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Structures
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Structures and Formulas Structures

Structures

Definition

A structure A is an object with the following four ingredients:

1. A set called the domain of A, written dom(A) or domA (also called
the universe or carrier of A). The elements of dom(A) are called the
elements of the structure A. The cardinality of A, in symbols |A|, is
defined to be the cardinality |domA| of dom(A).

2. A set of elements of A, called constant elements, each of which is
named by one or more constants. If c is a constant, we write cA for
the constant element named by c .

3. For each positive integer n, a set of n-ary relations on dom(A) (i.e.,
subsets of (domA)n), each of which is named by one or more n-ary
relation symbols. If R is a relation symbol, we write RA for the
relation named by R .
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Structures and Formulas Structures

Structures (Cont’d)

Definition (Cont’d)

4. For each positive integer n, a set of n-ary operations on dom(A) (i.e.,
maps from (domA)n to dom(A)), each of which is named by one or
more n-ary function symbols. If F is a function symbol, we write FA

for the function named by F .

Any of the sets in 1-4 may be empty, unless stated otherwise.

We shall use capital letters A,B ,C , . . . for structures.

Sequences of elements of a structure are written a,b etc.

A tuple in A (or from A) is a finite sequence of elements of A.

It is an n-tuple if it has length n.
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Structures and Formulas Structures

Example: Graphs

A graph consists of a set V (the set of vertices) and a set E (the set
of edges), where each edge is a set of two distinct vertices.

An edge {v ,w } is said to join the two vertices v and w .

We can picture a finite graph by putting
dots for the vertices and joining two
vertices v ,w by a line when {v ,w } is an
edge.

One natural way to make a graph G into a structure is as follows:

The elements of G are the vertices.
There is one binary relation RG . The ordered pair (v ,w) lies in RG if
and only if there is an edge joining v to w .
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Structures and Formulas Structures

Examples: Linear Orderings and Groups

Linear orderings: Suppose ≤ linearly orders a set X . Then we can
make (X ,≤) into a structure A as follows:

The domain of A is the set X .
There is one binary relation symbol R , and its interpretation RA is the
ordering ≤.

In practice we usually write the relation symbol as ≤ rather than R .

Groups: We can think of a group as a structure G with:

One constant 1 naming the identity 1G ;
One binary function symbol · naming the group product operation ·G ;

One unary function symbol −1 naming the inverse operation (−1)G .

Another group H will have the same symbols 1, ·,−1.

Then 1H is the identity element of H, ·H is the product operation of
H, and so on.
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Structures and Formulas Structures

Example: Vector Spaces

One way to make a vector space into a structure is as follows:

Suppose V is a vector space over a field of scalars K .

Take the domain of V to be the set of vectors of V .
There is one constant element 0V , the origin of the vector space.
There is one binary operation, +V , which is addition of vectors.
There is a unary operation −V for additive inverse.
For every scalar k , there is a unary operation kV to represent
multiplying a vector by k .

Thus, each scalar serves as a unary function symbol.

Note, the symbol “−” is redundant, because −V is the same operation
as (−1)V .

When we speak of vector spaces, we shall assume that they are
structures of this form (unless the contrary is explicitly stated).

The same goes for modules, replacing the field K by a ring.
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Structures and Formulas Structures

Signatures

The signature of a structure A is specified by giving:

The set of constants of A;
For each separate n> 0,

The set of n-ary relation symbols;

The set of n-ary function symbols of A.

We assume that the signature of a structure can be read off uniquely
from the structure.

The symbol L will be used to stand for signatures.

If A has signature L, we say A is an L-structure.

A signature L with no constants or function symbols is called a
relational signature, and an L-structure is then said to be a
relational structure.

A signature with no relation symbols is sometimes called an algebraic
signature.
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Structures and Formulas Homomorphisms and Substructures

Subsection 2

Homomorphisms and Substructures
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Structures and Formulas Homomorphisms and Substructures

Homomorphisms, Embeddings and Isomorphisms

Let L be a signature andA,B be L-structures.

A homomorphism f from A to B , written f :A→B , is a function f
from dom(A) to dom(B), with the following properties:

1. For each constant c of L, f (cA)= cB ;
2. For each n> 0, each n-ary relation symbol R of L and n-tuple a from

A, if a ∈RA, then f (a) ∈RB ;
3. For each n> 0, each n-ary function symbol F of L and n-tuple a from

A, f (FA(a))=FB (f (a)).

If a is (a0, . . . ,an−1), then f (a) means (f (a0), . . . , f (an−1)).

By an embedding of A into B we mean a homomorphism f :A→B
which is injective and satisfies the following stronger version of 2:

4. For each n> 0, each n-ary relation symbol R of L and each n-tuple a

from A, a ∈RA if and only if f (a) ∈RB .

An isomorphism is a surjective embedding.
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Structures and Formulas Homomorphisms and Substructures

Endomorphisms, Automorphisms, Isomorphic Structures

Homomorphisms f :A→A are called endomorphisms of A.

Isomorphisms f :A→A are called automorphisms of A.

Example: If G and H are groups and f :G →H is a homomorphism,
then:

Property 1 says that f (1G )= 1H ;
Property 3 says that, for all elements a,b of G , f (a ·G b)= f (a) ·H f (b)

and f (a(−1)G )= f (a)(−1)H .

This is exactly the usual definition of homomorphism between groups.

Since Property 4 is vacuous for groups, a homomorphism between
groups is an embedding iff it is an injective homomorphism.

We write 1A for the identity map on dom(A).

It is a homomorphism from A to A, in fact an automorphism of A.

We say that A is isomorphic to B , written A∼=B , if there is an
isomorphism from A to B .
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Structures and Formulas Homomorphisms and Substructures

Elementary Properties of Homomorphisms

The following facts are nearly all immediate from the definitions.

Theorem

Let L be a signature.

(a) If A,B ,C are L-structures and f :A→B and g :B →C are homomorphisms,
then the composition gf is a homomorphism from A to C . If moreover f
and g are both embeddings, then so is gf .

(b) If A,B are L-structures and f :A→B is a homomorphism, 1B f = f = f 1A.

(c) Let A,B ,C be L-structures. Then 1A is an isomorphism. If f :A→B is an
isomorphism, the inverse f −1 : dom(B)→ dom(A) exists and is an iso from B

to A. If f :A→B and g :B →C are isomorphisms then so is gf .

(d) The relation ∼= is an equivalence relation on the class of L-structures.

(e) If A,B are L-structures, f :A→B is a homomorphism and there exist
homomorphisms g :B →A and h :B →A, such that gf = 1A and fh= 1B ,
then f is an isomorphism and g = h= f −1.
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Structures and Formulas Homomorphisms and Substructures

Proof of (e)

(e) We have
g = g1B = gfh = 1Ah = h.

Since gf = 1A, f is an embedding.

Since fh= 1B , f is surjective.

Hence, f is an isomorphism, with g = h= f −1.
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Structures and Formulas Homomorphisms and Substructures

Extensions and Substructures

If A and B are L-structures with dom(A)⊆ dom(B) and the inclusion
map i : dom(A)→ dom(B) is an embedding, then we say that:

B is an extension of A;
A is a substructure of B.

We write A⊆B .

Note that if i is the inclusion map from dom(A) to dom(B), then:

Condition 1 says that cA = cB , for each constant c ;
Condition 2 says that

RA
=RB

∩ (domA)n ,

for each n-ary relation symbol R ;
Condition 3 says that

FA
= FB

|(domA)n (the restriction of FB to (domA)n),

for each n-ary function symbol F .
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Structures and Formulas Homomorphisms and Substructures

Subsets Forming Domains of Substructures

Lemma

Let B be an L-structure and X a subset of dom(B). Then the following are
equivalent:

(a) X = dom(A), for some A⊆B .

(b) For every constant c of L, cB ∈X ; and for every n > 0, every n-ary
function symbol F of L and every n-tuple a of elements of X ,
FB(a) ∈X .

If (a) and (b) hold, then A is uniquely determined.

Suppose (a) holds. Then, for every constant c of L, cB = cA. But
cA ∈ dom(A)=X . So cB ∈X . Similarly, for each n-ary function
symbol F of L and each n-tuple a of elements of X , a is an n-tuple in
A. So FB(a)= FA(a) ∈ dom(A)=X . This proves (b).
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Structures and Formulas Homomorphisms and Substructures

Subsets Forming Domains of Substructures (Cont’d)

Conversely, if (b) holds, then we can define A by putting:

dom(A)=X ;
cA = cB , for each constant c of L;
FA =FB |X n , for each n-ary function symbol F of L;
RA =RB ∩X n, for each n-ary relation symbol R of L.

Then A⊆B . Moreover this is the only possible definition of A, given
that A⊆B and dom(A)=X .
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Structures and Formulas Homomorphisms and Substructures

Generated Substructures

Let B be an L-structure and Y a set of elements of B .

It follows from the lemma that there is a unique smallest substructure
A of B whose domain includes Y , called the substructure of B
generated by Y , or the hull of Y in B , in symbols A= 〈Y 〉B .

We call Y a set of generators for A.

A structure B is said to be finitely generated if B is of form 〈Y 〉B ,
for some finite set Y of elements.

We write 〈Y 〉 instead of 〈Y 〉B if B is clear from context.

If the generators in Y are listed as a sequence a, then we write 〈a〉B
for 〈Y 〉B .
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Structures and Formulas Homomorphisms and Substructures

Cardinality of Languages

Define the cardinality of L, in symbols |L|, to be the least infinite
cardinal ≥ the number of symbols in L.

We shall see that |L| is equal to the number of first-order formulas of
L, up to choice of variables.

This is one reason why |L| is taken to be infinite even when L contains
only finitely many symbols.

Warning: Occasionally it’s important to know that a signature L

contains only finitely many symbols.

In this case we say that L is finite, in spite of the definition just given
for |L|.
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Structures and Formulas Homomorphisms and Substructures

Cardinality of Generated Structures

Theorem

Let B be an L-structure and Y a set of elements of B . Then
|〈Y 〉B | ≤ |Y |+ |L|.

We shall construct 〈Y 〉B explicitly, thus proving its existence and
uniqueness at the same time. We define a set Ym ⊆ dom(B), for each
m<ω, by induction on m:

Y0 = Y ∪ {cB : c a constant of L},

Ym+1 = Ym∪ {FB (a) : for some n> 0, F is an n-ary function
symbol of L and a is an n-tuple of elements of Ym}.

Finally we put X =
⋃
m<ωYm.

Clearly X satisfies condition (b) of the preceding lemma.

So there is a unique substructure A of B with X = dom(A).
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Structures and Formulas Homomorphisms and Substructures

Cardinality of Generated Structures (Cont’d)

Suppose A′ is a substructure of B with Y ⊆ dom(A′).

Then by induction on m, we see that Ym is included in dom(A′) (by
the implication (a)⇒(b) in the lemma). Hence, X ⊆ dom(A′).

So A is the unique smallest substructure of W whose domain includes
Y , i.e., A= 〈Y 〉B .

Now we estimate the cardinality of A. Put κ= |Y |+ |L|. Clearly
|Y0| ≤ κ. For each fixed n, if Z is a subset of dom(B) of cardinality κ,
then the set

{FB(a) : F is an n-ary function symbol of L and a ∈Z n}

has cardinality at most κ ·κn = κ, since κ is infinite. Hence, if
|Ym| ≤ κ, then |Ym+1| ≤ κ+κ= κ. Thus, by induction on m, each
|Ym| ≤ κ, and so |X | ≤ω ·κ= κ. Since |〈Y 〉B | = |X | by definition, this
proves the theorem.
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Structures and Formulas Homomorphisms and Substructures

Choice of Signature

One and the same mathematical object can be interpreted as a
structure in several different ways:

The same function or relation can be named by different symbols.
We also have some choice about which elements, functions or relations
should be given names at all.

General Principle: Other things being equal, signatures should be
chosen so that the notions of homomorphism and substructure agree
with the usual notions for the relevant branch of mathematics.

Example: In the case of groups:

If the only named operation is the product ·, then the substructures of
a group will be its subsemigroups, closed under · but not necessarily
containing inverses or identity.
If we name · and the identity 1, then the substructures will be the
submonoids.
To ensure that “substructure equals subgroup”, we also need to put in a
symbol for −1.
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Structures and Formulas Homomorphisms and Substructures

Natural Choice of Signature

For some classes of objects there is a natural choice of signature.

For groups the natural choice is to name ·,1 (or e) and −1.
We call this the signature of groups.
We shall always assume (unless otherwise stated) that rings have a 1.
So the natural choice of signature for rings is to name +,−, ·,0 and 1.
We call this the signature of rings.
The signature of partial orderings has just the symbol ≤.
The signature of lattices has just ∧ and ∨.
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Structures and Formulas Homomorphisms and Substructures

Reductions and Expansions

Suppose L− and L+ are signatures, and L− is a subset of L+.

If A is an L+-structure, we can turn A into an L−-structure by simply
forgetting the symbols of L+ which are not in L−.

Remark: We don’t remove any elements of A, though some constant
elements in A may cease to be constant elements in the new structure.

The resulting L−-structure is called the L−-reduct of A or the reduct
of A to L−, in symbols A |L− .

If f :A→B is a homomorphism of L+-structures, then the same map
f is also a homomorphism f :A |L−→B |L− of L−-structures.

When A is an L+-structure and C is its L−-reduct, we say that A is an
expansion of C to L+.

In general C may have many different expansions to L+.
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Structures and Formulas Homomorphisms and Substructures

Notation on Reductions and Expansions

There is a useful but imprecise notation for an expansion A of C .

Suppose the symbols which are in L+ but not in L− are constants c ,d

and a function symbol F .

Then cA, dA are respectively elements a,b of A, and FA is some
operation f on dom(A).

We write A= (C ,a,b, f ) to express that A is an expansion of C got by
adding symbols to name a,b and f .

The notation is imprecise because it does not say what symbols are
used to name a, b and f , respectively.

However, often, the choice of symbols is unimportant or obvious from
the context.
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Subsection 3

Terms and Atomic Formulas
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Structures and Formulas Terms and Atomic Formulas

Variables and Terms

Every language has a stock of variables, symbols written v , x , y , z , t,
x0, x1 etc., one of whose purposes is to serve as temporary labels for
elements of a structure.

Any symbol not already used for something else can be used as a
variable.

The terms of the signature L are strings of symbols defined as follows:

1. Every variable is a term of L;
2. Every constant of L is a term of L;
3. If n> 0, F is an n-ary function symbol of L and t1, . . . ,tn are terms of L,

then the expression F (t1, . . . ,tn) is a term of L.
4. Nothing else is a term of L.

A term is said to be closed or ground if no variables occur in it.

The complexity of a term is the number of symbols occurring in it,
counting each occurrence separately.

If t occurs as part of s, then s has higher complexity than t.
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Structures and Formulas Terms and Atomic Formulas

Substituting Terms for Variables in a Term

If we introduce a term t as t(x), this will always mean that x is a
sequence (x0,x1, . . .), possibly infinite, of distinct variables, and every
variable which occurs in t is among the variables in x .

Given a sequence of terms s = (s0,s1, . . .), we write t(s) for the term
obtained from t by putting s0 in place of x0, s1 in place of x1, etc.,
throughout t.

Example: Suppose t(x ,y) is the term y +x .

t(0,2y) is the term 2y +0;
t(t(x ,y),y) is the term y + (y +x).
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Structures and Formulas Terms and Atomic Formulas

Interpretation of Terms in a Structure

We make variables and terms stand for elements of a structure.

Let t(x) be a term of L, where x = (x0,x1, . . .).

Let A be an L-structure and a= (a0,a1, . . .) a sequence of elements of
A with a at least as long as x .

Then tA(a) (or tA[a]) is defined to be the element of A which is
named by t when x0 is interpreted as a name of a0, x1 as a name of
a1, and so on.

More precisely, using induction on the complexity of t:

5. If t is the variable xi , then tA[a] is ai ;
6. If t is a constant c , then tA[a] is the element cA;
7. If t of the form F (s1, . . . ,sn), where each si is a term si (x), then tA[a]

is the element FA(sA
1
[a], . . . ,sAn [a]).

If t is a closed term, then a plays no role and we write tA for tA[a].
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Structures and Formulas Terms and Atomic Formulas

Atomic Formulas

The atomic formulas of L are the strings of symbols given by:

8. If s and t are terms of L, then the string s = t is an atomic formula of L.
9. If n> 0, R is an n-ary relation symbol of L and t1, . . . ,tn are terms of L,

then the expression R(t1, . . . ,tn) is an atomic formula of L.

Remark: The symbol “=” is not assumed to be a relation symbol in
the signature.

An atomic sentence of L is an atomic formula in which there are no
variables.

Just as with terms, if we introduce an atomic formula φ as φ(x), then
φ(s) means the atomic formula got from φ by putting terms from the
sequence s in place of all occurrences of the corresponding variables
from x .
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Structures and Formulas Terms and Atomic Formulas

Truth and Models

If the variables x in an atomic formula φ(x) are interpreted as names
of elements a in a structure A, then φ makes a statement about A.

Let φ(x) be an atomic formula of L, with x = (x0,x1, . . .).

Let A be an L-structure and a a sequence (a0,a1, . . .) of elements of A
assumed to be at least as long as x .
We define the relation φ is true of a in A, or that a satisfies φ in A,
in symbols A |=φ[a], or equivalently A |=φ(a), as follows:
10. If φ is the formula s = t where s(x),t(x) are terms, then A |=φ[a] iff

sA[a]= tA[a];
11. If φ is the formula R(s1, . . . ,sn), where s1(x), . . . ,sn(x) are terms, then

A |=φ[a] iff the ordered n-tuple (sA
1
[a], . . . ,sAn [a]) is in RA.

When φ is an atomic sentence, we can omit the sequence a and write
simply A |=φ in place of A |=φ[a].

We say that A is a model of φ, or that φ is true in A, if A |=φ.

When T is a set of atomic sentences, we say that A is a model of T
(in symbols, A |=T ) if A is a model of every atomic sentence in T .
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Structures and Formulas Terms and Atomic Formulas

Homomorphisms and Satisfiability

Theorem

Let A and B be L-structures and f a map from dom(A) to dom(B).

(a) If f is a homomorphism then, for every term t(x) of L and tuple a

from A, f (tA[a])= tB [f (a)].

(b) f is a homomorphism if and only if, for every atomic formula φ(x) of
L and tuple a from A, A |=φ[a]⇒B |=φ[f (a)].

(c) f is an embedding if and only if, for every atomic formula φ(x) of L
and tuple a from A, A |=φ[a]⇔B |=φ[f (a)].

(a) This is easily proved by induction on the complexity of t.

(b) Suppose first that f is a homomorphism. As a typical example,
suppose φ(x) is R(s ,t), where s(x) and t(x) are terms. Assume
A |=φ[a]. Then, we have (sA[a],tA[a]) ∈RA. Then, by Part (a),
(sB [f (a)],tB [f (a)])= (f (sA[a]), f (tA[a])) ∈RB . Hence, B |=φ[f (a)].
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Homomorphisms and Satisfiability (Cont’d)

Essentially the same proof works for every atomic formula φ.

For the converse, again we take a typical example.

Suppose the implication holds for all atomic φ and sequences a.

Let c be a constant symbol and cA = a. Then A |= c = x0[a]. By
hypothesis, B |= c = x0[f (a)]. This gives cB = f (a)= f (cA).
Let F be a binary function symbol and a0,a1 in A. Then,
A |= x2 =F (x0,x1)[a0,a1,FA(a0,a1)]. By hypothesis,
B |= x2 =F (x0,x1)[f (a0), f (a1), f (FA(a0,a1))]. This gives
f (FA(a0,a1))=FB(f (a0), f (a1)).
Let R be a binary relation symbol and a0,a1 in A, such that
(a0,a1) ∈R

A. We have A |=R(x0,x1)[a0,a1]. By hypothesis,
B |=R(x0,x1)[f (a)]. Hence, (f (a0), f (a1)) ∈R

B .

Thus, f is a homomorphism.

(c) Similar to Part (b).
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Structures and Formulas Terms and Atomic Formulas

Negated Atomic Formulas and Literals

By a negated atomic formula of L we mean a string ¬φ, where φ is
an atomic formula of L.

We read the symbol ¬ as “not” and we define

“A |= ¬φ[a]” holds iff “A |=φ[a]” does not hold,

where A is any L-structure, φ an atomic formula and a a sequence
from A.

A literal is an atomic or negated atomic formula.
It is a closed literal if it contains no variables.

Corollary

Let A and B be L-structures and f a map from dom(A) to dom(B). Then
f is an embedding if and only if, for every literal φ(x) of L and sequence a

from A,
A |=φ[a] ⇒ B |=φ[f (a)].

Immediate from Part (c) of the theorem and the negation condition.
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The Term or Absolutely Free Algebra With Basis X

Let L be any signature and X a set of variables.

We define the term algebra of L with basis X to be the following
L-structure A:

The domain of A is the set of all terms of L whose variables are in X ;
The constant, function and relation symbols are interpreted as follows:

1. c
A = c, for each constant c of L;

2. F
A(t)=F (t), for each n-ary function symbol F of L and n-tuple t of

elements of dom(A);
3. R

A is empty for each relation symbol R of L.

The term algebra of L with basis X is also known as the absolutely
free L-structure with basis X (we will see why later).
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Subsection 4

Parameters and Diagrams
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Structures and Formulas Parameters and Diagrams

Parameters

We can avoid interpreting a variable as a name of the element b, by
adding a new constant for b to the signature.

Of course, the language changes every time another element is named.

When constants are added to a signature, the new constants and the
elements they name are called parameters.

Example: Suppose that A is an L-structure, a is a sequence of
elements of A, and we want to name the elements in a.

Choose a sequence c of distinct new constant symbols, of the same
length as a, and form the signature L(c) by adding the constants c to
L.

Then (A,a) is an L(c)-structure, and each element ai is c
(A,a)
i

.

Likewise if B is another L-structure and b a sequence of elements of B
of the same length as c , then there is an L(c)-structure (B ,b) in
which these same constants ci name the elements of b.
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Homomorphisms and Parameters

Lemma

Let A,B be L-structures and suppose (A,a), (B ,b) are L(c)-structures.

A homomorphism f : (A,a)→ (B ,b) is the same thing as a
homomorphism f :A→B , such that f a= b.

An embedding f : (A,a)→ (B ,b) is the same thing as an embedding
f :A→B , such that f a= b.

In the situation above:
If t(x) is a term of L, then tA[a] and t(c)(A,a) are the same element.
If φ(x) is an atomic formula, then A |=φ[a]⇔ (A,a) |=φ(c).

To avoid confusion between the two notations, we use the elements ai
as constants naming themselves.

The expanded signature is L(a), and we write tA(a) and A |=φ(a).
However, special care is needed when:

a contains repetitions; or
Two separate L(c)- structures are under discussion.
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Diagram and Positive Diagram

Let a be a sequence of elements of A. We say that a generates A, in
symbols A= 〈a〉A, if A is generated by the set of all elements in a.

Suppose that A is an L-structure, (A,a) is an L(c)-structure and a

generates A. Then every element of A is of the form t(A,a), for some
closed term t of L(c). So every element of A has a name in L(c).

The set of all closed literals of L(c) which are true in (A,a) is called
the (Robinson) diagram of A, in symbols diag(A).

The set of all atomic sentences of L(c) which are true in (A,a) is
called the positive diagram of A, in symbols diag+(A).

diag(A) and diag+(A) are not uniquely determined, because in general
there are many ways of choosing a and c so that a generates A.

There is always at least one possible choice of a and c , namely listing
all the elements of A without repetition.
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The Diagram Lemma

Lemma (Diagram Lemma)

Let A and B be L-structures, c a sequence of constants, and (A,a) and
(B ,b) L(c)-structures. Then (a) and (b) are equivalent:

(a) For every atomic sentence φ of L(c), if (A,a) |=φ, then (B ,b) |=φ.

(b) There is a homomorphism f : 〈a〉A |=B , such that f (a)= b.

The homomorphism f is unique if it exists; it is an embedding if and only if

(c) for every atomic sentence φ of L(c), (A,a) |=φ⇔ (B ,b) |=φ.

Assume (a). The inclusion map embeds 〈a〉A in A. By a preceding
theorem, in (a) we can replace A by 〈a〉A. So, we can assume that
A= 〈a〉A. By a previous lemma, it suffices to find a homomorphism
f : (A,a)→ (B ,b). We define f as follows: Since a generates A, each
element of A is of the form t(A,a), for some closed term t of L(c).

We set f (t(A,a))= t(B ,b).
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The Diagram Lemma (Cont’d)

The definition f (t(A,a))= t(B ,b) is sound.

Suppose, for two closed terms s and t, s(A,a) = t(A,a). Then

(A,a) |= s = t. By hypothesis, (B ,b) |= s = t. Hence, s(B ,b) = t(B ,b).

f is a homomorphism by hypothesis and a previous theorem.

Any homomorphism f from (A,a) to (B ,b) must satisfy

f (t(A,a))= t(B ,b). So f is unique in (b).

The converse follows at once from a previous theorem.

The argument for embeddings and (c) is similar.

There is a connection with Robinson diagrams.

Suppose a generates A.

The implication (a)⇒(b) says that A can be mapped homomorphically
to a reduct of B whenever B |= diag+(A).
Similarly the last part of the lemma says that if B |= diag(A), then A

can be embedded in a reduct of B.
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Subsection 5

Canonical Models
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=-Closed Sets of Atomic Sentences

Let L be a signature, A an L-structure and T the set of all atomic
sentences of L which are true in A.

Then T has the following two properties:

1. For every closed term t of L, the atomic sentence t = t is in T .
2. If φ(x) is an atomic formula of L and the equation s = t is in T , then

φ(s) ∈T if and only if φ(t) ∈T .

Any set T of atomic sentences which satisfies 1 and 2 will be said to
be =-closed (in L).
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Canonical Model of =-Closed Sets of Sentences

Lemma

Let T be an =-closed set of atomic sentences of L. Then there is an
L-structure A, such that:

(a) T is the set of all atomic sentences of L which are true in A;

(b) Every element of A is of the form tA, for some closed term t of L.

Let X be the set of all closed terms of L.

We define a relation ∼ on X by s ∼ t iff s = t ∈T .
Claim: ∼ is an equivalence relation.
(i) By the hypothesis, ∼ is reflexive.
(ii) Suppose s ∼ t. Then s = t ∈T . Let φ(x) be the formula x = s. Then

φ(s) is s = s which is in T by hypothesis. So, again by hypothesis, T
also contains φ(t). But φ(t) is t = s. Hence t ∼ s.

(iii) Suppose s ∼ t and t ∼ r . Let φ(x) be s = x . By assumption, both φ(t)
and t = r are in T . By hypothesis, T also contains φ(r). But φ(r) is
s = r . Hence, s ∼ r .
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Canonical Model of =-Closed Sets of Sentences (Cont’d)

For each closed term t, let:

t∼ be the equivalence class of t under ∼;
Y be the set of all equivalence classes t∼ with t ∈X .

We define an L-structure A with dom(A)=Y .

For each constant c of L, we put cA = c∼.
If 0< n<ω and F is an n-ary function symbol of L, we define FA by
FA(s∼

0
, . . . ,s∼

n−1
)= (F (s0, . . . ,sn−1))

∼.

If 0< n<ω and R is an n-ary relation symbol of L, we define RA by
(s∼

0
, . . . ,s∼

n−1
) ∈RA iff R(s0, . . . ,sn−1) ∈T .

FA(s∼0 , . . . ,s∼
n−1) is well-defined:

Suppose si ∼ ti , for each i < n. By hypothesis, the sentence
F (s0, . . . ,sn−1)= F (s0, . . . ,sn−1) is in T . By n applications of
closedness, we find that the equation F (s0, . . . ,sn−1)= F (t0, . . . ,tn−1) is
in T . Hence F (s0, . . . ,sn−1)

∼ =F (t0, . . . ,tn−1)
∼.

Well-definedness of RA is justified similarly.
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Canonical Model of =-Closed Sets of Sentences (Conclusion)

Now it is easy to prove by induction on the complexity of t, that for
every closed term t of L, tA = t∼.

From this we infer that:

If s and t are any closed terms of L, then

A |= s = t iff sA = tA iff s∼ = t∼ iff s = t ∈T .

If t0, . . . ,tn−1 are closed terms in L,

A |=R(t0, . . . ,tn−1) iff (t∼0 , . . . ,t∼
n−1) ∈R

A iff R(t0, . . . ,tn−1) ∈T .

Thus, T is the set of all atomic sentences of L which are true in A.

Also, since tA = t∼, every element of A is of the form tA, for some
closed term t of L.
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Models of Sets of Atomic Sentences

If T is any set of atomic sentences of L, there is a least set U of
atomic sentences of L which contains T and is =-closed in L.

We call U the =-closure of T in L.

Any L-structure which is a model of U must also be a model of T
since T ⊆U .

Theorem

For any signature L, if T is a set of atomic sentences of L, then there is an
L-structure A, such that:

(a) A |=T ;

(b) Every element of A is of the form tA, for some closed term t of L;

(c) If B is an L-structure and B |=T , then there is a unique homomorphism
f :A→B.

Apply the lemma to the =-closure U of T to get the L-structure A.
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Models of Sets of Atomic Sentences (Cont’d)

We start with a set T of atomic sentences of L.

We obtain the =-closure U of T .

We apply the lemma to U to get the L-structure A.

By the construction of A, Properties (a) and (b) are clear.

By Property (b), A= 〈;〉A.

So Property (c) will follow from the Diagram Lemma if we can show
that every atomic sentence true in A is true in all models B of T .

Let B be a model of T .

By the choice of A, every atomic sentence true in A is in U .

The set of all atomic sentences true in B is an =-closed set containing
T .

So it must contain the =-closure of T , which is U .

George Voutsadakis (LSSU) Model Theory January 2024 48 / 51



Structures and Formulas Canonical Models

Canonical Model and Herbrand Universe

By Property (c) of the theorem, the model A of T is unique up to
isomorphism.

It is called the canonical model of T .

Note that it will be the empty L-structure if and only if L has no
constant symbols.

If one does not include equations as atomic formulas, the canonical
model is much easier to construct, because there is no need to factor
out an equivalence relation.

Thus, we get what has become known as the Herbrand universe of a
set of atomic sentences.
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Example: Adding Roots of Polynomials to a Field

Let F be a field and p(X ) an irreducible polynomial over F in the
indeterminate X .

We can regard F [X ] as a structure in the signature of rings with
constants added for X and all the elements of F .

Let T be the set of all equations which are true in F [X ].

Example: If a is b · (c +d) in F [X ], then T contains the equation
“a= b · (c +d)”.

Also rings satisfy the law 1 ·x = x . So T contains the equation 1 ·t = t,
for every closed term t.

T is a set of atomic sentences.

The equation “p(X )= 0” is another atomic sentence.
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Example: Adding Roots of Polynomials to a Field (Cont’d)

Let C be the canonical model of the set T ∪ {p(X )= 0}.

C is a model of T and every element is named by a closed term.
Thus, C is a homomorphic image of F [X ].
In particular C is a ring.
“p(X )= 0” holds in C .
So every element of the ideal I in F [X ] generated by p(X ) goes to 0 in
C .

Let θ be any root of p.

Then the field extension F [θ] is also a model of T ∪ {p(X )= 0}, with
X read as a name of θ.

By Part (c) of the theorem, F [θ] is a homomorphic image of C .

On the other hand, F [θ]= F [X ]/I .

So C is isomorphic to F [θ].
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