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Automorphisms and Interpretations Automorphisms

Subsection 1
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Automorphisms and Interpretations Automorphisms

The Automorphism Group of a Structure

Let A be an L-structure.

Every automorphism of A is a permutation of dom(A).

By a previous theorem, the collection of all automorphisms of A is a
group under composition.

This group, regarded as a permutation group on dom(A), is called the
automorphism group of A.

It is denoted by Aut(A).

Automorphism groups have traditionally been studied by group
theorists and geometers, in settings remote from model theory.

To exploit past experience, we need some translations between model
theory and group theory.
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Automorphisms and Interpretations Automorphisms

Stabilizers

For any set Ω, the group of all permutations of Ω is called the
symmetric group on Ω, in symbols Sym(Ω).

Let G be a subgroup of Sym(Ω).

If X is a subset of Ω, then the pointwise stabilizer of X in G is the
set

G(X ) = {g ∈G : g(a)= a, for all a ∈X }.

This set forms a subgroup of G .

We also write G(a), where a is a sequence listing the elements of X .

The setwise stabilizer of X in G is the set

G{X } = {g ∈G : g(X )=X }.

It is also a subgroup of G .

In fact, we have G(X ) ⊆G{X } ⊆G .
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Automorphisms and Interpretations Automorphisms

Orbits and Transitivity

Let Ω be a set.

Let G be a subgroup of Sym(Ω).

If a is an element of Ω, the orbit of a under G is the set

{g(a) : g ∈G }.

The orbits of all elements of Ω under G form a partition of Ω.

We say G is transitive on Ω if the orbit of every element (or,
equivalently, the orbit of one element) is the whole of Ω.

A structure A is transitive if Aut(A) is transitive on dom(A).

The opposite occurs when A has no automorphisms except the
identity 1A.

In this case, we say that A is rigid.
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Automorphisms and Interpretations Automorphisms

Example: Ordinals

Let the structure A be an ordinal (α,<).

So < well-orders the elements of A.

Then A is rigid.

Suppose f is an automorphism of A which is not the identity.

Then there is some element a, such that f (a) 6= a.

Replacing f by f −1 if necessary, we can suppose that f (a)< a.

Since f is a homomorphism, f 2(a)= f (f (a))< f (a).

By induction f n+1(a)< f n(a), for each n<ω.

Then a> f (a)> f 2(a)> ·· · .

This contradicts that < is a well-ordering.
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Automorphisms and Interpretations Automorphisms

Example: Affine Space

Let D be the direct sum of countably many cyclic groups of order 2.

Equivalently, let D be a countable-dimensional vector space over the
two-element field F2.

On D we define a relation

R(x ,y ,z ,w) iff x +y = z +w .

The structure A consists of the set D with the relation R .

Fix d in D. Define ed :D →D by

ed (a)= a+d , a ∈D .

ed is a permutation of D.

1-1: ed (a)= ed (b) iff a+d = b+d iff a= b.
Onto: Let a ∈D. Then ed(a−d)= (a−d)+d = a.
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Automorphisms and Interpretations Automorphisms

Example: Affine Space (Cont’d)

ed is an automorphism of A taking 0 to d .

For x ,y ,z ,w ∈D,

R(x ,y ,z ,w) iff x +y = z +w

iff (x +d)+ (y +d)= (z +d)+ (w +d)
iff R(x +d ,y +d ,z +d ,w +d).

Thus, A is a transitive structure.

Fix d again. Define an addition operation +d in terms of R :

x +d y = z iff R(x ,y ,z ,d).

This makes D into an abelian group with d as the identity.

A is what remains of D when we forget which element is 0.

This the countable-dimensional affine space over F2.
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Automorphisms and Interpretations Automorphisms

Action of Permutations on Cartesian Products

Let Ω be a set.

Let G be a group of permutations of Ω.

We write Ω
n for the set of all ordered n-tuples of elements of Ω.

Then G acts as a set of permutations of Ωn by setting

g(a0, . . . ,an−1)= (g(a0), . . . ,g(an−1)).

So we can talk about the orbits of G on Ω
n.

When n is greater than 1 and Ω has more than one element, then G is
not transitive on Ω

n.

Suppose a,b ∈Ω, a 6= b.

Then, for all g ∈G , g(a,a, . . .) 6= (a,b, . . .).

So G cannot be transitive on Ω
n.
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Automorphisms and Interpretations Automorphisms

Oligomorphic Structures

We say that G is oligomorphic (on Ω) if for every positive integer n,
the number of orbits of G on Ω

n is finite.

We say that a structure A is oligomorphic if Aut(A) is oligomorphic
on dom(A).

We will see that for countable structures, oligomorphic is the same
thing as ω-categorical.
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Automorphisms and Interpretations Automorphisms

Example

Consider the ordered set A= (Q,<) of rational numbers.

Let a and b be any two n-tuples in A.

There is an automorphism of A which takes a to b if and only if the
elements of a and b are in the same relative order in Q.

Rephrasing, the number of different orbits equals the number of
different relative orders that can be imposed on an n-tuple.

This number is at most, say, (2n−1)!:

First, place a0;
There are 3 options for placing a1 (a1 < a0, a1 = a0 or a1 > a0);
There are at most 5 options for placing a2;
...
There are at most 2(n−1)+1 options for placing an−1.

So A is oligomorphic.

George Voutsadakis (LSSU) Model Theory January 2024 12 / 61



Automorphisms and Interpretations Automorphisms

Closed Subgroups

Suppose G is a group of permutations of a set Ω.

Let H be a subgroup of G .

We say that H is closed in G if the following holds:

If g ∈G and, for every tuple a of elements of Ω, there is h in H , such
that g(a)= h(a), then g ∈H .

We say that the group G is closed if it is closed in the symmetric
group Sym(Ω).

Claim: If G is closed and H is closed in G , then H is closed.

Let σ∈ Sym(Ω), a ∈Ω
n and h ∈H, such that h(a)=σ(a).

Since G is closed and h ∈G , σ ∈G .

Since H is closed in G and h ∈H, σ ∈H.

Thus, H is closed.
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Automorphisms and Interpretations Automorphisms

Closed Subgroups and Automorphisms

Theorem

Let Ω be a set. Let G be a subgroup of Sym(Ω) and H a subgroup of G .
Then the following are equivalent:

(a) H is closed in G .

(b) There is a structure A with dom(A)=Ω, such that H =G ∩Aut(A).

In particular a subgroup H of Sym(Ω) is of form Aut(B) for some structure
B with domain Ω if and only if H is closed.

(a)⇒(b) For each n<ω and each orbit ∆ of H on Ω
n, choose an n-ary

relation symbol R∆. Take L to be the signature consisting of all these
relation symbols. Make Ω into an L-structure A by putting RA

∆
=∆.

Every permutation in H takes R∆ to R∆. So H ⊆G ∩Aut(A).
Let g ∈G be an automorphism of A. Let a be in Ω

n. Then a is in some
orbit ∆ of H . Thus, since ∆=RA

∆
, g(a) must be in the same orbit.

Hence, g(a)= h(a), for some h in H . Since H is closed in G , g is in H .
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Automorphisms and Interpretations Automorphisms

Closed Subgroups and Automorphisms (Converse)

(b)⇒(a) Assuming (b), we show that H is closed in G .

Let g be an element of G , such that for each finite subset W of Ω,
there is h ∈H, with g |W= h |W .

Let φ(x) be an atomic formula of the signature of A, and a a tuple of
elements of A.

Choose W above so that it contains a.

Then we have

A |=φ(a) iff A |=φ(h(a)) (h ∈Aut(A))
iff A |=φ(g(a)). (g |W= h |W )

Thus, g is an automorphism of A.

When H is closed, the structure A constructed in the proof of (a)⇒(b)
is called the canonical structure for H.

By the proof, A can be chosen to be an L-structure with |L| ≤ |Ω|+ω.
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Automorphisms and Interpretations Automorphisms

Open Subsets of a Symmetric Group

The word “closed” suggests a topology.

A subset S of Sym(Ω) is called basic open if there are tuples a and b

in Ω, such that
S = {g ∈ Sym(Ω) : g(a)= b}.

Write this set as S(a,b).

In particular Sym(Ω)(a) is a basic open set.

An open subset of Sym(Ω) is a union of basic open subsets.

If Ω= dom(A), we define a (basic) open subset of Aut(A) to be the
intersection of Aut(A) with some (basic) open subset of Sym(Ω).
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Automorphisms and Interpretations Automorphisms

A Topological Group

Lemma

Let A be a structure and write G for Aut(A).

(a) The definitions above define a topology on G ; it is the topology
induced by that on Sym(Ω). Under this topology, G is a topological
group, i.e., multiplication and inverse in G are continuous operations.

(b) A subgroup of G is open if and only if it contains the pointwise
stabilizer of some finite set of elements of A.

(c) A subset F of G is closed under this topology if and only if it is closed
in the preceding sense (with F for H).

(d) A subgroup H of G is dense in G if and only if H and G have the
same orbits on (domA)n, for each positive integer n.

(a) A permutation g takes a1 to b1 and a2 to b2 if and only if it takes
a1a2 to b1b2. So the intersection of two basic open sets is again basic
open. The first sentence of (a) follows at once by general topology.
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Automorphisms and Interpretations Automorphisms

A Topological Group ((a) and (b))

(a) For the second sentence:

Note g ∈ S(a,b) if and only if g−1 ∈ S(b,a). This proves the continuity
of inverse.
Suppose gh ∈S(a,b). Write c for h(a). Then g ∈S(c ,b), h ∈S(a,c),

and S(c ,b) ·S(a,c)⊆ S(a,b). So multiplication is continuous.

(b) For each tuple a the pointwise stabilizer G(a) is G ∩S(a,a). This is
open. A subgroup of G containing G(a) is a union of cosets of G(a).
Each of those is basic open. Hence the subgroup is open.

In the other direction, suppose H is an open subgroup containing a
non-empty basic open set G ∩S(a,b).

Every element of G(a) can be written as gh with

g ∈G ∩S(b,a)⊆H and h ∈G ∩S(a,b)⊆H.

Hence H contains G(a).
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Automorphisms and Interpretations Automorphisms

A Topological Group ((c) and (c))

(c) Suppose F ⊆G is topologically closed. Let g ∈G , such that, for all a,
g(a)= f (a), for some f ∈ F . Thus, for every basic open S(a,b), such
that g ∈ S(a,b), S(a,b)∩F 6= ;. Since F is closed, g ∈F . Thus, F is
closed in G .

Suppose, conversely, that F is closed in G . Let g ∈G , such that, for
every basic open S(a,b), with g ∈ S(a,b), S(a,b)∩F 6= ;. Thus, for
all g ∈G and all a, g(a)= b implies g(a)= b = f (a), for some f ∈F .
Since F is closed in G , g ∈F . Hence, F is topologically closed in G .

(d) H is dense in G iff, for all g ∈G , every basic open set containing g

meets H iff, for all g ∈G and all a,b, g ∈ S(a,b) implies S(a,b)∩H 6= ;

iff, for all g ∈G and all a,b, g(a)= b implies there exists h ∈H, such
that h(a)= b iff, for all n, H and G have the same orbits on (domA)n.
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Automorphisms and Interpretations Automorphisms

Automorphism Groups and Structures

Starting from a structure A, we get by successive abstractions:

The permutation group Aut(A);
The topological group Aut(A);
The abstract group Aut(A).

At each step some information is discarded.

How much of this information can be recovered?

In some cases, very little, as, e.g., was the case with the ordinals.
In general, the larger the automorphism group of a structure, the better
the chances of reconstructing the structure from the automorphism
group.
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Automorphisms and Interpretations Automorphisms

Characterization of Open Sets

Theorem

Let G be a closed group of permutations of ω and H a closed subgroup of
G . Then the following are equivalent:

(a) H is open in G .

(b) (G :H)≤ω.

(c) (G :H)< 2ω.

(a)⇒(b) Suppose (a) holds. Then there is some tuple a of elements of
ω, such that the stabilizer G(a) of a lies in H. Suppose now that g , j

are two elements of G , such that g(a)= j(a). Then j−1g ∈G(a) ⊆H.
So the cosets gH, jH are equal. Since there are only countably many
possibilities for g(a), the index (G :H) must be at most countable.

(b)⇒(c) is trivial.

(c)⇒(a) We suppose that H is not open in G .

We construct continuum many left cosets of H in G .
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Automorphisms and Interpretations Automorphisms

Characterization of Open Sets (Construction)

We define by induction sequences (ai : i <ω), (bi : i <ω) of tuples of
elements of ω and a sequence (gi : i <ω) of elements of G , such that
the following hold for all i .

1 b0 = 〈〉; bi+1 is a concatenation of all the sequences
(k0 · · ·ki )(a0̂ · · ·̂ai ), where each kj is in {1,g0, . . . ,gi };

2. gi(bi )= bi ;
3. There is no h ∈H , such that h(ai )= gi (ai );
4. i is an item in ai .

When bi has been chosen, we have, by assumption, that G
(bi )

*H.

So there is some gi ∈G which fixes bi (giving 2), and is not in H.

Since H is closed in G , there is a tuple ai , such that h(ai ) 6= gi (ai), for
all h in H. This ensures 3.

Adding i to ai if necessary, we obtain 4.
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Automorphisms and Interpretations Automorphisms

Characterization of Open Sets (Continuum of Subsets)

For any subset S of ω\{0}, define gS
i
=

{
gi , if i ∈ S
1, if i 6∈ S

.

Let f S
i

= gS
i
· · ·gS

0 . For each j > i , we have

f Sj (ai)= gS
j · · ·gS

i+1g
S
i · · ·gS

0 (ai)
1,2
= gS

i · · ·gS
0 (ai)= f Si (ai ).

So by 4, we can define a map gS :ω→ω by setting, for each i <ω,

gS(i)= f Sj (i), for all j ≥ i .

gS is injective: The maps f S
i

are automorphisms.

gS is surjective: Consider any i ∈ω. Let j = (f S
i
)−1(i).

Suppose j ≤ i . Then gS (j)= f S
i
(f S
i
)−1(i)= i .

Suppose j > i . Then gS (j)= f S
j
(f S
i
)−1(i)= gS

j
· · ·gS

i+1
(i)= i .

So gS is a permutation of ω. Note that the f S
i

are in the closed group

G . Moreover, for each tuple a in ω, gS agrees on a with some f S
i

.
Hence, gS is in G . There are 2ω distinct subsets S of ω\{0}.
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Automorphisms and Interpretations Automorphisms

Characterization of Open Sets (Continuum of Cosets)

It remains only to show that the corresponding permutations gS lie in
different right cosets of H.

Suppose S 6=T . Let i > 0 be least, say, in S but not in T .

By 3, there is no element of H which agrees with gi on ai .

Set f = f S
i−1

i 6∈T
= f T

i
. Consider f −1(ai ).

Choose some j ≥ i , such that all the items in f −1(ai) are ≤ j .

We have, for all h in H,

gS(f
−1(ai ))

choice j
= f S

j
(f −1(ai ))

i∈S
= gS

j
· · ·gS

i+1
gi (ai)

= gi (ai) 6= h(ai)= hgT
j
· · ·gT

i+1
(ai )

= hf T
j
f −1(ai )= (hgT )(f

−1(ai)).

So gS 6∈HgT , which finishes the proof.
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Automorphisms and Interpretations Automorphisms

A Model-Theoretic Translation

Let A be a countable L+-structure.

Suppose L− ⊆ L+ and let B be the L−-reduct A |L− of A.

Then H =Aut(A) is a subgroup of G =Aut(B).

Let g be any element of G , and consider the structure gA.
gA is like A except that for each symbol S of L+, SgA = g(SA).

The domain of gA is dom(A);
g(SA)= SA, for each symbol S in L−.

So the reduct (gA) |L− is exactly B again.

Suppose now that k is another element of G .

gA is equal to kA when g(SA)= k(SA), for each symbol S ,

i.e., when k−1g is an automorphism of A,

i.e., when the cosets gH and kH in G are equal.

This shows that the index of Aut(A) in Aut(B) is equal to the number
of different ways in which the symbols of L+\L− can be interpreted in
B so as to give a structure isomorphic to A.
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Automorphisms and Interpretations Automorphisms

The Kueker-Reyes Theorem

Theorem (Kueker-Reyes Theorem)

Let L− and L+ be signatures with L− ⊆ L+. Let A be a countable
L+-structure and let B be the reduct A |L− . Put G =Aut(B). Then the
following are equivalent:

(a) There is a tuple a of elements of A, such that G(a) ⊆Aut(A).

(b) There are at most countably many distinct expansions of B which are
isomorphic to A.

(c) The number of distinct expansions of B which are isomorphic to A is
less than 2ω.

(d) There is a tuple a of elements of A such that for each atomic formula
φ(x0, . . . ,xn−1) of L+, there is a formula ψ(x0, . . . ,xn−1,y) of L−ω1ω

, such
that A |= ∀x(φ(x)↔ψ(x ,a)).

Our translation gives the equivalence of (a), (b) and (c) at once.

It remains to show that (a) is equivalent to (d).

George Voutsadakis (LSSU) Model Theory January 2024 26 / 61



Automorphisms and Interpretations Automorphisms

The Kueker-Reyes Theorem ((d)⇒(a))

Assume, first (d) holds. Let g ∈G(a). We have, for every atomic

formula φ(x0, . . . ,xn−1) of L+ and every b in A,

A |=φ(b) iff A |=ψ(b,a) (hypothesis)

iff A |=ψ(g(b),g(a)) (g ∈G )

iff A |=ψ(g(b),a) (g ∈G(a))

iff A |=φ(g(b)). (hypothesis)

Therefore, g ∈Aut(A).
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Automorphisms and Interpretations Automorphisms

The Kueker-Reyes Theorem ((a)⇒(d))

For the converse, suppose G(a) ⊆Aut(A).

Let φ(x0, . . . ,xn−1) be an atomic formula of L+.

Without loss we can suppose that φ is unnested.

For simplicity let us assume too that φ is R(x0, . . . ,xn−1), where R is
some n-ary relation symbol.

For each n-tuple c in φ(An), let σ(B ,a,c)(a,c) be the Scott sentence of
the structure (B ,a,c). Note that

∨
c∈φ(An)σ(B ,a,c)(a,x) is in L−ω1ω

.
This is the sentence that plays the role of ψ.

Suppose A |=φ(d). Then (B ,a,d) |=σ(B ,a,d)(a,d). Since d ∈φ(An),

A |=
∨
c∈φ(An)σ(B ,a,c)(a,c).

Assume c ∈φ(An), i.e., A |=φ(c), and let d such that A |=σc(a,d).

Then (B ,a,c)∼= (B ,a,d). So by (a), (B ,a,c ,RA)∼= (B ,a,d ,RA).

Hence, A |=φ(d).

We conclude A |= ∀x(φ(x)↔
∨
c∈φ(An)σc(a,x)).
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Automorphisms and Interpretations Automorphisms

Automorphisms and Rigidity

Corollary

Let A be a countable structure. Then the following are equivalent:

(a) |Aut(A)| ≤ω.

(b) |Aut(A)| < 2ω.

(c) There is a tuple a in A such that (A,a) is rigid.

In the theorem, take
L− = L,L+ = (L,c),

where c contains one constant for each element of A.

Then, consider
The L+-structure (A,a);
The L−-reduct (A,a) |L−=A.

Then, statements (a),(b) and (c) of the theorem correspond,
respectively, to statements (c), (a) and (b) of the corollary.
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Automorphisms and Interpretations Relativization

Subsection 2

Relativization
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Automorphisms and Interpretations Relativization

Relativized Reducts

Consider two signatures L and L′ with L⊆ L′.

Let C be an L′-structure and B a substructure of the reduct C |L.
Then we can make the pair C ,B into a single structure.

Take a new unary relation symbol P .
Write L+ for L′ with P added.
Expand C to an L+-structure A by setting PA = dom(B).

We can recover C and B from A by

C = A |L′ ,

B = the substructure of A |L whose domain is PA.

We call B a relativized reduct of A.
The meaning is that to get B from A we have to:

“Relativize” the domain to a definable subset of dom(A);
Remove some symbols.

Forgetting about C , we consider signatures L and L+, with L⊆ L+,
and a unary relation symbol P in L+\L.
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Automorphisms and Interpretations Relativization

P-Part and Admissibility Conditions for Relativization

Let A be an L+-structure.

By a previous lemma, the following are necessary and sufficient
conditions for PA to be the domain of a substructure of A |L.

For every constant c of L, cA ∈PA;
For every n> 0, all n-ary F in L and all a ∈ (PA)n, FA(a) ∈PA.

If the conditions are satisfied, the substructure is uniquely determined.

We write it AP , and call it the P-part of A.

From the same lemma one can write these necessary and sufficient
conditions as a set of first-order sentences that A must satisfy.

We call them the admissibility conditions for relativization to P .

AP depends on the language L as well as A and P .
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Automorphisms and Interpretations Relativization

Relativization Theorem

Theorem (Relativization Theorem)

Let L and L+ be signatures such that L⊆ L+, and P a unary relation
symbol in L+\L. Then for every formula φ(x) of L∞ω, there is a formula
φP(x) of L+∞ω, such that the following holds:

If A is an L+-structure such that AP is defined, and a is a sequence of
elements from AP , then AP |=φ(a) if and only if A |=φP(a).

We define φP by induction on the complexity of φ:
1. If φ is atomic, φP =φ;
2. (

∧
i∈I ψi )

P =
∧
i∈I (ψ

P
i
) and (

∨
i∈I ψi )

P =
∨
i∈I (ψ

P
i
);

3. (¬φ)P is ¬(φP);
4. (∀yψ(x ,y))P =∀y(Py →ψP(x ,y)); (∃yψ(x ,y))P =∃y(Py ∧ψP (x ,y)).

Then the condition follows by induction on the complexity of φ.

The formula φP in this theorem is called the relativization of φ to P .

Note that, if φ is first-order, then so is φP .
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Automorphisms and Interpretations Relativization

Property of the Relativization

Corollary

Let L and L+ be signatures with L⊆ L+ and P a unary relation symbol in
L+\L. If A and B are L+-structures such that A4B and AP is defined,
then BP is defined and AP 4BP .

First, we show that BP is defined.
For all constants c in L, cB = cA ∈AP ⊆BP .

Let n> 0, F an n-ary function symbol of L and b in PB .
Since AP is defined, A |= (∀x)(

∧n
i=1

P(xi )→P(F (x))).
Since A4B, B |= (∀x)(

∧n
i=1

P(xi )→P(F (x))).
By hypothesis, B |=P(xi )[bi ], for all i < n.

So B |=P(F (x))[b], i.e., FB(b) ∈PB .

Now we show that AP 4BP . Using the notation of the Relativization
Theorem, for every φ in L and all a in AP ,

AP |=φ(a) iff A |=φP(a) iff B |=φP(a) iff BP |=φ(a).
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Automorphisms and Interpretations Relativization

Example: Linear Groups

Suppose G is a group of n×n matrices over a field F .

We can make G and F into a single structure A as follows.
The signature of A has:

Two unary relation symbols group and field;
Two ternary relation symbols add and mult;
n2 binary relation symbols coeff ij , 1≤ i , j ≤ n.

The sets groupA and fieldA consist of the elements of G and F , resp.

The relations addA and multA express addition and multiplication in F .

For each matrix g ∈G , the ij-th entry in g is the unique element f ,
such that coeff ij (g , f ) holds.

Note that multiplication in G can be defined in terms of the field
operations, using the symbols coeff ij .

Note, also, there are no function or constant symbols.

So BP and BQ are automatically defined for any structure B of the
same signature as A.
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Relativization Using a First-Order Formula

Sometimes a structure B is picked out inside a structure A, not by a
unary relation symbol P , but by a formula θ(x).

When θ is in the first-order language of A, then again we call B a
relativized reduct of A.

The case in which θ(x) is P(x), becomes a special case.

If θ also contains parameters from A, we call B a relativized reduct

with parameters.

One can adapt the Relativization Theorem straightforwardly by
putting θ in place of P everywhere.
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Example: ω as a Relativized Reduct

Suppose A is a transitive model of Zermelo-Fraenkel set theory.

Let θ(x) be the formula “x ∈ω”.

The ordering < on ω coincides with ∈.

We can write set-theoretic formulas that define + and ·.

Note that ω satisfies a rather strong form of the Peano axioms:

0 is not of the form x +1;
If x ,y ∈ω and x +1= y +1, then x = y ;
For every formula φ(x) of the first-order language of A, possibly with
parameters from A, if φ(0) and ∀x(x ∈ω∧φ(x)→φ(x +1)) both hold
in A, then ∀x(x ∈ω→φ(x)) holds in A.

The latter is the induction axiom schema for subsets of ω which are
first-order definable (with parameters) in A.

Of course this includes the subsets of ω which are first-order definable
in the structure (ω,<) itself, by the relativization theorem.
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Example: Relativized Reducts of Rationals as Ordered Set

Let A be the following structure:

The domain of A is the set Q of rational numbers;
The relations of A are all those which are ;-definable from the usual
ordering < of the rationals.

We find the relativized reducts of A (without parameters).

First note that Aut(A) is exactly Aut(Q,<) since A is a definitional
expansion of (Q,<).
Next, Aut(A) is transitive on Q. It follows that any subset of Q which
is definable without parameters is either empty or the whole of Q.
So we can forget the relativization.
Thirdly, if B is any reduct of A, then Aut(A)⊆Aut(B)⊆ Sym(Q), and
Aut(B) is closed in Sym(Q) by a previous theorem.
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Relativized Reducts of Rationals as Ordered Set (Cont’d)

And finally, Aut(Q,<) is oligomorphic and its orbits on n-tuples are all
;-definable. So every orbit of Aut(B) on n-tuples is a union of finitely
many orbits of Aut(Q,<). Hence it is defined by some relation of A.

So, up to definitional equivalence, the relativized reducts of A
correspond exactly to the closed groups lying between Aut(A) and
Sym(Q).

It can be shown that apart from Aut(A) and Sym(Q), there are just
three such groups.

The first is the group of all permutations of A which either preserve the
order or reverse it.
The second is the group of all permutations which preserve the cyclic
relation “x < y < z or y < z < x or z < x < y ”; This corresponds to taking
an initial segment of Q and moving it to the end.
The third is the group generated by these other two.
It consists of those permutations which preserve the relation “exactly
one of x ,y lies between z and w ”.
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Example: Orderable Groups

An ordered group is a group G which carries a linear ordering < such
that if g ,h and k are any elements of G , then

g < h implies k ·g < k ·h and g ·k < h ·k .

A group is orderable if a linear ordering can be added so as to make
it into an ordered group.

Clearly an orderable group cannot have elements 6= 1 of finite order.

Suppose, to the contrary that gn = 1.

Suppose 1< g . Then g i < g i+1, for all i = 0, . . . ,n. Thus,
1< g < g2 < ·· · < gn = 1, a contradiction.
If g < 1, we argue similarly.

This is not a sufficient condition for orderability (unless the group
happens to be abelian).
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Pseudo-Elementary Classes and PC∆ Classes

Let L be a first-order language.

A pseudo-elementary class (for short, a PC class) of L-structures is
a class of structures of the form {A|L :A |=φ} for some sentence φ in a
first-order language L+ ⊇ L.

A PC∆-class of L-structures is a class of the form {A |L:A |=U}, for
some theory U in a first-order language L+ ⊇ L.

Example: The class of orderable groups is a PC class.
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Example: Ordered Abelian Groups

Let L be the first-order language of linear orderings (with symbol <).

Let U be the theory of ordered abelian groups.

Then the class K= {A |L:A |=U} is the class of all linear orderings
which are orderings of abelian groups.

This is a PC class, since U can be written as a finite theory and,
hence, as a single sentence.

George Voutsadakis (LSSU) Model Theory January 2024 42 / 61



Automorphisms and Interpretations Relativization

PC′
∆

Classes of Structures

One can generalize these notions, using relativized reducts AP .

We define a PC′
∆

class of L-structures to be a class of the form

{AP :A |=U and AP is defined},

for some theory U in a language L+ ⊇ L∪ {P}.

By the admissibility conditions, every PC′
∆

class can be written as
{AP :A |=U ′}, for some theory U ′ in L+.

Example: A natural example of a PC′
∆

class is the class of
multiplicative groups of fields.

L has only the symbol for multiplication.
The unary symbol P picks out the non-zero elements.
U is the theory of fields.

One can show that this class is not first-order axiomatizable.
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PC∆ and PC′
∆

Classes

PC′
∆

appears to be a generalization of PC∆.

However, the two notions are exactly the same.

Theorem

The PC′
∆

classes are exactly the PC∆ classes. More precisely, let K be a
class of L-structures.

(a) If K is a PC′
∆

class {AP :A |=U and AP is defined} for some theory U in a
first-order language L+, then K is also a PC∆ class {A |L:A |=U∗} for some
theory U∗ in a first-order language L∗ with |L∗| ≤ |L+|.

(b) If K is a PC′ class and all structures in K are infinite, then K is a PC class.
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Subsection 3

Interpreting One Structure in Another
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Interpretations

Let K and L be signatures.

Let A be a K -structure and B an L-structure.
For a positive integer n, an (n-dimensional) interpretation Γ of B in
A is defined to consist of three items:

1. A formula ∂Γ(x0, . . . ,xn−1) of signature K ;
2. For each unnested atomic formula φ(y0, . . . ,ym−1) of L, a formula

φΓ(x0, . . . ,xm−1) of signature K in which the x i are disjoint n-tuples of
distinct variables;

3. A surjective map fΓ : ∂Γ(A
n)→ dom(B), such that for all unnested

atomic formulas φ of L and all ai ∈ ∂Γ(A
n),

B |=φ(fΓ(a0), . . . , fΓ(am−1)) iff A |=φΓ(a0, . . . ,am−1).

∂Γ and φΓ (for all unnested atomic φ) are the defining formulas of Γ.

∂Γ is the domain formula of Γ;
The map fΓ is the coordinate map of Γ.

It assigns to each element fΓ(a) of B the “coordinates” a in A;
An element may have several different tuples of coordinates.
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Interpretability and Conventions

Unless anything is said to the contrary, we assume that the defining
formulas of Γ are all first-order.

For example, we say that B is interpretable in A if there is an
interpretation of B in A with all its defining formulas first-order.

We say that B is interpretable in A with parameters if there is a
sequence a of elements of A, such that B is interpretable in (A,a).

We shall write =Γ for φΓ when φ is the formula y0 = y1.

Wherever possible we shall abbreviate (a0, . . . ,am−1) and
(f (a0), . . . , f (am−1)) to a and f (a), respectively.
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Example: Relativized Reductions

Suppose B is the relativized reduct AP .

Then there is a one-dimensional interpretation Γ of B in A.

The defining formulas of Γ are as follows.

∂Γ(x) :=P(x);
φΓ :=φ(x), for each unnested atomic formula φ(y ).

The coordinate map fΓ :P
A → dom(A) is simply the inclusion map.

We call the interpretation Γ a relativized reduction.
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Example: Rationals and Integers

The familiar interpretation of the rationals in the integers is a
two-dimensional interpretation Γ.

The domain formula is

∂Γ(x0,x1) := x1 6= 0.

The other defining formulas are:
=Γ(x00,x01;x10,x11) := x00 ·x11 = x01 ·x10;
plusΓ(x00,x01;x10,x11;x20,x21) := x21 ·(x00 ·x11+x01 ·x10)= x01 ·x11 ·x20;
timesΓ(x00,x01;x10,x11;x20,x21) := x00 ·x10 ·x21 = x01 ·x11 ·x20.

The formulas ψΓ for the remaining unnested atomic formulas ψ

express addition and multiplication of rationals in terms of addition
and multiplication of integers, just as in the algebra texts.

The coordinate map is

fΓ((m,n))=
m

n
, n 6= 0.
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Example: Algebraic Extensions (Outline)

Let A be a field.

Let p(X ) an irreducible polynomial of degree n over A.

Let ξ be a root of p(X ) in some field extending A.

Given an n-tuple a= (a0, . . . ,an−1) of elements of A, we write

qa(X ) :=X n
+an−1X

n−1
+·· ·+a1X +a0.

Then there is an n-dimensional interpretation Γ of A[ξ] in A.
∂Γ(A

n) is the whole of An;
The remaining defining formulas are:

=Γ(a,b) says that p(X ) divides (qa(X )−q
b
(X ));

(y0+y1 = y2)Γ and (y0 ·y1 = y2)Γ follow the usual definitions of

addition and multiplication of polynomials.

All can be written as positive primitive formulas.
fΓ(a)= qa(ξ).

∂Γ is quantifier-free and φΓ is p.p. for every unnested atomic φ.
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Admissibility Conditions

Let Γ be an interpretation of an L-structure B in a K -structure A.

There are certain sentences of signature K which must be true in A
just because Γ is an interpretation, regardless of what A and B are:

(i) =Γ defines an equivalence relation on ∂Γ(A
n);

(ii) For each unnested atomic formula φ of L, if A |=φΓ(a0, . . . ,an−1) with

a0, . . . ,an−1 in ∂Γ(A
n), then also A |=φΓ(b0, . . . ,bn−1) for each element

bi of ∂Γ(A
n) which is =Γ-equivalent to ai ;

(iii) If φ(y0) is a formula of L of form c = y0, then there is a in ∂Γ(A
n), such

that for all b in ∂Γ(A
n), A |=φΓ(b) if and only if b is =Γ-equivalent to a;

(iv) A clause like (iii) for each function symbol.

These sentences are called the admissibility conditions of Γ.

They generalize the admissibility conditions for a relativized reduct.

They depend only on on the defining formulas, but not on the
coordinate map, of Γ.
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The Reduction Theorem

Theorem (Reduction Theorem)

Let A be a K -structure, B an L-structure and Γ an n-dimensional
interpretation of B in A. For every formula φ(y) of the language L∞ω,
there is a formula φΓ(x) of the language K∞ω, such that for all a from
∂Γ(A

n),
B |=φ(fΓ(a)) iff A |=φΓ(a).

By a previous corollary, every formula of L∞ω is equivalent to a
formula of L∞ω in which all atomic subformulas are unnested.

We prove the theorem by induction on the complexity of formulas.
Atomic formulas are handled by the definition of interpretation.
(¬φ)Γ =¬(φΓ);
(
∧
i∈I φi )Γ =

∧
i∈I (φi )Γ and (

∨
i∈I φi )Γ =

∨
i∈I (φi )Γ;

(∀yφ)Γ =∀x0 . . .xn−1(∂Γ(x0, . . . ,xn−1)→φΓ);
(∃yφ)Γ =∃x0 . . .xn−1(∂Γ(x0, . . . ,xn−1)∧φΓ).
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Interpretations and Reduction Maps

The map φ 7→φΓ of the Reduction Theorem depends only on the
defining formulas of Γ, and not at all on the coordinate map fΓ.

The defining formulas of Γ form an interpretation of L in K .

The map φ 7→φΓ of the Reduction Theorem is the reduction map of
this interpretation.
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The Associated Functor (Domain)

Theorem

Let Γ be an n-dimensional interpretation of a signature L in a signature K ,
and let Admis(Γ) be the set of admissibility conditions of Γ. For every
K -structure A which is a model of Admis(Γ), there are an L-structure B

and a map f : ∂Γ(A
n)→ dom(B), such that:

(a) Γ with f forms an interpretation of B in A;

(b) If g and C are such that Γ and g form an interpretation of C in A,
then there is an isomorphism i :B →C , such that i(f (a))= g(a), for
all a ∈ ∂Γ(A

n).

Let A be a model of Γ. Then we build an L-structure B as follows.

Define a relation ∼ on ∂Γ(A
n) by a∼ a′ iff A |= =Γ(a,a′).

By (i) of the admissibility conditions, ∼ is an equivalence relation.

Write a∼ for the equivalence class of a.

dom(B) is the set of all equivalence classes a∼ with a in ∂Γ(A
n).
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The Associated Functor (Condition (a))

We now defined the relations, constants and functions of B .

For every relation symbol R of L, we define the relation RB by

(a∼0 , . . . ,a∼m−1) ∈R
B iff A |=φΓ(a0, . . . ,am−1),

where φ(y0, . . . ,ym−1) is R(y0, . . . ,ym−1).
By (ii) of the admissibility conditions, this is a sound definition.
The definitions of cB and FB are defined similarly.
We rely on (iii) and (iv) of the admissibility conditions.

This defines the L-structure B .

We define f : ∂Γ(A
n)→ dom(B) by f (a)= a∼.

Then f is surjective. Moreover, B has been defined so as to ensure

B |=φ(f (a0), . . . , f (am−1)) iff A |=φΓ(a0, . . . ,am−1).

Hence, Γ and f are an interpretation of B in A. This proves (a).
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The Associated Functor ((Condition (b))

To prove (b), suppose Γ and g are an interpretation of C in A.

For each tuple a ∈ ∂Γ(A
n), define i(f (a)) to be ga.

Claim: This is a sound definition of an isomorphism i :B →C .

Suppose f (a)= f (a′). Then A |= =Γ(a,a′). Since g is an interpretation,
g(a)= g(a′). Thus, the definition of i is sound.

A similar argument in the other direction shows that i is injective.

i is surjective since g is surjective, being an interpretation.

Clause 3 for f and g show that i is an embedding.

This proves the claim, and with it the theorem.

We write ΓA for the structure B of the theorem.

The Reduction Theorem applies to ΓA as follows:

For all formulas φ(y) of L, all K -structures A satisfying the admissibility
conditions of Γ, and all tuples a ∈ ∂Γ(A

n), ΓA |=φ(a∼) iff A |=φΓ(a).
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The Action of Γ on Elementary Embeddings

Let Γ be an n-dimensional interpretation of a signature L in a
signature K .

Let A and A′ be models of the admissibility conditions of Γ.

Let e :A→A′ be an elementary embedding.

For every tuple a ∈ ∂Γ(A
n), e(a) is in ∂Γ(A

′n).

We have
a ∈ ∂Γ(A

n) iff A |= ∂Γ(a)
iff A′ |= ∂Γ(e(a))
iff e(a) ∈ ∂Γ(A

′n).

Similarly, if c ∈ ∂Γ(A
n) satisfies A |= =Γ(a,c), then A′ |= =Γ(e(a),e(c)).

Hence, there is a well-defined map Γe : dom(ΓA)→ dom(ΓA′), given by

(Γe)(a∼)= (e(a))∼.
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The Action of Γ on Elementary Embeddings (Properties)

We defined Γe : dom(ΓA)→ dom(ΓA′), given by

(Γe)(a∼)= (e(a))∼.

It can be shown that:
Γ1A = 1ΓA;
If e1 :A→A′ and e2 :A

′ →A′′ are elementary embeddings, then

Γ(e2e1)= (Γe2)(Γe1).

For the first, we have

Γ1A(a
∼)= (1A(a))

∼
= a∼ = 1ΓA(a

∼).

And for the second

(Γe2)((Γe1)(a
∼)) = (Γe2)((e1(a))

∼)
= (e2(e1(a)))

∼

= Γ(e2e1)(a
∼).
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The Action of Γ on Elementary Embeddings (Conclusion)

Claim: Γe is an elementary embedding of ΓA into ΓA′.

Let a be a sequence of tuples from ∂Γ(A
n) and φ a formula of L.

Then we have

ΓA |=φ(a∼) iff A |=φΓ(a) (Reduction Theorem)
implies A′ |=φΓ(ea) (e elementary)

iff ΓA′ |=φ((Γe)(a∼)). (Reduction Theorem)

The definition of Γe makes sense whenever:

A,A′ are models of the admissibility conditions of Γ;
e :A→A′ is any homomorphism which preserves ∂Γ and =Γ.

If e also preserves all the formulas φΓ for unnested atomic formulas φ

of L, then Γe is a homomorphism from ΓA to ΓA′.
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The Associated Functor of an Interpretation

Theorem

Let Γ be an interpretation of a signature L in a signature K , with
admissibility conditions Admis(Γ).

(a) Γ induces a functor, written Func(Γ), from the category of models of
Admis(Γ) and elementary embeddings, to the category of L-structures
and elementary embeddings.

(b) If the formulas ∂Γ and φΓ (for unnested atomic φ) are ∃+1 formulas,
then we can extend the functor Func(Γ) in (a), replacing “elementary
embeddings” by “homomorphisms”.

We call the functor Func(Γ) in either the (a) or the (b) version, the
associated functor of the interpretation Γ.

Usually we shall write it just Γ since there is little danger of confusing
the interpretation with the functor.
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Interpretations and Maps Between Automorphism Groups

Suppose Γ is the associated functor of an interpretation of L in K .

Then whenever ΓA is defined, we have a group homomorphism
α 7→ Γα from Aut(A) to Aut(ΓA).

Theorem

Let Γ be an interpretation of L in K , and let A be an L-structure such that
ΓA is defined. Then the induced homomorphism h :Aut(A)→Aut(B) is
continuous.

It suffices to show that if F is a basic open subgroup of Aut(B), then
there is an open subgroup E of Aut(A) such that h(E )⊆ F .

Let F be Aut(B)
(b)

, for some tuple b of elements of B .

Let X be a finite set of elements of A such that each element in b is
of form fΓ(a), for some tuple a of elements of X .

Then by the definition of h, h(Aut(A)(X ))⊆Aut(B)
(b)

.
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