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Automorphisms and Interpretations Automorphisms

Subsection 1

Automorphisms
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Automorphisms and Interpretations

o Let A be an L-structure.
o Every automorphism of A is a permutation of dom(A).

o By a previous theorem, the collection of all automorphisms of A is a
group under composition.

o This group, regarded as a permutation group on dom(A), is called the
automorphism group of A.

o It is denoted by Aut(A).

o Automorphism groups have traditionally been studied by group
theorists and geometers, in settings remote from model theory.

o To exploit past experience, we need some translations between model
theory and group theory.
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Automorphisms and Interpretations

o For any set Q, the group of all permutations of Q is called the
symmetric group on Q, in symbols Sym(Q).

o Let G be a subgroup of Sym(Q).

o If X is a subset of Q, then the pointwise stabilizer of X in G is the
set

Gx)=1{geG:g(a)=a, forall ae X}.
o This set forms a subgroup of G.
o We also write G(z), where a is a sequence listing the elements of X.

o The setwise stabilizer of X in G is the set
Gix)={g € G:g(X)=X}.

o It is also a subgroup of G.
o In fact, we have Gx) <SG <6,
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Automorphisms and Interpretations

o Let Q be a set.
o Let G be a subgroup of Sym(Q).

o If ais an element of Q, the orbit of a under G is the set

{g(a):ge G}

o The orbits of all elements of Q under G form a partition of Q.

o We say G is transitive on Q if the orbit of every element (or,
equivalently, the orbit of one element) is the whole of Q.

o A structure A is transitive if Aut(A) is transitive on dom(A).

o The opposite occurs when A has no automorphisms except the
identity 14.

o In this case, we say that A is rigid.
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Automorphisms and Interpretations

o Let the structure A be an ordinal (a,<).
So < well-orders the elements of A.
Then A is rigid.
Suppose f is an automorphism of A which is not the identity.
Then there is some element a, such that f(a) # a.
Replacing f by f~1 if necessary, we can suppose that f(a) < a.
Since f is a homomorphism, f2(a) = f(f(a)) < f(a).
By induction f™"1(a) < f"(a), for each n<w.
Then a>f(a)>f2(a)>---.

This contradicts that < is a well-ordering.
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Automorphisms and Interpretations

o Let D be the direct sum of countably many cyclic groups of order 2.

Equivalently, let D be a countable-dimensional vector space over the
two-element field IF,.

On D we define a relation
R(x,y,z,w) iff x+y=z+w.

The structure A consists of the set D with the relation R.
Fix d in D. Define ey : D — D by
eq(a)=a+d, aeD.
€4 is a permutation of D.
o 1-1: eq(a) = eq(b) iff a+ d=b+d iff a=b.
o Onto: Let ae D. Then eg(a—d)=(a—d)+d=a.
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Automorphisms and Interpretations

o eq4 is an automorphism of A taking 0 to d.

For x,y,z,we D,

R(x,y,z,w) iff x+y=z+w
iff (x+d)+(y+d)=(z+d)+(w+d)
iff R(x+d,y+d,z+d,w+d).
Thus, A is a transitive structure.

o Fix d again. Define an addition operation +4 in terms of R:
x+qy=z iff R(x,y,zd).

This makes D into an abelian group with d as the identity.
A is what remains of D when we forget which element is 0.
This the countable-dimensional affine space over If';.
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Automorphisms and Interpretations

Let Q be a set.
Let G be a group of permutations of Q.
We write Q" for the set of all ordered n-tuples of elements of Q.

Then G acts as a set of permutations of Q" by setting

g(ao,...,an-1)=(g(a0),...,g(an-1)).

o So we can talk about the orbits of G on Q".

o When n is greater than 1 and Q has more than one element, then G is
not transitive on Q".

Suppose a,be Q, a# b.
Then, for all g€ G, g(a,a,...) #(a,b,...).
So G cannot be transitive on Q".
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Automorphisms and Interpretations

o We say that G is oligomorphic (on Q) if for every positive integer n,
the number of orbits of G on Q" is finite.

o We say that a structure A is oligomorphic if Aut(A) is oligomorphic
on dom(A).

o We will see that for countable structures, oligomorphic is the same
thing as w-categorical.
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Automorphisms and Interpretations

o Consider the ordered set A= (Q,<) of rational numbers.

Let 3 and b be any two n-tuples in A.

There is an automorphism of A which takes 3 to b if and only if the
elements of 3 and b are in the same relative order in Q.

Rephrasing, the number of different orbits equals the number of
different relative orders that can be imposed on an n-tuple.

This number is at most, say, (2n—1)!:

o First, place ag;
o There are 3 options for placing a; (a1 <ag, a; =ag or a1 > ap);
o There are at most 5 options for placing ap;

o There are at most 2(n—1)+1 options for placing a,_.

So A is oligomorphic.
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Automorphisms and Interpretations

o Suppose G is a group of permutations of a set Q.

o Let H be a subgroup of G.
o We say that H is closed in G if the following holds:

If g€ G and, for every tuple a of elements of Q, there is h in H, such
that g(3) = h(3), then g€ H.

o We say that the group G is closed if it is closed in the symmetric
group Sym(Q).
: If G is closed and H is closed in G, then H is closed.
Let 0 € Sym(Q), a€ Q" and he H, such that h(a) = a(a).
Since G is closed and he G, 0 € G.
Since H is closed in G and he H, g e H.
Thus, H is closed.
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Automorphisms and Interpretations

Theorem

Let Q be a set. Let G be a subgroup of Sym(Q) and H a subgroup of G.
Then the following are equivalent:

H is closed in G.
There is a structure A with dom(A) =Q, such that H= G nAut(A).

In particular a subgroup H of Sym(Q) is of form Aut(B) for some structure
B with domain Q if and only if H is closed.

(a)=(b) For each n<w and each orbit A of H on Q", choose an n-ary
relation symbol Ry. Take L to be the signature consisting of all these
relation symbols. Make Q into an L-structure A by putting RX‘ =A.
o Every permutation in H takes Ra to Ra. So H< G nAut(A).
o Let g€ G be an automorphism of A. Let a be in Q". Then 3 is in some
orbit A of H. Thus, since A = R’S‘, g(3) must be in the same orbit.
Hence, g(a) = h(a), for some h in H. Since H is closed in G, g is in H.
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Automorphisms and Interpretations

(b)=(a) Assuming (b), we show that H is closed in G.

Let g be an element of G, such that for each finite subset W of Q,
there is he H, with g |lw=hlw.

Let ¢(x) be an atomic formula of the signature of A, and a a tuple of
elements of A.

Choose W above so that it contains a.
Then we have
AE=¢(E@) iff AE¢(h(3)) (heAut(A))
iff AE¢(g(a)). (glw=hlw)

Thus, g is an automorphism of A.

© When H is closed, the structure A constructed in the proof of (a)=(b)
is called the canonical structure for H.

o By the proof, A can be chosen to be an L-structure with || < |Q|+w.
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Automorphisms and Interpretations

©

The word “closed” suggests a topology.

A subset S of Sym(Q) is called basic open if there are tuples 3 and b
in Q, such that

©

S={geSym(Q):g(3) = b}.
Write this set as S(3, b).
In particular Sym(Q)3) is a basic open set.
An open subset of Sym(Q) is a union of basic open subsets.

If @ =dom(A), we define a (basic) open subset of Aut(A) to be the
intersection of Aut(A) with some (basic) open subset of Sym(Q).

¢ © ¢ ¢
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Automorphisms and Interpretations

Lemma

Let A be a structure and write G for Aut(A).

The definitions above define a topology on G; it is the topology
induced by that on Sym(Q). Under this topology, G is a topological
group, i.e., multiplication and inverse in G are continuous operations.
A subgroup of G is open if and only if it contains the pointwise
stabilizer of some finite set of elements of A.

A subset F of G is closed under this topology if and only if it is closed
in the preceding sense (with F for H).

A subgroup H of G is dense in G if and only if H and G have the
same orbits on (domA)", for each positive integer n.

A permutation g takes a; to b1 and 3, to by if and only if it takes
ai1a» to byby. So the intersection of two basic open sets is again basic
open. The first sentence of (a) follows at once by general topology.
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Automorphisms and Interpretations

For the second sentence:
o Note g € S(3,b) if and only if g=1 € S(b,3). This proves the continuity
of inverse. _ _
o Suppose ghe 5(a,b). Write € for h(a). Then g€ S(c,b), he S(a,c),
and 5(¢,b)-5(a,c) =5(a,b). So multiplication is continuous.
For each tuple 3 the pointwise stabilizer Gz is G S(3,3). This is
open. A subgroup of G containing Gz is a union of cosets of G(3).
Each of those is basic open. Hence the subgroup is open.

In the other direction, suppose H is an open subgroup containing a
non-empty basic open set Gn S(a,b).
Every element of Gz can be written as gh with

geGnS(ba)cH and heGnS(a,b)cH.

Hence H contains Gz).

George Voutsadakis (LSSU) Model Theory



Automorphisms and Interpretations

Suppose F < G is topologically closed. Let g€ G, such that, for all 3,
g(3) = (@), for some f € F. Thus, for every basic open S(3,b), such
that g€ S(3,b), S(a,b)nF #@. Since F is closed, g€ F. Thus, F is
closed in G.

Suppose, conversely, that F is closed in G. Let g€ G, such that, for
every basic open S(3,b), with g€ S(3,b), S(3,b)nF #®. Thus, for
all g€ G and all 3, g(3) = b implies g(3) = b= f(3), for some f € F.
Since F is closed in G, g€ F. Hence, F is topologically closed in G.
H is dense in G iff, for all g€ G, every basic open set containing g
meets H iff, for all g€ G and all 3,b, g € S(3,b) implies S(3,b)NH # @
iff, for all g€ G and all 3,b, g(3) = b implies there exists he H, such

that h(3) = b iff, for all n, H and G have the same orbits on (domA)".
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Automorphisms and Interpretations

o Starting from a structure A, we get by successive abstractions:
o The permutation group Aut(A);
o The topological group Aut(A);
o The abstract group Aut(A).

o At each step some information is discarded.

@ How much of this information can be recovered?
o In some cases, very little, as, e.g., was the case with the ordinals.
o In general, the larger the automorphism group of a structure, the better
the chances of reconstructing the structure from the automorphism

group.
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Automorphisms and Interpretations

Let G be a closed group of permutations of w and H a closed subgroup of
G. Then the following are equivalent:

H is open in G.
(G:H)=w.
(G:H)<2v.

(a)=(b) Suppose (a) holds. Then there is some tuple @ of elements of
, such that the stabilizer Gz of a lies in H. Suppose now that g,j
are two elements of G, such that g(3) =(3). Then j7'ge Gz < H.
So the cosets gH, jH are equal. Since there are only countably many
possibilities for g(@), the index (G : H) must be at most countable.
(b)=(c) is trivial.

(c)=>(a) We suppose that H is not open in G.

We construct continuum many left cosets of H in G.
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Automorphisms and Interpretations

o We define by induction sequences (3;: i < w), (b;:i<w) of tuples of
elements of w and a sequence (gj: i <w) of elements of G, such that
the following hold for all ;.

bo = O): b,+1 is a concatenation of all the sequences
(ko---ki)(a0™---"aj), where each k; is in {1,g0,...,8i};

gi(bi) =bj;

There is no he H, such that h(3;) = gi(3;);

i is an item in a;.
When b; has been chosen, we have, by assumption, that G Q H.
So there is some gj € G which fixes b; (giving 2), and is not in H.

Since H is closed in G, there is a tuple a;, such that h(a;) # gi(a;), for
all hin H. This ensures 3.

Adding i to a; if necessary, we obtain 4.
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Automorphisms and Interpretations

8i» ifieS
1, ifigs "’
Let fI.S:gis---g(f. For each j> i, we have

o For any subset S of w\{0}, define gl.s :{

_\12 _ _
f2(a)=8" 8.8 8 (3) = & & (3i) = ().

So by 4, we can define a map gs : w — w by setting, for each i < w,
gs(i)=F£(i), for all j= i,

gs is injective: The maps fl.S are automorphisms.
gs is surjective: Consider any i € w. Let j = (fl.s)‘l(i).
> Suppose j<i. Then gs(j) = f5(f5)—1(')—i
o Suppose j>i. Then gs(j) = fs(fs) 1( )=g? - -gﬁrl(i):i.
So gs is a permutation of w. Note that the fl.s are in the closed group
G. Moreover, for each tuple 3 in w, g5 agrees on 3 with some fl.s.
Hence, gs is in G. There are 2% distinct subsets S of w\{0}.
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Automorphisms and Interpretations

o It remains only to show that the corresponding permutations gs lie in
different right cosets of H.

Suppose S # T. Let i >0 be least, say, in S but not in T.
By 3, there is no element of H which agrees with g; on a;.
Set f=£5, "2 £7. Consider F~1(3;).
Choose some j = i, such that all the items in f~1(3;) are <.
We have, for all hin H,
—1 /= choice j 1 /= i€S =
gs(F(@) "= £2(F1@) e’ 858
= g@)#h@)=hg gl
hfT£71(3;) = (hgT)(F (@)

)
)

So gs & Hgt, which finishes the proof.
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Automorphisms and Interpretations
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Let A be a countable L*-structure.

Suppose L~ <= L* and let B be the L™ -reduct A|;- of A.

Then H = Aut(A) is a subgroup of G =Aut(B).

Let g be any element of G, and consider the structure gA.

gA is like A except that for each symbol S of L*, S84 = g(5%4).

o The domain of gA is dom(A);
o g(5%)=SA, for each symbol S in L~.

So the reduct (gA) |- is exactly B again.

o Suppose now that k is another element of G.
o gAis equal to kA when g(SA) = k(S%), for each symbol S,

i.e., when k‘lg is an automorphism of A,

i.e., when the cosets gH and kH in G are equal.

This shows that the index of Aut(A) in Aut(B) is equal to the number
of different ways in which the symbols of L*\L™ can be interpreted in
B so as to give a structure isomorphic to A.
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Automorphisms and Interpretations

Theorem (Kueker-Reyes Theorem)

Let L~ and L* be signatures with L~ < L*. Let A be a countable
L*-structure and let B be the reduct A|;-. Put G =Aut(B). Then the
following are equivalent:

There is a tuple a of elements of A, such that G(z) < Aut(A).

There are at most countably many distinct expansions of B which are

isomorphic to A.

The number of distinct expansions of B which are isomorphic to A is

less than 2%.

There is a tuple 3 of elements of A such that for each atomic formula
¢(x0,...,xn-1) of L™, there is a formula y(x,...,xp-1,y) of Lo such
that A E Vx(¢(X) < w(x,3)).

o Our translation gives the equivalence of (a), (b) and (c) at once.
It remains to show that (a) is equivalent to (d).
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Automorphisms and Interpretations

o Assume, first (d) holds. Let g€ Gz). We have, for every atomic

formula ¢(xo,...,xp-1) of L™ and every bin A,

AE ¢(b)

Therefore, g € Aut(A).

ifft Al=w(b,3) (hypothesis)
iff A=v(g(b).g(a) (g€G)
i AFw(g()3) (g€ G@m)
iff A= ¢(g(b)). (hypothesis)

George Voutsadakis (LSSU) Model Theory



Automorphisms and Interpretations

o For the converse, suppose G(z) < Aut(A).
Let ¢(xo,...,Xn—1) be an atomic formula of L*.
Without loss we can suppose that ¢ is unnested.
For simplicity let us assume too that ¢ is R(xp,...,Xp-1), where R is
some n-ary relation symbol.
For each n-tuple € in ¢(A"), let o(g3¢)(a,¢) be the Scott sentence of
the structure (B,3,¢). Note that Veeg(an)0(B372)(a,X) isin Ly, ,
This is the sentence that plays the role of .
o Suppose Al= ¢(d). Then (B,3,d) = U(B,E,E)(E’E)' Since d € p(A"),
AE Vzep(an) 0(83,)(3C). B
o Assume Te p(A"), i.e., Al= (%), and let d such that A= O'C( ,d).
Then (B,3,¢) =(B,3,d). So by (a), (B,3,¢,R?) =(B,3,d,R*).
Hence, A= ¢(d).
We conclude A= Vx(¢(X) < Vzep(an) 0e(3,%)).
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Automorphisms and Interpretations

Corollary

Let A be a countable structure. Then the following are equivalent:
|Aut(A)| < w.
|Aut(A)| <2“.
There is a tuple 2 in A such that (A,3) is rigid.

o In the theorem, take
L==LL"=(L7%),

where ¢ contains one constant for each element of A.
Then, consider

o The L*-structure (A,3a);

o The L™-reduct (A3)[-=A.
Then, statements (a),(b) and (c) of the theorem correspond,
respectively, to statements (c), (a) and (b) of the corollary.
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Automorphisms and Interpretations Relativization

Subsection 2

Relativization
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Automorphisms and Interpretations

©

Consider two signatures L and L’ with Lc L'
Let C be an L’-structure and B a substructure of the reduct C|;.
Then we can make the pair C, B into a single structure.

o Take a new unary relation symbol P.
o Write L* for L' with P added.
o Expand C to an L*-structure A by setting PA = dom(B).

o We can recover C and B from A by

C = A |L’r
B the substructure of A|; whose domain is PA.

¢ ©

We call B a relativized reduct of A.
The meaning is that to get B from A we have to:
o "Relativize” the domain to a definable subset of dom(A);
o Remove some symbols.
o Forgetting about C, we consider signatures L and L*, with L= L™,
and a unary relation symbol P in L*\L.

George Voutsadakis (LSSU) Model Theory
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Automorphisms and Interpretations

o Let A be an L*-structure.

o By a previous lemma, the following are necessary and sufficient
conditions for PA to be the domain of a substructure of A|;.

o For every constant ¢ of L, A e pA
o For every n>0, all n-ary F in L and all € (P#)", FA(3) € PA.

o If the conditions are satisfied, the substructure is uniquely determined.
o We write it Ap, and call it the P-part of A.

o From the same lemma one can write these necessary and sufficient
conditions as a set of first-order sentences that A must satisfy.

o We call them the admissibility conditions for relativization to P.

o Ap depends on the language L as well as A and P.
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Automorphisms and Interpretations

Theorem (Relativization Theorem)

Let L and L* be signatures such that L<L*, and P a unary relation
symbol in L¥\L. Then for every formula ¢(x) of Ly, there is a formula
P (x) of LY, such that the following holds:

oow'!
If Ais an L*-structure such that Ap is defined, and 3 is a sequence of
elements from Ap, then Ap = ¢(3) if and only if A= ¢P(3).

o We define ¢ by induction on the complexity of ¢:
If ¢ is atomic, ¢ = ¢;
(Nietwi)? = Nier(wF) and (Vierwi)? = Vie (w?):;
()" is ~(¢");
(Vyy(%.y)" =Vy(Py = vP (%)) Qyw(xy)” =3y(Py AvF(x.y)).
Then the condition follows by induction on the complexity of ¢.
o The formula ¢ in this theorem is called the relativization of ¢ to P.

o Note that, if ¢ is first-order, then so is ¢F.



Automorphisms and Interpretations

Corollary

Let L and L* be signatures with L< L* and P a unary relation symbol in
L*\L. If A and B are L*-structures such that A< B and Ap is defined,
then Bp is defined and Ap < Bp.

o First, we show that Bp is defined.
o For all constants c in L, cB=c*e Ap < Bp.
o Let n>0, F an n-ary function symbol of L and b in PE.
Since Ap is defined, A= (VX)(A; P(x;) — P(F(x))).
Since A B, B = (VX)(AL; P(x;) = P(F(X))).
By hypothesis, B |= P(x;)[b;], for all i< n.
So B P(F(X))[b], i.e., FE(b)e PE.
Now we show that Ap < Bp. Using the notation of the Relativization
Theorem, for every ¢ in L and all 3 in Ap,

ApE¢a) iff AE=¢P@) iff BE¢PE) iff BpE¢@).
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Automorphisms and Interpretations

o Suppose G is a group of nx n matrices over a field F.
We can make G and F into a single structure A as follows.
The signature of A has:
o Two unary relation symbols group and field;
o Two ternary relation symbols add and mult;
o n? binary relation symbols coeffjj, 1<i,j<n.
The sets group” and field” consist of the elements of G and F, resp.
The relations add” and mult* express addition and multiplication in F.
For each matrix g € G, the jj-th entry in g is the unique element f,
such that coeff;;(g,f) holds.
o Note that multiplication in G can be defined in terms of the field
operations, using the symbols coeff;;.
o Note, also, there are no function or constant symbols.
o So Bp and Bg are automatically defined for any structure B of the
same signature as A.
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Automorphisms and Interpretations

o Sometimes a structure B is picked out inside a structure A, not by a
unary relation symbol P, but by a formula 6(x).

o When 0 is in the first-order language of A, then again we call B a
relativized reduct of A.

o The case in which 0(x) is P(x), becomes a special case.

o If 6 also contains parameters from A, we call B a relativized reduct
with parameters.

o One can adapt the Relativization Theorem straightforwardly by
putting 0 in place of P everywhere.
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Automorphisms and Interpretations

o Suppose A is a transitive model of Zermelo-Fraenkel set theory.
Let 6(x) be the formula “x € w".
The ordering < on w coincides with €.

We can write set-theoretic formulas that define + and -.

Note that w satisfies a rather strong form of the Peano axioms:
o 0 is not of the form x+1;
If x,yew and x+1=y+1, then x=y;
o For every formula ¢(x) of the first-order language of A, possibly with
parameters from A, if ¢(0) and Vx(x € w A p(x) — ¢(x +1)) both hold
in A, then Vx(x € w — ¢(x)) holds in A.
o The latter is the induction axiom schema for subsets of @ which are
first-order definable (with parameters) in A.

o Of course this includes the subsets of w which are first-order definable
in the structure (w, <) itself, by the relativization theorem.
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Automorphisms and Interpretations

o Let A be the following structure:

o The domain of A is the set Q of rational numbers;

o The relations of A are all those which are @-definable from the usual
ordering < of the rationals.

We find the relativized reducts of A (without parameters).

o First note that Aut(A) is exactly Aut(Q, <) since A is a definitional
expansion of (@, <).

o Next, Aut(A) is transitive on Q. It follows that any subset of Q which
is definable without parameters is either empty or the whole of Q.
So we can forget the relativization.

o Thirdly, if B is any reduct of A, then Aut(A) < Aut(B) < Sym(Q), and
Aut(B) is closed in Sym(Q) by a previous theorem.
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Automorphisms and Interpretations

o And finally, Aut(Q, <) is oligomorphic and its orbits on n-tuples are all
@-definable. So every orbit of Aut(B) on n-tuples is a union of finitely
many orbits of Aut(Q,<). Hence it is defined by some relation of A.

So, up to definitional equivalence, the relativized reducts of A
correspond exactly to the closed groups lying between Aut(A) and
Sym(Q).

It can be shown that apart from Aut(A) and Sym(Q), there are just
three such groups.

o The first is the group of all permutations of A which either preserve the
order or reverse it.

o The second is the group of all permutations which preserve the cyclic
relation “x<y <z or y<z<xor z<x<y'"; This corresponds to taking
an initial segment of @ and moving it to the end.

o The third is the group generated by these other two.

It consists of those permutations which preserve the relation “exactly
one of x,y lies between z and w".
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Automorphisms and Interpretations

o An ordered group is a group G which carries a linear ordering < such
that if g, h and k are any elements of G, then

g<h implies k-g<k-h and g-k<h-k.

o A group is orderable if a linear ordering can be added so as to make
it into an ordered group.
o Clearly an orderable group cannot have elements # 1 of finite order.
Suppose, to the contrary that g" =1.
o Suppose 1<g. Then g’ <g™*1, forall i=0,...,n. Thus,
l<g<g?<---<g"=1, a contradiction.
o If g<1, we argue similarly.
o This is not a sufficient condition for orderability (unless the group
happens to be abelian).
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Automorphisms and Interpretations

o Let L be a first-order language.

o A pseudo-elementary class (for short, a PC class) of L-structures is
a class of structures of the form {A|, : A= ¢} for some sentence ¢ in a
first-order language L* 2 L.

o A PCx-class of L-structures is a class of the form {A|;: A= U}, for
some theory U in a first-order language L* 2 L.

: The class of orderable groups is a PC class.
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Automorphisms and Interpretations

o Let L be the first-order language of linear orderings (with symbol <).
Let U be the theory of ordered abelian groups.
Then the class K={A|;: A= U} is the class of all linear orderings
which are orderings of abelian groups.

This is a PC class, since U can be written as a finite theory and,
hence, as a single sentence.
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Automorphisms and Interpretations

o One can generalize these notions, using relativized reducts Ap.

o We define a PC), class of L-structures to be a class of the form
{Ap: A= U and Ap is defined},

for some theory U in a language L* 2 LU{P}.
o By the admissibility conditions, every PC), class can be written as
{Ap: A= U}, for some theory U’ in L*.

: A natural example of a PC, class is the class of
multiplicative groups of fields.

o L has only the symbol for multiplication.
o The unary symbol P picks out the non-zero elements.
o U is the theory of fields.

One can show that this class is not first-order axiomatizable.
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Automorphisms and Interpretations

o PC) appears to be a generalization of PCj.

o However, the two notions are exactly the same.

The PC), classes are exactly the PCx classes. More precisely, let K be a
class of L-structures.

If K isa PC) class {Ap: A= U and Ap is defined} for some theory U in a
first-order language L, then K is also a PC, class {A|;: A= U*} for some

theory U* in a first-order language L* with |L*|<|L*].

If K is a PC’ class and all structures in K are infinite, then K is a PC class.
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Subsection 3

Interpreting One Structure in Another
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Automorphisms and Interpretations

o Let K and L be signatures.

o Let A be a K-structure and B an L-structure.

o For a positive integer n, an (n-dimensional) interpretation T of B in

A is defined to consist of three items:

A formula dr(xg,...,xp—-1) of signature K;
For each unnested atomic formula ¢(yo,...,¥m-1) of L, a formula
¢r(xo,.-.,Xm-1) of signature K in which the X; are disjoint n-tuples of
distinct variables;
A surjective map fr: 0r(A") —dom(B), such that for all unnested
atomic formulas ¢ of L and all 3; € ar(A"),

Bl ¢(f(30),-.-, fr(@m-1)) iff Al ¢r(3o,...,am-1)-

o Or and ¢r (for all unnested atomic ¢) are the defining formulas of T.
o Or is the domain formula of T;
o The map fr is the coordinate map of T.

o It assigns to each element fr(a) of B the “coordinates” 3 in A;

o An element may have several different tuples of coordinates.
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Automorphisms and Interpretations

o Unless anything is said to the contrary, we assume that the defining
formulas of T are all first-order.

o For example, we say that B is interpretable in A if there is an
interpretation of B in A with all its defining formulas first-order.

o We say that B is interpretable in A with parameters if there is a
sequence a of elements of A, such that B is interpretable in (A,3).

o We shall write = for ¢r when ¢ is the formula yo = y;.

o Wherever possible we shall abbreviate (a,...,am-1) and
(f(a0),-.-,f(am-1)) to @ and f(a), respectively.
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Automorphisms and Interpretations

o Suppose B is the relativized reduct Ap.
Then there is a one-dimensional interpretation T’ of B in A.
The defining formulas of T are as follows.

s 0r(x):=P(x);
o ¢r:=¢(x), for each unnested atomic formula ¢(y).

The coordinate map f: PA — dom(A) is simply the inclusion map.

We call the interpretation T a relativized reduction.
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Automorphisms and Interpretations

o The familiar interpretation of the rationals in the integers is a
two-dimensional interpretation T.
The domain formula is

Or(x0,x1) :=x1 #0.

The other defining formulas are:
o =r(X00,X01;X10,X11) := X00 * X11 = X01 * X10;
o plusr(x00, X01;X10, X11; X20,X21) := X21* (X00 * X11 +X01 *X10) = X01 *X11°X20;
o timesr (X0, X01;X10, X11; X20,X21) := X00 * X10 * X21 = X01 * X11 * X20-
The formulas yr for the remaining unnested atomic formulas v
express addition and multiplication of rationals in terms of addition
and multiplication of integers, just as in the algebra texts.
The coordinate map is

fo((m, n)) = % n#0.
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Automorphisms and Interpretations

o Let A be a field.
Let p(X) an irreducible polynomial of degree n over A.
Let ¢ be a root of p(X) in some field extending A.
Given an n-tuple 3= (ay,...,a,-1) of elements of A, we write

qg(X)::X”+an_1X”_1+~~~+31X+ao.

Then there is an n-dimensional interpretation I’ of A[¢] in A.

o 0r(A") is the whole of A”;

o The remaining defining formulas are:
o =r(3,b) says that p(X) divides (g5(X) - q5(X));
2 (yo+y1=y2)r and (yo-y1 = y2)r follow the usual definitions of

addition and multiplication of polynomials.
All can be written as positive primitive formulas.
° 1r(3) = ga(¢).

Or is quantifier-free and ¢r is p.p. for every unnested atomic ¢.
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Automorphisms and Interpretations

o Let T be an interpretation of an L-structure B in a K-structure A.

o There are certain sentences of signature K which must be true in A
just because T is an interpretation, regardless of what A and B are:

=r defines an equivalence relation on dr(A");
For each unnested atomic formula ¢ of L, if A= ¢r(3o,...,an-1) with
aQ,...,dp-1 in Op(A"), then also A= (pr(Eo,...,E,,_l) for each element
b; of or(A™) which is =r-equivalent to 3;;
If ¢(yo) is a formula of L of form ¢ = yp, then there is 3 in dr(A"), such
that for all b in or(A"), A (,br(E) if and only if bis =r-equivalent to a;
A clause like (iii) for each function symbol.

o These sentences are called the admissibility conditions of T.

o They generalize the admissibility conditions for a relativized reduct.

o They depend only on on the defining formulas, but not on the
coordinate map, of T.
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Automorphisms and Interpretations

Theorem (Reduction Theorem)

Let A be a K-structure, B an L-structure and T' an n-dimensional
interpretation of B in A. For every formula ¢(y) of the language Loow,
there is a formula ¢r(X) of the language Koo, such that for all 3 from
or(A"),

BE¢(fr(a)) iff AEer(a).

o By a previous corollary, every formula of L, is equivalent to a
formula of L, in which all atomic subformulas are unnested.
We prove the theorem by induction on the complexity of formulas.
o Atomic formulas are handled by the definition of interpretation.
o (7¢)r =(¢r);
o (Nierdi)r = Nier(di)r and (Vies di)r = Vies (¢i)r;
o (Vyd)r =Vxg...xn-1(0r(x0,-.-,Xn-1) = ér);
o (Ayd)r=3xg..-xn-1(0r(x0,---,Xn-1) APr).
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Automorphisms and Interpretations

o The map ¢ — ¢r of the Reduction Theorem depends only on the
defining formulas of T, and not at all on the coordinate map fr.

o The defining formulas of T form an interpretation of L in K.

o The map ¢ — ¢r of the Reduction Theorem is the reduction map of
this interpretation.
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Automorphisms and Interpretations

Theorem

Let T be an n-dimensional interpretation of a signature L in a signature K,
and let Admis(T") be the set of admissibility conditions of I'. For every
K-structure A which is a model of Admis(T'), there are an L-structure B
and a map f:0r(A") — dom(B), such that:

I' with f forms an interpretation of B in A;

If g and C are such that T and g form an interpretation of C in A,
then there is an isomorphism i: B — C, such that i(f(3)) = g(a), for
all aeor(A").

o Let A be a model of T. Then we build an L-structure B as follows.
Define a relation ~ on or(A") by 2~3 iff AE=r(3,3).
By (i) of the admissibility conditions, ~ is an equivalence relation.
Write @~ for the equivalence class of a.
dom(B) is the set of all equivalence classes 3~ with 3 in dr(A").
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Automorphisms and Interpretations

o We now defined the relations, constants and functions of B.
o For every relation symbol R of L, we define the relation RE by

(35,35, 1) €RP iff Al or(3o,...,am-1),

where ¢(y0,---,Ym-1) is R(y0,---,Ym-1)-

By (ii) of the admissibility conditions, this is a sound definition.
o The definitions of c& and FB are defined similarly.

We rely on (iii) and (iv) of the admissibility conditions.

This defines the L-structure B.
We define f:9r(A") —dom(B) by f(3a)=3".
Then f is surjective. Moreover, B has been defined so as to ensure

BE¢(f(30),....f(@m-1)) iff AE=¢r(30,..»am-1)-

Hence, T and f are an interpretation of B in A. This proves (a).
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Automorphisms and Interpretations

o To prove (b), suppose I and g are an interpretation of C in A.
For each tuple ae dr(A"), define i(f(3)) to be ga.

: This is a sound definition of an isomorphism i/: B — C.
Suppose f(a)=f(3'). Then AE=r(3,@). Since g is an interpretation,
g(3) =g(3). Thus, the definition of i is sound.

A similar argument in the other direction shows that / is injective.
i is surjective since g is surjective, being an interpretation.
Clause 3 for f and g show that / is an embedding.
This proves the claim, and with it the theorem.
o We write TA for the structure B of the theorem.

o The Reduction Theorem applies to TA as follows:

For all formulas ¢(y) of L, all K-structures A satisfying the admissibility
conditions of T, and all tuples a€dr(A"), TAE ¢(a") iff A= ¢r(a).
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Automorphisms and Interpretations

o Let T be an n-dimensional interpretation of a signature L in a
signature K.

Let A and A’ be models of the admissibility conditions of T.
Let e: A— A’ be an elementary embedding.

For every tuple aedr(A”), e(a) is in or(A").

We have

©

©

©

€ ar(An) iff A |= OF(E)
iff A’ |=0r(e(a))
iff  e(3) e dr(A™M).

Similarly, if €€ dr(A") satisfies A= =r(3,¢), then A’ |==r(e(3), e(c)).
Hence, there is a well-defined map T'e : dom(T'A) — dom(T'A’), given by

(Te)(@™) = (e(a))™

©

©
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Automorphisms and Interpretations

o We defined I'e: dom(T'A) — dom(T'A’), given by
(Te)(@™) = (e(a))™

o It can be shown that:
o I'la=1ra;
o Ifeg:A— A and ey : A’ — A" are elementary embeddings, then

I'(eze1) = (F'e2)(Tey).
For the first, we have
T1a(@7) = (1a(3))" =3" = 1ra(@").
And for the second

(Te)((Te)(@)) = (Tex)((e(3))7)
(e2(e1(2a)))”
[(exe1)(@”).
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Automorphisms and Interpretations

: Te is an elementary embedding of T A into TA'.
Let 3 be a sequence of tuples from dr(A") and ¢ a formula of L.
Then we have
TAE¢(E) iff  AE¢r(a) (Reduction Theorem)

implies A’ |=¢r(ea) (e elementary)
iff  TA |=¢((Te)(@a”)). (Reduction Theorem)

o The definition of I'e makes sense whenever:
o A,A" are models of the admissibility conditions of T;
o e:A— A'is any homomorphism which preserves dr and =r.
o If e also preserves all the formulas ¢r for unnested atomic formulas ¢
of L, then Te is a homomorphism from I'A to TA’.
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Automorphisms and Interpretations

Let T be an interpretation of a signature L in a signature K, with
admissibility conditions Admis(T).

I induces a functor, written Func(T'), from the category of models of
Admis(T') and elementary embeddings, to the category of L-structures
and elementary embeddings.

If the formulas dr and ¢r (for unnested atomic ¢) are 37 formulas,
then we can extend the functor Func(T) in (a), replacing “elementary
embeddings’ by “homomorphisms”.

o We call the functor Func(T') in either the (a) or the (b) version, the
associated functor of the interpretation T.

o Usually we shall write it just T since there is little danger of confusing
the interpretation with the functor.
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Automorphisms and Interpretations

o Suppose T is the associated functor of an interpretation of L in K.

o Then whenever T'A is defined, we have a group homomorphism
a— T'a from Aut(A) to Aut(T'A).

Theorem

Let T be an interpretation of L in K, and let A be an L-structure such that
T'A is defined. Then the induced homomorphism h: Aut(A) — Aut(B) is

continuous.

o It suffices to show that if F is a basic open subgroup of Aut(B), then
there is an open subgroup E of Aut(A) such that h(E)< F.
Let F be Aut(B)(—b), for some tuple b of elements of B.
Let X be a finite set of elements of A such that each element in b is
of form f-(@), for some tuple a of elements of X.
Then by the definition of h, h(Aut(A)x)) gAut(B)(E).
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