Introduction to Model Theory

George Voutsadakis¹

¹Mathematics and Computer Science Lake Superior State University

LSSU Math 500

George Voutsadakis (LSSU)

Model Theory

January 2024 1 / 61

Automorphisms and Interpretations

- Automorphisms
- Relativization
- Interpreting One Structure in Another

Subsection 1

Automorphisms

The Automorphism Group of a Structure

- Let A be an L-structure.
- Every automorphism of A is a permutation of dom(A).
- By a previous theorem, the collection of all automorphisms of A is a group under composition.
- This group, regarded as a permutation group on dom(A), is called the **automorphism group** of A.
- It is denoted by Aut(A).
- Automorphism groups have traditionally been studied by group theorists and geometers, in settings remote from model theory.
- To exploit past experience, we need some translations between model theory and group theory.

Stabilizers

- For any set Ω, the group of all permutations of Ω is called the symmetric group on Ω, in symbols Sym(Ω).
- Let G be a subgroup of $Sym(\Omega)$.
- If X is a subset of Ω, then the pointwise stabilizer of X in G is the set

$$G_{(X)} = \{g \in G : g(a) = a, \text{ for all } a \in X\}.$$

- This set forms a subgroup of G.
- We also write $G_{(\overline{a})}$, where \overline{a} is a sequence listing the elements of X.
- The setwise stabilizer of X in G is the set

$$G_{\{X\}} = \{g \in G : g(X) = X\}.$$

- It is also a subgroup of G.
- In fact, we have $G_{(X)} \subseteq G_{\{X\}} \subseteq G$.

Orbits and Transitivity

- Let Ω be a set.
- Let G be a subgroup of $Sym(\Omega)$.
- If a is an element of Ω , the **orbit** of a under G is the set

 $\{g(a): g \in G\}.$

- The orbits of all elements of Ω under G form a partition of Ω .
- We say *G* is **transitive on** Ω if the orbit of every element (or, equivalently, the orbit of one element) is the whole of Ω.
- A structure A is transitive if Aut(A) is transitive on dom(A).
- The opposite occurs when A has no automorphisms except the identity 1_A .
- In this case, we say that A is **rigid**.

Example: Ordinals

- Let the structure A be an ordinal $(\alpha, <)$.
 - So < well-orders the elements of A.
 - Then A is rigid.
 - Suppose f is an automorphism of A which is not the identity.
 - Then there is some element a, such that $f(a) \neq a$.
 - Replacing f by f^{-1} if necessary, we can suppose that f(a) < a. Since f is a homomorphism, $f^2(a) = f(f(a)) < f(a)$.
 - By induction $f^{n+1}(a) < f^n(a)$, for each $n < \omega$.

Then
$$a > f(a) > f^2(a) > \cdots$$
.

This contradicts that < is a well-ordering.

Example: Affine Space

• Let D be the direct sum of countably many cyclic groups of order 2. Equivalently, let D be a countable-dimensional vector space over the two-element field \mathbb{F}_2 .

On D we define a relation

$$R(x, y, z, w)$$
 iff $x + y = z + w$.

The structure A consists of the set D with the relation R. Fix d in D. Define $e_d: D \rightarrow D$ by

$$e_d(a) = a + d, \quad a \in D.$$

 e_d is a permutation of D.

- 1-1: $e_d(a) = e_d(b)$ iff a + d = b + d iff a = b.
- Onto: Let $a \in D$. Then $e_d(a-d) = (a-d) + d = a$.

Example: Affine Space (Cont'd)

e_d is an automorphism of A taking 0 to d.
 For x, y, z, w ∈ D,

$$R(x, y, z, w) \quad \text{iff} \quad x + y = z + w \\ \text{iff} \quad (x + d) + (y + d) = (z + d) + (w + d) \\ \text{iff} \quad R(x + d, y + d, z + d, w + d).$$

Thus, A is a transitive structure.

• Fix d again. Define an addition operation $+_d$ in terms of R:

$$x +_d y = z$$
 iff $R(x, y, z, d)$.

This makes D into an abelian group with d as the identity. A is what remains of D when we forget which element is 0. This the **countable-dimensional affine space over** \mathbb{F}_2 .

Action of Permutations on Cartesian Products

- Let Ω be a set.
- Let G be a group of permutations of Ω .
- We write Ω^n for the set of all ordered *n*-tuples of elements of Ω .
- Then G acts as a set of permutations of Ω^n by setting

$$g(a_0,...,a_{n-1}) = (g(a_0),...,g(a_{n-1})).$$

- So we can talk about the **orbits** of G on Ω^n .
- When n is greater than 1 and Ω has more than one element, then G is not transitive on Ωⁿ.

Suppose $a, b \in \Omega$, $a \neq b$.

Then, for all
$$g \in G$$
, $g(a, a, ...) \neq (a, b, ...)$.

So G cannot be transitive on Ω^n .

Oligomorphic Structures

- We say that G is oligomorphic (on Ω) if for every positive integer n, the number of orbits of G on Ωⁿ is finite.
- We say that a structure A is **oligomorphic** if Aut(A) is oligomorphic on dom(A).
- We will see that for countable structures, oligomorphic is the same thing as ω-categorical.

Example

• Consider the ordered set $A = (\mathbb{Q}, <)$ of rational numbers.

Let \overline{a} and b be any two *n*-tuples in A.

There is an automorphism of A which takes \overline{a} to \overline{b} if and only if the elements of \overline{a} and \overline{b} are in the same relative order in \mathbb{Q} .

Rephrasing, the number of different orbits equals the number of different relative orders that can be imposed on an n-tuple.

This number is at most, say, (2n-1)!:

- First, place a₀;
- There are 3 options for placing a_1 ($a_1 < a_0$, $a_1 = a_0$ or $a_1 > a_0$);
- There are at most 5 options for placing *a*₂;

• There are at most 2(n-1)+1 options for placing a_{n-1} .

So A is oligomorphic.

Closed Subgroups

- Suppose G is a group of permutations of a set Ω .
- Let *H* be a subgroup of *G*.
- We say that *H* is **closed** in *G* if the following holds:

If $g \in G$ and, for every tuple \overline{a} of elements of Ω , there is h in H, such that $g(\overline{a}) = h(\overline{a})$, then $g \in H$.

- We say that the group G is closed if it is closed in the symmetric group Sym(Ω).
 - Claim: If G is closed and H is closed in G, then H is closed.
 - Let $\sigma \in \text{Sym}(\Omega)$, $\overline{a} \in \Omega^n$ and $h \in H$, such that $h(\overline{a}) = \sigma(\overline{a})$.
 - Since G is closed and $h \in G$, $\sigma \in G$.
 - Since *H* is closed in *G* and $h \in H$, $\sigma \in H$.
 - Thus, H is closed.

Closed Subgroups and Automorphisms

Theorem

Let Ω be a set. Let G be a subgroup of Sym (Ω) and H a subgroup of G. Then the following are equivalent:

(a) H is closed in G.

(b) There is a structure A with dom(A) = Ω , such that $H = G \cap Aut(A)$.

In particular a subgroup H of Sym (Ω) is of form Aut(B) for some structure B with domain Ω if and only if H is closed.

(a) \Rightarrow (b) For each $n < \omega$ and each orbit Δ of H on Ω^n , choose an *n*-ary relation symbol R_{Δ} . Take L to be the signature consisting of all these relation symbols. Make Ω into an L-structure A by putting $R_{\Delta}^A = \Delta$.

- Every permutation in H takes R_{Δ} to R_{Δ} . So $H \subseteq G \cap Aut(A)$.
- Let g ∈ G be an automorphism of A. Let ā be in Ωⁿ. Then ā is in some orbit Δ of H. Thus, since Δ = R^A_Δ, g(ā) must be in the same orbit. Hence, g(ā) = h(ā), for some h in H. Since H is closed in G, g is in H.

Closed Subgroups and Automorphisms (Converse)

(b) \Rightarrow (a) Assuming (b), we show that *H* is closed in *G*. Let *g* be an element of *G*, such that for each finite subset *W* of Ω , there is $h \in H$, with $g|_W = h|_W$.

Let $\phi(\overline{x})$ be an atomic formula of the signature of A, and \overline{a} a tuple of elements of A.

Choose W above so that it contains \overline{a} .

Then we have

$$A \models \phi(\overline{a}) \quad \text{iff} \quad A \models \phi(h(\overline{a})) \quad (h \in \text{Aut}(A)) \\ \text{iff} \quad A \models \phi(g(\overline{a})). \quad (g \mid_W = h \mid_W)$$

Thus, g is an automorphism of A.

- When *H* is closed, the structure *A* constructed in the proof of (a)⇒(b) is called the **canonical structure** for *H*.
- By the proof, A can be chosen to be an L-structure with $|L| \le |\Omega| + \omega$.

Open Subsets of a Symmetric Group

- The word "closed" suggests a topology.
- A subset S of Sym(Ω) is called basic open if there are tuples a and b in Ω, such that

$$S = \{g \in \operatorname{Sym}(\Omega) : g(\overline{a}) = \overline{b}\}.$$

- Write this set as $S(\overline{a}, \overline{b})$.
- In particular Sym $(\Omega)_{(\overline{a})}$ is a basic open set.
- An **open subset** of Sym(Ω) is a union of basic open subsets.
- If Ω = dom(A), we define a (basic) open subset of Aut(A) to be the intersection of Aut(A) with some (basic) open subset of Sym(Ω).

A Topological Group

Lemma

Let A be a structure and write G for Aut(A).

- (a) The definitions above define a topology on G; it is the topology induced by that on Sym(Ω). Under this topology, G is a topological group, i.e., multiplication and inverse in G are continuous operations.
- (b) A subgroup of G is open if and only if it contains the pointwise stabilizer of some finite set of elements of A.
- (c) A subset F of G is closed under this topology if and only if it is closed in the preceding sense (with F for H).
- (d) A subgroup H of G is dense in G if and only if H and G have the same orbits on $(dom A)^n$, for each positive integer n.
- (a) A permutation g takes \overline{a}_1 to \overline{b}_1 and \overline{a}_2 to \overline{b}_2 if and only if it takes $\overline{a}_1\overline{a}_2$ to $\overline{b}_1\overline{b}_2$. So the intersection of two basic open sets is again basic open. The first sentence of (a) follows at once by general topology.

A Topological Group ((a) and (b))

(a) For the second sentence:

- Note $g \in S(\overline{a}, \overline{b})$ if and only if $g^{-1} \in S(\overline{b}, \overline{a})$. This proves the continuity of inverse.
- Suppose gh∈ S(ā, b). Write c for h(ā). Then g∈ S(c, b), h∈ S(ā, c), and S(c, b) ⋅ S(ā, c) ⊆ S(ā, b). So multiplication is continuous.
- (b) For each tuple \overline{a} the pointwise stabilizer $G_{(\overline{a})}$ is $G \cap S(\overline{a}, \overline{a})$. This is open. A subgroup of G containing $G_{(\overline{a})}$ is a union of cosets of $G_{(\overline{a})}$. Each of those is basic open. Hence the subgroup is open.

In the other direction, suppose H is an open subgroup containing a non-empty basic open set $G \cap S(\overline{a}, \overline{b})$.

Every element of $G_{(\overline{a})}$ can be written as gh with

 $g \in G \cap S(\overline{b},\overline{a}) \subseteq H$ and $h \in G \cap S(\overline{a},\overline{b}) \subseteq H$.

Hence H contains $G_{(\overline{a})}$.

A Topological Group ((c) and (c))

(c) Suppose F ⊆ G is topologically closed. Let g ∈ G, such that, for all ā, g(ā) = f(ā), for some f ∈ F. Thus, for every basic open S(ā, b), such that g ∈ S(ā, b), S(ā, b) ∩ F ≠ Ø. Since F is closed, g ∈ F. Thus, F is closed in G.

Suppose, conversely, that F is closed in G. Let $g \in G$, such that, for every basic open $S(\overline{a}, \overline{b})$, with $g \in S(\overline{a}, \overline{b})$, $S(\overline{a}, \overline{b}) \cap F \neq \emptyset$. Thus, for all $g \in G$ and all \overline{a} , $g(\overline{a}) = \overline{b}$ implies $g(\overline{a}) = \overline{b} = f(\overline{a})$, for some $f \in F$. Since F is closed in G, $g \in F$. Hence, F is topologically closed in G.

(d) H is dense in G iff, for all g ∈ G, every basic open set containing g meets H iff, for all g ∈ G and all a, b, g ∈ S(a, b) implies S(a, b) ∩ H ≠ Ø iff, for all g ∈ G and all a, b, g(a) = b implies there exists h ∈ H, such that h(a) = b iff, for all n, H and G have the same orbits on (domA)ⁿ.

Automorphism Groups and Structures

- Starting from a structure A, we get by successive abstractions:
 - The permutation group Aut(A);
 - The topological group Aut(A);
 - The abstract group Aut(A).
- At each step some information is discarded.
- How much of this information can be recovered?
 - In some cases, very little, as, e.g., was the case with the ordinals.
 - In general, the larger the automorphism group of a structure, the better the chances of reconstructing the structure from the automorphism group.

Characterization of Open Sets

Theorem

Let G be a closed group of permutations of ω and H a closed subgroup of G. Then the following are equivalent:

- (a) H is open in G.
- (b) $(G:H) \leq \omega$.
- (c) $(G:H) < 2^{\omega}$.

(a) \Rightarrow (b) Suppose (a) holds. Then there is some tuple \overline{a} of elements of ω , such that the stabilizer $G_{(\overline{a})}$ of \overline{a} lies in H. Suppose now that g,j are two elements of G, such that $g(\overline{a}) = j(\overline{a})$. Then $j^{-1}g \in G_{(\overline{a})} \subseteq H$. So the cosets gH, jH are equal. Since there are only countably many possibilities for $g(\overline{a})$, the index (G:H) must be at most countable. (b) \Rightarrow (c) is trivial. (c) \Rightarrow (a) We suppose that H is not open in G. We construct continuum many left cosets of H in G.

Characterization of Open Sets (Construction)

- We define by induction sequences (ā_i: i < ω), (b_i: i < ω) of tuples of elements of ω and a sequence (g_i: i < ω) of elements of G, such that the following hold for all i.
 - 1 $\overline{b}_0 = \langle \rangle; \ \overline{b}_{i+1}$ is a concatenation of all the sequences $(k_0 \cdots k_i)(\overline{a}_0 \cap \cdots \cap \overline{a}_i)$, where each k_j is in $\{1, g_0, \dots, g_i\}$;
 - 2. $g_i(\overline{b}_i) = \overline{b}_i;$
 - 3. There is no $h \in H$, such that $h(\overline{a}_i) = g_i(\overline{a}_i)$;
 - 4. *i* is an item in $\overline{a_i}$.

When \overline{b}_i has been chosen, we have, by assumption, that $G_{(\overline{b}_i)} \nsubseteq H$.

So there is some $g_i \in G$ which fixes \overline{b}_i (giving 2), and is not in H. Since H is closed in G, there is a tuple \overline{a}_i , such that $h(\overline{a}_i) \neq g_i(\overline{a}_i)$, for all h in H. This ensures 3.

```
Adding i to \overline{a}_i if necessary, we obtain 4.
```

Characterization of Open Sets (Continuum of Subsets)

• For any subset S of $\omega \setminus \{0\}$, define $g_i^S = \begin{cases} g_i, & \text{if } i \in S \\ 1, & \text{if } i \notin S \end{cases}$ Let $f_i^S = g_i^S \cdots g_0^S$. For each j > i, we have $f_j^S(\overline{a}_i) = g_j^S \cdots g_{i+1}^S g_i^S \cdots g_0^S(\overline{a}_i) \stackrel{1,2}{=} g_i^S \cdots g_0^S(\overline{a}_i) = f_i^S(\overline{a}_i)$. So by 4, we can define a map $g_S : \omega \to \omega$ by setting, for each $i < \omega$, $g_S(i) = f_j^S(i)$, for all $j \ge i$.

 $\begin{array}{l} g_{S} \text{ is injective: The maps } f_{i}^{S} \text{ are automorphisms.} \\ g_{S} \text{ is surjective: Consider any } i \in \omega. \text{ Let } j = (f_{i}^{S})^{-1}(i). \\ \bullet \text{ Suppose } j \leq i. \text{ Then } g_{S}(j) = f_{i}^{S}(f_{i}^{S})^{-1}(i) = i. \\ \bullet \text{ Suppose } j > i. \text{ Then } g_{S}(j) = f_{j}^{S}(f_{i}^{S})^{-1}(i) = g_{j}^{S} \cdots g_{i+1}^{S}(i) = i. \\ \text{So } g_{S} \text{ is a permutation of } \omega. \text{ Note that the } f_{i}^{S} \text{ are in the closed group } G. \text{ Moreover, for each tuple } \overline{a} \text{ in } \omega, g_{S} \text{ agrees on } \overline{a} \text{ with some } f_{i}^{S}. \\ \text{Hence, } g_{S} \text{ is in } G. \text{ There are } 2^{\omega} \text{ distinct subsets } S \text{ of } \omega \setminus \{0\}. \end{array}$

Characterization of Open Sets (Continuum of Cosets)

• It remains only to show that the corresponding permutations g_S lie in different right cosets of H.

Suppose $S \neq T$. Let i > 0 be least, say, in S but not in T.

By 3, there is no element of H which agrees with g_i on \overline{a}_i .

Set
$$f = f_{i-1}^{S} \stackrel{i \notin I}{=} f_i^{T}$$
. Consider $f^{-1}(\overline{a}_i)$.

Choose some $j \ge i$, such that all the items in $f^{-1}(\overline{a}_i)$ are $\le j$. We have, for all h in H,

$$g_{S}(f^{-1}(\overline{a}_{i})) \stackrel{\text{choice } j}{=} f_{j}^{S}(f^{-1}(\overline{a}_{i})) \stackrel{i \in S}{=} g_{j}^{S} \cdots g_{i+1}^{S} g_{i}(\overline{a}_{i})$$

$$= g_{i}(\overline{a}_{i}) \neq h(\overline{a}_{i}) = hg_{j}^{T} \cdots g_{i+1}^{T}(\overline{a}_{i})$$

$$= hf_{j}^{T}f^{-1}(\overline{a}_{i}) = (hg_{T})(f^{-1}(\overline{a}_{i})).$$

So $g_S \notin Hg_T$, which finishes the proof.

A Model-Theoretic Translation

- Let A be a countable L⁺-structure.
- Suppose $L^- \subseteq L^+$ and let B be the L^- -reduct $A|_{L^-}$ of A.
- Then H = Aut(A) is a subgroup of G = Aut(B).
- Let g be any element of G, and consider the structure gA.
- gA is like A except that for each symbol S of L^+ , $S^{gA} = g(S^A)$.
 - The domain of gA is dom(A);
 - $g(S^A) = S^A$, for each symbol S in L^- .
- So the reduct $(gA)|_{L^-}$ is exactly B again.
- Suppose now that k is another element of G.
- gA is equal to kA when g(S^A) = k(S^A), for each symbol S, i.e., when k⁻¹g is an automorphism of A,

i.e., when the cosets gH and kH in G are equal.

 This shows that the index of Aut(A) in Aut(B) is equal to the number of different ways in which the symbols of L⁺\L⁻ can be interpreted in B so as to give a structure isomorphic to A.

The Kueker-Reyes Theorem

Theorem (Kueker-Reyes Theorem)

Let L^- and L^+ be signatures with $L^- \subseteq L^+$. Let A be a countable L^+ -structure and let B be the reduct $A|_{L^-}$. Put $G = \operatorname{Aut}(B)$. Then the following are equivalent:

- (a) There is a tuple \overline{a} of elements of A, such that $G_{(\overline{a})} \subseteq \operatorname{Aut}(A)$.
- (b) There are at most countably many distinct expansions of *B* which are isomorphic to *A*.
- (c) The number of distinct expansions of B which are isomorphic to A is less than 2^{ω} .
- (d) There is a tuple \overline{a} of elements of A such that for each atomic formula $\phi(x_0, \dots, x_{n-1})$ of L^+ , there is a formula $\psi(x_0, \dots, x_{n-1}, \overline{y})$ of $L^-_{\omega_1\omega}$, such that $A \models \forall \overline{x}(\phi(\overline{x}) \leftrightarrow \psi(\overline{x}, \overline{a}))$.
 - Our translation gives the equivalence of (a), (b) and (c) at once. It remains to show that (a) is equivalent to (d).

The Kueker-Reyes Theorem $((d)\Rightarrow(a))$

Assume, first (d) holds. Let g ∈ G_(ā). We have, for every atomic formula φ(x₀,...,x_{n-1}) of L⁺ and every b̄ in A,

$$\begin{array}{lll} A \models \phi(\overline{b}) & \text{iff} & A \models \psi(\overline{b}, \overline{a}) & (\text{hypothesis}) \\ & \text{iff} & A \models \psi(g(\overline{b}), g(\overline{a})) & (g \in G) \\ & \text{iff} & A \models \psi(g(\overline{b}), \overline{a}) & (g \in G_{(\overline{a})}) \\ & \text{iff} & A \models \phi(g(\overline{b})). & (\text{hypothesis}) \end{array}$$

Therefore, $g \in Aut(A)$.

The Kueker-Reyes Theorem $((a)\Rightarrow(d))$

- For the converse, suppose $G_{(\overline{a})} \subseteq \operatorname{Aut}(A)$.
 - Let $\phi(x_0,...,x_{n-1})$ be an atomic formula of L^+ .

Without loss we can suppose that ϕ is unnested.

For simplicity let us assume too that ϕ is $R(x_0, ..., x_{n-1})$, where R is some *n*-ary relation symbol.

For each *n*-tuple \overline{c} in $\phi(A^n)$, let $\sigma_{(B,\overline{a},\overline{c})}(\overline{a},\overline{c})$ be the Scott sentence of the structure $(B,\overline{a},\overline{c})$. Note that $\bigvee_{\overline{c}\in\phi(A^n)}\sigma_{(B,\overline{a},\overline{c})}(\overline{a},\overline{x})$ is in $L^-_{\omega_1\omega}$. This is the sentence that plays the role of ψ .

- Suppose $A \models \phi(\overline{d})$. Then $(B, \overline{a}, \overline{d}) \models \sigma_{(B, \overline{a}, \overline{d})}(\overline{a}, \overline{d})$. Since $\overline{d} \in \phi(A^n)$, $A \models \bigvee_{\overline{c} \in \phi(A^n)} \sigma_{(B, \overline{a}, \overline{c})}(\overline{a}, \overline{c})$.
- Assume $\overline{c} \in \phi(A^n)$, i.e., $A \models \phi(\overline{c})$, and let \overline{d} such that $A \models \sigma_{\overline{c}}(\overline{a}, \overline{d})$. Then $(B, \overline{a}, \overline{c}) \cong (B, \overline{a}, \overline{d})$. So by (a), $(B, \overline{a}, \overline{c}, R^A) \cong (B, \overline{a}, \overline{d}, R^A)$. Hence, $A \models \phi(\overline{d})$.

We conclude $A \models \forall \overline{x}(\phi(\overline{x}) \leftrightarrow \bigvee_{\overline{c} \in \phi(A^n)} \sigma_{\overline{c}}(\overline{a}, \overline{x})).$

Automorphisms and Rigidity

Corollary

Let A be a countable structure. Then the following are equivalent:

- (a) $|\operatorname{Aut}(A)| \leq \omega$.
- (b) $|\operatorname{Aut}(A)| < 2^{\omega}$.
- (c) There is a tuple \overline{a} in A such that (A,\overline{a}) is rigid.

In the theorem, take

$$L^{-}=L, L^{+}=(L,\overline{c}),$$

where \overline{c} contains one constant for each element of A. Then, consider

- The L^+ -structure (A, \overline{a}) ;
- The L^- -reduct $(A, \overline{a})|_{L^-} = A$.

Then, statements (a),(b) and (c) of the theorem correspond, respectively, to statements (c), (a) and (b) of the corollary.

Subsection 2

Relativization

Relativized Reducts

- Consider two signatures L and L' with $L \subseteq L'$.
- Let C be an L'-structure and B a substructure of the reduct $C|_L$.
- Then we can make the pair C, B into a single structure.
 - Take a new unary relation symbol P.
 - Write L^+ for L' with P added.
 - Expand C to an L^+ -structure A by setting $P^A = \text{dom}(B)$.

• We can recover C and B from A by

 $C = A|_{L'},$

B = the substructure of $A|_L$ whose domain is P^A .

• We call *B* a **relativized reduct** of *A*.

• The meaning is that to get *B* from *A* we have to:

- "Relativize" the domain to a definable subset of dom(A);
- Remove some symbols.
- Forgetting about C, we consider signatures L and L^+ , with $L \subseteq L^+$, and a unary relation symbol P in $L^+ \setminus L$.

P-Part and Admissibility Conditions for Relativization

- Let A be an L^+ -structure.
- By a previous lemma, the following are necessary and sufficient conditions for P^A to be the domain of a substructure of $A|_L$.
 - For every constant c of L, $c^A \in P^A$;
 - For every n > 0, all *n*-ary *F* in *L* and all $\overline{a} \in (P^A)^n$, $F^A(\overline{a}) \in P^A$.
- If the conditions are satisfied, the substructure is uniquely determined.
- We write it A_P, and call it the P-part of A.
- From the same lemma one can write these necessary and sufficient conditions as a set of first-order sentences that A must satisfy.
- We call them the admissibility conditions for relativization to *P*.
- A_P depends on the language L as well as A and P.

Relativization Theorem

Theorem (Relativization Theorem)

Let L and L^+ be signatures such that $L \subseteq L^+$, and P a unary relation symbol in $L^+ \setminus L$. Then for every formula $\phi(\overline{x})$ of $L_{\infty\omega}$, there is a formula $\phi^P(\overline{x})$ of $L^+_{\infty\omega}$, such that the following holds:

If A is an L^+ -structure such that A_P is defined, and \overline{a} is a sequence of elements from A_P , then $A_P \models \phi(\overline{a})$ if and only if $A \models \phi^P(\overline{a})$.

• We define ϕ^P by induction on the complexity of ϕ :

If
$$\phi$$
 is atomic, $\phi^P = \phi$;

2.
$$(\bigwedge_{i \in I} \psi_i)^P = \bigwedge_{i \in I} (\psi_i^P)$$
 and $(\bigvee_{i \in I} \psi_i)^P = \bigvee_{i \in I} (\psi_i^P);$

B.
$$(\neg \phi)^P$$
 is $\neg (\phi^P)$;

4.
$$(\forall y \psi(\overline{x}, y))^P = \forall y (Py \to \psi^P(\overline{x}, y)); (\exists y \psi(\overline{x}, y))^P = \exists y (Py \land \psi^P(\overline{x}, y)).$$

Then the condition follows by induction on the complexity of ϕ .

- The formula ϕ^P in this theorem is called the **relativization** of ϕ to *P*.
- Note that, if ϕ is first-order, then so is ϕ^P .

Property of the Relativization

Corollary

Let *L* and *L*⁺ be signatures with $L \subseteq L^+$ and *P* a unary relation symbol in $L^+ \setminus L$. If *A* and *B* are L^+ -structures such that $A \preccurlyeq B$ and A_P is defined, then B_P is defined and $A_P \preccurlyeq B_P$.

• First, we show that B_P is defined.

- For all constants c in L, $c^B = c^A \in A_P \subseteq B_P$.
- Let n > 0, F an n-ary function symbol of L and b in P^B. Since A_P is defined, A ⊨ (∀x̄)(∧ⁿ_{i=1} P(x_i) → P(F(x̄))). Since A ≼ B, B ⊨ (∀x̄)(∧ⁿ_{i=1} P(x_i) → P(F(x̄))). By hypothesis, B ⊨ P(x_i)[b_i], for all i < n. So B ⊨ P(F(x̄))[b̄], i.e., F^B(b̄) ∈ P^B.

Now we show that $A_P \preccurlyeq B_P$. Using the notation of the Relativization Theorem, for every ϕ in L and all \overline{a} in A_P ,

$$A_P \models \phi(\overline{a})$$
 iff $A \models \phi^P(\overline{a})$ iff $B \models \phi^P(\overline{a})$ iff $B_P \models \phi(\overline{a})$.

Example: Linear Groups

- Suppose G is a group of n×n matrices over a field F.
 We can make G and F into a single structure A as follows.
 The signature of A has:
 - Two unary relation symbols group and field;
 - Two ternary relation symbols add and mult;
 - n^2 binary relation symbols coeff_{ij}, $1 \le i, j \le n$.

The sets group^A and field^A consist of the elements of G and F, resp. The relations add^A and mult^A express addition and multiplication in F. For each matrix $g \in G$, the *ij*-th entry in g is the unique element f, such that $\operatorname{coeff}_{ij}(g, f)$ holds.

- Note that multiplication in G can be defined in terms of the field operations, using the symbols coeff_{ij}.
- Note, also, there are no function or constant symbols.
- So *B_P* and *B_Q* are automatically defined for any structure *B* of the same signature as *A*.

George Voutsadakis (LSSU)

Relativization Using a First-Order Formula

- Sometimes a structure B is picked out inside a structure A, not by a unary relation symbol P, but by a formula $\theta(x)$.
- When *θ* is in the first-order language of *A*, then again we call *B* a **relativized reduct** of *A*.
- The case in which $\theta(x)$ is P(x), becomes a special case.
- If θ also contains parameters from A, we call B a relativized reduct with parameters.
- One can adapt the Relativization Theorem straightforwardly by putting θ in place of *P* everywhere.

Example: ω as a Relativized Reduct

Suppose A is a transitive model of Zermelo-Fraenkel set theory.
 Let θ(x) be the formula "x ∈ ω".

The ordering < on ω coincides with \in .

We can write set-theoretic formulas that define + and $\cdot .$

Note that ω satisfies a rather strong form of the Peano axioms:

- 0 is not of the form x + 1; If $x, y \in \omega$ and x + 1 = y + 1, then x = y;
- For every formula $\phi(x)$ of the first-order language of A, possibly with parameters from A, if $\phi(0)$ and $\forall x(x \in \omega \land \phi(x) \rightarrow \phi(x+1))$ both hold in A, then $\forall x(x \in \omega \rightarrow \phi(x))$ holds in A.
- The latter is the induction axiom schema for subsets of ω which are first-order definable (with parameters) in A.
- Of course this includes the subsets of ω which are first-order definable in the structure (ω , <) itself, by the relativization theorem.

Example: Relativized Reducts of Rationals as Ordered Set

• Let A be the following structure:

- The domain of A is the set Q of rational numbers;

We find the relativized reducts of A (without parameters).

- First note that Aut(A) is exactly Aut(Q,<) since A is a definitional expansion of (Q,<).
- Next, Aut(A) is transitive on Q. It follows that any subset of Q which is definable without parameters is either empty or the whole of Q.
 So we can forget the relativization.
- Thirdly, if B is any reduct of A, then $Aut(A) \subseteq Aut(B) \subseteq Sym(Q)$, and Aut(B) is closed in Sym(Q) by a previous theorem.

Relativized Reducts of Rationals as Ordered Set (Cont'd)

 And finally, Aut(Q, <) is oligomorphic and its orbits on *n*-tuples are all ø-definable. So every orbit of Aut(B) on *n*-tuples is a union of finitely many orbits of Aut(Q, <). Hence it is defined by some relation of A.

So, up to definitional equivalence, the relativized reducts of A correspond exactly to the closed groups lying between Aut(A) and Sym(\mathbb{Q}).

It can be shown that apart from Aut(A) and $Sym(\mathbb{Q})$, there are just three such groups.

- The first is the group of all permutations of *A* which either preserve the order or reverse it.
- The second is the group of all permutations which preserve the cyclic relation "x < y < z or y < z < x or z < x < y"; This corresponds to taking an initial segment of \mathbb{Q} and moving it to the end.
- The third is the group generated by these other two. It consists of those permutations which preserve the relation "exactly one of x, y lies between z and w".

Example: Orderable Groups

• An ordered group is a group G which carries a linear ordering < such that if g, h and k are any elements of G, then

g < h implies $k \cdot g < k \cdot h$ and $g \cdot k < h \cdot k$.

- A group is **orderable** if a linear ordering can be added so as to make it into an ordered group.
- Clearly an orderable group cannot have elements ≠ 1 of finite order.
 Suppose, to the contrary that gⁿ = 1.
 - Suppose 1 < g. Then $g^i < g^{i+1}$, for all i = 0, ..., n. Thus, $1 < g < g^2 < \cdots < g^n = 1$, a contradiction.
 - If g < 1, we argue similarly.
- This is not a sufficient condition for orderability (unless the group happens to be abelian).

Pseudo-Elementary Classes and PC_{Δ} Classes

- Let *L* be a first-order language.
- A pseudo-elementary class (for short, a PC class) of L-structures is a class of structures of the form {A|_L : A ⊨ φ} for some sentence φ in a first-order language L⁺ ⊇ L.
- A PC_{Δ}-class of *L*-structures is a class of the form $\{A \mid_L : A \models U\}$, for some theory *U* in a first-order language $L^+ \supseteq L$.

Example: The class of orderable groups is a PC class.

Example: Ordered Abelian Groups

Let L be the first-order language of linear orderings (with symbol <).
 Let U be the theory of ordered abelian groups.

Then the class $\mathbf{K} = \{A \mid L : A \models U\}$ is the class of all linear orderings which are orderings of abelian groups.

This is a PC class, since U can be written as a finite theory and, hence, as a single sentence.

PC'_{Δ} Classes of Structures

One can generalize these notions, using relativized reducts A_P.
We define a PC'_A class of *L*-structures to be a class of the form

$$\{A_P : A \models U \text{ and } A_P \text{ is defined}\},\$$

for some theory U in a language $L^+ \supseteq L \cup \{P\}$.

• By the admissibility conditions, every PC'_{Δ} class can be written as $\{A_P : A \models U'\}$, for some theory U' in L^+ .

Example: A natural example of a PC'_Δ class is the class of multiplicative groups of fields.

- *L* has only the symbol for multiplication.
- The unary symbol *P* picks out the non-zero elements.
- *U* is the theory of fields.

One can show that this class is not first-order axiomatizable.

PC_{Δ} and PC'_{Δ} Classes

- PC'_{Δ} appears to be a generalization of PC_{Δ} .
- However, the two notions are exactly the same.

Theorem

The PC'_{\Delta} classes are exactly the PC_{\Delta} classes. More precisely, let K be a class of L-structures.

- (a) If **K** is a PC'_{Δ} class $\{A_P : A \models U \text{ and } A_P \text{ is defined}\}$ for some theory U in a first-order language L^+ , then **K** is also a PC_{Δ} class $\{A|_L : A \models U^*\}$ for some theory U^* in a first-order language L^* with $|L^*| \le |L^+|$.
- (b) If K is a PC' class and all structures in K are infinite, then K is a PC class.

Subsection 3

Interpreting One Structure in Another

Interpretations

- Let K and L be signatures.
- Let A be a K-structure and B an L-structure.
- For a positive integer n, an (n-dimensional) interpretation Γ of B in A is defined to consist of three items:
 - 1. A formula $\partial_{\Gamma}(x_0, \dots, x_{n-1})$ of signature K;
 - For each unnested atomic formula φ(y₀,..., y_{m-1}) of L, a formula φ_Γ(x
 ₀,..., x_{m-1}) of signature K in which the x
 _i are disjoint n-tuples of distinct variables;
 - 3. A surjective map $f_{\Gamma} : \partial_{\Gamma}(A^n) \to \operatorname{dom}(B)$, such that for all unnested atomic formulas ϕ of L and all $\overline{a}_i \in \partial_{\Gamma}(A^n)$,

 $B \models \phi(f_{\Gamma}(\overline{a}_0), \dots, f_{\Gamma}(\overline{a}_{m-1})) \quad \text{iff} \quad A \models \phi_{\Gamma}(\overline{a}_0, \dots, \overline{a}_{m-1}).$

- ∂_{Γ} and ϕ_{Γ} (for all unnested atomic ϕ) are the **defining formulas** of Γ .
- ∂_{Γ} is the **domain formula** of Γ ;
- The map f_{Γ} is the **coordinate map** of Γ .
 - It assigns to each element $f_{\Gamma}(\overline{a})$ of B the "coordinates" \overline{a} in A;
 - An element may have several different tuples of coordinates.

Interpretability and Conventions

- Unless anything is said to the contrary, we assume that the defining formulas of Γ are all first-order.
- For example, we say that *B* is **interpretable** in *A* if there is an interpretation of *B* in *A* with all its defining formulas first-order.
- We say that *B* is **interpretable in** *A* **with parameters** if there is a sequence \overline{a} of elements of *A*, such that *B* is interpretable in (A, \overline{a}) .
- We shall write $=_{\Gamma}$ for ϕ_{Γ} when ϕ is the formula $y_0 = y_1$.
- Wherever possible we shall abbreviate $(\overline{a}_0, ..., \overline{a}_{m-1})$ and $(f(\overline{a}_0), ..., f(\overline{a}_{m-1}))$ to \overline{a} and $f(\overline{a})$, respectively.

Example: Relativized Reductions

• Suppose B is the relativized reduct A_P .

Then there is a one-dimensional interpretation Γ of B in A. The defining formulas of Γ are as follows.

•
$$\partial_{\Gamma}(x) := P(x);$$

• $\phi_{\Gamma} := \phi(\overline{x})$, for each unnested atomic formula $\phi(\overline{y})$.

The coordinate map $f_{\Gamma}: P^A \to \text{dom}(A)$ is simply the inclusion map. We call the interpretation Γ a **relativized reduction**.

Example: Rationals and Integers

 The familiar interpretation of the rationals in the integers is a two-dimensional interpretation Γ.
 The domain formula is

$$\partial_{\Gamma}(x_0,x_1):=x_1\neq 0.$$

The other defining formulas are:

- =_{Γ}(x₀₀, x₀₁; x₁₀, x₁₁) := x₀₀ · x₁₁ = x₀₁ · x₁₀;
- $\mathsf{plus}_{\Gamma}(x_{00}, x_{01}; x_{10}, x_{11}; x_{20}, x_{21}) := x_{21} \cdot (x_{00} \cdot x_{11} + x_{01} \cdot x_{10}) = x_{01} \cdot x_{11} \cdot x_{20};$
- times_{Γ}($x_{00}, x_{01}; x_{10}, x_{11}; x_{20}, x_{21}$) := $x_{00} \cdot x_{10} \cdot x_{21} = x_{01} \cdot x_{11} \cdot x_{20}$.

The formulas ψ_{Γ} for the remaining unnested atomic formulas ψ express addition and multiplication of rationals in terms of addition and multiplication of integers, just as in the algebra texts. The coordinate map is

$$f_{\Gamma}((m,n))=\frac{m}{n}, \quad n\neq 0.$$

Example: Algebraic Extensions (Outline)

• Let A be a field.

Let p(X) an irreducible polynomial of degree *n* over *A*. Let ξ be a root of p(X) in some field extending *A*. Given an *n*-tuple $\overline{a} = (a_0, \dots, a_{n-1})$ of elements of *A*, we write

$$q_{\overline{a}}(X) := X^n + a_{n-1}X^{n-1} + \dots + a_1X + a_0.$$

Then there is an *n*-dimensional interpretation Γ of $A[\xi]$ in A.

- $\partial_{\Gamma}(A^n)$ is the whole of A^n ;
- The remaining defining formulas are:
 - =_{Γ}($\overline{a}, \overline{b}$) says that p(X) divides $(q_{\overline{a}}(X) q_{\overline{b}}(X))$;
 - $(y_0 + y_1 = y_2)_{\Gamma}$ and $(y_0 \cdot y_1 = y_2)_{\Gamma}$ follow the usual definitions of addition and multiplication of polynomials.

All can be written as positive primitive formulas.

• $f_{\Gamma}(\overline{a}) = q_{\overline{a}}(\xi).$

 ∂_{Γ} is quantifier-free and ϕ_{Γ} is p.p. for every unnested atomic ϕ .

Admissibility Conditions

- Let Γ be an interpretation of an *L*-structure *B* in a *K*-structure *A*.
- There are certain sentences of signature K which must be true in A just because Γ is an interpretation, regardless of what A and B are:
 - (i) =_{Γ} defines an equivalence relation on $\partial_{\Gamma}(A^n)$;
 - (ii) For each unnested atomic formula ϕ of L, if $A \models \phi_{\Gamma}(\overline{a}_0, ..., \overline{a}_{n-1})$ with $\overline{a}_0, ..., \overline{a}_{n-1}$ in $\partial_{\Gamma}(A^n)$, then also $A \models \phi_{\Gamma}(\overline{b}_0, ..., \overline{b}_{n-1})$ for each element \overline{b}_i of $\partial_{\Gamma}(A^n)$ which is $=_{\Gamma}$ -equivalent to \overline{a}_i ;
 - (iii) If φ(y₀) is a formula of L of form c = y₀, then there is ā in ∂_Γ(Aⁿ), such that for all b in ∂_Γ(Aⁿ), A ⊨ φ_Γ(b) if and only if b is =_Γ-equivalent to ā;
 (iv) A clause like (iii) for each function symbol.
- These sentences are called the **admissibility conditions** of Γ .
- They generalize the admissibility conditions for a relativized reduct.
- They depend only on on the defining formulas, but not on the coordinate map, of $\Gamma.$

The Reduction Theorem

Theorem (Reduction Theorem)

Let A be a K-structure, B an L-structure and Γ an n-dimensional interpretation of B in A. For every formula $\phi(\overline{y})$ of the language $L_{\infty\omega}$, there is a formula $\phi_{\Gamma}(\overline{x})$ of the language $K_{\infty\omega}$, such that for all \overline{a} from $\partial_{\Gamma}(A^n)$,

$$B \models \phi(f_{\Gamma}(\overline{a}))$$
 iff $A \models \phi_{\Gamma}(\overline{a})$.

- By a previous corollary, every formula of $L_{\infty\omega}$ is equivalent to a formula of $L_{\infty\omega}$ in which all atomic subformulas are unnested. We prove the theorem by induction on the complexity of formulas.
 - Atomic formulas are handled by the definition of interpretation.

•
$$(\neg \phi)_{\Gamma} = \neg (\phi_{\Gamma});$$

- $(\bigwedge_{i \in I} \phi_i)_{\Gamma} = \bigwedge_{i \in I} (\phi_i)_{\Gamma}$ and $(\bigvee_{i \in I} \phi_i)_{\Gamma} = \bigvee_{i \in I} (\phi_i)_{\Gamma};$
- $(\forall y \phi)_{\Gamma} = \forall x_0 \dots x_{n-1} (\partial_{\Gamma} (x_0, \dots, x_{n-1}) \rightarrow \phi_{\Gamma});$
- $(\exists y\phi)_{\Gamma} = \exists x_0 \dots x_{n-1} (\partial_{\Gamma}(x_0, \dots, x_{n-1}) \land \phi_{\Gamma}).$

Interpretations and Reduction Maps

- The map φ → φ_Γ of the Reduction Theorem depends only on the defining formulas of Γ, and not at all on the coordinate map f_Γ.
- The defining formulas of Γ form an interpretation of L in K.
- The map $\phi \mapsto \phi_{\Gamma}$ of the Reduction Theorem is the **reduction map** of this interpretation.

The Associated Functor (Domain)

Theorem

Let Γ be an *n*-dimensional interpretation of a signature *L* in a signature *K*, and let Admis(Γ) be the set of admissibility conditions of Γ . For every *K*-structure *A* which is a model of Admis(Γ), there are an *L*-structure *B* and a map $f : \partial_{\Gamma}(A^n) \to \operatorname{dom}(B)$, such that:

- (a) Γ with f forms an interpretation of B in A;
- (b) If g and C are such that Γ and g form an interpretation of C in A, then there is an isomorphism $i: B \to C$, such that $i(f(\overline{a})) = g(\overline{a})$, for all $a \in \partial_{\Gamma}(A^n)$.
 - Let A be a model of Γ. Then we build an L-structure B as follows. Define a relation ~ on ∂_Γ(Aⁿ) by ā ~ ā' iff A ⊨ =_Γ(ā,ā'). By (i) of the admissibility conditions, ~ is an equivalence relation. Write ā~ for the equivalence class of ā. dom(B) is the set of all equivalence classes ā~ with ā in ∂_Γ(Aⁿ).

The Associated Functor (Condition (a))

• We now defined the relations, constants and functions of *B*.

• For every relation symbol R of L, we define the relation R^B by

$$(\overline{a_0}, \ldots, \overline{a_{m-1}}) \in \mathbb{R}^B$$
 iff $A \models \phi_{\Gamma}(\overline{a_0}, \ldots, \overline{a_{m-1}}),$

where φ(y₀,...,y_{m-1}) is R(y₀,...,y_{m-1}).
By (ii) of the admissibility conditions, this is a sound definition.
The definitions of c^B and F^B are defined similarly.
We rely on (iii) and (iv) of the admissibility conditions.

This defines the *L*-structure *B*.

We define $f : \partial_{\Gamma}(A^n) \to \operatorname{dom}(B)$ by $f(\overline{a}) = \overline{a}^{\sim}$.

Then f is surjective. Moreover, B has been defined so as to ensure

$$B \models \phi(f(\overline{a}_0), \dots, f(\overline{a}_{m-1})) \quad \text{iff} \quad A \models \phi_{\Gamma}(\overline{a}_0, \dots, \overline{a}_{m-1}).$$

Hence, Γ and f are an interpretation of B in A. This proves (a).

The Associated Functor ((Condition (b)))

- To prove (b), suppose Γ and g are an interpretation of C in A. For each tuple $\overline{a} \in \partial_{\Gamma}(A^n)$, define $i(f(\overline{a}))$ to be $g\overline{a}$. Claim: This is a sound definition of an isomorphism $i: B \to C$. Suppose $f(\overline{a}) = f(\overline{a}')$. Then $A \models =_{\Gamma}(\overline{a}, \overline{a}')$. Since g is an interpretation, $g(\overline{a}) = g(\overline{a}')$. Thus, the definition of *i* is sound. A similar argument in the other direction shows that *i* is injective. *i* is surjective since g is surjective, being an interpretation. Clause 3 for f and g show that i is an embedding. This proves the claim, and with it the theorem.
- We write ΓA for the structure B of the theorem.
- The Reduction Theorem applies to ΓA as follows:

For all formulas $\phi(\overline{y})$ of *L*, all *K*-structures *A* satisfying the admissibility conditions of Γ , and all tuples $\overline{a} \in \partial_{\Gamma}(A^n)$, $\Gamma A \models \phi(\overline{a})$ iff $A \models \phi_{\Gamma}(\overline{a})$.

The Action of Γ on Elementary Embeddings

- Let Γ be an *n*-dimensional interpretation of a signature *L* in a signature *K*.
- Let A and A' be models of the admissibility conditions of Γ .
- Let $e: A \rightarrow A'$ be an elementary embedding.
- For every tuple $\overline{a} \in \partial_{\Gamma}(A^n)$, $e(\overline{a})$ is in $\partial_{\Gamma}(A'^n)$. We have

$$\overline{a} \in \partial_{\Gamma}(A^n) \quad \text{iff} \quad A \models \partial_{\Gamma}(\overline{a}) \\ \text{iff} \quad A' \models \partial_{\Gamma}(e(\overline{a})) \\ \text{iff} \quad e(\overline{a}) \in \partial_{\Gamma}(A'^n).$$

• Similarly, if $\overline{c} \in \partial_{\Gamma}(A^n)$ satisfies $A \models =_{\Gamma}(\overline{a}, \overline{c})$, then $A' \models =_{\Gamma}(e(\overline{a}), e(\overline{c}))$.

• Hence, there is a well-defined map Γe : dom $(\Gamma A) \rightarrow \text{dom}(\Gamma A')$, given by

$$(\Gamma e)(\overline{a}^{\sim}) = (e(\overline{a}))^{\sim}.$$

The Action of Γ on Elementary Embeddings (Properties)

• We defined $\Gamma e: \operatorname{dom}(\Gamma A) \to \operatorname{dom}(\Gamma A')$, given by

$$(\Gamma e)(\overline{a}^{\sim}) = (e(\overline{a}))^{\sim}.$$

• It can be shown that:

For the first, we have

$$\Gamma 1_{A}(\overline{a}^{\sim}) = (1_{A}(\overline{a}))^{\sim} = \overline{a}^{\sim} = 1_{\Gamma A}(\overline{a}^{\sim}).$$

And for the second

$$(\Gamma e_2)((\Gamma e_1)(\overline{a}^{\sim})) = (\Gamma e_2)((e_1(\overline{a}))^{\sim}) \\ = (e_2(e_1(\overline{a})))^{\sim} \\ = \Gamma(e_2e_1)(\overline{a}^{\sim}).$$

The Action of Γ on Elementary Embeddings (Conclusion)

Claim: Γe is an elementary embedding of ΓA into $\Gamma A'$.

Let \overline{a} be a sequence of tuples from $\partial_{\Gamma}(A^n)$ and ϕ a formula of L. Then we have

$$\begin{array}{ll} \Gamma A \models \phi(\overline{a}^{\sim}) & \text{iff} & A \models \phi_{\Gamma}(\overline{a}) & (\text{Reduction Theorem}) \\ & \text{implies} & A' \models \phi_{\Gamma}(e\overline{a}) & (e \text{ elementary}) \\ & \text{iff} & \Gamma A' \models \phi((\Gamma e)(\overline{a}^{\sim})). & (\text{Reduction Theorem}) \end{array}$$

- The definition of Γe makes sense whenever:
 - A, A' are models of the admissibility conditions of Γ ;
 - $e: A \rightarrow A'$ is any homomorphism which preserves ∂_{Γ} and $=_{\Gamma}$.
- If e also preserves all the formulas ϕ_{Γ} for unnested atomic formulas ϕ of L, then Γe is a homomorphism from ΓA to $\Gamma A'$.

The Associated Functor of an Interpretation

Theorem

Let Γ be an interpretation of a signature *L* in a signature *K*, with admissibility conditions Admis(Γ).

- (a) Γ induces a functor, written Func(Γ), from the category of models of Admis(Γ) and elementary embeddings, to the category of *L*-structures and elementary embeddings.
- (b) If the formulas ∂_{Γ} and ϕ_{Γ} (for unnested atomic ϕ) are \exists_1^+ formulas, then we can extend the functor Func(Γ) in (a), replacing "elementary embeddings" by "homomorphisms".
 - We call the functor $Func(\Gamma)$ in either the (a) or the (b) version, the associated functor of the interpretation Γ .
 - Usually we shall write it just Γ since there is little danger of confusing the interpretation with the functor.

Interpretations and Maps Between Automorphism Groups

- Suppose Γ is the associated functor of an interpretation of L in K.
- Then whenever ΓA is defined, we have a group homomorphism $\alpha \mapsto \Gamma \alpha$ from Aut(A) to Aut(ΓA).

Theorem

Let Γ be an interpretation of L in K, and let A be an L-structure such that ΓA is defined. Then the induced homomorphism $h: \operatorname{Aut}(A) \to \operatorname{Aut}(B)$ is continuous.

It suffices to show that if F is a basic open subgroup of Aut(B), then there is an open subgroup E of Aut(A) such that h(E) ⊆ F.
 Let F be Aut(B)(b), for some tuple b of elements of B.

Let X be a finite set of elements of A such that each element in \overline{b} is of form $f_{\Gamma}(\overline{a})$, for some tuple \overline{a} of elements of X.

Then by the definition of h, $h(\operatorname{Aut}(A)_{(X)}) \subseteq \operatorname{Aut}(B)_{(\overline{b})}$.