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General Set Functions Signed Measures

Linear Combinations of Measures

We generalize the notion of measure to set functions that are not
required to be non negative.

Suppose that µ1 and µ2 are two measures on a σ-ring S of subsets of
a set X . If we define, for every set E in S , µ(E ) = µ1(E ) + µ2(E ),
then it is clear that µ is a measure.

This result, on the possibility of adding two measures, extends
immediately to any finite sum.

Another way of manufacturing new measures is to multiply a given
measure by an arbitrary non negative constant.

Combining these two methods, we see that, if {µ1, . . . , µn} is a finite
set of measures and {α1, . . . , αn} is a finite set of non negative real
numbers, then the set function µ, defined,for every set E in S, by
µ(E ) =

∑n
i=1 αiµi(E ), is a measure.
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General Set Functions Signed Measures

Allowing Negative Coefficients

The situation is different if we allow negative coefficients.

If µ1 and µ2 are two measures on S, and if we define µ by
µ(E ) = µ1(E )− µ2(E ), then we face two new possibilities.

µ may be negative on some sets. This is an interesting phenomenon
worth investigating.
µ1(E ) = µ2(E ) = ∞. In this case, to avoid the difficulty of
indeterminate forms, we shall agree to subtract two measures only if at
least one of them is finite.

This convention is analogous to the one we adopted in presenting the
most general definition of the symbol

∫

fdµ:

It is defined for a measurable function f if and only if at least one of
the two functions f + and f − is integrable, i.e., if and only if at least
one of the two set functions ν+ and ν− defined by ν+(E ) =

∫

E
f +dµ

and ν−(E ) =
∫

E
f −dµ is a finite measure.

If f is a measurable function, such that
∫

fdµ is defined, then the set
function ν, defined by ν(E ) =

∫

E
fdµ is the difference of two measures.
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General Set Functions Signed Measures

Signed Measures

We define a signed measure as an extended real valued function µ
on the class of all measurable sets of a measurable space (X ,S), such
that:

µ(∅) = 0;
µ is countably additive;
µ assumes at most one of the values +∞ and −∞.

If {En} is a disjoint sequence of measurable sets, then the series
∑

∞

n=1 µ(En) is either convergent or definitely divergent (to +∞ or
−∞).

In any case, the symbol
∑

∞

n=1 µ(En) makes sense.
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General Set Functions Signed Measures

Finiteness and σ-Finiteness

The words [totally] finite and [totally] σ-finite will be used for
signed measures just as for measures, except that µ(E ) has to be
replaced by |µ(E )|, or, equivalently, µ(E ) < ∞ has to be replaced by
−∞ < µ(E ) < ∞.

E.g., a signed measure µ is totally finite if X is measurable and
|µ(X )| < ∞.
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General Set Functions Signed Measures

Finite Additivity and Subtractiveness

A signed measure is finitely additive.

This follows from the fact that it is countably additive.

A signed measure is subtractive.

If F ⊆ E are measurable, then, by additivity,

µ(E ) = µ(F ) + µ(E − F ).

Therefore, µ(E − F ) = µ(E )− µ(F ).
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General Set Functions Signed Measures

Measurable Subsets of a Set of Finite Signed Measure

Theorem

If E and F are measurable sets and µ is a signed measure, such that
E ⊆ F and |µ(F )| < ∞, then |µ(E )| < ∞.

We have µ(F ) = µ(F − E ) + µ(E ).

If exactly one of the summands is infinite, then so is µ(F );
If they are both infinite, then (since µ assumes at most one of the
values +∞ and −∞), they are equal and again µ(F ) is infinite.
Only one possibility remains, namely that both summands are finite.

Thus, every measurable subset of a set of finite signed measure has
finite signed measure.
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General Set Functions Signed Measures

Boundedness of Measure and Absolute Convergence

Theorem

If µ is a signed measure and {En} is a disjoint sequence of measurable sets
such that |µ(

⋃

∞

n=1 En)| < ∞, then the series
∑

∞

n=1 µ(En) is absolutely
convergent.

Write E+
n =

{

En, if µ(En) ≥ 0
0, if µ(En) < 0

and E−

n =

{

En, if µ(En) ≤ 0
0, if µ(En) > 0

.

Then, µ(
⋃

∞

n=1 E
+
n ) =

∑

∞

n=1 µ(E
+
n ) and µ(

⋃

∞

n=1 E
−

n ) =
∑

∞

n=1 µ(E
−

n ).
Since the terms of both series are of constant sign, and since µ takes
on at most one of the values +∞ and −∞, at least one of these
series is convergent. Since the sum of the two series is the convergent
series

∑

∞

n=1 µ(En), they both converge. Since the convergence of the
series of positive terms and the series of negative terms is equivalent
to absolute convergence, the proof is complete.
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General Set Functions Signed Measures

Signed Measures of Limits of Sequences

Theorem

If µ is a signed measure, if {En} is a monotone sequence of measurable
sets, and if, in case {En} is a decreasing sequence, |µ(En)| < ∞, for at
least one value of n, then µ(limn En) = limn µ(En).

Suppose, first, that {En} is increasing.

Set E0 = ∅ and Fi = Ei − Ei−1, i = 1, 2, . . ..

Then, we have

µ(limn En) = µ(
⋃

∞

i=1 Ei ) = µ(
⋃

∞

i=1 Fi)
=

∑

∞

i=1 µ(Fi) = limn

∑n
i=1 µ(Fi )

= limn µ(En).
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General Set Functions Signed Measures

Signed Measures of Limits of Sequences (Cont’d)

Suppose, next, that {En} is decreasing and |µ(Em)| < ∞.

By the first theorem, |µ(En)| < ∞, for all n ≥ m.

The sequence {Em − En} is increasing and we have

µ(Em)− µ(limn En) = µ(Em − limn En)
= µ(limn (Em − En))
= limn µ(Em − En)
= limn (µ(Em)− µ(En))
= µ(Em)− limn µ(En).

It follows that µ(limn En) = limn µ(En).

George Voutsadakis (LSSU) Measure Theory January 2023 12 / 43



General Set Functions Hahn and Jordan Decompositions

Subsection 2

Hahn and Jordan Decompositions
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General Set Functions Hahn and Jordan Decompositions

Positive and Negative Measurable Sets

Let µ be a signed measure on the class of all measurable sets of a
measurable space (X ,S).

We shall call a set E positive (with respect to µ) if, for every
measurable set F ,

E ∩ F is measurable;
µ(E ∩ F ) ≥ 0.

Similarly, we shall call E negative if, for every measurable set F ,

E ∩ F is measurable;
µ(E ∩ F ) ≤ 0.

The empty set is both positive and negative in this sense.

No assertion is made about the existence of any other, non trivial,
positive sets or negative sets.
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General Set Functions Hahn and Jordan Decompositions

The Hahn Decomposition Theorem

Theorem (Hahn Decomposition Theorem)

If µ is a signed measure, then there exist two disjoint sets A and B whose
union is X , such that A is positive and B is negative with respect to µ.

The sets A and B are said to form a Hahn decomposition of X with
respect to µ.

Since µ assumes at most one of the values +∞ and −∞, we may
assume that, say −∞ < µ(E ) ≤ +∞, for every measurable set E .

Note that

the difference of two negative sets is negative;
the disjoint, countable union of negative sets is negative.

So every countable union of negative sets is negative.
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General Set Functions Hahn and Jordan Decompositions

Proof of the Hahn Decomposition Theorem

We write β = inf µ(B), for all measurable negative sets B .

Let {Bi} be a sequence of measurable negative sets such that
limi µ(Bi) = β. If B =

⋃

∞

i=1 Bi , then B is a measurable negative set
for which µ(B) is minimal.

Claim: The set A = X − B is a positive set.

Suppose that, on the contrary, E0 is a measurable subset of A, such
that µ(E0) < 0. The set E0 cannot be a negative set, for then B ∪ E0

would be a negative set with a smaller value of µ than µ(B), which is
impossible. Let k1 be the smallest positive integer with the property
that E0 contains a measurable set E1, such that µ(E1) ≥

1
k1
.

Since µ(E0) < 0, µ(E0) and µ(E1) are both finite.
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General Set Functions Hahn and Jordan Decompositions

Proof of the Hahn Decomposition Theorem (Cont’d)

Now observe that

µ(E0 − E1) = µ(E0)− µ(E1) ≤ µ(E0)−
1

k1
< 0.

So the argument just applied to E0 is applicable to E0 − E1 also.

Let k2 be the smallest positive integer with the property that E0 − E1

contains a measurable subset E2, with µ(E2) ≥
1
k2
.

Then proceed ad infinitum.

µ is finite valued for measurable subsets of E0. So limn
1
kn

= 0.

It follows that, for every measurable subset F of F0 = E0 −
⋃

∞

j=1 Ej ,

we have µ(F ) ≤ 0. i.e., that F0 is a measurable negative set.
F0 is disjoint from B.
µ(F0) = µ(E0)−

∑

∞

j=1 µ(Ej) ≤ µ(E0) < 0.

This contradicts the minimality of B .

We conclude that the hypothesis µ(E0) < 0 is untenable.
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General Set Functions Hahn and Jordan Decompositions

Upper, Lower and Total Variations of a Signed Measure

It is not difficult to construct examples to show that a Hahn
decomposition is not unique.

But (as we show in the next slide) if X = A1 ∪ B1 and X = A2 ∪ B2

are two Hahn decompositions of X , then, for every measurable set E ,

µ(E ∩ A1) = µ(E ∩ A2) and µ(E ∩ B1) = µ(E ∩ B2).

Thus, the equations

µ+(E ) = µ(E ∩ A) and µ−(E ) = −µ(E ∩ B)

unambiguously define two set functions µ+ and µ− on the class of all
measurable sets.

They are called, respectively, the upper variation and the lower

variation of µ.

The set function |µ|, defined, for every measurable set E , by
|µ|(E ) = µ+(E ) + µ−(E ), is the total variation of µ.
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General Set Functions Hahn and Jordan Decompositions

Upper and Lower Variations of a Signed Measure

Proposition

If X = A1 ∪ B1 and X = A2 ∪ B2 are two Hahn decompositions of X ,
then, for every measurable set E ,

µ(E ∩ A1) = µ(E ∩ A2) and µ(E ∩ B1) = µ(E ∩ B2).

Observe that E ∩ (A1 − A2) ⊆ E ∩ A1 and E ∩ (A1 − A2) ⊆ E ∩ B2.

Hence, µ(E ∩ (A1 − A2)) ≥ 0 and µ(E ∩ (A1 − A2)) ≤ 0.

It follows that µ(E ∩ (A1 − A2)) = 0.

By symmetry, µ(E ∩ (A2 − A1)) = 0.

Therefore, µ(E ∩ A1) = µ(E ∩ (A1 ∪ A2)) = µ(E ∩ A2).
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General Set Functions Hahn and Jordan Decompositions

The Jordan Decomposition Theorem

Theorem (Jordan Decomposition Theorem)

The upper, lower, and total variations of a signed measure µ are measures
and µ(E ) = µ+(E )− µ−(E ), for every measurable set E . If µ is [totally]
finite or σ-finite, then so also are µ+ and µ−; at least one of the measures
µ+ and µ− is always finite.

The variations of µ are clearly non negative. If every measurable set is
a countable union of measurable sets for which µ is finite, by the first
theorem of the set, the same holds for µ+ and µ−. The equation
µ = µ+ − µ− follows from the definitions of µ+ and µ−. The fact
that µ takes on at most one of the values +∞ and ∞ implies that at
least one of the set functions µ+ and µ− is always finite. Since the
countable additivity of µ+ and µ− is evident, the proof is complete.

Thus, every signed measure is the difference of two measures (of
which at least one is finite). The representation of µ as the difference
of its upper and lower variations is the Jordan decomposition of µ.
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Subsection 3
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General Set Functions Absolute Continuity

Absolute Continuity With Respect to a Measure

Let (X ,S) be a measurable space.

Let µ and ν be signed measures on S.

We say that ν is absolutely continuous with respect to µ, in
symbols ν ≪ µ, if, for every measurable set E ,

|µ|(E ) = 0 implies ν(E ) = 0.

In a suggestively imprecise phrase, ν ≪ µ means that ν is small
whenever µ is small.
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General Set Functions Absolute Continuity

Alternative Characterizations

Theorem

If µ and ν are signed measures, the following conditions are equivalent:

(a) v ≪ µ;

(b) ν+ ≪ µ and ν− ≪ µ;

(c) |ν| ≪ |µ|.

(a)⇒(b) Suppose (a) holds and let E be measurable, such that
|µ|(E ) = 0. Consider a Hahn decomposition X = A ∪ B w.r.t. ν.

Then, we have

|µ|(E ∩ A) ≤ |µ|(E ) = 0 and |µ|(E ∩ B) ≤ |µ|(E ) = 0.

Thus, by hypothesis, ν(E ∩ A) = ν(E ∩ B) = 0.

By definition, ν+(E ) = ν−(E ) = 0.
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General Set Functions Absolute Continuity

Alternative Characterizations (Cont’d)

(b)⇒(c) Suppose (b) holds and let E be measurable such that
|µ|(E ) = 0.

By hypothesis, ν+(E ) = ν−(E ) = 0.

But then, we get |ν|(E ) = ν+(E ) + ν−(E ) = 0.

(c)⇒(a) Suppose (c) holds and let E be measurable such that
|µ|(E ) = 0.

By hypothesis, |ν|(E ) = 0.

Now we have

0 ≤ |ν(E )| = |ν+(E )− ν−(E )| ≤ ν+(E ) + ν−(E ) = |ν|(E ) = 0.

Therefore, ν(E ) = 0.

George Voutsadakis (LSSU) Measure Theory January 2023 24 / 43



General Set Functions Absolute Continuity

Necessary Condition Under Finiteness

Theorem

If ν is a finite signed measure and if µ is a signed measure such that
ν ≪ µ, then, for every ǫ > 0, there is a δ > 0, such that, for every
measurable set E ,

|µ|(E ) < δ implies |ν|(E ) < ǫ.

Suppose that it is possible, for some ǫ > 0, to find a sequence {En} of
measurable sets, such that |µ|(En) <

1
2n and |ν|(En) ≥ ǫ, n = 1, 2, . . ..

Let E = lim supn En. Then |µ|(E ) ≤
∑

∞

i=n |µ|(Ei ) <
1

2n−1 ,
n = 1, 2, . . .. Therefore |µ|(E ) = 0.

On the other hand, since ν is finite,

|ν|(E ) = lim
n

|ν|(En ∪ En+1 ∪ · · · ) ≥ lim sup
n

|ν|(En) ≥ ǫ.

This contradicts the relation ν ≪ µ.
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General Set Functions Absolute Continuity

Reflexivity, Transitivity and Equivalence

Proposition (Reflexivity)

If µ is a signed measure, µ ≪ µ.

Let E be measurable, such that |µ|(E ) = 0.

Then µ+(E ) + µ−(E ) = 0, whence µ+(E ) = µ−(E ) = 0.

Now we get µ(E ) = µ+(E ) − µ−(E ) = 0.

Proposition (Transitivity)

If µ1, µ2, µ3 are signed measures, then µ1 ≪ µ2 and µ2 ≪ µ3 imply
µ1 ≪ µ3.

If E is measurable, such that |µ3|(E ) = 0, then, by µ2 ≪ µ3 and the
characterization theorem, |µ2|(E ) = 0. By µ1 ≪ µ2, µ1(E ) = 0.

Two signed measures µ and µ for which both ν ≪ µ and µ ≪ ν hold
are called equivalent, in symbols µ ≡ ν.
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General Set Functions Absolute Continuity

Singularity

The antithesis of the relation of absolute continuity is singularity.

Let (X ,S) be a measurable space and µ and ν signed measures on S.

We say that µ and ν are mutually singular, or more simply singular,
in symbols µ ⊥ ν, if there exist two disjoint sets A and B whose
union is X , such that, for every measurable set E ,

A ∩ E and B ∩ E are measurable;
|µ|(A ∩ E ) = |ν|(B ∩ E ) = 0.

Sometimes, despite the symmetry of the relation, we use an
asymmetric expression, such as “ν is singular with respect to µ”,
instead of “µ and ν are singular”.
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General Set Functions Absolute Continuity

The Modulo µ Notation

In the discussion of absolute continuity and singularity we have to
deal with several measures simultaneously.

In such contexts, the following notation is useful.

Let (X ,S) be a measurable space.

Let π(x) be a proposition concerning each point x of X .

Let µ be a signed measure on S.

The symbol
π(x) [µ] or π [µ]

will mean that π(x) is true for almost every x with respect to the
measure |µ|.

Example: If f and g are two functions on X , we write f = g [µ] for
the statement that {x : f (x) 6= g(x)} is a measurable set of measure
zero with respect to |µ|.

The symbol [µ] may be read as “modulo µ”.
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Subsection 4

The Radon-Nikodym Theorem
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General Set Functions The Radon-Nikodym Theorem

Absolute Continuity and Signed Measures

Theorem

If µ and ν are totally finite measures such that ν ≪ µ and ν is not
identically zero, then there exists a positive number ǫ and a measurable set
A, such that µ(A) > 0 and such that A is a positive set for the signed
measure ν − ǫµ.

Let X = An ∪ Bn be a Hahn decomposition with respect to the signed
measure ν − 1

n
µ, n = 1, 2, . . .. Write A0 =

⋃

∞

n=1 An B0 =
⋂

∞

n=1 Bn.
Since B0 ⊆ Bn, we have 0 ≤ ν(B0) ≤

1
n
µ(B0), n = 1, 2, . . ..

Consequently, ν(B0) = 0. It follows that ν(A0) > 0. Therefore, by
absolute continuity, µ(A0) > 0. Hence, we must have µ(An) > 0, for
at least one value of n. If, for such a value of n, we write A = An and
ǫ = 1

n
, the requirements of the theorem are all satisfied.
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General Set Functions The Radon-Nikodym Theorem

The Radon-Nikodym Theorem

Theorem (The Radon-Nikodym Theorem)

If (X ,S , µ) is a totally σ-finite measure space and if a σ-finite signed
measure ν on S is absolutely continuous with respect to µ, then there
exists a finite valued measurable function f on X , such that

ν(E ) =

∫

E

fdµ, for every measurable set E .

The function f is unique in the sense that, if also ν(E ) =
∫

E
gdµ, for

E ∈ S , then f = g [µ].

We emphasize the fact that f is not asserted to be integrable.
It is, in fact, clear that a necessary and sufficient condition that f be
integrable is that ν be finite.
The use of the symbol

∫

fdµ implicitly asserts that either the positive
or the negative part of f is integrable, corresponding to the fact that
either the upper or the lower variation of ν is finite.
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General Set Functions The Radon-Nikodym Theorem

Proof of the Radon-Nikodym Theorem (Reductions)

Since X is a countable, disjoint union of measurable sets on which
both µ and ν are finite, there is no loss of generality in assuming
finiteness in the first place.

For uniqueness, assume
∫

E
fdµ =

∫

E
gdµ, for every measurable E .

Then
∫

E
(f − g)dµ = 0, for every measurable E . By a result on

integrable functions, f − g = 0 [µ], i.e., f = g [µ].

Recall, by the characterization of absolute continuity, that the
assumption ν ≪ µ is equivalent to the simultaneous validity of the
conditions ν+ ≪ µ and ν− ≪ µ. It is sufficient to prove the existence
of f in the case in which both µ and ν are finite measures. We would
then have

ν(E ) = ν+(E )− ν−(E ) =

∫

E

f1dµ−

∫

E

f2dµ =

∫

E

(f1 − f2)fdµ.
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General Set Functions The Radon-Nikodym Theorem

Proof of the Radon-Nikodym Theorem

Let K be the class of all non negative functions f , integrable with
respect to µ, such that

∫

E
fdµ ≤ ν(E ), for every measurable set E .

Set α = sup {
∫

fdµ : f ∈ K}.

Let {fn} be a sequence of functions in K, such that limn

∫

fndµ = α.

Let E be measurable, n a positive integer, and gn = f1 ∪ · · · ∪ fn.

Then E may be written as a finite, disjoint union of measurable sets,
E = E1 ∪ · · · ∪ En, so that gn(x) = fj(x), for x in Ej , j = 1, . . . , n.

Consequently we have

∫

E

gndµ =

n
∑

j=1

∫

Ej

fjdµ ≤
n

∑

j=1

ν(Ej ) = ν(E ).

Write f0(x) = sup {fn(x) : n = 1, 2, . . .}. Then f0(x) = limn gn(x).

It follows by an integration theorem that f0 ∈ K and
∫

f0dµ = α.

Since f0 is integrable, there exists a finite valued f , with f0 = f [µ].
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General Set Functions The Radon-Nikodym Theorem

Proof of the Radon-Nikodym Theorem (Cont’d)

Claim: If ν0(E ) = ν(E )−
∫

E
fdµ, the measure ν0 is identically zero.

Suppose ν0 is not identically zero.

By the first theorem, there exists ǫ > 0 and a measurable A, such
that µ(A) > 0 and, for every measurable E ,

ǫµ(E ∩ A) ≤ ν0(E ∩ A) = ν(E ∩ A)−

∫

E∩A

fdµ.

If g = f + ǫχA, then, for every measurable E ,
∫

E

gdµ =

∫

E

fdµ+ ǫµ(E ∩ A) ≤

∫

E−A

fdµ+ ν(E ∩ A) ≤ ν(E ).

Hence, g ∈ K.

But
∫

gdµ =
∫

fdµ+ ǫµ(A) > α.

This contradicts the maximality of
∫

fdµ.
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Subsection 5

Derivatives of Signed Measures
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The Radon-Nikodym Derivative

The functions which occur as integrands in the Radon-Nikodym
theorem are called Radon-Nikodym derivatives.

If µ is a totally σ-finite measure and if ν(E ) =
∫

E
fdµ, for every

measurable set E , we write

f =
dν

dµ
or dν = fdµ.
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General Set Functions Derivatives of Signed Measures

Properties of the Radon-Nikodym Derivative

All the properties of Radon-Nikodym derivatives, suggested by the
well known differential formalism, correspond to true theorems.

Some of these are trivial, e.g. d(ν1+ν2)
dµ

= dν1
dµ

+ dν2
dµ

.

Others are more or less deep properties of integration:

The chain rule for differentiation;

The substitution rule for the differentials occurring under an integral

sign.

A Radon-Nikodym derivative dν
dµ

is unique only a.e. with respect to µ.

Therefore, differential formulas will be interpreted to hold “almost
everywhere”.
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The Chain Rule

Theorem

If λ and µ are totally σ-finite measures, such that µ ≪ λ, and if ν is a
totally σ-finite signed measure, such that ν ≪ µ, then

dν

dλ
=

dν

dµ

dµ

dλ
[λ].

The validity of the desired equation for the upper and lower variations
of ν implies its validity for ν. So we may assume that ν is a measure.

Set dν
dµ

= f and dµ
dλ

= g .

Since ν is nonnegative, f ≥ 0 [µ]. Therefore, there is no loss of
generality in assuming that f is everywhere non negative.
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The Chain Rule (Cont’d)

By measurability of f , there exists an increasing sequence {fn} of
nonnegative simple functions converging at every point to f .

By properties of integration, for every measurable set E ,

limn

∫

E
fndµ =

∫

E
fdµ;

limn

∫

E
fngdλ =

∫

E
fgdλ.

But, for every measurable set F ,

∫

E

χFdµ = µ(E ∩ F ) =

∫

E∩F

gdλ =

∫

E

χFgdλ.

Since {fn} consists of simple functions, it follows that

∫

E

fndµ =

∫

E

fngdλ, n = 1, 2, . . . .

Hence, ν(E ) =
∫

E
fdµ =

∫

E
fgdλ.
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Integrals and Derivatives

Theorem

If λ and µ are totally σ-finite measures such that µ ≪ λ, and if f is a
finite valued measurable function for which

∫

fdµ is defined, then

∫

fdµ =

∫

f
dµ

dλ
dλ.

Write ν(E ) =
∫

E
fdµ, for every measurable set E .

Applying the preceding theorem, we get

ν(E ) =

∫

E

f
dµ

dλ
dλ, for every measurable set E .

The desired result follows by putting E = X .
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Lebesgue Decomposition Theorem

Theorem (Lebesgue Decomposition)

If (X ,S) is a measurable space and µ and ν are totally σ-finite signed
measures on S , then there exist two uniquely determined totally σ-finite
signed measures ν0 and ν1 whose sum is ν, such that ν0 ⊥ µ and ν1 ≪ µ.

As usual we may assume that µ and v are finite.

Since νi , i = 0, 1, will be absolutely continuous or singular with
respect to µ according as it is absolutely continuous or singular with
respect to |µ|, we may assume that µ is a measure.

Since, finally, we may treat ν+ and ν− separately, we may also
assume that ν is a measure.

The proof of the theorem for totally finite measures is a useful trick,
based on the elementary observation that ν is absolutely continuous
with respect to µ+ ν.
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Proof of the Decomposition Theorem (Existence)

Since ν ≪ µ+ ν, there exists measurable f , such that

ν(E ) =

∫

E

fdµ+

∫

E

fdν, for every measurable set E .

Since 0 ≤ ν(E ) ≤ µ(E ) + ν(E ), we have 0 ≤ f ≤ 1 [µ+ ν].

Therefore, 0 ≤ f ≤ 1 [ν]. Set

A = {x : f (x) = 1} and B = {x : 0 ≤ f (x) < 1}.

Then ν(A) =
∫

A
dµ+

∫

A
dν = µ(A) + ν(A).

Since ν is finite, µ(A) = 0.

Set, for every measurable set E ,

ν0(E ) = ν(E ∩ A) and ν1(E ) = ν(E ∩ B).

Then ν0 ⊥ µ. It remains to prove that ν1 ≪ µ.

If µ(E ) = 0, then
∫

E∩B
dν = ν(E ∩ B) =

∫

E∩B
fdν and, therefore,

∫

E∩B
(1− f )dν = 0. Since 1− f > 0 [ν], ν1(E ) = ν(E ∩ B) = 0.
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Proof of the Decomposition Theorem (Uniqueness)

Suppose
ν = ν0 + ν1 and ν = ν0 + ν1

are two Lebesgue decompositions of ν.

Then ν0 − ν0 = ν1 − ν1.

But:

v0 − ν0 is singular with respect to µ;
ν1 − ν1 is absolutely continuous with respect to µ.

Therefore, ν0 = ν0 and ν1 = ν1.
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