, |u(E,)| < oo, for all n > m.

The sequence {E,, — E,} is increasing and we have

w(Em) — p(lim, Ey) = p(Em — lim, Ep)
= p(limp (Em — En))
= lim, u(Em — Ep)

p(Em) — limp, u(Ep).

It follows that p(lim, E,) = lim, u(Ey).
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General Set Functions

o Let u be a signed measure on the class of all measurable sets of a
measurable space (X, S).

o We shall call a set E positive (with respect to p) if, for every
measurable set F,

o E N F is measurable;
o wW(ENF)>0.

o Similarly, we shall call E negative if, for every measurable set F,

o E N F is measurable;
o u(ENF)<O0.

o The empty set is both positive and negative in this sense.

o No assertion is made about the existence of any other, non trivial,
positive sets or negative sets.
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General Set Functions

Theorem (Hahn Decomposition Theorem)

If 1 is a signed measure, then there exist two disjoint sets A and B whose
union is X, such that A is positive and B is negative with respect to pu.

o The sets A and B are said to form a Hahn decomposition of X with
respect to u.
o Since p assumes at most one of the values +00 and —oo, we may

assume that, say —oo < u(E) < +oo, for every measurable set E.
Note that

o the difference of two negative sets is negative;
o the disjoint, countable union of negative sets is negative.

So every countable union of negative sets is negative.
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General Set Functions

o We write 5 = inf u(B), for all measurable negative sets B.
Let {B;} be a sequence of measurable negative sets such that
lim; u(Bj) = B. If B=J:2; Bj, then B is a measurable negative set
for which p(B) is minimal.
Claim: The set A= X — B is a positive set.
Suppose that, on the contrary, Eg is a measurable subset of A, such
that u(Ep) < 0. The set Ep cannot be a negative set, for then B U Eg
would be a negative set with a smaller value of u than p(B), which is
impossible. Let k; be the smallest positive integer with the property
that Ep contains a measurable set Ej, such that u(Ey) > kil

Since u(Ep) < 0, u(Ep) and p(Ez) are both finite.
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General Set Functions

o Now observe that

(o — 1) = u(Eo) — p(Er) < (o) — 1= <O

So the argument just applied to Eq is applicable to Eg — E; also.
Let k» be the smallest positive integer with the property that Eg — E3
contains a measurable subset Ep, with p(Ep) > kiz
Then proceed ad infinitum.
w is finite valued for measurable subsets of Ey. So lim, kin =0.
It follows that, for every measurable subset F of Fp = Eg — Uj.i1 E;,
we have u(F) < 0. i.e., that Fy is a measurable negative set.
o Fy is disjoint from B.
o u(Fo) = n(Eo) = >-721 n(Ej) < p(Eo) <O.
This contradicts the minimality of B.
We conclude that the hypothesis p(Eg) < 0 is untenable.
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General Set Functions

o It is not difficult to construct examples to show that a Hahn
decomposition is not unique.

o But (as we show in the next slide) if X = A; UBj and X = A, U B
are two Hahn decompositions of X, then, for every measurable set E,

u(ENA) =p(ENA) and p(ENBy) = p(ENBy).
o Thus, the equations
p(E)=pm(ENA) and p (E)=—p(ENB)

unambiguously define two set functions ™ and p~ on the class of all
measurable sets.
They are called, respectively, the upper variation and the lower
variation of p.

o The set function |u|, defined, for every measurable set E, by
|Wl(E) = u(E) + u~(E), is the total variation of y.
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General Set Functions

If X =A1UB; and X = Ay U B, are two Hahn decompositions of X,
then, for every measurable set E,

n(ENA) =p(ENA) and p(ENBy) = pu(ENBy).

o Observe that EN (A1 — A2) CENA; and EN(A; — Ax) C ENBs.
Hence, u(E N (A1 — A2)) > 0 and p(E N (A1 — Ap)) <0.
It follows that p(E N (A1 — Az)) = 0.
By symmetry, u(E N (A2 — A1)) =0.
Therefore, (E N A1) = p(E N (A1 U A2)) = u(E N Az).
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General Set Functions

The upper, lower, and total variations of a signed measure y are measures
and p(E) = pt(E) — u=(E), for every measurable set E. If 4 is [totally]
finite or o-finite, then so also are ™ and ;1 ; at least one of the measures
puT and p” is always finite.

o The variations of p are clearly non negative. If every measurable set is
a countable union of measurable sets for which p is finite, by the first
theorem of the set, the same holds for ;1™ and . The equation
p =t — p~ follows from the definitions of x™ and p~. The fact
that u takes on at most one of the values +00 and co implies that at
least one of the set functions u™ and p~ is always finite. Since the
countable additivity of ™ and p~ is evident, the proof is complete.

o Thus, every signed measure is the difference of two measures (of
which at least one is finite). The representation of p as the difference
of its upper and lower variations is the Jordan decomposition of y.
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General Set Functions

o Let (X, S) be a measurable space.
Let 1 and v be signed measures on S.

We say that v is absolutely continuous with respect to p, in
symbols v < p, if, for every measurable set E,

|u|(E) =0 implies v(E)=0.

9 In a suggestively imprecise phrase, v < p means that v is small
whenever g is small.
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General Set Functions

If © and v are signed measures, the following conditions are equivalent:
v < W,
vt < pand v L g
v| <l

Suppose (a) holds and let E be measurable, such that
||(E) = 0. Consider a Hahn decomposition X = AU B w.r.t. v.

Then, we have
H(ENA) < |ul(E)=0 and |ul(ENB)< [ul(E) =o.

Thus, by hypothesis, v(ENA) =v(ENB) =0.
By definition, v+ (E) = v~ (E) = 0.
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General Set Functions

Suppose (b) holds and let E be measurable such that
ul(E) = 0.
By hypothesis, v (E) = v~ (E) = 0.
But then, we get |v|(E) = v (E) + v (E) =0.

Suppose (c) holds and let E be measurable such that
|ul(E) = 0.
By hypothesis, |v|(E) = 0.

Now we have
0 < |v(E)| = [v(E) —v(E)| < v (E) + v (E) = |[v|(E) = 0.

Therefore, v(E) = 0.
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General Set Functions

Theorem

If v is a finite signed measure and if u is a signed measure such that
v < W, then, for every ¢ > 0, there is a § > 0, such that, for every
measurable set E,

|u|/(E) <6 implies |v|(E) <e.

o Suppose that it is possible, for some € > 0, to find a sequence {E,} of
measurable sets, such that |u|(E,) < 3= and |V|(Es) > €, n=1,2,....
Let £ = limsup, E,. Then |u|(E) < Y2, |1l(E) < 5.
n=1,2,.... Therefore |u|(E) = 0.

On the other hand, since v is finite,

W|(E) = lim|v|(Ep U Eppr U+ +) > limsup [v|(En) > €.
n n

This contradicts the relation v < p.
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General Set Functions

Proposition (Reflexivity)

If p is a signed measure, < u.

o Let E be measurable, such that |u|(E) = 0.
Then pt(E) + p(E) =0, whence pt(E) = = (E) = 0.
Now we get pu(E) = pt(E) — u(E) = 0.

Proposition (Transitivity)
If g1, po, p3 are signed measures, then py < pp and pp < p3 imply
1 <K 3.
o If E is measurable, such that |u3|(E) = 0, then, by us < p3 and the
characterization theorem, |u2|(E) = 0. By 1 < po, p1(E) = 0.
o Two signed measures p and p for which both ¥ < p and g < v hold
are called equivalent, in symbols p = v.
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General Set Functions

o The antithesis of the relation of absolute continuity is singularity.

o Let (X, S) be a measurable space and p and v signed measures on S.

We say that i and v are mutually singular, or more simply singular,
in symbols 1 L v, if there exist two disjoint sets A and B whose
union is X, such that, for every measurable set E,

o AN E and BN E are measurable;
o |u|(ANE)=|v|(BNE)=0.
o Sometimes, despite the symmetry of the relation, we use an
asymmetric expression, such as “v is singular with respect to y",
instead of “i and v are singular”.
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General Set Functions

o In the discussion of absolute continuity and singularity we have to
deal with several measures simultaneously.

o In such contexts, the following notation is useful.
o Let (X, S) be a measurable space.
Let 7(x) be a proposition concerning each point x of X.
Let i be a signed measure on S.
The symbol
m(x) [u] or m [y]
will mean that 7(x) is true for almost every x with respect to the
measure |pu.
Example: If f and g are two functions on X, we write f = g [u] for

the statement that {x : f(x) # g(x)} is a measurable set of measure
zero with respect to |pu.

o The symbol [u] may be read as “modulo 4.
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General Set Functions

If 1 and v are totally finite measures such that v < u and v is not
identically zero, then there exists a positive number ¢ and a measurable set
A, such that p(A) > 0 and such that A is a positive set for the signed
measure v — €fi.

o Let X = A,U B, be a Hahn decomposition with respect to the signed
measure v — %,u, n=1,2,.... Write Ao =y~ An Bo =, Bn.
Since By C B, we have 0 < v(Bp) < Lu(By), n=1,2,....
Consequently, v(Bp) = 0. It follows that v(Ag) > 0. Therefore, by
absolute continuity, u(Ag) > 0. Hence, we must have u(A,) > 0, for
at least one value of n. If, for such a value of n, we write A = A, and
€= % the requirements of the theorem are all satisfied.
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General Set Functions

If (X, S, n) is a totally o-finite measure space and if a o-finite signed
measure v on S is absolutely continuous with respect to p, then there
exists a finite valued measurable function f on X, such that

v(E) :/ fdp, for every measurable set E.
E

The function f is unique in the sense that, if also v(E) = [ gdp, for
E €S, then f =g [u].

o We emphasize the fact that f is not asserted to be integrable.
o It is, in fact, clear that a necessary and sufficient condition that f be
integrable is that v be finite.
o The use of the symbol f fdp implicitly asserts that either the positive
or the negative part of f is integrable, corresponding to the fact that
either the upper or the lower variation of v is finite.
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General Set Functions

o Since X is a countable, disjoint union of measurable sets on which
both w and v are finite, there is no loss of generality in assuming
finiteness in the first place.

For uniqueness, assume fE fdu = ngd,u, for every measurable E.
Then [ (f — g)du =0, for every measurable E. By a result on
integrable functions, f —g =0 [y, i.e., f = g [u].

Recall, by the characterization of absolute continuity, that the
assumption v < p is equivalent to the simultaneous validity of the
conditions v+ < p and v~ < p. It is sufficient to prove the existence
of f in the case in which both y and v are finite measures. We would
then have

v(E)=vT(E)—v (E) = /Efldu—/Efgdu: /E(fl—fg)fd,u.
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General Set Functions

o Let K be the class of all non negative functions f, integrable with
respect to u, such that fE fdu < v(E), for every measurable set E.
Set « =sup{[ fdu: f € K}.

Let {f,} be a sequence of functions in K, such that lim, [ f,du = a.
Let E be measurable, n a positive integer, and g, = U---Uf,.
Then E may be written as a finite, disjoint union of measurable sets,
E=E U---UE,, so that gy(x) = fi(x), for xin Ej, j=1,...,n.
Consequently we have

/Egndu = Zj;/EJ fidu < él/(Ej) = v(E).

Write fo(x) = sup {fs(x) : n=1,2,...}. Then fy(x) = lim, g(x).
It follows by an integration theorem that fy € K and [ fodu = a.
Since fy is integrable, there exists a finite valued f, with fy = f [u].
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General Set Functions

o Claim: If vo(E) = v(E) — [ fdp, the measure vy is identically zero.
Suppose 1y is not identically zero.

By the first theorem, there exists ¢ > 0 and a measurable A, such
that 44(A) > 0 and, for every measurable E,

e(ENA)<p(ENA)=v(ENA)— /EnA fdp.

If g = f + exa, then, for every measurable E,
/gd,u: / fdp + eu(E N A) §/ fdp +v(ENA) <wv(E).
E E E-A

Hence, g € K.
But [ gdu = [ fdu+ ep(A) > a.
This contradicts the maximality of [ fdu.
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General Set Functions

o The functions which occur as integrands in the Radon-Nikodym
theorem are called Radon-Nikodym derivatives.

o If pu is a totally o-finite measure and if v(E) = [ fdp, for every
measurable set E, we write

fzd_,u or dv = fdyu.
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o All the properties of Radon-Nikodym derivatives, suggested by the
well known differential formalism, correspond to true theorems.

o Some of these are trivial, e.g. d(”:{i:’”) = i’{—‘l’j L Z_l//j-

o Others are more or less deep properties of integration:

o The chain rule for differentiation;
o The substitution rule for the differentials occurring under an integral
sign.

o A Radon-Nikodym derivative Z—Z is unique only a.e. with respect to p.

Therefore, differential formulas will be interpreted to hold “almost
everywhere”.
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If A and p are totally o-finite measures, such that y < A, and if v is a
totally o-finite signed measure, such that v < p, then

dv dvdu

—=——\]

d\  dpdX

o The validity of the desired equation for the upper and lower variations
of v implies its validity for v. So we may assume that v is a measure.

dv _ du _
Set 5= fand 5 =g
Since v is nonnegative, f > 0 [u]. Therefore, there is no loss of
generality in assuming that f is everywhere non negative.
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o By measurability of f, there exists an increasing sequence {f,} of
nonnegative simple functions converging at every point to f.
By properties of integration, for every measurable set E,

o limy, [ fadp = [ fdp;
5 limy [, fogd\ = [, fgd.

But, for every measurable set F,

/deu =pu(ENF) =/ gd\ = / XFGAA.
E ENF E

Since {f,} consists of simple functions, it follows that

/f,,d,u:/f,,gd)\, n=12,....
E E

Hence, v(E) = [ fdu = [ fgd\.
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If A and p are totally o-finite measures such that u < A, and if f is a
finite valued measurable function for which [ fdy is defined, then

_ [ fdr
/fdu_/fd)\d)\

o Write v(E) = [ fdp, for every measurable set E.

Applying the preceding theorem, we get
du
v(E) = f d)\ for every measurable set E.

The desired result follows by putting £ = X.
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If (X,S) is a measurable space and p and v are totally o-finite signed
measures on S, then there exist two uniquely determined totally o-finite
signed measures 1y and ;3 whose sum is v, such that g L p and 11 < p.

o As usual we may assume that g and v are finite.

Since v;, i = 0,1, will be absolutely continuous or singular with
respect to u according as it is absolutely continuous or singular with
respect to |u|, we may assume that u is a measure.

Since, finally, we may treat v and v~ separately, we may also
assume that v is a measure.

The proof of the theorem for totally finite measures is a useful trick,
based on the elementary observation that v is absolutely continuous
with respect to u + v.
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o Since v < u + v, there exists measurable f, such that

v(E) :/ fd,u+/ fdv, for every measurable set E.
E E
Since 0 < V(E) < p(E) +v(E), we have 0 < f <1 [u+ v].
Therefore, 0 < f <1 [v]. Set
A={x:f(x)=1} and B={x:0<f(x) <1}

Then v(A) = [, du+ [, dv = pu(A) + v(A).
Since v is finite, u(A) = 0.
Set, for every measurable set E,
w(E) =v(ENA) and vi(E)=v(ENB).

Then vy L p. It remains to prove that 11 < p.
If W(E) =0, then [ pdv=v(ENB)= [, fdv and, therefore,
Jeng (1 —f)dv=0. Since 1 — f >0 [v], 1(E) = v(EN B) = 0.
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o Suppose
v=1g+ 11 and V="1y+1
are two Lebesgue decompositions of v.
Then vg — 7y =771 — 1.
But:

9 vy — g is singular with respect to y;
o U1 — 14 is absolutely continuous with respect to u.

Therefore, vg = 7y and v; = 7.
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