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Subsection 1

Definable Subsets
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Classifying Structures

o Regard the field R of reals as a structure.

o An algebraic curve in the real plane is a set of ordered pairs of
elements of R given by an equation p(x,y) =0, where p is a
polynomial with coefficients from R.

: The parabola y = x? is perhaps the most quoted example of
an algebraic curve in the real plane.
This equation can be written without naming any elements of R as
parameters.
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Classifying Structures

o We use the structure N = (w,0,1,+,-,<) of natural numbers.

o Any recursive subset X of w can be defined, for example, by an
algorithm for computing whether any given number is in X.

o Unlike the preceding example, the definition will usually be much too
complicated to be written as an atomic formula.

o There is no need to use parameters in this case, since every element of
IN is named by a closed term of the signature of IN.
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Classifying Structures

Let G be a graph, and g an element of G.

©

o The connected component of g in G is the smallest set Y of
vertices of G, such that:
gey,;
if ae Y and a is joined to b by an edge, then be Y.

©

This description defines Y, using g as a parameter.

There is generally no hope of expressing the definition as an atomic
formula.

©

o Also, generally, we cannot define Y without mentioning any element
as a parameter.
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Classifying Structures

o Given an L-structure A and an atomic formula ¢(xo,...,xp—1) of L, we
write ¢p(A") for the set of n-tuples {a: A= ¢p(a)}.

H(AM =@ A= ¢(a)).

: If R is a relation symbol of the signature L, then the relation
RA is of the form ¢(A"). Take ¢(x0,...,Xn-1) = R(X0s-+»Xn_1)-
o Allowing parameters, let ¥(x,...,Xxs—1,y) be an atomic formula of L
and b a tuple from A. Then

w(A",b)=1{a: A= w(a, b).
. If A consists of the real numbers and y(x,y) = (x> y), then
w(A0)={acA:a>0}

is the set of all positive reals.
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Classifying Structures

o Let L be a signature. The language L, will be infinitary, which
means that some of its formulas will be infinitely long.
o The symbols of L, are those of L together with some logical
symbols, variables and punctuation signs.
o The logical symbols are

= “equals”, = “not”, /\ “and”, \/ “or", Y “for all", 3 “there exists".

o The terms, the atomic formulas and the literals of L., are the
same as those of L.

o The class of formulas of L, is defined to be the smallest class X,
such that:
All atomic formulas of L are in X;
If ¢ is in X, then the expression ¢ is in X, and if ® < X, then the
expressions A® and \/ @ are both in X;
If ¢ isin X and y is a variable, then Vy¢ and Jy¢ are both in X.
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Classifying Structures

o The formulas which go into the making of a formula ¢ are called the
subformulas of ¢.

o The formula ¢ is counted as a subformula of itself.
o The proper subformulas are all its subformulas except itself.

o The quantifiers Yy (“for all y") and 3y (“there is y") bind variables
just as in elementary logic.

o We distinguish between free and bound occurrences of variables.

o The free variables of a formula ¢ are those which have free
occurrences in ¢.
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Classifying Structures

o We sometimes introduce a formula ¢ as ¢(x), for some sequence x of
variables.

o This means that the variables in X are all distinct, and the free
variables of ¢ all lie in .

o Then ¢(s) means the formula that we get from ¢ by putting the terms
s; in place of the free occurrences of the corresponding variables x;.

o This extends the notation applied previously to atomic formulas.
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Classifying Structures

o For any L-structure A and sequence a of elements of A, we extend the
notation A= ¢[a] or A= ¢(a) (“a satisfies ¢ in A”) to all formulas
¢(x) of Loow by induction on the construction of ¢:

If ¢ is atomic, then A= ¢[a] holds or fails per previous conventions.
A= 7¢[3a] iff it is not true that A = ¢[a].

A= A\O[a] iff, for every formula w(x) e ®, Al=w[a].

A=V @[3] iff, for at least one formula y(X) € @, A= vy[a].

Suppose ¢ is Yyw, where w(y,X).
Then A= ¢[a] iff, for all elements b of A, A= y][b,a].

Suppose ¢ is Ay, where v is y(y,X).
Then A= ¢[a] iff, for at least one element b of A, Al=v][b,3].

o If X is an n-tuple of variables, ¢(X,¥) is a formula of L, and b is a
sequence of elements of A whose length matches that of y, we write
¢(A", b) for the set {a: Al=¢(3, b)}.

o ¢(A",b) is the relation defined in A by the formula ¢(x, b).
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Classifying Structures

o The vertex xg is in the same component as g if:
o Either xg is g,
or xp is joined by an edge to g (in symbols R(xo,g)),
or there is xq such that R(xp,x1) and R(x1,g),
or there are x; and xp, such that R(xg,x1), R(x1,x2) and R(x2,g),
or ---

¢ ¢ ¢ ¢

o In other words, the connected component of g is defined by the
formula

\/({xo =glu {Elxl---EIx,,/\({R(x;,x;+1) (i <nmpU{R(xn,g)}):n<w}),

with parameter g.
o This formula may not be easy to read, but it is very precise.

George Voutsadakis (LSSU) Model Theory



Classifying Structures

o We define the complexity of a formula ¢, comp(¢), so that it is
greater than the complexity of any proper subformula of ¢.

o Using ordinals, one possible definition is
comp(¢) = supfcomp(y)+1:y is a proper subformula of ¢}.

o The notion of complexity helps us prove theorems about relations
definable in L, by using induction on the complexity of the formulas
defining them.
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Classifying Structures

o The subscripts « suggest language classifications.
o The second subscript, @ means that we can put only finitely many
quantifiers together in a row.

o L,y is the language consisting of those formulas of Looy in which no
quantifiers occur; we call such formulas quantifier-free.

Every atomic formula is quantifier-free.

o Occasionally we shall want to go beyond the confines of Looy by
applying a quantifier V or 3 to infinitely many variables at once:
V(xj:iel)or3(xj:iel).

The language we get by adding these quantifiers to Lo is written
Lessar
o The first subscript in Ly, means that we can join together arbitrarily
many formulas by A or V.

o The first-order language of L, in symbols L, consists of those
formulas in which A and V/ are only used to join together finitely many
formulas at a time, so that the whole formula is finite.
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Classifying Structures

o We can pick out many smaller languages inside Loy, by choosing
subclasses of the class of formulas of L.,.
o We say that a set X of formulas of L., is first-order-closed if:
X satisfies:

All atomic formulas of L are in X;

If ¢ is in X, then the expression —¢ is in X, and if ® < X is finite, then
the expressions A® and \V® are both in X;

If ¢ isin X and y is a variable then Yy¢ and y¢ are both in X.

Every subformula of a formula in X is also in X.
o All the languages Ly, are first-order-closed.

o First-order-closed sublanguages of L., are sometimes known as
fragments of Lo,.
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Classifying Structures

o We use L as a symbol to stand for languages as well as signatures.

o Since a language determines its signature, there is no ambiguity if we
talk about L-structures for a language L.

o If Lis a first-order language, it is clear what is meant by L..,, Ly etc.
They are infinitary languages extending L.

o If a set X of parameters are added to L, forming a new language
L(X), we shall refer to the formulas of L(X) as formulas of L with
parameters from X.
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Classifying Structures

o Let L be a first-order language and A an L-structure.

o If ¢(x) is a first-order formula, then a set or relation of the form
¢(A") is said to be first-order definable without parameters, or
more briefly @-definable (pronounced “zero-definable”.)

o A set or relation of the form (A", b), where y(X,y) is a first-order
formula and b is a tuple from some set X of elements of A, is said to
be X-definable and first-order definable with parameters.
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Classifying Structures

o We use the abbreviations:

o x#y for a(x=y);

o (p1A---Npp) for A{d1,...,¢n} (finite conjunction);
o (p1V---Vvpp) for V{p1,...,¢n} (finite disjunction);
o Nier¢i for N iel};

o Vier¢i for Vig:iel};

o (¢—w) for (~¢) vy (if ¢ then y);

(¢~ w) for (¢ —w) Ay — ) (" iff )
VX1...xp or VX for Vxq -+ Vxp;

Ix1...x, or Ix for Ixy -+ Ixy;

1 for V@ (empty disjunction, false everywhere).

€ ¢ ¢ ¢

o Brackets around (¢ Ay) or (¢ V) can be omitted when either — or
< stands immediately outside these brackets.
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Classifying Structures

: ¢ Ay — x always means (pAW) — y, not A (w — ¥).
With these conventions, the transitive component formula in the
language of graphs can be written

x0=gV \V Ixi..xn ((/\ R(x,-,x,-+1)) A R(x,,,g)).

n<w i<n

o A family of languages which differ from each other only in signature is
called a logic.

o First-order logic consists of the languages L, as L ranges over all
signatures.
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Classifying Structures

o We say that two formulas ¢(x) and y(x) are equivalent in the
L-structure A if ¢(A") =y(A").

o Thus, two formulas are equivalent in A iff they define the same
relation in A.

o ¢(x) and y(x) are equivalent in A iff A= Vx(¢p(X) < w(X)).

o Likewise, sets of formulas @(X) and ¥(x) are equivalent in A if
AO(A") = A\P(A").

o These definitions depend on the listing of variables.

: If ¢(x,y) and w(y,x) are both x <y, then we should not
expect ¢(x,y) to be equivalent to w(x,y).
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Classifying Structures

o The following pairs of formulas are equivalent in any structure.
o The formula ¢(xp,...,xn-1) and the formula ¢(yo,...,¥n-1);
o The formula VyR(x,y) and the formula VzR(x, z).
o We say that one formula is a variant of another formula if the two
formulas differ only in the choice of variables, i.e., if each can be got
from the other by a consistent replacement of variables.

©

Variance is an equivalence relation on the class of formulas.

o We shall always take the cardinality |L| of a first-order language L to
be the number of equivalence classes of formulas of L under the
relation of being variants.

o This agrees with the definition of |L| for a signature L (as the least
infinite cardinal = the number of symbols in L).
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Classifying Structures

Lemma
Let L be a signature, A an L-structure, X a set of elements of A and Y a
relation on dom(A). Suppose Y is definable by some formula of signature
L with parameters from X. Then, for every automorphism f of A, if f fixes
X pointwise (i.e., f(a) =a, for all ain X), then f fixes Y setwise (i.e., for
every tuple a3 of A, e Y & f(a)eY).

o The lemma applies to formulas in logics other than L.
o For formulas of Ly, this can be proved by induction on complexity.
E.g., for the base, given an n-ary relation symbol R,
ae RA(A"b) iff (3,b)eRA
iff  (f(3),f(b)) e RA
iff  (f(3),b)e RA
iff  £(3) e RA(A", b).
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Classifying Structures

o We also give two of the inductive cases:
For A®, we have

ae NO(A",b) iff Fe (A", b), for all ped,
iff £(3) e (A", b),for all pe @,
iff £(3)e A®(A",b).

For 3z¢(z,x,y), we have

3€3zp(z,%,y) (A" b) iff (c,3)e (A", b), for some ce A,
iff  (f(c),f(3)) € p(A™1,b), for some ce A,
iff  £(3a) € 3z¢p(z,%,¥)(A" b).

George Voutsadakis (LSSU) Model Theory



Classifying Structures

Theorem

Let L be the empty signature and A an L-structure so that A is simply a
set. Let X be any subset of A, and let Y be a subset of dom(A) which is
definable in A by a formula of some logic of signature L, using parameters
from X. Then Y is either a subset of X, or the complement in dom(A) of
a subset of X.

o Immediate from the lemma.

o In this theorem, all finite subsets of X and their complements in A can
be defined by first-order formulas with parameters in X.

The set {ag,...,an-1} is defined by the formula x=agv---vx=a,_1
(which is L if the set is empty).

If we negate this formula we get a definition of the complement.
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Classifying Structures

o We say that a structure A is minimal if A is infinite but the only
subsets of dom(A) which are first-order definable with parameters are
either finite or cofinite (i.e., complements of finite sets).

o More generally, a set X =dom(A) which is first-order definable with
parameters is said to be minimal if X is infinite, and for every set Z
which is first-order definable in A with parameters, either X nZ or
X\Z is finite.
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Classifying Structures

o Take N=(w,0,1,+,-,<) and let L be its signature.
o We use the bounded quantifiers (Vx <y) and (Ix <y) as follows:

o (Vx<y)¢ is shorthand for Vx(x <y — ¢);
o (Ix < y)¢ is shorthand for Ix(x <y A ¢p).

o We define a hierarchy of first-order formulas of L, as follows:
A first-order formula of L is said to be a Hg formula, or equivalently a
28 formula, if all quantifiers in it are bounded.
A formula is said to be a H2+1 formula if it is of form Vxy for some 22
formula y. (The tuple X may be empty.)
A formula is said to be a 22+1 formula if it is of form Ixy for some Hg
formula y. (The tuple X may be empty.)

: An 29 formula consists of three blocks of quantifiers,
AxVy3z followed by a formula with only bounded quantifiers.

o Because the blocks are allowed to be empty, every 1'[2 formula is also a
0 0
X} ., formula and a T}, formula.
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Classifying Structures

o Let X be (x0,..-,Xn-1)-
o A set R of n-tuples of natural numbers is called a:
° HE relation if it is of the form ¢(IN"), for some HE formula ¢(x);
0 RN n 0 <.
o et it & bt T reltiosand 3 30 o
o A relation is said to be arithmetical if it is 22 for some k.
l.e., arithmetical relations are exactly the first-order definable ones.
o Intuitively the hierarchy measures how many times we have to run

through the entire set of natural numbers if we want to check whether
a particular tuple belongs to the relation R.

George Voutsadakis (LSSU) Model Theory



Classifying Structures

o An important theorem of Kleene [1943] says that:
o The A(l) relations are exactly the recursive ones;
o The 2(1) relations are exactly the recursively enumerable ones.

o Another theorem of Kleene [1943] says that for each k < w, there is a
relation R which is 22+1 but neither 22 nor l'[?(.

o This last result ensures that the hierarchy keeps growing.
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Subsection 2

Definable Classes of Structures
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Classifying Structures

o A sentence is a formula with no free variables.

o A theory is a set of sentences.

o If ¢ is a sentence of Ly, and A is an L-structure, then there is defined
a relation "A = ¢[]", i.e., “the empty sequence satisfies ¢ in A"

o We omit [] and write simply “Al=¢".

o We say that A is a model of ¢, or that ¢ is true in A, when “Al=¢"

holds.

o Given a theory T in Ly, we say that A is a model of T, in symbols
AT, if Ais a model of every sentence in T.
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Classifying Structures

o Let T be a theory in Ly, and K a class of L-structures.

o We say that T axiomatizes K, or is a set of axioms for K, if K is
the class of all L-structures which are models of T.

o This determines K uniquely, and so we can write K=Mod(T) to
mean that T axiomatizes K.

T is also a theory in LY, where L* is any signature containing L.
Mod(T) in L* is a different class from Mod(T) in L.

So the notion of “model of T" depends on the signature.

If no signature is mentioned, we choose the smallest L such that T is

in Loow-
o If T is a theory, we say that a theory U axiomatizes T (or is
equivalent to T) if Mod(U) =Mod(T).
o In particular if Ais an L-structure and T is a first-order theory, we say
that T axiomatizes A if the first-order sentences true in A are exactly
those which are true in every model of T.

George Voutsadakis (LSSU) Model Theory
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Classifying Structures

o Let L be a language and K a class of L-structures.
o We define the L-theory of K, Th;(K), to be the set (or class) of all
sentences ¢ of L, such that A= ¢, for every structure A in K.
o We omit the subscript L when L is first-order.
o The theory of K, Th(K), is the set of all first-order sentences which
are true in every structure in K.
o We say that K is L-definable if K is the class of all models of some
sentence in L.
o We say that K is L-axiomatizable, or generalized L-definable, if K
is the class of models of some theory in L.
o K is first-order definable if K is the class of models of some first-order
sentence, or equivalently, of some finite set of first-order sentences.
o K is generalized first-order definable if and only if K is the class of
all L-structures which are models of Th(K).

o First-order definable and first-order axiomatizable classes are also
known as EC and ECx classes, respectively.
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Classifying Structures

o When writing theories, we may use standard mathematical
abbreviations, so long as they can be seen as abbreviations of genuine
terms or formulas:

o x+y+zfor (x+y)+z;

o x—y for x+(-y);

o nfor1+---+1 (n times), n a positive integer;
Xx+---+x (n times), n positve integer

@ nx for { 0, nis0
—(=n)x, n negative integer
o xy for x-y;
o x" for x---x (n times), n a positive integer;
o xsyforx<yvx=y;
o x>y for y <x.
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Classifying Structures

o Let ¢(x,z) be a formula.

Then we define 3> ,x¢ (“At least n elements x satisfy ¢") by induction
on n.

J>0x¢ is Vxx=x
I>1x¢ is  Ix¢
Aopiixp is Ax(P(x,2) ATzpy(d(y,2) Ay #x)), n=1.

o Then we put I<,x¢p for 735 p1x¢.
o Finally, 3=px¢p is I p,xPp AT<pxp.
: The first-order sentence 3-,x(x = x) expresses that there
are exactly n elements.

George Voutsadakis (LSSU) Model Theory



Classifying Structures

o When a theory T is written down in order to describe a particular
structure A, we say that A is the intended model of T.

(The term algebra): Let L be an algebraic signature, X a set
of variables and A the term algebra of L with basis X.
We describe A by the set of all sentences of the following forms.
c #d, where c,d are distinct constants.
VxF(x) # ¢, where F is a function symbol and ¢ a constant.
VxyF(x)# G(y), where F,G are distinct function symbols.
VX0 s Xp=1Y0 -+ Yn-1(F (X0, .- Xn=1) = F(¥0, -, ¥n-1) = Ni<nXi = i)
VxQ...Xp—1t(X0,---,Xn-1) # X;, where i <n and t is any term containing
x; but distinct from x;.
[Use this axiom only when L is finite.] Write Var(x) for the formula
A{x # c:c a constant of L} A A{Vyx# F(y):F a function symbol of L}.
Then, if X has finite cardinality n, we add the axiom 3-,xVar(x).
If X is infinite, we add the infinitely many axioms 3 ,xVar(x) (n< ).

o Each axiom says something which is obviously true of A.
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Classifying Structures

o One can show Axioms 1-6 axiomatize A.
o They do not suffice to characterize A, even up to isomorphism.
. Let L consist of one 1-ary function symbol F and one
constant ¢, and let X be empty. Then 1-6 reduce to the following:
VxF(x) #c
Vxy(F(x)=F(y) = x=y)
VxF(F(F(---(F(x))---))) #x any positive number of F's
Vx(x=cv3yx=F(y)).
We can get a model B by taking the intended term model A and
adding all the integers as new elements, putting FB(n)=n+1, for

each integer n. F F F

c O O coo
F F F F F

O O O O
This model B is clearly not isomorphic to A.
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Classifying Structures

o This is a first-order theory with intended model the natural number
structure IN. Godel's Incompleteness Theorem [1931] says that the
theory fails to axiomatize IN.

Vx(x+1#0);

Vxy(x+1l=y+1—-x=y);

Vz((0,Z) AVx(p(x,Z) = p(x +1,Z)) — Vx¢(x,Z)), for each first-order
formula ¢(x,z);

Vx(x+0=x); Vxy(x+(y+1)=(x+y)+1);

Vx(x-0=0); Vxy(x-(y+1)=x-y+x);

Vxa(x<0); Vxy(x<(y+1l)—ex<yvx=y).

o Clause 3 is an example of an axiom schema, i.e., a set of axioms
consisting of all sentences of a certain pattern.

o This first-order induction schema expresses that:

If X is a set which is first-order definable with parameters, and (1)
0e X and (2) if ne X then n+1€ X, then every number is in X.

o Axioms 4-6 are the recursive definitions of +,- and <.
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Classifying Structures

o Axioms 1-6 are known as first-order Peano arithmetic, or P for
short.

o We will see later that P has other models besides the intended one.

o Models of P which are not isomorphic to the intended one are known
as nonstandard models.

o They turn out to have important applications that nobody dreamed of
beforehand.
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Classifying Structures

o We provide a list of some classes which are definable or axiomatizable.

o The sentences given are referred to as the theory of the class.
Groups (multiplicative):
o Vxyz((xy)z = x(yz))
o Vx(x-1=x);
o Wx(x-x"1=1).
Groups of exponent n (n a fixed positive integer):
o Groups;
e Vx(x"=1).
Abelian groups (additive):
o Vxyz((x+y)+z=x+(y+2));
o Vx(x+0=x);
o Vx(x—x=0);
o Vxy(x+y=y+x).
Torsion-free abelian groups:
o Abelian Groups;
o Vx(nx=0—x=0), for each positive integer n.
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Classifying Structures

Left R-modules, where R is a ring:
The module elements are the elements of the structures. Each ring
element r is used as a 1-ary function symbol, i.e., r(x) represents rx.
o Abelian groups
Vxy(r(x+y)=r(x)+r(y)), forall reR;
Vx((r+s)(x)=r(x)+s(x)), for all r,seR;
Vx((rs)(x) = r(s(x))), for all r,seR;
o Vx(1(x)=x).
Rings:
o Abelian groups
Vxyz((xy)z = x(y2));
Vx(x1=x); Vx(1x=x);
Vxyz(x(y +z) =xy +xz); Vxyz((x+y)z=xz+yz).
Von Neumann regular rings:
o Rings
o Vx3y(xyx = x).

George Voutsadakis (LSSU) Model Theory
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Classifying Structures

Fields:

o Rings

o Vxy(xy = yx);

o 0#1;

o Vx(x#0—3y(xy =1)).
Fields of characteristic p (p prime):

o Fields

o p=0.
Algebraically closed fields:

o Fields

o Vx1...Xp3y(y" +x1y "L+ + xp_1y + Xn = 0), for each positive integer

n.

Real-closed fields:
Fields
° Vxl...x,,(x12+~~ ,%
o Vx3dy(x=y V—x=y
o Vx1...xp3y(y

George Voutsadakis (LSSU) Model Theory
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Classifying Structures

Lattices:
o Vx(xAx=x); Vx(xvx=x);
o Vxy(xAy=yAx);, Vxy(xVvy=yvx);
Vxy((xay)vy=y);, ¥xy((xvy)ay=y);
o Vxyz((x Ay)Az=xA(yAZ2)); Vxyz((xvy)vz=xv(yvz)).

(9

In lattices we write x <y as an abbreviation of x A y = x.
Boolean algebras:

o Lattices

o Vxyz(xA(yVvz)=(xAy)V(xAz));
o Vxyz(xV(yAnz)=(xVvy)A(xVz);
o Vx(xvx*=1);

o Vx(xAx*=0);

o 0#£1.

Atomless boolean algebras:

o Boolean algebras
o VxJy(x#0—0<yAy<x), where y <x is shorthand for y < x Ay # x.
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Linear orderings:

o Vx(x £x);

o Vxy(x=yVx<yVy<x);

o Vxyz(x<yAy<z—x<z).
Dense linear orderings without endpoints:
Linear Orderngs
Vxy(x<y—3z(x<zAz<y));
Vx3z(z < x);
Vx3z(x < z).

¢ ¢ ¢ ¢

o Classes 1-16 are all generalized first-order definable.

o The following is a class with an infinitary definition.
Locally finite groups:

o Groups
o Vxt..xn V @yieeym A (tX)=y1ve-VEHX) = ym)).

m<w t(X) a term
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Subsection 3

Some Notions from Logic
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o Let L be a signature, T a theory in Lo, and ¢ a sentence of Lyyy.

o We say that ¢ is a consequence of T, or that T entails ¢, in
symbols T ¢, if every model of T is a model of ¢.
(In particular, if T has no models then T entails ¢.)

o We say that ¢ is valid, or is a logical theorem, in symbols - ¢, if ¢
is true in every L-structure.

o We say that ¢ is consistent if ¢ is true in some L-structure.

o Likewise, we say that a theory T is consistent if it has a model.
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o We say that two theories S and T in Lo, are equivalent if they have
the same models, i.e., if Mod(S) =Mod(T).

o When T is a theory in Ly and ¢(X), w(x) are formulas of Ly, we
say that ¢ is equivalent to v modulo T if for every model A of T
and every sequence a from A, Al=¢(a) © A=y (a).

o Thus, ¢(x) is equivalent to w(x) modulo T if and only if
T FVX(p(X) < ¢(x)). (This sentence is not in Loo, if ¢ and y have
infinitely many free variables, but the sense is clear.)

o There is a metatheorem to the effect that:

If ¢ is equivalent to w modulo T, and ¥’ comes from y by putting v in
place of ¢» somewhere inside y, then y’ is equivalent to ¥ modulo T.

o Two sets of formulas ®(x) and ¥(x) are equivalent modulo T, if
A® is equivalent to AW modulo T.
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o A special case of relative equivalence is where T is empty.

o ¢(x) and yw(x) are said to be logically equivalent if they are
equivalent modulo the empty theory.

o This is the same as saying that they are equivalent in every
L-structure.

. 2Vx¢ is logically equivalent to Ix¢p.
3x\/v; is logically equivalent to \/3xy;.

iel i€l
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o A formula ¢ is said to be a boolean combination of formulas in a set
@ if ¢ is in the smallest set X such that:

OcX;
X is closed under A,V and .
o We say that ¢ is in disjunctive normal form over @ if ¢ is a finite
disjunction of finite conjunctions of formulas in Y, where Y is ®
together with the negations of all formulas in @.

o Every boolean combination ¢(x) of formulas in a set @ is logically
equivalent to a formula y(X) in disjunctive normal form over ®.

o The same is true if we replace A and v by A and V respectively,
dropping the word “finite”.

o In this case we speak of infinite boolean combinations and
infinitary disjunctive normal form.
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o A formula is prenex if it consists of a string of quantifiers (possibly
empty) followed by a quantifier-free formula.

o Every first-order formula is logically equivalent to a prenex first-order
formula.

o The proof of this result relies in a lemma asserting that the following
pairs are logically equivalent, where z is a variable not appearing on
the left:

o Vx¢ and Ix¢;
o —3x¢ and Vx¢;

> (Vxp()Ay and (V2O)AY); - A (xw(x)) and (v2)(oAv(2);
5 (Bx¢()) Ay and (32)(¢(z) Av): & A (Bxy(x)) and (32)( Aw(2));
5 (vxg() vy and (Y2)(@(2)vw)i ¢V (Yxw(x)) and (V2)($V y(2)):
> (Bx¢(x)) vy and (32)(@(z)V¥): @V (Exy) and (32)(9Vy(2)).
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Lemma
Let T be a theory in a first-order language L, and ® a set of formulas of L.
Suppose:

Every atomic formula of L is in ®;

® is closed under boolean combinations;

For every formula y(x,y) in @, 3yw is equivalent modulo T to a
formula ¢(x) in @.
Then every formula y(X) of L is equivalent modulo T to a formula ¢(x) in
O.
If (c) is weakened by requiring that X is non-empty, then the same
conclusion holds provided X in y(x) is also non-empty.

o By induction on the complexity of ¥, using the fact that Vy¢ is
equivalent to —3x-¢p.
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o An n-type of a theory T is a set ®(x) of formulas, with
X =(xg,...,Xn—1), such that for some model A of T and some n-tuple
3 of elements of A, Al=¢(a), for all ¢ in ®.

o We say, then, that A realizes the n-type ®@, and that 2 realizes @ in
A.

o We say that A omits ® if no tuple in A realizes ®.
o A set @ is a type if it is an n-type, for some n< w.

o If we work in a language L which is smaller than Lo, then all
formulas in a type will automatically be assumed to come from L.
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©

Let L be a language and A, B two L-structures.

We say that A is L-equivalent to B, in symbols A=, B, if for every
sentence ¢ of L,

©

AEe¢ iff BEG.

©

This means that A and B are indistinguishable by means of L.

©

Two structures A and B are said to be elementarily equivalent,
written A= B, if they are first-order equivalent.

o We write =, = for equivalence in Loy, Liw, respectively.
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o If Lis a language and A is an L-structure, the L-theory of A, Th;(A),
is the class of all sentences of L which are true in A.

o Thus, A= B if and only if Thy(A)=Thy(B).

o The complete theory of A, Th(A) without a language L specified,
always means the complete first-order theory of A.

Lemma

If L is a language, A is an L-structure and ¢ an L-sentence, then

Thi(A) ¢ iff ¢eThy(A).

o The “if" is trivial.
For the “only if" assume ¢ ¢ Th;(A). Then Al ¢. Thus, there exists
a model, namely A, such that Al=Th;(A) but A~ ¢. Therefore, by
definition, Thy(A) ¥ ¢.
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o Let L be a first-order language and T a theory in L.

o We say that T is complete if T has models and any two of its models
are elementarily equivalent.

A theory T in a first-order language L is complete if and only if, for every
sentence ¢ of L, exactly one of ¢p and ¢ is a consequence of T.

o Suppose T is complete. Then T has a model A.

If TH¢ and T+ ¢, then A= ¢ and A= ¢, a contradiction. Thus,
at most one of ¢, —¢p is a consequence of T.

Suppose TF ¢ and T ¥ —¢p. Then there exist models A and B of T,
such that Al=¢ and Bl=¢. So A# B. Thus, T is not complete.
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o Assume, conversely, that, for every L-sentence ¢, exactly one of ¢ and
- is a consequence of T.

T must have a model.

Otherwise, every L-sentence would be vacuously a consequence of T,
contrary to hypothesis.

Let A and B be models of T, and ¢ an L-sentence, such that A ¢.
Then T ¥ =¢. By hypothesis, T +¢. Since, Bl=T, Bl=¢.
By symmetry, for every L-sentence ¢,

AE¢ iff BE.

Thus, A= B. This proves that T is complete.
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A theory T in a first-order language L is complete if and only if it is
equivalent to Th(A), for some L-structure A.

o Suppose T =Th(A), for some L-structure A.
Recall that, for every L-sentence ¢p, T+ ¢ if and only if pe T.
Hence, exactly one of ¢ and —¢ is a consequence of T.
Therefore, T is complete.
Suppose, conversely, that T is complete. Thus, T has a model A.
Then T <Th(A). So Mod(Th(A)) < Mod(T).
For the reverse inclusion, assume B ¢ Mod(Th(A)).
Towards a contradiction, suppose B € Mod(T).
Thus, there exists ¢ € Th(A), such that B |~ ¢.
Since Bl= T, TF¥F¢. By completeness, T .
But A= T. Hence, Al=—¢, contradicting ¢p € Th(A).
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We say that a theory T is categorical if T is consistent and all
models of T are isomorphic.

©

o We will see that the only categorical first-order theories are the
complete theories of finite structures, so the notion is not too useful.

o Let A be a cardinal.

o We say that a class K of L-structures is A-categorical if there is, up
to isomorphism, exactly one structure in K which has cardinality A.

o Likewise a theory T is A-categorical if the class of all its models is
A-categorical.

o We say that a single structure A is A-categorical if Th(A) is
A-categorical.
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o We saw that if (A,3) is an L(T)-structure, where A is an L-structure,
then for every atomic formula ¢(x) of L,

A= ¢[a] if and only if (A 3) = ¢(C).

o This remains true for all formulas ¢(x) of Looy-
o We use the compromise notation A|=¢(a) to represent either.

o Thus, a are either elements of A satisfying ¢(x), or added constants
naming themselves in the true sentence ¢(3a).

Lemma (Lemma on Constants)

Let L be a signature, T a theory in Ly, and ¢p(x) a formula in L. Let ©
be a sequence of distinct constants which are not in L. Then

TE¢(c) ifandonlyif TFVxe.
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o Suppose, first, that T - Vx¢(X).
Let (A,€) be an L(<)-model, where A is an L-model, such that
(Ac)ET. Since cis not in L, A= T. By hypothesis, A= Vx¢(x).
Hence, A= ¢p(3'), for all 3’ in A. In particular, Al=¢(3), i.e.,
(A3) = ¢(<).
This proves that T ¢(c).

o Suppose, conversely, that T F ¢(<).

Let A be an L-model, such that A= T. Since T is an L-theory and ¢
is not in L, we have, for any extension (A,a) of A, (A,3) = T. Since,
by hypothesis T F¢(c), (A a) = ¢(c). Thus, Al=¢(a), for all 3 in A.
By definition, A= Vx¢p(X).

This proves that T - Vx¢p(X).
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o Consider an L-structure A which is generated by its constant elements.

o Let T be the class of all sentences of L, which are true in A.

o Then T has the following properties:
For every atomic sentence ¢ of L, if ¢p€ T, then g T.
For every closed term t of L, the sentence t=tis in T.
If ¢(x) is an atomic formula of L, s and t are closed terms of L and
s=te T, then ¢(s)e T if and only if ¢p(t)e T.
If ==¢pe T then pe T.
If A\@e T, then @< T; if ~A®e T, then there is ¢ € @, such that
ayeT.
If V®e T, then there is ¥ € @, such that w e T. In particular, L&g T. If
a\/®e T, then ~we T, for all ye®.
Let ¢ be ¢p(x). If Vx¢pe T, then ¢(t) € T, for every closed term ¢ of L;
if AVx¢p e T, then =¢p(t) € T, for some closed term t of L.
Let ¢ be ¢p(x). If Ax¢pe T, then ¢(t) € T, for some closed term ¢ of L;
if 73x¢p € T, then for every closed term t of L, =¢p(t)e T.

o A theory T with these properties is called a Hintikka set for L.
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Theorem
Let L be a signature and T a Hintikka set for L. Then T has a model in
which every element is of the form t# for some closed term t of L. In fact
the canonical model of the set of atomic sentences in T is a model of T.

o Write U for the set of atomic sentences in T, and let A be the
canonical model of U.
: For every sentence ¢ of Loy, if € T, then Al=¢p, and if
ape T, then A= —¢.
The proof is by induction on the construction of ¢, using the
definition of |=.
o By 2 and 3 above, U is =-closed in L. Hence if ¢ is atomic, the
conclusion is immediate by 1 and the definition of A.
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o We continue with the induction:

o Suppose ¢ is of the form =y for some sentence .
If e T, then = e T. By induction, A= -. Hence, A= ¢.
Suppose, next, 7¢pe T. Then we T by 4. Hence, A= by induction.
But then A= —¢.

o Suppose next that ¢ is Vxwy.
If p€ T, then by 7, w(t) e T, for every closed term t of L. So
A= (t), by the induction hypothesis. Since every element of the
canonical model is named by a closed term, A= Vxy.
If 7¢pe T, then by 7 again, =w(t) € T, for some closed term t. Hence,
A= —yp(t). Therefore A= ~Vxy.

o The remaining cases are similar.

From the claim, it follows that A is a model of T.

o The theorem reduces the problem of finding a model to the problem of
finding a particular kind of theory.
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Let L be a first-order language (or, more generally, a first-order-closed
language). Let T be a theory in L such that:

Every finite subset of T has a model;
For every sentence ¢ of L, either ¢ or ~¢p isin T;
For every sentence Ixy/(x) in T, there is a closed term t of L, such
that y(t) isin T;
For every sentence \V® in T with ® infinite, there is 1 € @, such that
we T, and, for every sentence 7 A® in T with @ infinite, there is
w e ®, such that ~y e T.
Then T is a Hintikka set for L. Note that clause (d) has no effect if L is
first-order.

: If U is a finite subset of T and ¢ is a sentence of L such that
Uk ¢, then ¢pe T.
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o Let U and ¢ be a counterexample. Then ¢ ¢ T. By (b), 7¢pe T.
It follows by (a) that there is a model of Uu{=¢}, contradicting the
assumption that U+ ¢.

o Condition 1 of the definition of Hintikka sets follows from (a).

o Conditions 2, 3 and 4 follow from the claim.

o Condition 5:

o lts first part follows from the claim.
o For the second part:
2 Suppose @ is infinite and " A® € T. Then, by (d), ~we T, for some
Yed.
o Suppose 7(pgA---App_1)€ T. Towards a contradiction, assume

=¢g,...,Pp,_1 € T. By (b), ¢g,...,¢pp_1€ T. Thus,
(¢o A APp-1).¢0,- Pp-1} < T.

By (a), this set has a model. This gives a contradiction.
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o Condition 6:
o For the first part:

o Suppose @ is infinite and V®€ T. Then, by (d), we T, for some y € ®.
o Suppose ¢pg V-V, 1€ T. Towards a contradiction, assume

¢0,---,Pn_1€ T. By (b), 7¢g,...,7p,_1€ T. Thus,
lpoV---Vdp_1,7¢0,....7¢Pp-_11 < T.

By (a), this set has a model. This gives a contradiction.
@ Its second part follows from the claim.
o Condition 7:
o The first part follows from the claim.
o If 2Vx¢p(x) € T, by the claim, 3x-¢(x) € T. Thus, by (c), 7¢(t)e T,
for some closed term t.
o Condition 8:

o The first part is a consequence of (c).
o The second part follows from the claim.
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Subsection 4

Maps and the Formulas they Preserve
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o Let f: A— B be a homomorphism of L-structures and ¢(x) a formula
of Locs-

o We say that f preserves ¢ if, for every sequence a of elements of A,

AEd@E) = BE(f(3).

. In this terminology, we have seen that:
o Homomorphisms preserve atomic formulas;
o A homomorphism is an embedding if and only if it preserves literals.
o A formula ¢ is absolute under f if the displayed relation holds with
= replaced by <.
: Thus atomic formulas are absolute under embeddings.
o The notion of preservation can be used in two ways.

o To classify formulas in terms of the maps which preserve them.
o To classify maps in terms of the formulas which they preserve.
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o A formula ¢ is said to be an V; formula (pronounced “Al formula™), or
universal, if it is built up from quantifier-free formulas by means of
A,V and universal quantification (at most).

o A formula ¢ is said to be an 3; formula (pronounced “E1 formula”), or
existential, if it is built up from quantifier-free formulas by means of
A,V and existential quantification (at most).
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o Universal and existential formulas constitute the bottom end of a
hierarchy:

Formulas are said to be Vg, and Jp, if they are quantifier-free.
A formula is an V.1 formula if it is in the smallest class of formulas
which contains the 3, formulas and is closed under A,V and adding
universal quantifiers at the front.
A formula is an 3,41 formula if it is in the smallest class of formulas
which contains the V, formulas and is closed under A,V and adding
existential quantifiers at the front.

o V5 formulas are sometimes known as V3 formulas.
o Every quantifier-free formula is V1 and 3;.

o All Y or 3; formulas are V».
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o If a formula is formed from other formulas by means of just A and v,
we say it is a positive boolean combination of these other formulas.

o If just A and V are used, we talk of a positive infinite boolean
combination.

o Note that, for any n<w, the class of V,, formulas and the class of 3,
formulas of L., are both closed under positive infinite boolean
combinations.
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Let ¢(x) be an 3; formula of signature L and f: A— B an embedding of
L-structures. Then f preserves ¢.

o We first show that if ¢(x) is a quantifier-free formula of L and a is a
sequence of elements of A, A= ¢(3) © B = ¢(fa).
This is proved by induction on the complexity of ¢.

o If ¢ is atomic, we have it by a precious result.

o If ¢ is 7, A® or V@, then the result follows by induction hypothesis.
We prove the theorem by showing that, for every 3; formula ¢(x) and
every sequence 3 of elements of A, A= ¢(3) = B = ¢(f(3)).

For quantifier-free ¢ this follows from the previous part.
o A and V are handled as before.
o Let ¢(x) be Iyy(y,x) and suppose A= ¢(a). Then A= y(c,a), for
some c in A. By the induction hypothesis, B = w(f(c),f(3)). Hence,
B ¢(f(3)).
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o We say that a formula ¢(x) is preserved in substructures if
whenever A and B are L-structures, A is a substructure of B and 3 is
a sequence of elements of A,

Bl=¢(a) implies Al=¢(3).

o We say that a theory T is an V; theory if all the sentences in T are
V1 formulas.
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Corollary

V1 formulas are preserved in substructures.

If T is an V; theory, then the class of models of T is closed under
taking substructures.

Suppose A is a substructure of B.

Then i: A— B, with i(a) = a, for all ae A, is an embedding.

Let ¢p(X) be a V1 formula. Then =¢(X) is equivalent to an 3; formula.
By the theorem, for all 3 in A,

AlE¢(a) implies Bl=-¢(a).
Now we get, for all 3 in A,
Bl=¢(@) iff BE¢(a) implies AE-¢(a) iff Al=o¢(a).

Suppose T is an V; theory. Let A be a model of T and B a
substructure of A. By Part (a), B is also a model of T.
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o In a signature with just one binary function symbol, a substructure of
a group need not be a group.
s (Z,+) is a group;
o (27Z,+) is a substructure that is not a group.
o By the corollary, in such a signature, groups cannot be axiomatized by
an Vy theory.

George Voutsadakis (LSSU) Model Theory



Classifying Structures

o A formula of L, is said to be positive if = never occurs in it.
o Note — and < never occur in a positive formula, but L may.

o We call a formula 3] or positive existential if it is both positive and
existential.

Let ¢(X) be a formula of signature L and f: A— B a homomorphism of
L-structures.

If ¢ is an 37 formula then f preserves ¢.
If ¢ is positive and f is surjective, then f preserves ¢.

If £ is an isomorphism then f preserves ¢.

o There are many similar results for other types of homomorphism.
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o Let L be a signature and (A;:i<Yy) a sequence of L-structures.
o We call (Aj:i<y) a chain if, forall i<j<y, Ai€A;.
o If (Aj:i<y)is a chain, then we define an L-structure B as follows:
o The domain of B is Uj<ydom(A;).
o For each constant ¢, ¢’ is independent of the choice of i.
So we may define cB = cAi, for any i <.
o Likewise if F is an n-ary function symbol of L and 3 is an n-tuple of
elements of B, then 3 is in dom(A;), for some i <7y.
Without ambiguity, we can define FB( ) to be FAi(3).
o If Ris an n-ary relation symbol of L, we define ae RE if ae RA, for
some (or all) A; containing 2.

o By construction, A; < B, for every i <.

o We call B the union of the chain (A;:i<y), in symbols B = U,y A;
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o We say that a formula ¢(x) of L is preserved in unions of chains if
whenever (A;:i<Y) is a chain of L-structures, a is a sequence of
elements of Ag and A; [=¢(3), for all i <7y, then U;<, A; = ¢(3).

Let w(y,X) be an 3; formula of signature L with y finite. Then Vywy is
preserved in unions of chains of L-structures.

o Let (Aj:i<Yy) be a chain of L-structures and a@ a sequence of elements
of Ao, such that A; = Vyw(y,a), for all i<y. Put B=Ui<, A;.
To show that B |= Vyy(¥,3), let b be any tuple of elements of B.
Since b is finite, there is some i<, such that b lies in A;.
By assumption, A; = (b,3). Since A; c B and y(y,x) is an 3
formula, by a previous theorem, B |= y(b,3a).
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o Any V; first-order formula can be brought to the form Vyw, with ¥
existential.

o By the theorem, then, all V5 first-order formulas are preserved in
unions of chains.

. Recall the axioms for dense linear orderings without

endpoints:

]

€ €€ ¢ ¢ ¢

Vx(x £ x);
Vxy(x=yvx<yVvy<x);
Vxyz(x <y Ay <z—x<2z);
Vxy(x <y —3z(x<zAz<y));
Vx3z(z < x);

Vx3z(x < z).

These are all V5 first-order.

It follows that the union of a chain of dense linear orderings without
endpoints is a dense linear ordering without endpoints.
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Subsection 5

Classifying Maps by Formulas
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o Let L be a signature, f: A— B a homomorphism of L-structures and
@ a class of formulas of Loy,.
o We call f a ®-map if f preserves all the formulas in ®.

o An elementary embedding is a homomorphism (necessarily an
embedding) which preserves all first-order formulas.

o We say that B is an elementary extension of A, or that A is an
elementary substructure of B, in symbols A< B, if:

o AcCB;
@ The inclusion map is an elementary embedding.

o If the inclusion map is an elementary embedding, it is called an
elementary inclusion.

o We write A< B when A is a proper elementary substructure of B.
o Note that A< B implies A= B.
o However, Ac B and A= B do not imply A< B.
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©

We show that A< B and A= B do not imply A< B.

Consider the language L with a single binary relation symbol < and
the two L-structures

©

A
B

({0)2)4)“-}) <),
({0,1,2,...},<).

©

Clearly, Ac B.
Moreover A= B.

©

In fact, f: A— B, with a— 3 is an isomorphism.

On the other hand, A ¥ B.
For example, if ¢(x,y)=-3z(x<zAz<y), we have

Al ¢(x,y)[0,2] but B ¢p(x,y)[0,2].
Consequently, the inclusion is not an elementary embedding.
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Theorem (Tarski-Vaught Criterion for Elementary Substructures)

Let L be a first-order language and let A, B be L-structures with A< B.
Then the following are equivalent:

A'is an elementary substructure of B.

For every formula y(x,y) of L and all tuples a from A, if
B=3yw(3,y), then Bl=w(3,d), for some element d of A.

o Let f: A— B be the inclusion map.

Suppose B |=3yw(a,y). Since f is elementary, Al=3yy(a,y). Hence,
there is d in A, such that A= w(a,d). By applying f, Bl=wy(a,d).

In the theorem on 3; formulas and embeddings, Condition (b) is
exactly what is needed to show that f is elementary.

o This theorem is not very useful for detecting elementary substructures.

o Its main use is for constructing elementary substructures.
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o If @ is a set of formulas, we say that a chain (A;:i<Yy) of L-structures
is a ®-chain when each inclusion map A; < A; is a ®-map.

o In particular an elementary chain is a chain in which the inclusions
are elementary.

Theorem (Tarski-Vaught Theorem on Unions of Elementary Chains)
Let (A;:i<y) be an elementary chain of L-structures. Then Uj<y A; is an
elementary extension of each A;, j<v.

o Put A=Uj<y A;. Let ¢(X) be a first-order formula of signature L.
We show by induction on the complexity of ¢ that for every j <y and
every tuple 3 of elements of A;,

A d@E) iff AR @@).
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o When ¢ is atomic, this follows by a previous theorem.
o The cases 7, (wAy) and (w Vv yx) are straightforward.
Eg.

AE(wvy)(a@) iff AEyw(a) or A= x(3)
iff AjEw(a) or Aj=x(3)
iff AiE(wvy)(a).

o Suppose then that ¢ is Ayw(x,y).
If Al=¢(a), then there is some b in A, such that A=w(3,b).
Choose k <y so that b is in dom(Ak) and k = .
Then Ay Ew(3,b) by the induction hypothesis.
Hence, Ak I= ¢(3).
Since the chain is elementary, A; = ¢(a).
The other direction is easier.
o The argument for Yyw(X,y) is similar.
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Lemma (Elementary Diagram Lemma)
Suppose L is a first-order language, A and B are L-structures, C is a tuple
of distinct constants not in L, (A,a) and (B, b) are L(c)-structures, and a
generates A. Then the following are equivalent:
For every formula ¢(X) of L, if (A,3) = ¢(<), then (B, b) = ¢(C).
There is an elementary embedding f : A— B such that f(3) = b.

o Clearly, (b) implies (a). Suppose (a) holds. Every element of A is of
the form (A3, for some closed term t of L(¢). Define f: A— B by
f(t(A,E)) — (B,b).

Let ¢(Z) be an L-formula and @’ a tuple in A.

By choosing a suitable sequence x of variables, we can write ¢(z) as
w(X) so that ¢p(3') is the same formula as y(3).

Then A= ¢(3') implies A= (3), which by (a) implies B |=y(f(3)).
Hence, B = ¢(f(3')). So f is an elementary embedding.
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o We define the elementary diagram of an L-structure A, in symbols
eldiag(A), to be Th(A,a), where a is any sequence which generates A.
o By (a)=(b) of the Elementary Diagram Lemma, we have the following

fact, which will be used constantly for constructing elementary
extensions:

If D is a model of the elementary diagram of the L-structure A, then
there is an elementary embedding of A into the reduct D |;.
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o This example is taken from abelian groups and modules.

o Let A and B be left R-modules, and A a submodule of B.
o We say that A is pure in B, or that B is a pure extension of A, if
the following holds:
For every finite set E of equations with parameters in A, if E has a
solution in B, then E already has a solution in A.

o The statement that a certain finite set of equations with parameters a
has a solution can be written

K (y1(x,3) A~ Api(X,3)),

with w1,...,¥, atomic.

o A first-order formula of this form is said to be positive primitive, or
p.p. for short.

o So we can define a pure embedding to be one which preserves the
negations of all positive primitive formulas.
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Subsection 6

Translations
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o We look at some paraphrases that do not alter the class of definable
relations on a structure, but only affect formulas which can be used to
define them.

o Let L be a signature. By an unnested atomic formula of signature L
we mean an atomic formula of one of the following forms:

X=Yy;

c =y, for some constant c of L;

F(X) =y, for some function symbol F of L;
RX, for some relation symbol R of L.

o We call a formula unnested if all of its atomic subformulas are
unnested.

o Unnested formulas are handy when we want to make definitions or
proofs by induction on the complexity of formulas.

For the atomic case we never need to consider any terms except
variables, constants and terms F(X), where F is a function symbol.
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Theorem

Let L be a signature. Then every atomic formula ¢(x) of L is logically
equivalent to unnested first-order formulas ¢¥(X) and ¢?(X) of signature L,
such that ¢" is an V; formula and ¢7 is an 3; formula.

o The formula F(G(x),z) = c is logically equivalent to
Vuw(G(x)=unF(u,z)=w—c=w)

and to
Juw(G(x)=unF(u,z)=wnAc=w).

o The formula ¢ is positive primitive.

o The formula ¢ is strict universal Horn (as will be defined later).
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Corollary

Let L be a first-order language. Then every formula ¢(x) of L is logically
equivalent to an unnested formula w(x) of L. More generally every formula
of Lo is logically equivalent to an unnested formula of Lo.

o Use the theorem to replace all atomic subformulas by unnested
first-order formulas.

o If ¢ in the corollary is an 3; formula, then by choosing wisely between
6" and 67 for each atomic subformula 6 of ¢, we can arrange that v
in the corollary is an 3; formula too.

o In fact we can always choose v to lie in the same place in the V,,,3,
hierarchy as ¢, unless ¢ is quantifier-free.
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o Let L and L™ be signatures with L= L™,
o Let R be a relation symbol, ¢ a constant and F a function symbol of

L*.
o An explicit definition of R in terms of L is a sentence of the form
VX (Rx < ¢(x)),

where ¢ is a formula of L.
o An explicit definition of ¢ in terms of L is a sentence of the form

Vy(c=y<—d(y))

where ¢ is a formula of L.
o An explicit definition of F in terms of L is a sentence of the form

Vxy(F(x) =y =y (Xy)),
where v is a formula of L.
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o If cis a constant and F is a function symbol of L*, explicit
definitions of ¢, F in terms of L are sentences of the form

Vy(c=y=¢(y)), Yxy(F(x)=y<—w(xy))
where ¢,y are formulas of L.
o These sentences imply respectively

3-1yp(y),  VxIyy(xy).
We show Vxy(F(x)=y < w(X,y))F ¥x3=1yw(X,y).
Suppose (A, FA) EVXy(F(X) =y < w(X,y)).
Thus, for all 3,bin A, (A, FA)E F(X) =y~ w(X,y)[3 b].
Then, for all 3,b in A, FA(3) = b iff A= w(X,y)[a, b].
Since FA is a function, for all 3in A, A= 3-1yw(X,y)[a).
Thus, A= VX3 yy(X,y).
o We call these sentences the admissibility conditions of the explicit
definitions of ¢ and F, respectively, in terms of L.
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Theorem (Uniqueness of Definitional Expansions)
Let L and L* be signatures with L< L™ and A and B be L*-structures.

o Let R be a relation symbol of L* and 6 an explicit definition of R in
terms of L. If A and B are models of 8, and A|,= B, then R”=RE.

o Let ¢ be a constant of L™ and 0 an explicit definition of ¢ in terms of
L. If A and B are models of 0, and A|;= B, then ¢” = cB.

o Let F be a function symbol of L™ and 0 an explicit definition of F in
terms of L. If A and B are models of 6, and A|;= B|,, then FA=FB.

o Suppose 0 = Vx(Rx < ¢(x)). Since Al =B, dom(A) =dom(B).
Then, for all 3 in A,
RAGR) iff AE¢(@) (AE6)
iff Bl=¢(a) (AlL=BIL)
ifft RE(@). (BE0)
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Theorem (Existence of Definitional Expansions)

Let L and L* be signatures with L < L. Suppose that for each symbol S of
L*\L, Os is an explicit definition of S in terms of L. Let U be the set of
these definitions.
If C is any L-structure which satisfies the admissibility conditions (if
any) of the definitions 65, then we can expand C to form an
L*-structure C* which is a model of U.
Every formula y(X) of signature L* is equivalent modulo U to a
formula y*(X) of signature L.
If ¥ and all the sentences 65 are first-order, then so is y*.

Interpret the symbol S in C*, using the definition 65.

Use a previous theorem to replace every atomic formula in y by an
unnested formula. The explicit definitions translate each unnested
atomic formula directly into a formula of signature L.

Clear from the process of Part (b).
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o A structure C* as in Part (a) of the theorem is called a definitional
expansion of C.

o Let L and L* be signatures with L< L™, and T an L-theory.

o A definitional extension of T to L* is a theory equivalent to
Tu{fs:S asymbol in L*\L},

where, for each symbol S in L*\L,
Os is an explicit definition of S in terms of L;
if S is a constant or function symbol and y is the admissibility
condition for 6, then T I y.
o The preceding two theorems tell us that:

o If T* is a definitional extension of T to L*, then every model C of T
has a unique expansion C* which is a model of T;

o C* is a definitional expansion of C.
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o Let T* be a theory in the language L*, and L a language = L*.

o We say that a symbol S of L* is explicitly definable in T* in terms
of L if T* entails some explicit definition of S in terms of L.

o So, up to equivalence of theories, T* is a definitional extension of a
theory T in L iff:

T and T* have the same consequences in L;
Every symbol of L* is explicitly definable in T* in terms of L.
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o Definitional extensions are useful for replacing complicated formulas by
simple ones.
o Suppose Set Theory entails the admissibility condition

VxVy3d_1z(Vt(tez— (texVvitey))).

o Then, we may introduce a binary function symbol U, explicitly defined
in terms of Set Theory by

0, =VxVy(Vt(texuy — (texVvtey))).
o So, instead of the formula
Az(p(z)AViE(tez— (texViey))),

we may write the simpler version

P(xuy).
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o Suppose Ly and L, are disjoint signatures.

o Let Ty and T, be first-order theories of signature L1, L5, respectively.

o We say that T; and T, are definitionally equivalent if there is a
first-order theory T in the signature Ly U Ly which is a definitional
extension both of T7 and of T5.

o When theories T; and T, are definitionally equivalent as above, we
can turn a model A; of T7 into a model A, of T, by:

o First expanding A1 to a model of T;
o Then restricting to the language L».

o We can get back to A; from A, by doing the same in the opposite
direction.

o The structures A; and A; are then called definitionally equivalent.
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o We met the following sentences true in every term algebra of a fixed
algebraic signature L.

c #d, where c,d are distinct constants.
VXF(X) # ¢, where F is a function symbol and ¢ a constant.
VxyF(X) # G(y), where F,G are distinct function symbols.
VX0 o3 Xp=1Y0 -+ Yn-1(F (X0, .+, Xn=1) = F(¥0, -, ¥n-1) = Ni<nXi = ¥i)-
VX0...Xn-1t(X0,---,Xn-1) # Xj, Where i < n and t is any term containing
x; but distinct from x;.
[Use this axiom only when L is finite.] Write Var(x) for the formula
A{x # c:c a constant of L} AA{Vyx# F(y):F a function symbol of L}.

@ If X has finite cardinality n, we add the axiom 3-,xVar(x).
o If X is infinite, we add the infinitely many axioms 3>,xVar(x) (n<w).

o Call the set of these sentences T; and let L; be their first-order
language.
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o Let Ly be the first-order language whose signature consists of the
following symbols:

For each constant ¢ of L1, a unary relation symbol Is;
For each function symbol F of Lj a unary relation symbol Isg;
For each n-ary function symbol F of L1 and each i< n, a unary
function symbol F;.
: Ty is definitionally equivalent to the following theory T; in L;.
J-1ylsc(y), for each constant symbol ¢ of L.
Vx0...xn3=1y(Ise(¥) A Ai<n Fi(y) = x;), for each function symbol F.
Vx=1(Isc(x) Alsg(x)), where ¢,d are distinct constant or function
symbols.
Vx(=lsg(x) — Fi(x) = x), for each function symbol F;.
Vx(t(Fi(x)) =x— —lsg(x)), for each function symbol F; and term t(y)
of L2.
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o To prove definitional equivalence, we must write down:
o Explicit definitions Uy of the symbols of Ly in terms of Lq;
o Explicit definitions Us of the symbols of L1 in terms of Lp;
so that:
o T; implies the admissibility conditions for U;,i=1,2;
o T1uUUj is equivalent to Tou Us.
o Definitions of Ly in terms of L.
o Vy(Isc(y) < y=c), c a constant of Lj.
o Vy(Isg(y) @ IxFx =y), F a function symbol of L;.

o Vxy(Fix=y <~ (3yo...¥i-1¥is1---Yn-1F (Y0,--,¥i-1, ¥, Vi1, Yn-1) =
x)V(x=yA-JyFy=x)), F an n-ary function symbol of L; and i< n.
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o Definitions of L in terms of L.
o Vy(y =c<lsc(y)), c a constant of L.

o Vxp... Xn-1Y(F (X0, ., xn-1) =y = (Isp(¥) ANi<n Fi(y) = xi)), F a
function symbol of L;.

o Ti and T, give opposite ways of looking at the term algebra.

o Ty generates the terms from their components.
o Ty recovers the components from the terms.

o Note that:

o Tp uses only unary function and relation symbols;
o There is no bound on the arities of the symbols in T7.
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o We have a theory T in a language L, and a set ® of formulas of L
which are not sentences.

o The goal is to extend T to a theory T* in a larger language L* in
such a way that every formula in @ is equivalent modulo T* to an
atomic formula.

o The set of new sentences T\ T will turn out to depend only on L and
not on T.

o This process has been called Morleyization, even though it was
introduced by Skolem.

o We call it atomization.
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Theorem (Atomization Theorem)

Let L be a first-order language. Then there are a first-order language
L® 2L and a theory © in L® such that:

Every L-structure A can be expanded in just one way to an
L®-structure A® which is a model of ©;

Every formula ¢p(X) of L® is equivalent modulo ®© to a formula (x) of
L, and also (when X is not empty) to an atomic formula y(X) of L°;
Every homomorphism between non-empty models of © is an
elementary embedding;

L1 =1LI.

o For each formula ¢(xo,...,xp-1) of L with n>0, introduce a new n-ary
relation symbol Ry.

o L9 is the first-order language got from L by adding all the symbols Ry.
o O is the set of all sentences of the form Vx(Rpx — ¢(x)).
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O is a definitional extension of the empty theory in L.
This also implies the first part of (b).
The second part of (b) then follows by the sentences of ©.

By (b), every formula of L which is not a sentence is equivalent
modulo © to an atomic formula.

If ¢ is a sentence of L then ¢ A (x = x) is equivalent modulo © to an
atomic formula y(x).

Any homomorphism between non-empty models of ® which preserves
x must also preserve ¢p. So (c) follows by a previous theorem.
This is immediate.

o The same technique may be applied to a particular set ® of formulas
of L to study homomorphisms which preserve the formulas in @.

If A and B are models of ©, then every embedding (in fact every
homomorphism) from A to B must preserve the formulas in ®.
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Let © be the theory constructed in the proof of the Atomization Theorem.
Then for every theory T in L®, TU® is equivalent to an V5 theory.

o By (b) of the theorem, every formula of L® with at least one free
variable is equivalent modulo © to an atomic formula of L©.

So TU® is equivalent to a theory T'U®, where every sentence of T’
is V1 at worst. We must show that © itself is equivalent to an V,
theory.
Let ©' be the set of all sentences of the following forms:

Vx(¢p(Xx) < Ryp(X)), where ¢ is an atomic formula of L;

VX(Rp(X) A Ry(X) = Rpay(X)); and likewise for v;

VX(7Ry(X) = R-p(X));

VX(YyRp(x,y) (% Y) < Ryyg(x,y) (X)) and likewise for 3.
After a slight rearrangement of the sentences 4, ®' is an V, theory.
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° : © is equivalent to @'.
Clearly ® implies all the sentences in @'.
Conversely assume that © holds.
Then Vx(Ryx — ¢(x)) follows by induction on the complexity of ¢.
o The base case of ¢ atomic is covered by 1.
o The steps for conjunction and disjunction are covered by 2.
o The step for negation is covered by 3.
o The steps for V and 3 are covered by 4.
Suppose that @' - VxVy(Ryx,,) < ¢(X.¥))-
We must show ©' = VX(Ry,¢(x,y) < YyYP(Xy))-
Let A be a model of ® and 3,b in A.
Al= RVygb(?,y) [3] iff A= Vngb(?,y) x,y)[a] (AF©)
iff A= Ryxy)(X,¥)[ab], forall b, (V)
ifft AlEo¢(x,y)[a b, for all b, (induction)
iff AL VyeFy)E. (V)
Therefore, A= VX(Ryy¢(x,y) < YyYP(X,y))-
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o A first-order theory is said to be model-complete if every embedding
between its models is elementary.

o Atomization shows that we can turn any first-order theory into a
model-complete theory in a harmless way.

o The real interest of the notion of model-completeness is that a number
of theories in algebra have this property without any prior tinkering.
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Subsection 7

Quantifier Elimination
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o Take a first-order language L and a class K of L-structures.

o The class K might be, e.g., the class of all dense linear orderings, or it

might be the singleton {R}, where R is the field of real numbers.

o We say that a set ® of formulas of L is an elimination set for K if:
For every formula ¢(X) of L, there is a formula ¢*(X) which is a
boolean combination of formulas in @, and ¢ is equivalent to ¢* in
every structure in K.

o Quantifier elimination: Given K, find an elimination set for K.

o Of course there always is at least one elimination set ® for any class K
of L-structures: We may take @ to be the set of all formulas of L.

o But with care and attention we can often find a much more revealing
elimination set than this.
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o A linear ordering is dense if for all elements x <y, there is z such that
x<z<y.

Theorem

Let L be the first-order language whose signature consists of the binary
relation symbol <, and let K be the class of all dense linear orderings. Let
® consist of formulas of L which express each of the following:

o There is a first element.
o There is a last element.
o x is the first element.

o x is the last element.

o x<y.

Then @ is an elimination set for K.
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o The truth of a satisfiable formula ¢(xi,...,x,) in a dense linear
ordering A in K depends only on:

o Whether the formula imposes the existence of a first and/or a last
element and whether it stipulates that any of the x; must be the first
or the last element;

o The relative positions imposed on xi,..., .

The particular ordering A is not important.

o So to write ¢(X) as a boolean combination of formulas in ®, we have
to take the conjunction of the following types of formulas:
o For each i a formula stating whether x; is a first or a last element, if
that is stipulated by ¢.
o For each i #, the disjunction of those of x; < x;, x; = x; (which is
equivalent to —1x; < xj A 7x; < X;) and x; < x; that hold for some 3 that
realizes ¢(X) in some structure A.

The conjunction of those formulas of the two types outlined above is
equivalent to ¢ in every structure in K.
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Let L be the first-order language of rings, whose symbols are +,—,-,0,1.
Let K be the class of real-closed fields. Let ® consist of the formulas

Jy(y?=t(x)), taterm of L not containing the variable y.

Then @ is an elimination set for K.
: 3y (y? = t(x)) expresses t(x)=0.

o We shall see an algebraic proof of this later.
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o The name “quantifier elimination” refers to either of the following:
o The process of reducing a formula to a boolean combination of
formulas in @;
o The process of discovering the appropriate set ® in the first place.
o One should distinguish between:
o The method of quantifier elimination;
o The property of quantifier elimination, which is a property that some
theories have.
o A theory T has quantifier elimination if the set of quantifier-free
formulas forms an elimination set for the class of all models of T.
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o The existence of an elimination set ® for a class K of structures may
prove useful in various contexts.
Classification of structures up to elementary equivalence;
Completeness proofs;
Decidability proofs;
Description of definable relations;
Description of elementary embeddings.
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o Suppose we have the following:

o A first-order language L;

o A class K of L-structures;

o A theory T which is a candidate for an axiomatization of K;

o A set of formulas ® which is a candidate for an elimination set.

o If K is defined as Mod(T), then, of course, T does axiomatize K.

o If Kis given and T is a guess at an axiomatization, we may find during
the course of the quantifier elimination that we have to adjust T.
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Lemma

Given a set @ of L-formulas, set ®~ = {=¢: p € ®}. Suppose that:

o Every atomic formula of L is in ®;

o For every formula 6(x) of L which is of the form 3y Aj<,wi(x,y), with
each w; in ®u®~, there is a formula 8*(X) of L which:
Is a boolean combination of formulas in ®;
Is equivalent to 0 in every structure in K.

Then @ is an elimination set for K.

o Form the set ®8 of all Boolean combinations of formulas in ®.

By a preceding lemma, it suffices to show the following:
Every atomic L-formula is in ®B:
®B is closed under Boolean combinations:
For every w(X,y) in ®8, 6(X) :=3yy(X,y) is equivalent in K to some
6*(X) in ®B.
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This holds because of (i).

Note that a Boolean combination of Boolean combinations of
formulas from @ is also a Boolean combination of formulas from ®.
Therefore, ®8 is closed under Boolean combinations.

Suppose ¥(X,y) is in ®B.

Then, taking disjunctive normal forms, w(X,y) is equivalent to
A /\J’.i1 yii(x,y), for some y;; in PUD™.

Thus, 0(x) :=3yw(X,y) is equivalent to V7:15|y/\j-11 vii(X,y).

By hypothesis, for all i, there exists 67 (x) in ®F equivalent to

ki — 5

EIy/\j:ltr[/ij(x’y) in K.

Therefore, 6(x) is equivalent in K to \/7_, 07 (x) in @B,

This proves Condition (c).
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o To find an elimination set, we must discover a way of getting rid of
the quantifier 3y in Iy A< vi(X,y).
Hence the name “quantifier elimination”.

o We start with an arbitrary finite subset ©(y,x) of QU™
We aim to find a boolean combination (x) of formulas in ® so that
3y AO(y,x) is equivalent to ¥ modulo T.
o Typically the move from @ to y takes several steps, depending on what
kinds of formulas appear in ©.

o If we run into a dead end, we can add sentences to T and formulas to
® until the process moves again.
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