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Product Spaces Cartesian Products

Cartesian Products

If X and Y are any two sets (not necessarily subsets of the same
space), the Cartesian product X × Y is the set of all ordered pairs
(x , y), where x ∈ X and y ∈ Y .

Example: The Euclidean plane is most often viewed as the Cartesian
product of two coordinate axes.

If A ⊆ X and B ⊆ Y , we call the set E = A× B (a subset of X × Y )
a rectangle and refer to the component sets A and B as its sides.

Note: This usage differs from the terminology in the Euclidean plane
which speaks of rectangles only if the sides are intervals.
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Product Spaces Cartesian Products

Empty Rectangles

Theorem

A rectangle is empty if and only if one of its sides is empty.

Suppose A× B 6= ∅, say (x , y) ∈ A× B .

Then x ∈ A and y ∈ B . So A 6= ∅ and B 6= ∅.

Suppose, on the other hand, neither A nor B is empty.

Then there is a point (x , y), such that (x , y) ∈ A× B .

Thus, A× B 6= ∅.
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Product Spaces Cartesian Products

Comparing Rectangles Using Their Sides

Theorem

If E1 = A1 × B1, and E2 = A2 × B2 are non empty rectangles, then
E1 ⊆ E2 if and only if A1 ⊆ A2 and B1 ⊆ B2.

The “if” is obvious.

Conversely, since E1 6= ∅, there exists (x , y) ∈ A1 × B1.

Suppose that there exists a point x1 ∈ A1 such that x1 6∈ A2.

Then (x1, y) ∈ A1 × B1 and (x1, y) 6∈ A2 × B2.

It follows that no such point x1 can exist. So A1 ⊆ A2.

The same proof with only notational changes shows that B1 ⊆ B2.

Theorem

If A1 × B1 = A2 × B2 is a non empty rectangle, then A1 = A2 and
B1 = B2.

By the theorem, A1 ⊆ A2 ⊆ A1 and B1 ⊆ B2 ⊆ B1.
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Product Spaces Cartesian Products

Disjointness of Rectangles

Theorem

If E = A× B , E1 = A1 × B1 and E2 = A2 × B2 are non empty rectangles,
then a necessary and sufficient condition that E be the disjoint union of E1

and E2 is that either A is the disjoint union of A1 and A2 and
B = B1 = B2, or else B is the disjoint union of B1 and B2 and
A = A1 = A2.

Necessity: Since E1 ⊆ E and E2 ⊆ E , it follows from the preceding
theorem that A1 ⊆ A and A2 ⊆ A, and, therefore, that A1 ∪ A2 ⊆ A.
Similarly, B1 ∪ B2 ⊆ B . Since E1 ∪ E2 ⊆ (A1 ∪ A2)× (B1 ∪ B2), it
follows that A ⊆ A1 ∪ A2 and B ⊆ B1 ∪ B2, and, therefore,
A = A1 ∪ A2 and B = B1 ∪ B2.

A similar argument shows that ∅ = E1 ∩ E2 ⊇ (A1 ∩ A2)× (B1 ∩ B2).

By the first theorem at least one of the two sets A1 ∩ A2 and B1 ∩ B2

is empty.
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Product Spaces Cartesian Products

Proof (Cont’d)

Suppose, for instance, that A1 ∩ A2 = ∅. We are to show that in this
case B = B1 = B2. Suppose that there exists a point y in B − B1.
Then, if x is any point in A1, we have (x , y) ∈ E , but (x , y) 6∈ E1,
and (x , y) 6∈ E2. Since this contradicts the assumption E = E1 ∪ E2,
it follows that B − B1 = ∅. By a similar argument, B − B2 = ∅.

Sufficiency: If, for instance, A is the disjoint union of A1 and A2 and
B = B1 = B2, then A ⊇ A1, A ⊇ A2, B ⊇ B1 and B ⊇ B2, so that
E ⊇ E1 ∪ E2. Also, if (x , y) ∈ E , then (x , y) ∈ E1 or (x , y) ∈ E2

according as x ∈ A1 or x ∈ A2, so that E is indeed the disjoint union
of E1 and E2.
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Product Spaces Cartesian Products

Finite Disjoint Unions of Rectangles

Theorem

If S and T are rings of subsets of X and Y respectively, then the class R

of all finite, disjoint unions of rectangles of the form A× B , where A ∈ S

and B ∈ T , is a ring.

The intersection of two sets of the form A× B is a set of that form.

If either of the two given sets, or their intersection, is empty, this
result is trivial.

Suppose E1 = A1 × B1, E2 = A2 × B2 and (x , y) ∈ E1 ∩ E2. Then
x ∈ A1 ∩ A2 and y ∈ B1 ∩ B2. So E1 ∩ E2 ⊆ (A1 ∩ A2)× (B1 ∩ B2).

On the other hand, by the second theorem, (A1 ∩ A2)× (B1 ∩ B2) is
contained in E1 and E2 and, therefore, in E1 ∩ E2. So E1 ∩ E2 =
(A1 ∩ A2)× (B1 ∩ B2). Since S and T are rings, A1 ∩ A2 ∈ S and
B1 ∩B2 ∈ T . It follows that the class R is closed under the formation
of finite intersections.
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Product Spaces Cartesian Products

Finite Disjoint Unions of Rectangles (Cont’d)

Note that

(A1 × B1)− (A2 × B2)
= [(A1 ∩ A2)× (B1 − B2)] ∪ [(A1 − A2)× B1].

So the difference of two sets of the given form is a disjoint union of
two other sets of that form.

Also note that

n
⋃

i=1

Ei −
m
⋃

j=1

Fj =

n
⋃

i=1

m
⋂

j=1

(Ei − Fj).

It follows, using the result of the preceding paragraph, that the class
R is closed under the formation of differences.

Since R is obviously closed under the formation of finite, disjoint
unions, the proof is complete.
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Product Spaces Cartesian Products

Cartesian Product of Measurable Spaces

Suppose that, in addition to the two sets X and Y , we are also given
two σ-rings S and T of subsets of X and Y , respectively.

We shall denote by S ×T the σ-ring of subsets of X × Y generated
by the class of all sets of the form A× B , where A ∈ S and B ∈ T .

Theorem

If (X ,S) and (Y ,T ) are measurable spaces, then (X × Y ,S × T ) is a
measurable space.

The measurable space (X × Y ,S × T ) is the Cartesian product of
the two given measurable spaces.

If (x , y) ∈ X × Y , then there exist sets A and B such that x ∈ A ∈ S

and y ∈ B ∈ T . It follows that (x , y) ∈ A× B ∈ S × T .

We have used (and will use) the fact that a measurable space is the
union of its measurable sets.
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Product Spaces Cartesian Products

Measurable Sets in Cartesian Product

We shall frequently use the concept of measurable rectangle.

Two equally obvious and natural definitions of this phrase suggest
themselves.

According to one, a rectangle in the Cartesian product of two
measurable spaces (X ,S) and (Y ,T ) is measurable if it belongs to
S × T .
According to the other, A× B is measurable if A ∈ S and B ∈ T .

It is an easy consequence of the results we shall obtain that for non
empty rectangles the two concepts coincide.

For the time being we adopt the second of our proposed definitions.

Accordingly, the class of measurable sets in the Cartesian product

of two measurable spaces is the σ-ring generated by the class of all
measurable rectangles.
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Product Spaces Sections

Subsection 2

Sections
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Product Spaces Sections

Sections (Sets)

Let (X ,S) and (Y ,T ) be measurable spaces and let (X × Y ,S × T )
be their Cartesian product.

If E is any subset of X × Y and x is any point of X , we shall call the
set

Ex = {y : (x , y) ∈ E}

a section of E , or, more precisely, the section determined by x , or
simply an X -section.

A Y -section determined by a point y in Y is defined as the set

E y = {x : (x , y) ∈ E}.

We emphasize that a section of a set in a product space is not a set
in that product space but a subset of one of the component spaces.
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Product Spaces Sections

Sections (Functions)

Let (X ,S) and (Y ,T ) be measurable spaces and let (X × Y ,S × T )
be their Cartesian product.

If f is any function defined on a subset E of the product space X ×Y

and x is any point of X , we shall call the function fx , defined on the
section Ex by

fx(y) = f (x , y),

a section of f , or, more precisely, an X -section of f , or, still more
precisely, the section determined by x .

The concept of a Y -section of f , determined by a point y in Y is
defined similarly by

f y (x) = f (x , y).
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Product Spaces Sections

Measurability of Sections of Measurable Sets

Theorem

Every section of a measurable set is a measurable set.

Let E be the class of all those subsets of X × Y which have the
property that each of their sections is measurable.

Every measurable rectangle A× B is in E : Observe that every section
of E is either empty or else equal to one of the sides, A or B, according
as the section is a Y -section or an X -section.
E is a σ-ring:

Given E ,F ∈ E , (E − F )x = Ex − Fx , and similarly for Y -sections.
Thus, E − F ∈ E .
Given {E i}∞i=1 ⊆ E , (

⋃
∞

i=1 E
i)x =

⋃
∞

i=1 E
i
x , and similarly for y sections.

Thus,
⋃

∞

i=1 E
i ∈ E .

So E is a σ-ring containing all measurable rectangles.

It follows that S × T ⊆ E .
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Product Spaces Sections

Measurability of Sections of Measurable Functions

Theorem

Every section of a measurable function is a measurable function.

Let f be a measurable function on X × Y , x a point of X , and M a
Borel set on the real line.

The measurability of N(fx ) ∩ f −1
x (M) follows from the preceding

theorem and the following relations:

f −1
x (M) = {y : fx(y) ∈ M}

= {y : f (x , y) ∈ M}
= {y : (x , y) ∈ f −1(M)}
= (f −1(M))x .

(Observe that N(fx) = (N(f ))x .)

The proof of the measurability of an arbitrary Y -section of f is similar.
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Product Spaces Product Measures

Subsection 3

Product Measures
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Product Spaces Product Measures

Integrating Sections

Theorem

If (X ,S , µ) and (Y ,T , ν) are σ-finite measure spaces, and if E is any
measurable subset of X × Y , then the functions f and g , defined on X

and Y , respectively, by f (x) = ν(Ex) and g(y) = µ(E y ) are nonnegative
measurable functions such that

∫

fdµ =
∫

gdν.

Let M be the class of all those sets E for which the conclusion of the
theorem is true. The proof involves many steps:

Show the result holds for finite measures.

Show that M includes the ring R of all finite disjoint unions of
rectangles of the form A× B, with A ∈ S and B ∈ T ;
Show that M is a monotone class.

Since the class of measurable sets is the σ-ring generated by the ring
R, conclude that every measurable set is in M.
Extend the result to σ-finite measures.
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Product Spaces Product Measures

Integrating Sections (R ⊆ M)

Suppose A× B is a measurable rectangle.

Note that

f (x) = ν((A× B)x) = ν(B)χA(x);
g(y) = µ((A× B)y) = µ(A)χB(y).

Thus, f and g are measurable.

Moreover,
∫

fdµ = µ(A)ν(B) =
∫

gdν.

Suppose, next, that
⋃n

i=1(A
i × B i) is a finite disjoint union of

measurable rectangles.

Note that

f (x) = ν((
⋃n

i=1(A
i × B i))x) = ν(

⋃n
i=1((A

i × B i)x))
=

∑n
i=1 ν((A

i × B i)x) =
∑n

i=1 ν(B
i)χAi (x);

g(y) =
∑n

i=1 µ(A
i)χB i (y).

Thus, f and g are measurable.

Moreover,
∫

fdµ =
∑n

i=1 µ(A
i)ν(B i ) =

∫

gdν.
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Product Spaces Product Measures

Integrating Sections (Monotonicity of M)

Suppose that {E i} is an increasing sequence of sets in M .

Then limn E
i =

⋃

i E
i . We must show E =

⋃

i E
i ∈ M.

Let fi and gi be the functions associated with E i and let f and g be
the ones associates with E .

limn fn = f : We have:

f (x) = ν((
⋃

i E
i)x) = ν(

⋃

i E
i
x) = ν(

⋃

i (E
i+1
x − E i

x))
=

∑

∞

i=1(ν(E
i+1
x )− ν(E i

x)) = limn ν(E
n
x ) = limn fn(x).

|fn(x)| ≤ ν(B): This is clear, since |fn(x)| = |ν(E n
x )| ≤ ν(B).

By the Bounded Convergence Theorem, f is integrable.

Analogously, we get that g is integrable.

Finally, noting that {fn} and {gn} are increasing, nonnegative, with
limn fn = f and limn gn = g , by the Monotone Convergence Theorem,

∫

fdµ =
∫

(limn fn)dµ = limn

∫

fndµ

= limn

∫

gndν =
∫

(limn gn)dν =
∫

gdν.
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Product Spaces Product Measures

Integrating Sections (General Case: Sketch)

We note that M is closed under the formation of countable, disjoint
unions.

Then, observe that the σ-finiteness of µ and ν implies that every set
in S × T may be covered by a countable disjoint union of measurable
rectangles, both sides of each of which have finite measure.

We have showed that every measurable subset of every measurable
rectangle with sides of finite measure belongs to M.

It now follows that every measurable set belongs to M .

This concludes the proof of the theorem.
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Product Spaces Product Measures

Product Measures and Product Spaces

Theorem

If (X ,S , µ) and (Y ,T , ν) are σ-finite measure spaces, then the set
function λ, defined, for every set E in S × T , by

λ(E ) =

∫

ν(Ex)dµ(x) =

∫

µ(E y )dν(y),

is a σ-finite measure with the property that, for every measurable
rectangle A× B , λ(A× B) = µ(A) · ν(B).
The latter condition determines λ uniquely.

The measure λ is called the product of the given measures µ and ν,
in symbols λ = µ× ν.

The measure space (X × Y ,S × T , µ× ν) is the Cartesian product

of the given measure spaces.
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Product Spaces Product Measures

Product Measures (Proof)

λ is a measure:

λ(∅) =
∫

ν(∅x)f µ =
∫

0dµ = 0.
For disjoint measurable {E i}, taking into account the Monotone
Convergence Theorem:

λ(
⋃

i E
i) =

∫

ν((
⋃

i E
i)x)dµ =

∫

ν(
⋃

i E
i
x)dµ

=
∫
∑

i ν(E
i
x)dµ =

∫

limn

∑n

i=1 ν(E
i
x)dµ

= limn

∫
∑n

i=1 ν(E
i
x)dµ

= limn

∑n

i=1

∫

ν(E i
x)dµ

=
∑

n λ(E
i ).

The σ-finiteness of λ follows from the fact that every measurable
subset of X × Y may be covered by countably many measurable
rectangles of finite measure.

Uniqueness is given by the Extension Theorem of a σ-finite measure
on a ring R to a measure on the σ-ring S(R) generated by R.
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Product Spaces Fubini’s Theorem

Subsection 4

Fubini’s Theorem
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Product Spaces Fubini’s Theorem

Double Integrals

We assume that (X ,S , µ) and (Y ,T , ν) are σ-finite measure spaces
and λ is the product measure µ× ν on S × T .

If a function h on X × Y is such that its integral is defined, then the
integral is denoted by

∫

h(x , y)dλ(x , y) or

∫

h(x , y)d(µ × ν)(x , y)

and is called the double integral of h.
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Product Spaces Fubini’s Theorem

Iterated Integrals

If hx is such that
∫

hx(y)dν(y) = f (x) is defined, and if it happens
that

∫

fdµ is also defined, it is customary to write

∫

fdµ =

∫∫

h(x , y)dν(y)dµ(x) =

∫

dµ(x)

∫

h(x , y)dν(y).

The symbols

∫∫

h(x , y)dµ(x)dν(y) and

∫

dν(y)

∫

h(x , y)dµ(x)

are defined similarly, as the integral (if it exists) of the function g on
Y , defined by g(y) =

∫

hy(x)dµ(x).

The integrals
∫∫

hdµdν and
∫∫

hdνdµ are called the iterated

integrals of h.
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Product Spaces Fubini’s Theorem

Double and Iterated Integrals over a Set

To indicate the double integral of h over a measurable subset E of
X × Y , i.e., the integral of χEh, we write

∫

E

hdλ.

To indicate the iterated integrals of h over a measurable subset E of
X × Y , i.e., the integrals of χEh, we shall use the symbols

∫∫

E

hdµdν and

∫∫

E

hdνdµ.
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Product Spaces Fubini’s Theorem

“Almost Every Section”

X -sections (of sets or functions) are determined by points in X .

We say a proposition is true for almost every X -section if the set of
those points x for which the proposition is not true is a set of
measure zero in X .

Y -sections (of sets or functions) are determined by points in Y .

We say a proposition is true for almost every Y -section if the set of
those points y for which the proposition is not true is a set of
measure zero in Y .

If a proposition is true simultaneously for a.e. X -section and a.e.
Y -section, we say that it is true for almost every section.
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Product Spaces Fubini’s Theorem

Vanishing Almost Everywhere

Theorem

A necessary and sufficient condition that a measurable subset E of X × Y

have measure zero is that almost every X -section (or almost every
Y -section) have measure zero.

By the definition of product measure,

λ(E ) =

{ ∫

ν(Ex)dµ(x)
∫

µ(E y )dν(y)
.

If λ(E ) = 0, then the integrals on the right are in particular finite.
Thus, by a theorem on integrable functions, their non negative
integrands must vanish a.e..

If, conversely, either of the integrands vanishes a.e., then λ(E ) = 0.
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Product Spaces Fubini’s Theorem

Double and Iterated Integrals

Theorem

If h is a non negative, measurable function on X × Y , then

∫

hd(µ× ν) =

∫∫

hdµdν =

∫∫

hdνdµ.

Suppose, first, h = χE (x , y) for a measurable set E .

∫

h(x , y)dν(y) =
∫

χE (x , y)dν(y) = ν(Ex);
∫

h(x , y)dµ(x) =
∫

χE (x , y)dµ(x) = µ(E y ).

Therefore,

∫

h(x , y)dλ(x , y) =

{ ∫

ν(Ex)dµ(x)
∫

µ(E y )dν(y)

}

=

{ ∫∫

h(x , y)dνdµ
∫∫

h(x , y)dµdν
.
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Product Spaces Fubini’s Theorem

Double and Iterated Integrals (General Case)

In the general case we may find an increasing sequence {hn} of non
negative simple functions converging to h everywhere.

Since a simple function is a finite linear combination of characteristic
functions, the conclusion is valid for every hn in place of h,

i.e.,
∫

hnd(µ× ν) =
∫∫

hndµdν =
∫∫

hndνdµ.

By Monotone Convergence, limn

∫

hndλ =
∫

hdλ.
Suppose fn(x) =

∫

hn(x , y)dν(y). By the properties of {hn}, {fn} is an
increasing sequence of non negative measurable functions converging,
for every x , to f (x) =

∫

h(x , y)dν(y). Hence f is measurable (and
nonnegative). By Monotone Convergence, limn

∫

fndµ =
∫

fdµ.

Thus,
∫

hdλ =
∫∫

hdνdµ.

The truth of the other equality follows similarly.
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Product Spaces Fubini’s Theorem

Fubini’s Theorem

Theorem (Fubini’s Theorem)

If h is an integrable function on X × Y , then almost every section of h is
integrable. If the functions f and g are defined by

f (x) =

∫

h(x , y)dν(y) and g(y) =

∫

h(x , y)dµ(x),

then f and g are integrable and
∫

hd(µ× ν) =
∫

fdµ =
∫

gdν.

A real valued function is integrable if and only if its positive and
negative parts are integrable.

So it is sufficient to consider only nonnegative functions h.

The asserted identity follows in this case from the preceding theorem.

Since the nonnegative, measurable functions f and g have finite
integrals, it follows that they are integrable.

This implies that f and g are finite valued almost everywhere.

Thus, the sections of h have the desired integrability properties.
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