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Structures that Look Alike Theorems of Skolem

Skolem’s Theorem

Thoralf Skolem proved that for every infinite structure B of countable
signature there is a countable substructure of B which is elementarily
equivalent to B .

We describe the quickest way to prove Skolem’s result.

Let B be any infinite structure with countable signature.
By a previous theorem, we can build a chain (An : n<ω) of countable
substructures of B , such that:

For each first-order formula φ(y ,x), each n<ω and each tuple a of
elements of An, such that B |= ∃yφ(y ,a), if there is b in B, such that
B |=φ(b,a), then there is such an element b in An+1.

Put A=
⋃

n<ωAn. Clearly A is countable. Also A is an elementary
substructure of B by the Tarski-Vaught Criterion. So A≡B .

Skolem proceeded differently: He added functions to B in such a way
that every substructure of B which is closed under these functions is
automatically an elementary substructure. Then took a generated
substructure. The added functions are called Skolem functions.
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Structures that Look Alike Theorems of Skolem

Skolemization

Suppose T is a theory in a first-order language L.

A skolemization of T is a theory T+ ⊇T in a first-order language
L+ ⊇ L, such that:

1. Every L-structure which is a model of T can be expanded to a model
of T+;

2. For every formula φ(x ,y) of L+, with x non-empty, there is a term t of
L+, such that T+ entails the sentence

∀x(∃yφ(x ,y)→φ(x ,t(x))).

The terms t of Clause 2 and the functions which they define in models
of T+ are called Skolem functions for T+
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Structures that Look Alike Theorems of Skolem

Skolem Theories and the Skolem Hull

We say that T has Skolem functions or that T is a Skolem theory

if T is a skolemization of itself.

Thus, T is a Skolem theory if Clause 2 holds with L= L+ and T =T+.

Note that if T+ is a skolemization of T , then T+ has Skolem
functions.

Note also that these notions depend on the language:
If L⊆ L′ and T is a Skolem theory in L, T will generally not be a
Skolem theory in L′.
If T has Skolem functions and T ′ is a theory with T ⊆T ′, both in the
first-order language L, then it’s immediate that T ′ has Skolem
functions too.

Suppose T is a theory which has Skolem functions, in a first-order
language. Let A be an L-structure and X a set of elements of A.

The Skolem hull of X is defined to be 〈X 〉A, the substructure of A
generated by X .
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Structures that Look Alike Theorems of Skolem

Properties of Skolem Theories

Theorem

Let T be a theory in a first-order language L, which has Skolem functions.

(a) Modulo T , each formula φ(x) of L (with x not empty) is equivalent to
a quantifier-free formula φ∗(x) of L.

(b) If A is an L-structure and a model of T , and X is a set of elements of
A, such that the Skolem hull 〈X 〉A is non-empty, then 〈X 〉A is an
elementary substructure of A.

(a) In Condition 2 the formula φ(x ,t(x)) logically implies ∃yφ(x ,y).

So the → can be replaced by ↔.

Hence Part (a) follows from a previous lemma, applied to the set Φ of
quantifier-free formulas.

George Voutsadakis (LSSU) Model Theory January 2024 7 / 67



Structures that Look Alike Theorems of Skolem

Properties of Skolem Theories (Part (b))

(b) To prove Part (b), put B = 〈X 〉A.

Let φ(x ,y) be a formula of L.

Let b be a tuple of elements of B , such that A |= ∃yφ(b,y).

By Condition 2, there is a term t, such that A |=φ(b,t(b)).

But B is closed under the functions of L.

So the element tA(b) is in B .

By the Tarski-Vaught Criterion, B is an elementary substructure of A.
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Structures that Look Alike Theorems of Skolem

Skolemization Theorem

Theorem (Skolemization Theorem)

Let L be a first-order language. Then there are a first-order language
LΣ ⊇ L and a set Σ of sentences of LΣ such that:

(a) Every L-structure A can be expanded to a model AΣ of Σ;

(b) Σ is a Skolem theory in LΣ;

(c) |LΣ| = |L|.

For each formula χ(x ,y) of L (where x is not empty), introduce a new
function symbol Fχ,x of the same arity as x .

The language L′ is L with these new function symbols added.

The set Σ(L) consists of all the sentences

∀x(∃yχ(x ,y)→ χ(x ,Fχ,x(x))).
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Structures that Look Alike Theorems of Skolem

Skolemization Theorem (Auxiliary Lemma)

Claim: Every L-structure A can be expanded to a model of Σ(L).

If A is empty it is already a model of Σ(L).

If A is not empty, we expand it to an L′-structure A′ as follows.

Let χ(x ,y) be any formula of L with x non-empty.

Let a be a tuple of elements of A.

If there is an element b such that A |=χ(a,b), choose one such element

b and put FA′

χ,x
(a)= b (here we generally need the axiom of choice).

If there is no such element, let FA′

χ,x
(a) be, say, the first element in a.

Then A′ is a model of all the sentences in Σ(L).
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Structures that Look Alike Theorems of Skolem

Skolemization Theorem (Cont’d)

The theory Σ is built by iterating the construction of Σ(L) ω times.

We define, by induction on n,

A chain of languages (Ln : n<ω);
A chain of theories (Ln : n<ω).

The construction proceeds as follows.

L0 = L and Σ0 is the empty theory;
Ln+1 is (Ln)

′ and Σn+1 =Σn∪Σ(Ln);

Finally, set LΣ =
⋃

n<ωLn and Σ=
⋃

n<ωΣn.

Part (a) is true by making repeated expansions as in the claim.

Part (b) holds also. Every formula χ of LΣ lies in some Σn. So the
required sentence is, by construction, in Σn+1.

Part (c) is clear.
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Structures that Look Alike Theorems of Skolem

Skolemization Preserving the Cardinality of the Language

Corollary

Let T be a theory in a first-order language L. Then T has a skolemization
T+ in a first-order language L+ with |L+| = |L|.

Define:

L+ = LΣ;
T+ =T ∪Σ.

Note that Σ is a skolemization of the empty theory in L.
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Structures that Look Alike Theorems of Skolem

Downward Löwenheim-Skolem Theorem

Corollary (Downward Löwenheim-Skolem Theorem)

Let L be a first-order language, A an L-structure, X a set of elements of A,
and λ a cardinal such that |L|+ |X | ≤λ≤ |A|. Then A has an elementary
substructure B of cardinality λ with X ⊆ dom(B).

Expand A to a model AΣ of Σ in LΣ.

Let Y be a set of λ elements of B , with X ⊆Y .

Let B ′ be the Skolem hull 〈Y 〉A.

Let B be the reduct B ′ |L.

By a previous theorem,

|B | ≤ |Y |+ |LΣ| =λ+|L| =λ= |Y | ≤ |B |.

Since Σ is a Skolem theory, by a previous theorem, B ′ 4AΣ.

Hence, B 4A.
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Structures that Look Alike Theorems of Skolem

Example: Simple Subgroups of Simple Groups

Let G be an infinite simple group. We show that for every infinite
cardinal λ≤ |G |, G has a subgroup of cardinality λ which is simple.

The language of groups is countable.

By the Downward Löwenheim-Skolem Theorem, G has an elementary
sub-structure H of cardinality λ.

Clearly H is a subgroup of G .
To show that H is simple it suffices to prove that if a,b are two
elements of H and b 6= 1, then a is in the normal subgroup of H
generated by b.
Since G is simple, this is certainly true with G in place of H .
Suppose, for example, that

G |= ∃y∃z(a = y−1by ·z−1b−1z).

Since H 4G , the same sentence is true in H .
Hence, there are c ,d in H such that a= c−1bc ·d−1b−1d .
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Structures that Look Alike Back-and-forth Equivalence

Subsection 2

Back-and-forth Equivalence
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Structures that Look Alike Back-and-forth Equivalence

Isomorphism and Elementary Equivalence

Comparing the two relations ∼= (isomorphism) and ≡ (elementary
equivalence) between structures, we see that:

In one sense isomorphism is a more intrinsic property of structures,
because it is defined directly in terms of structural properties, whereas
≡ involves a language.
In another sense elementary equivalence is more intrinsic, because the
existence of an isomorphism can depend on some subtle questions
about the surrounding universe of sets.

In the early 1950s, Roland Fraïssé discovered a family of equivalence
relations which hover somewhere between ∼= and ≡.

His equivalences are purely structural - there are no languages involved.
Moreover, they are independent of the surrounding universe of sets.

The trick is to look at isomorphisms, but only between a finite number
of elements at a time.
Fraïssé’s equivalence relations sometimes provide:

A way of proving that two structures are elementarily equivalent;
Proofs of isomorphism.
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Structures that Look Alike Back-and-forth Equivalence

Playing a Game on Structures

Let L be a signature and let A and B be L-structures.

We imagine two people (or players), called ∀ and ∃, who are
comparing these structures.

∀ wants to prove that A is different from B.
∃ tries to show that A is the same as B.

Their conversation has the form of a game.

Player ∀ wins if he manages to find a difference between A and B

before the game finishes.

Otherwise player ∃ wins.
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Structures that Look Alike Back-and-forth Equivalence

Rules of the Game on Structures

An ordinal γ (usually ω or finite) is given, which is the length of the
game, i.e., the game is played in γ steps.

At the ith step of a play, player ∀ picks one of the structures A, B and
chooses an element of this structure.
Then player ∃ chooses an element of the other structure.
So an element ai of A and an element bi of B are chosen.

Apart from the fact that player ∃ must choose from the other
structure from player ∀ at each step, both players have complete
freedom to choose as they please (including elements which were
chosen at an earlier step).

At the end of the play, sequences a= (ai : i < γ) and b = (bi : i < γ)
have been chosen. The pair (a,b) is known as the play.

The play (a,b) is a win for player ∃, and we say that player ∃ wins

the play, if there is an isomorphism f : 〈a〉A→〈b〉B , with f (a)= b.

A play is a win for player ∀ if it is not a win for player ∃.
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Structures that Look Alike Back-and-forth Equivalence

Example: Rationals versus Integers

Suppose γ≥ 2.

Let A be the additive group Q of rational numbers.

Let B be the additive group Z of integers.

Player ∀ can win by playing as follows:

He chooses a0 to be any non-zero element of Q.
Then player ∃ must choose b0 to be a non-zero integer.
Otherwise, she loses the game at once.
Now there is some integer n which does not divide b0 in Z.
Player ∀ chooses a1 in Q so that na1 = a0.
Player ∃ cannot choose b1 in Z so that nb1 = b0.

It follows that, if γ≥ 2, player ∀ can always arrange to win the game
on Q and Z.
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Structures that Look Alike Back-and-forth Equivalence

Characterizing Winning for ∃

We write A≡0 B to mean that, for every atomic sentence φ of L,

A |=φ iff B |=φ.

We may replace “atomic” by “quantifier-free” without change.

Proposition

Player ∃ wins the play (a,b) if and only if (A,a)≡0 (B ,b).

This is equivalent to the definition of a win for ∃ by a previous
theorem.
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Structures that Look Alike Back-and-forth Equivalence

Ehrenfeucht-Fraïssé game of length γ on A and B

The game just described is called the Ehrenfeucht-Fraïssé game of

length γ on A and B , in symbols EFγ(A,B).

The more A is like B , the better chance player ∃ has of winning.

If player ∃ knows an isomorphism i :A→B , then she can be sure of
winning every time.

All she has to do is choose:

i(a) whenever player ∀ has just chosen an element a of A;
i−1(b) whenever player ∀ has just chosen an element b from B.
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Structures that Look Alike Back-and-forth Equivalence

Winning Strategies

A strategy for a player in a game is a set of rules which tell the player
exactly how to move, depending on what has happened earlier in the
play.

We say that the player uses the strategy σ in a play if each of his or
her moves in the play obeys the rules of σ.

We say that the strategy σ is a winning strategy if the player wins
every play in which he or she uses σ.

We write A∼γ B to mean that player ∃ has a winning strategy in the
game EFγ(A,B).

We stipulate that for any positive ordinal γ, if at least one of A,B is
empty, then A∼γ B if and only if both are empty.
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Structures that Look Alike Back-and-forth Equivalence

Example

Consider a play over structures A and B .

Suppose ∃ knows an isomorphism i :A→B .

Let σ be the strategy consisting of the rules:

Choose i(a) whenever player ∀ has just chosen an element a of A.
Choose i−1(b) whenever player ∀ has just chosen an element b of B.

This is a winning strategy for player ∃.

On the other hand, we showed that ∃ does not have a winning
strategy for the 2-round game played on the additive groups Q and Z.

Therefore, Q≁2 Z.
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Structures that Look Alike Back-and-forth Equivalence

Properties of Winning Strategies

Lemma

Let L be a signature and let A,B be L-structures.

(a) If A∼=B , then A∼γ B , for all ordinals γ.

(b) If β<γ, and A∼γ B , then A∼β B .

(c) If A∼γ B and B ∼γ C , then A∼γ C ; in fact ∼γ is an equivalence
relation on the class of L-structures.

(a) This has already been proven.

(b) This is straightforward.

(c) It is clear from the definition that ∼γ is reflexive and symmetric on the
class of L-structures. We prove transitivity.

Suppose A∼γ B and B ∼γ C . Then player ∃ has winning strategies σ

and τ for EFγ(A,B) and EFγ(B ,C ), respectively.

Suppose the two players sit down to a match of EFγ(A,C ).

We have to find a winning strategy for player ∃.
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Structures that Look Alike Back-and-forth Equivalence

Properties of Winning Strategies (Cont’d)

To respond in EFγ(A,C ), ∃ will be playing two “private” games
EFγ(A,B) and EFγ(B ,C ) on the side.

Suppose ∀ chooses ai from A in EFγ(A,C ).

∃ uses σ to pick bi from B in EFγ(A,B);
Assuming that bi was chosen by ∀ in EFγ(B ,C),
∃ uses τ to pick ci from C in EFγ(B ,C).

∃ chooses ci from C as a response to ai in EFγ(A,C ).
Suppose ∀ chooses ci from C in EFγ(A,C ).

∃ uses τ to pick bi from B in EFγ(B ,C);
Assuming that bi was chosen by ∀ in EFγ(A,B),
∃ uses σ to pick ai from A in EFγ(A,B).

∃ chooses ai from A as a response to ci in EFγ(A,C ).
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Structures that Look Alike Back-and-forth Equivalence

Properties of Winning Strategies (Conclusion)

At the end of the contest, the players have constructed sequences

a from A;
b from B;
c from C .

The play of the public game EFγ(A,C ) is (a,c).

In the private game EFγ(A,B), player ∃ used her winning strategy σ.

So the play (a,b) is a win for ∃.
In the private game EFγ(B ,C ), player ∃ used her winning strategy τ.

So the play (b,c) is a win for ∃.

Thus, we get (A,a)≡0 (B ,b)≡0 (C ,c). Hence, (A,a)≡0 (C ,c).

This shows that (a,c) is a win for ∃ in EFγ(A,C ).

Hence, the strategy described for ∃ is a winning strategy.

Thus, A∼γ B .
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Structures that Look Alike Back-and-forth Equivalence

Back-and-Forth Equivalence and Systems

Two L-structures A and B are said to be back-and-forth equivalent

if A∼ω B , i.e. if player ∃ has a winning strategy for EFω(A,B).

A back-and-forth system from A to B is a set I of pairs (a,b) of

tuples, with a from A and b from B , such that:
1. I is not empty;
2. If (a,b) is in I , then a and b have the same length and (A,a)≡0 (B ,b);

3. For every pair (a,b) in I and every element c of A, there is an element

d of B, such that the pair (ac ,bd) is in I ;

4. For every pair (a,b) in I and every element d of B, there is an element

c of A, such that the pair (ac ,bd) is in I .

By Condition 1 and a previous theorem, if (a,b) is in I , then there is
an isomorphism f : 〈a〉A →〈b〉B , such that f (a)= b.

In fact, f is unique since a generates 〈a〉A.

I∗ denotes the set of all such functions f corresponding to pairs of
tuples in I .
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Structures that Look Alike Back-and-forth Equivalence

Properties of I ∗

Conditions 1-4 imply some similar conditions on the set J = I∗:

1. J is not empty;
2. Each f ∈ J is an isomorphism from a finitely generated substructure of

A to a finitely generated substructure of B;
3. For every f ∈ J and c in A there is g ⊇ f , such that g ∈ J and c ∈ domg ;
4. for every f ∈ J and d in B, there is g ⊇ f , such that g ∈ J and d ∈ img .

Conversely, if J is any set obeying these four conditions, then there is
a back-and-forth system I , such that J = I∗.

Take I to be the set of all pairs of tuples (a,b), such that:

a is from A;
b is from B;
J contains a map f : 〈a〉A→〈b〉B , such that f (a)= b.
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Structures that Look Alike Back-and-forth Equivalence

Characterization of Back-and-Forth Equivalence

Lemma

Let L be a signature and let A,B be L-structures. Then A and B are
back-and-forth equivalent if and only if there is a back-and-forth system
from A to B .

Suppose first that A is back-and-forth equivalent to B .

Then player ∃ has a winning strategy σ for the game EFω(A,B).

Let I consist of the pairs of tuples which are of the form (c |n,d |n),
for some n <ω and some play (c ,d) in which player ∃ uses σ.

Claim: The set I is a back-and-forth system from A to B .

First, putting n= 0 in the definition of I , we see that I contains the
pair of 0-tuples (〈〉,〈〉). This establishes Property 1.

Property 2 holds because the strategy σ is winning.

Properties 3 and 4 express that σ tells player ∃ what to do at each
step of the game.
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Structures that Look Alike Back-and-forth Equivalence

Characterization of Back-and-Forth Equivalence (Converse)

Suppose that there exists a back-and-forth system I from A to B .

Define the set I∗ of maps corresponding to I , as above.

Choose an arbitrary well-ordering of I∗.
Consider the following strategy σ for player ∃ in EFω(A,B).

Suppose the play so far is (a,b).
Suppose player ∀ has just chosen an element c from A.

Find the first map f in I
∗, such that

a and c are in the domain of f and f (a)= b.

Choose d to be f (c).
Suppose player ∀ has just chosen an element d from B.

Find the first map f in I
∗, such that

b and d are in the image of f and f (a)= b.

Choose c such that f (c)= d .

By Properties 1, 3, 4, there will always be a map f in I∗ as required.

So the strategy is well-defined.

Suppose the resulting play is (a,b). Then, by Property 2 and a
previous theorem, we have (A,a)≡0 (B ,b). So player ∃ wins.
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Structures that Look Alike Back-and-forth Equivalence

Example: Algebraically Closed Fields

Let A and B be algebraically closed fields of the same characteristic
and infinite transcendence degree. We show that A is back-and-forth
equivalent to B .

Recall that a finitely generated subfield of A is the smallest subfield
of A containing some given finite set of elements of A.

Note, also, that it need not be finitely generated as a ring.

Let J be the set of all isomorphisms e :A′ →B ′, where A′,B ′ are
finitely generated subfields of A, B , respectively.

A and B have the same characteristic. Hence, the prime subfields of
A,B are isomorphic. So J is not empty. Thus, Condition 1 is satisfied.

J satisfies Condition 2 by construction.

Suppose f :A′ →B ′ is in J and c is an element of A.

We want to find a matching element d in B .

We need to distinguish two cases.
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Structures that Look Alike Back-and-forth Equivalence

Example: Algebraically Closed Fields (Cont’d)

First, suppose c is algebraic over A′. Then c is determined up to
isomorphism over A′ by its minimal polynomial p(x) over A′.
f carries p(x) to a polynomial fp(x) over B ′.
B contains a root d of fp(x) since it is algebraically closed.
Thus f extends to an isomorphism g :A′(c)→B ′(d).
Second, suppose c is transcendental over A′.
B ′ is finitely generated and B has infinite transcendence degree.
So there is an element d of B which is transcendental over B ′.
Thus again f extends to an isomorphism g :A′(c)→B ′(d).

Either way, Condition 3 is satisfied.

By symmetry, Condition 4 is also satisfied.

So J defines a back-and-forth system from A to B .

By the lemma, A is back-and-forth equivalent to B .
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Structures that Look Alike Back-and-forth Equivalence

Algebraically Closed Fields (Special Case)

If A⊆B in the example above, then we can say a little more.

For every finitely generated subfield C of A, there is a system J as
above, such that every map in J pointwise fixes C .

In terms of back-and-forth systems, this says that if e is a tuple of
elements which generate C , then there is a back-and-forth system I

from A to B in which every pair has the form (e a,e b).
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Structures that Look Alike Back-and-forth Equivalence

Winning Positions

If two structures A and B are back-and-forth equivalent, they are in
some sense hard to tell apart.

A position of length n in a play of the back-and-forth game
EFγ(A,B) is a pair (c ,d) of n-tuples, where:

c lists in order the elements of A chosen in the first n moves;
d lists in order the elements of B chosen in the first n moves.

A position is a position of some finite length.

The position is winning for one of the players if the player has a
wining strategy that enables him to win in EFγ(A,B) whenever the

first n moves are (c ,d).

It is not hard to see that (c ,d) is a winning position for a player if and
only if that player has a winning strategy for EFγ((A,c),(B ,d)).

In particular, the starting position is winning for ∃ if and only if A and
B are back-and-forth equivalent.
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Structures that Look Alike Back-and-forth Equivalence

Back-and-Forth Equivalence for Countable Structures

Theorem

Let L be any signature (not necessarily countable) and let A and B be
L-structures.

(a) If A∼=B , then A is back-and-forth equivalent to B .

(b) Suppose A,B are at most countable. If A is back-and-forth equivalent
to B , then A∼=B . In fact, if c ,d are tuples from A,B , respectively,
such that (c ,d) is a winning position for player ∃ in EFω(A,B), then
there is an isomorphism from A to B which takes c to d .

(a) This is a special case of a preceding lemma.

(b) Suppose A and B are at most countable. The game EFω(A,B) has
infinite length. So player ∀ can list all the elements of A and of B
among his choices. Let player ∃ play to win. Let (a,b) be the resulting

play. By the Diagram Lemma A= 〈a〉A
f
∼= 〈b〉B =B .

The last sentence is similar, but starting the play at (c ,d).
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Structures that Look Alike Back-and-forth Equivalence

Example: Dense Linear Orderings without Endpoints

An old theorem of Cantor states that if A and B are countable dense
linear orderings without endpoints, then A∼=B .

This follows at once from Part (b) of the theorem, when we show that
A is back-and-forth equivalent to B .

The required back-and-forth system consists of all pairs of tuples (a,b)
such that:

For some n<ω, a= (a0, . . . ,an−1) is a tuple of elements of A;

b= (b0, . . . ,bn−1) is a tuple of elements of B;
For all i < j < n,

ai ≷ aj iff bi ≷ bj .
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Structures that Look Alike Back-and-forth Equivalence

Example: Atomless Boolean Algebras

Let A and B be countable atomless boolean algebras. Then A∼=B .

Again we show this by Part (b) of the theorem. Let J be the set of all
isomorphisms from finite subalgebras of A to finite subalgebras of B .
Then Conditions 1 and 2 clearly hold.

For Condition 3, suppose f ∈ J and let a0, . . . ,ak−1 be the atoms of the
boolean algebra A′ which is the domain of f . Then the isomorphism
type of any element c of A over A′ is determined once we are told, for
each i < k , whether c ∧ai is 0, ai or neither. Since B is atomless,
there is an element d of B , such that, for each i < k ,

d ∧ f (ai ) is 0 (resp. f (ai )) iff c ∧ai is 0 (resp. ai ).

So f can be extended to an isomorphism whose domain includes c .
Thus J satisfies Condition 3.

By symmetry, it also satisfies Condition 4.

We have proved that A∼=B .
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The Case of Uncountable Structures

The results of Examples 3 and 4 are as false as they possibly could be
when we replace “countable” by an uncountable cardinal κ.

We will see that there are:

2κ non-isomorphic dense linear orderings of cardinality κ;
2κ non-isomorphic atomless boolean algebras of cardinality κ.
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Back-and-Forth Equivalence for Uncountable Structures

Theorem

Let A,B be L-structures and a,b n-tuples from A, B , respectively. If (a,b)
is a winning position for player exists in EFω(A,B), then (A,a)≡∞,ω (B ,b).
In particular, if A and B are back-and-forth equivalent, then they are
L∞ω-equivalent.

We show that, if φ(x) is any formula of L∞ω and (a,b) is a winning
position for ∃, then

A |=φ(a) iff B |=φ(b).

By induction on the structure of φ.
If φ is atomic, the result follows by the Diagram Lemma and the
definition of winning.
If φ is of the form ¬ψ,

∧

Φ or
∨

Φ, the the result follows easily by the
induction hypothesis.
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Back-and-Forth for Uncountable Structures (Cont’d)

Let φ is ∃yψ(x ,y). Suppose A |=φ(a). Then, there is a c in A, such

that A |=ψ(a,c). But (a,b) is winning for ∃. So she has a winning
strategy from this position onward. This strategy gives d ∈B, if player
∀ chooses c in his next move. So (ac ,bd) must still be a winning

position for player ∃. By the induction hypothesis, B |=ψ(b,d). So
B |= ∃yψ(x ,y).
The other direction is handled similarly.
If φ is ∀yψ, we reduce it to the previous case by writing ¬∃¬ for ∀y .

It is a little harder to prove, but the reverse is also true.

If A and B are L∞ω-equivalent, then they are back-and-forth equivalent.

This shows that back-and-forth equivalence is not a good criterion for
elementary equivalence because it proves too much.
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Scott’s Isomorphism Theorem

We close by providing an important result without proof.

Theorem (Scott’s Isomorphism Theorem)

Let L be a countable signature and B a countable L-structure.
Then, there is a sentence σB of Lω1ω such that the models of σB are
exactly the L-structures which are back-and-forth equivalent to B .
In particular, B is up to isomorphism the only countable model of σB .

A sentence σB as in the theorem is called a Scott sentence of B .

No satisfactory analog of the theorem is known for uncountable
cardinalities.
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Subsection 3

Games for Elementary Equivalence
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Unnested Formulas

Let L be a signature.

Recall that by an unnested atomic formula of signature L we mean
an atomic formula of one of the following forms:

1. x = y ;
2. c = y , for some constant c of L;
3. F (x)= y , for some function symbol F of L;
4. Rx, for some relation symbol R of L.

Recall, also, that we call a formula unnested if all of its atomic
subformulas are unnested.
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Unnested Ehrenfeucht-Fraïssé Games

We consider a game EFk [A,B ], played exactly like EFk(A,B) but with
a different criterion for winning.

The players between them make k pairs of choices;
At the end of the play, tuples c from A and d from B have been chosen.
Player ∃ wins the game EFk [A,B] if, for every unnested atomic formula
φ of L,

A |=φ(c) iff B |=φ(d).

If the signature L contains no function symbols or constants, then
every formula of L is unnested and EFk(A,B) and EFk [A,B ] coincide.

Example: This is the case, e.g., with linear orderings.

The games EFk [A,B ] are called unnested Ehrenfeucht-Fraïssé

games.

We write A≈k B to mean that player ∃ has a winning strategy for the
game EFk [A,B ].

≈k is an equivalence relation on the class of L-structures.
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Allowing Parameters

We allow the structures to carry some parameters with them.

Suppose n<ω and a, b are n-tuples of elements of A,B , respectively.

We write (A,a)≈k (B ,b) to mean that player ∃ has a winning strategy
for the game EFk [(A,a),(B ,b)].

The condition for player ∃ to win this game, when the play has chosen
k-tuples c ,d from A,B , respectively, is that for every unnested atomic
formula φ of L,

A |=φ(a,c) iff B |=φ(b,d).

This is a restatement of the original condition with (A,a) and (B ,b) in
place of A and B .
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Winning in Unnested Ehrenfeucht-Fraïssé Games

Lemma

Let A and B be structures of the same signature. Suppose n,k <ω.
Suppose a, b are n-tuples of elements of A,B , respectively. Then the
following are equivalent:

(a) (A,a)≈k+1 (B ,b).

(b) For every c in A, there is d in B , such that (A,a,c)≈k (B ,b,d);

For every d in B , there is c in A, such that (A,a,c)≈k (B ,b,d).

First suppose (a) holds. Let c be an element of A.

∃ views c as player ∀’s first choice in a play of EFk+1[(A,a),(B ,b)].
She uses her winning strategy σ to choose d as her reply to c .
In playing EFk [(A,a,c),(B ,b,d)], ∃ can win by regarding the steps as

the last k steps in the play of EFk+1[(A,a),(B ,b)], for which she has a
winning strategy.

This proves the first half of (b). The second follows by symmetry.
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Winning in Unnested Ehrenfeucht-Fraïssé Games (Converse)

Conversely, suppose (b) holds.

Then ∃ can win the game EFk+1[(A,a),(B ,b)] as follows:

If ∀ opens by choosing c in A, then ∃ chooses d as in (b).
If ∀ opens by choosing d in B, then ∃ chooses c as in (b).
For the rest of the game ∃ follows her winning strategy for
EFk [(A,a,c),(B ,b,d)].

George Voutsadakis (LSSU) Model Theory January 2024 47 / 67



Structures that Look Alike Games for Elementary Equivalence

The Quantifier Rank of a Formula

We will prove a fundamental theorem about the equivalence relations
≈k between structures of the form (A,a) with A an L-structure.

It will say among other things that:

For each k , there are just finitely many equivalence classes of ≈k ;
Each equivalence class is definable by a formula of L;
A bound exists on the complexity of these defining formulas, in terms
of the notion of quantifier rank.

For any formula φ of the first-order language L, we define the
quantifier rank qr(φ) of φ by induction on the construction of φ.

If φ is atomic then qr(φ)= 0;
qr(¬ψ)= qr(ψ);
qr(

∧

Φ)= qr(
∨

Φ)=max{qr(ψ) :ψ ∈Φ};
qr(∀xψ)= qr(∃xψ)= qr(ψ)+1.

Thus, qr(φ) measures the nesting of quantifiers in φ.
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Fraïssé-Hintikka Theorem

Theorem (Fraïssé-Hintikka Theorem)

Let L be a first-order language with finite signature. Then we can
effectively find, for each k ,n<ω, a finite set Θn,k of unnested formulas
θ(x0, . . . ,xn−1) of quantifier rank at most k , such that:

(a) For every L-structure A, all k ,n<ω and each n-tuple a= (a0, . . . ,an−1)
of elements of A, there is exactly one formula θ in Θn,k , such that
A |= θ(a).

(b) For all k ,n<ω and every pair of L-structures A,B , if a and b are
respectively n-tuples of elements of A and B , then (A,a)≈k (B ,b) if
and only if there is θ in Θn,k , such that A |= θ(a) and B |= θ(b).

(c) For every k <ω and every unnested formula φ(x) of L with n free
variables x and quantifier rank at most k , we can effectively find a
disjunction θ0∨·· ·∨θm−1 of formulas θi (x) in Θn,k which is logically
equivalent to φ.

George Voutsadakis (LSSU) Model Theory January 2024 49 / 67



Structures that Look Alike Games for Elementary Equivalence

Fraïssé-Hintikka Theorem (The Sets Θn,k)

We describe the sets Θn,k .

Write φ1 for φ and φ0 for ¬φ.

Let 2m be the set of maps s :m→ 2, where m= {0, . . . ,m−1} and
2= {0,1}.

Let k = 0 and n<ω fixed.
There are finitely many unnested atomic formulas φ(x0, . . . ,xn−1) of L.
List them as φ0, . . . ,φm−1.

Define Θn,0 =

{

φ
s(0)
0

∧·· ·∧φ
s(m−1)
m−1

: s ∈ 2m
}

.

Thus, Θn,0 lists all the possible unnested quantifier-free types of
n-tuples of elements of an L-structure.
Suppose Θn+1,k = {χ0(x0, . . . ,xn), . . . ,χj−1(x0, . . . ,xn)} has been defined.
Define Θn,k+1 = {

∧

i∈X ∃xnχi (x0, . . . ,xn)∧∀xn
∨

i∈X χi (x0, . . . ,xn) :X ⊆ j }.
Thus, each formula in Θn,k+1 lists the ways in which the n-tuple can be
extended to an (n+1)-tuple, in terms of the formulas of quantifier rank
k satisfied by the (n+1)-tuple.
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Fraïssé-Hintikka Theorem (Proof of Property (b))

We use induction on k , for all n simultaneously. Let A,B be
L-structures and a,b n-tuples of elements of A,B , respectively.

If k = 0, by the definition of ≈0, (A,a)≈0 (B ,b) iff, for every unnested

atomic formula φ of L, A |=φ(a)⇔B |=φ(b). This holds iff a and b

have the same unnested quantifier-free type in A and B, respectively,
i.e., iff there is some θ ∈Θn,0, such that A |= θ(a) and B |= θ(b).
Clearly, this θ is unique.
Assume the result is proved for k . Let X be the set of i , such that A
has an element c for which A |=χi (a,c). For this choice of X , let
θ′(x0, . . . ,xn−1)=

∧

i∈X ∃xnχi (x0, . . . ,xn)∧∀xn
∨

i∈X χi (x0, . . . ,xn) ∈Θn,k+1.
Certainly A |= θ′(a). Using Property (a) of the preceding lemma and

the induction hypothesis, (A,a)≈k+1 (B ,b) means that:

For every i ∈X , there is d ∈B, such that B |=χi (b,d);
For every d ∈B, there is i ∈X , such that B |=χi (b,d).

In short it means that B |= θ′(b).
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Formulas in Game-Normal Form

The formulas in the sets Θn,k are called formulas in game normal

form, or more briefly game normal formulas.

By Part (c) of the theorem, every first-order formula φ is logically
equivalent to a disjunction of formulas in game normal form with at
most the same free variables as φ.

If φ was unnested, the game normal formulas can be chosen to be of
the same quantifier rank as φ.
However, the process of reducing a formula to unnested form (given
previously) will generally raise the quantifier rank.

George Voutsadakis (LSSU) Model Theory January 2024 52 / 67



Structures that Look Alike Games for Elementary Equivalence

Equivalence and Unnested Equivalence of Structures

Corollary

Let L be a first-order language of finite signature. For any two L-structures
A and B , the following are equivalent:

(a) A≡B .

(b) For every k <ω, A≈k B .

By the theorem, (b) says that A and B agree on all unnested
sentences of finite quantifier rank. So (a) certainly implies (b).

By a previous corollary, every first-order sentence is logically equivalent
to an unnested sentence of finite quantifier rank. So (b) implies (a).
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Graded Back-and-Forth Systems

Suppose K is a class of L-structures.

For each structure A in K, write tup(A) for the set of all pairs (A,a),
where a is a tuple of elements of A.

Write tup(K) for the union of the sets tup(A) with A in K.

By an (unnested) graded back-and-forth system for K we mean a
family of equivalence relations (Ek : k <ω) on tup(K), that satisfy the
following properties:

1. If a,b are in tup(A), tup(B), respectively, and a E0 b, then, for every

unnested atomic formula φ(x) of L, A |=φ(a) iff B |=φ(b);

2. if a,b are in tup(A), tup(B), respectively, a Ek+1 b and c is any

element of A, then exists an element d of B, such that ac Ek bd .
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Graded Back-and-Forth Systems and Unnested Equivalence

Lemma

Suppose (Ek : k <ω) is a graded back-and-forth system for K. Then

(A,a) Ek (B ,b) implies (A,a)≈k (B ,b).

By Condition 2, player ∃ can choose so that:

After the 0-th step in EFk [(A,a),(B ,b)], we have ac0 Ek−1 bd0;

After the 1-st step, we have ac0c1 Ek−2 bd0d1;
...
After k steps, ac E0 bd .

But then player ∃ wins by Condition 1.
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Graded Back-and-Forth Systems and Elimination Sets

Lemma

Suppose (Ek : k <ω) is a graded back-and-forth system for K. Suppose
that, for each n and k , Ek has just finitely many equivalence classes on
n-tuples, and each of these classes is definable by a formula χk ,n(x). Then
the set of all formulas χk ,n,k ,n<ω, forms an elimination set for K.

We have to show that each formula φ(x) of the language L is logically
equivalent to a boolean combination of formulas χk ,n(x), k ,n<ω.

By a previous corollary, we can suppose that φ is unnested.

So by Part (c) of the Fraïssé-Hintikka Theorem φ is logically
equivalent to a boolean combination of game normal formulas θ(x).

By the lemma, each equivalence class under ≈k is a union of
equivalence classes of Ek .

By Part (b) of the Fraïssé-Hintikka Theorem, each game normal
formula φ(x) is equivalent to a disjunction of formulas χk ,n(x).

George Voutsadakis (LSSU) Model Theory January 2024 56 / 67



Structures that Look Alike Games for Elementary Equivalence

Application: The Ordered Group of Integers

Consider the ordered group of integers over the language L whose
symbols are +,−,0,1 and <. The ordered group of integers forms an
L- structure which we shall write as Z. Our aim is to find an
elimination set for Th(Z).

Suppose x is (x0, . . . ,xn−1) and m is a positive integer.

By an m-term t(x) we shall mean a term
∑

i<m si , where each si is
either 0 or 1 or xj or −xj for some j < n.

Let a= (a0, . . . ,an−1) and b = (b0, . . . ,bn−1) be two n-tuples in Z.

We say that a is m-equivalent to b if, for every m-term t(x), the
following hold in Z:

1. t(a)> 0 if and only if t(b)> 0;

2. t(a) is congruent to t(b) (mod q), for each integer q, 1≤ q ≤m.

Note that if a is m-equivalent to b, then a is m′-equivalent to b, for
all m′ <m.
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3-Equivalence and Unnested Formulas

Lemma

Suppose a and b are n-tuples of elements of Z which are 3-equivalent.
Then, for every unnested atomic formula φ(x) of L,

Z |=φ(a) iff Z |=φ(b).

For example,

Z |= a0+a1 = a2 iff Z 6|= (a0+a1−a2 > 0∨−a0−a1+a2 > 0)

iff Z 6|= (b0+b1−b2 > 0∨−b0−b1+b2 > 0)

iff Z |= b0+b1 = b2.
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m
2m-Equivalence and m-Equivalence

Lemma

Suppose m is a positive integer, and a and b are n-tuples of elements of Z
which are m2m-equivalent. Then, for every element c of Z, there is an
element d of Z, such that the tuples ac ,bd are m-equivalent.

Suppose c ∈Z. Consider all the true sentences of the form

t(a)+ ic ≡ j (mod q),

where t(x) is an (m−1)-term, 0< i <m and j < q ≤m. a and b are
m2m-equivalent. So t(a) and t(b) are certainly congruent modulo m!.
Let α be the remainder when c is divided by m!. Let d be any
element of Z congruent to α modulo m!. Then

t(b)+ id ≡ j (mod q)

whenever t(a)+ ic ≡ j (mod q). This tells us how to find a d to take
care of Condition(s) 2 in the definition.
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m
2m-Equivalence and m-Equivalence (Condition 1)

Turning to Condition 1, consider the set of all true statements of the
forms

t(a)+ ic > 0, t(a)+ ic ≤ 0,

where t(x) is an (m−1)-term and 0< i <m. After multiplying by
suitable integers, we can bring these inequalities to the forms

t(a)+m!c > 0, t(a)+m!c ≤ 0,

where t(x) is an m!(m−1)-term. Taking greatest and least values in
the obvious way, we can reduce these to a condition of the form
−t1(a)<m!c ≤−t2(a), together with a set of inequalities Φ(a) which
do not mention c (possibly we reach a single inequality if m!c is
bounded only on one side). So there is a number x in Z, such that
−t1(a)< x ≤−t2(a), and x is congruent to m!α (mod (m!)2).
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m
2m-Equivalence and m-Equivalence (Cont’d)

Now −t1(a) is at most an m!(m−1)-term. By assumption it is
congruent modulo (m!)2 to −t1(b). Similarly with −t2(a).

Hence, there is also a number y in Z, such that −t1(b)< y ≤−t2(b),
and y is congruent to m!α (mod (m!)2).

Put d =
y
m! . Then d is congruent to α modulo m!. We have:

−t1(b)<m!d ≤−t2(b);

The inequalities Φ(b) hold since they use at worst m! ·2(m−1)-terms.

Tracing backwards, we have all the corresponding

t(a)+ ic > 0 iff t(b)+ id > 0,

where t(x) is an (m−1)-term and 0< i <m.

Thus, d serves for the lemma.
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Elimination Set for Th(Z)

We define m0,m1, . . . inductively by m0 = 3, mi+1 =m
2mi

i
.

We define the equivalence relations Ek by

(Z,a) Ek (Z,b) if a is mk -equivalent to b.

By previous lemmas, (Ek : k <ω) is a graded back-and-forth system for
{Z}.

So by a previous lemma, we have an elimination set for Th(Z).

The formulas in the elimination set are of two fairly simple forms.

An inequality;
A congruence to some fixed modulus.
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Decidability of Th(Z)

Theorem

Th(Z) is decidable.

Claim: For any tuple a in Z and any k <ω we can compute a bound
δ(a,k), such that, for every c , there is d , with |d | < δ(a,k), such that
(Z,ac)Ek(Z,ad).

By the proof of the preceding lemma, δ(a,k) can be chosen to be
m2m ·µ, where m is mk and µ is max {|ai | : ai occurs in a}.

It follows by induction on k that if φ(x) is a formula of L of quantifier
rank k , and a is a tuple of elements of Z, then we can compute in a
bounded number of steps whether or not Z⊢φ(a).

George Voutsadakis (LSSU) Model Theory January 2024 63 / 67



Structures that Look Alike Games for Elementary Equivalence

Decidability of Th(Z) (Cont’d)

Suppose, e.g., that φ is ∃yψ(x ,y), where ψ has quantifier rank k −1.

If there is an element c , such that Z |=ψ(a,c), then there is such an
element c <δ(a,k −1).

So we only need check the truth of Z |=ψ(a,c) for finitely many c .

By the induction hypothesis, this takes only a finite number of steps.
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Application: Replacements Preserving ≡

Theorem

Let G1,G2 and H be groups. Assume G1 ≡G2. Then G1×H ≡G2×H.

By a previous corollary, it suffices to show that, if k <ω and G1 ≈k G2,
then G1×H ≈k G2×H. Assume, henceforth, that G1 ≈k G2.

Then player ∃ has a winning strategy σ for the game EFk [G1,G2].

Let the two players meet to play the game EFk [G1×H,G2×H].

Player ∃ will guide her choices by playing another game on the side.

The side game will in fact be EFk [G1,G2].
Suppose player ∀ offers an element, say the element a ∈G1×H ;
Player ∃ first splits it into a product a= g ·h, with g ∈G1 and h ∈H ;
Pretending g was the choice of ∀ in the side game, ∃ uses her strategy
σ to choose a reply g ′ ∈G2 in the side game;
Her public reply to the element a is the element b= g ′ ·h ∈G2×H .

Similarly, if player ∀ chooses from G2×H.
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Elementary Equivalence and Products of Groups

At the end let the play be (g0 ·h0, . . . ,gk−1 ·hk−1;g
′
0 ·h0, . . . ,g ′

k−1
·hk−1).

Player ∃ has won the side game. The unnested atomic formulas of the
language L of groups are of the form x = y , 1= y , x0 ·x1 = y and
x−1 = y .

So for all i , j ,ℓ< k , we have

gi = gj iff g ′
i
= g ′

j
, 1= gi iff 1= g ′

i
,

gi ·gj = gℓ iff g ′
i
·g ′

j
= g ′

ℓ
, g−1

i
= gj iff g ′−1

i
= g ′

j
.

By the definition of cartesian products, for all i , j ,ℓ< k ,

gi ·hi = gj ·hj iff g ′
i
·hi = g ′

j
·hj ,

1= gi ·hi iff 1= g ′
i
·hi ,

gi ·hi ·gj ·hj = gℓ ·hℓ iff g ′
i
·hi ·g

′
j
·hj = g ′

ℓ
·hℓ,

(gi ·hi )
−1 = gj ·hj iff (g ′

i
·hi )

−1 = g ′
j
·hj .

So player ∃ wins the public game too.
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Generalizing

The proof of the preceding theorem uses very few facts about groups.

It would work equally well in any case where a part of a structure can
be isolated and replaced.

Example: Suppose we want to compare two linear orderings.

Assume that one is obtained from the other by replacing an interval by
an elementarily equivalent linear ordering.

Then the two original orderings are elementarily equivalent.

Example: We could take an infinite product of groups and make
replacements at all factors simultaneously.
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