Introduction to Model Theory

George Voutsadakis¹

¹Mathematics and Computer Science Lake Superior State University

LSSU Math 500

George Voutsadakis (LSSU)

Model Theory

January 2024 🛛 🕹 / 76

The First-Order Case: Compactness

- Compactness for First-Order Logic
- Types
- Elementary Amalgamation
- Amalgamation and Preservation
- Expanding the Language

Subsection 1

Compactness for First-Order Logic

The Compactness Theorem

Theorem (Compactness Theorem for First-Order Logic)

Let T be a first-order theory. If every finite subset of T has a model, then T has a model.

- Let *L* be a first-order language and *T* a theory in *L*. Assume first that every finite subset of *T* has a non-empty model. We employ the following strategy:
 - We show that T can be extended to a Hintikka set T⁺ in a larger first-order language L⁺.
 - Then, by a previous theorem, some L^+ -structure A is a model of T^+ .
 - So the reduct $A^+|_L$ will be a model of T.

Write κ for the cardinality of L.

Let c_i , $i < \kappa$, be distinct constants not in L.

We call these constants witnesses.

Let L^+ be the first-order language got by adding the c_i 's to L.

Then L^+ has κ sentences, say ϕ_i , $i < \kappa$.

The Compactness Theorem (Cont'd)

- We shall define an increasing chain $(T_i : i \le \kappa)$ of theories in L^+ , so that the following hold, where all models are L^+ -structures.
 - 1. For each $i \leq \kappa$, every finite subset of T_i has a model.
 - For each i < κ, the number of witnesses ck which are used in Ti but not in Uj<i Tj is finite.

The definition is by induction on *i*.

We put $T_0 = T$.

At limit ordinals we take $T_{\delta} = \bigcup_{i < \delta} T_i$.

Clearly these definitions respect Conditions 1 and 2.

Note that Condition 1 is true at T_0 because of our assumption that every finite subset of T has a non-empty model.

The Compactness Theorem (Successor Ordinals)

• For successor ordinals i + 1 we, first, define

$$\mathcal{T}'_{i+1} = \left\{ \begin{array}{ll} \mathcal{T}_i \cup \{\phi_i\}, & \text{if every finite subset of} \\ & \text{this set has a model} \\ \mathcal{T}_i, & \text{otherwise} \end{array} \right.$$

We, then, define T_{i+1} based on T'_{i+1} .

- Suppose φ_i ∈ T'_{i+1} and φ_i has the form ∃xψ, for some formula ψ(x). Then, by Condition 2 there is a witness which is not used in T'_{i+1}. We choose the earliest such witness c_j. We define T_{i+1} = T'_{i+1} ∪ {ψ(c_i)}.
- Suppose $\phi_i \notin T'_{i+1}$ or ϕ_i is not of the form $\exists x \psi$. We define $T_{i+1} = T'_{i+1}$.

These definitions clearly ensure Condition 2.

We must show that Condition 1 remains true when $\phi \in T'_{i+1} \cup \{\psi(c_j)\}$.

The Compactness Theorem (Condition 1)

• Let U be a finite subset of T_{i+1} .

Let A be any L⁺-structure which is a model of $U \cup \{\exists x \psi\}$.

Then there is an element a of A such that $A \models \psi(a)$.

Take such an element *a*, and let *B* be the L^+ -structure which is exactly like *A* except that $c_i^B = a$.

Since the witness c_j never occurs in U, B is still a model of U. Since c_j never occurs in $\psi(x)$, $B \models \psi(a)$. So $B \models \psi(c_j)$.

This shows that Condition 1 still holds.

The Compactness Theorem (Conclusion)

Claim: T_{κ} is a Hintikka set for L^+ .

By a previous theorem, it suffices to prove three things:

-) Every finite subset of T_{κ} has a model. This holds by Condition 1.
- (b) For every sentence ϕ of L^+ , either ϕ or $\neg \phi$ is in T_{κ} .

To prove this, suppose ϕ is ϕ_i and $\neg \phi$ is ϕ_j . If $\phi \notin T_{\kappa}$, then $\phi_i \notin T_{i+1}$. Thus, there is a finite subset U of T_i , such that $U \cup \{\phi\}$ has no model. By the same argument, if $\neg \phi \notin T_{\kappa}$, then there is a finite subset U' of T_j , such that $U' \cup \{\neg \phi\}$ has no model. Now $U \cup U'$ is a finite subset of T_{κ} . So it has a model A. Either $A \models \phi$ or $A \models \neg \phi$. We have a contradiction either way. Thus at least one of $\phi, \neg \phi$ is in T_{κ} .

(c) For every sentence $\exists x \psi(x)$ in T_{κ} , there is a closed term t of L^+ , such

that $\psi(t) \in T_{\kappa}$.

For this, suppose $\exists x \psi(x)$ is ϕ_i . Since $\phi_i \in T_{\kappa}$, $\phi_i \in T'_{i+1}$. So T_{i+1} contains a sentence $\psi(c_j)$, where c_j is a witness. Then $\psi(c_j)$ is in T_{κ} . Thus T_{κ} is a Hintikka set T^+ for L^+ and $T \subseteq T^+$. So T has a model. In the exceptional case when some finite subset of T has only the empty model, the empty *L*-structure must be a model of all T.

Compactness for First-Order Theories

Corollary

If T is a first-order theory, ψ a first-order sentence and $T \vdash \psi$, then $U \vdash \psi$, for some finite subset U of T.

Suppose to the contrary that U ⊭ ψ, for every finite subset U of T.
Thus, for every finite subset U of T, there exists a model of U which does not satisfy ψ.

Equivalently, every finite subset of $T \cup \{\neg \psi\}$ has a model.

So, by the Compactness Theorem, $T \cup \{\neg \psi\}$ has a model.

Therefore, $T \nvDash \psi$.

Recursive Enumeration

• A set is **recursively enumerable** (**r.e.** for short) if and only if it can be listed by a Turing machine.

Corollary

Suppose *L* is a recursive first-order language, and *T* is a recursively enumerable theory in *L*. Then the set of consequences of *T* in *L* is also recursively enumerable.

 Using one's favorite proof calculus, ne can recursively enumerate all the consequences in L of a finite set of sentences.
Since T is r. e., we can recursively enumerate its finite subsets.
The preceding corollary says that every consequence of T is a consequence of one of these finite subsets.

Upward Löwenheim-Skolem Theorem

- First-order logic cannot distinguish between infinite cardinals.
- So every infinite structure has arbitrarily large elementary extensions.

Corollary (Upward Löwenheim-Skolem Theorem)

Let *L* be a first-order language of cardinality $\leq \lambda$ and *A* an infinite *L*-structure of cardinality $\leq \lambda$. Then *A* has an elementary extension of cardinality λ .

• Name the elements of A.

Let eldiag(A) be the elementary diagram of A.

Let c_i , $i < \lambda$, be λ new constants.

Define

$$T = \text{eldiag}(A) \cup \{c_i \neq c_j : i < j < \lambda\}.$$

Upward Löwenheim-Skolem Theorem (Cont'd)

• Claim: Every finite subset of T has a model.

Suppose U is a finite subset of T. Then for some $n < \omega$, just n of the new constants c_i occur in U. Since A is infinite, we can choose n distinct elements of A. A model of T assigns to each c_i one of these elements.

- By the Compactness Theorem, T has a model B.
- Since *B* is a model of eldiag(*A*), by the Elementary Diagram Lemma, there is an elementary embedding $e : A \rightarrow B |_L$.

Replacing elements of the image of e by the corresponding elements of A, we make $B|_L$ an elementary extension of A.

Since
$$B \models T$$
, we have $c_i^B \neq c_i^B$, whenever $i < j < \lambda$.

Hence $B|_L$ has at least λ elements.

To bring the cardinality of $B|_L$ down to exactly λ , we invoke the downward Löwenheim-Skolem theorem.

Compactness in Infinitary Languages?

The compactness theorem fails for infinitary languages.
Example: Let c_i, i < ω, be distinct constants.
Consider the theory T consisting of

$$c_0 \neq c_1, c_0 \neq c_2, c_0 \neq c_3, \dots,$$
$$\bigvee_{0 < i < \omega} c_0 = c_i.$$

Every proper subset of T has a model. But T itself has no model.

Subsection 2

Types

Complete Types

- Let L be a first-order language and A an L-structure.
- Let X be a set of elements of A and \overline{b} a tuple of elements of A.
- Let \overline{a} be a sequence listing the elements of X.
- The complete type of b over X (with respect to A, in the variables x̄) is the set of all formulas ψ(x̄, ā), such that:
 - $\psi(\overline{x},\overline{y})$ is in L;

•
$$A \models \psi(b, \overline{a}).$$

- More loosely, the complete type of \overline{b} over X is everything we can say about \overline{b} in terms of X.
- The tuple ā may be infinite, but, since each formula ψ(x̄, ȳ) of L has only finitely many free variables, only a finite part of X is mentioned in ψ(x̄, ā).

Notation on Complete Types

- We denote the complete type of \overline{b} over X with respect to A by $\operatorname{tp}_A(\overline{b}/X)$, or $\operatorname{tp}_A(\overline{b}/\overline{a})$, where \overline{a} lists the elements of X.
- The elements of X are called the **parameters** of the complete type.
- Complete types are written *p*, *q*, *r* etc.
- One writes $p(\overline{x})$ if one wants to show that the variables of the type are \overline{x} .
- We write $tp_A(\overline{b})$ for $tp_A(\overline{b}/\phi)$, the type of \overline{b} over the empty set of parameters.
- Note that if B is an elementary extension of A, then

 $\operatorname{tp}_B(\overline{b}/X) = \operatorname{tp}_A(\overline{b}/X).$

- Let $p(\overline{x})$ be a set of formulas of L with parameters from X.
- We say that $p(\overline{x})$ is a complete type over X (with respect to A, in the variables \overline{x}) if it is the complete type of some tuple \overline{b} over X with respect to some elementary extension of A.
- Putting it loosely again, a complete type over X is everything we can say in terms of X about some possible tuple \overline{b} of elements that are in A or, perhaps, in an elementary extension of A.

Types and Realizability

- A **type** over X (with respect to A, in the variables \overline{x}) is a subset of a complete type over X.
- We shall write $\Phi, \Psi, \Phi(\overline{x})$ etc. for types.
- A type is called an *n*-type, $n < \omega$, if it has just *n* free variables.
- We say that a type $\Phi(\overline{x})$ over X is **realized** by a tuple \overline{b} in A if $\Phi \subseteq tp_A(\overline{b}/X)$.
- If Φ is not realized by any tuple in A, we say that A omits Φ .
- We say that a set Φ(x̄) of formulas of L, with parameters in A, is finitely realized in A if for every finite subset Ψ of Φ,

$$A \models \exists \overline{x} \bigwedge \Psi.$$

Theorem

Let L be a first-order language, A an L-structure, X a set of elements of A and $\Phi(x_0, \dots, x_{n-1})$ a set of formulas of *L* with parameters from *X*. Then, writing \overline{x} for (x_0, \ldots, x_{n-1}) ,

- (a) $\Phi(\overline{x})$ is a type over X with respect to A if and only if Φ is finitely realized in A:
- (b) $\Phi(\overline{x})$ is a complete type over X with respect to A if and only if $\Phi(\overline{x})$ is a set of formulas of L with parameters from X, which is maximal with the property that it is finitely realized in A.

In particular, if Φ is finitely realized in A, then it can be extended to a complete type over X with respect to A.

Characterization of Types (Proof)

(a) Suppose Φ is a type over X with respect to A. Then, there are an elementary extension B of A and an n-tuple b in B, such that $B \models \bigwedge \Phi(b)$. Let Ψ be a finite subset of Φ . Then $B \models \bigwedge \Psi(\overline{b})$. Hence, $B \models \exists \overline{x} \land \Psi(\overline{x})$. But $A \preccurlyeq B$ and the sentence is first-order. So $A \models \exists \overline{x} \land \Psi(\overline{x})$. For the converse, we use again elementary diagrams. Suppose Φ is finitely realized in A. Form eldiag(A). Take an *n*-tuple of distinct new constants $\overline{c} = (c_0, \dots, c_{n-1})$. Define T to be the theory

$$T = \operatorname{eldiag}(A) \cup \Phi(\overline{c}).$$

Characterization of Types (Cont'd)

- Claim: Every finite subset of T has a model.
 - Let U be a finite subset of T.
 - Let Ψ be the set of formulas $\psi(\overline{x})$ of Φ , such that $\psi(\overline{c}) \in U$.
 - By assumption $A \models \exists \overline{x} \land \Psi$. Hence, for some \overline{a} in $A, A \models \land \Psi(\overline{a})$.
 - By interpreting the constants \overline{c} as names of the elements \overline{a} , we make A into a model of U. This proves the claim.
 - By the Compactness Theorem, T has a model C.
 - Since $C \models \text{eldiag}(A)$, by the Elementary Diagram Lemma, there exists an elementary embedding $e: A \rightarrow C \mid_L$.
 - By making the usual replacements, we can assume that $A \preccurlyeq C \mid_L$. Let \overline{b} be the tuple \overline{c}^C . Since $C \models T$, $C \models \land \Phi(\overline{b})$.
 - So \overline{b} satisfies $\Phi(\overline{x})$ in some elementary extension of A.
 - We conclude that Φ is a type over X with respect to A.

(b) Suppose Φ is a complete type over X.

Then Φ contains either ϕ or $\neg \phi$, for each formula $\phi(\overline{x})$ of L with parameters from X.

This implies that Φ is a maximal type over X with respect to A.

Suppose, now, that Φ is a maximal type over X with respect to A.

Then for some \overline{b} in some elementary extension B of A, $B \models \land \Phi(\overline{b})$.

So Φ is included in the complete type of \overline{b} over X.

By maximality, it must equal this complete type.

Types of First-Order Theories

- By the Characterization Theorem, if X is the empty set of parameters, then the question whether Φ is a type over X with respect to A depends only on Th(A).
- Types over the empty set with respect to A are also known as the **types of** Th(A).
- More generally, let T be any theory in a first-order language.
- A type of T is a set Φ(x̄) of formulas of L such that T ∪ {∃x ∧ Ψ} is consistent for every finite subset Ψ(x̄) of Φ.
- A complete type of T is a maximal type of T.
- If T happens to be a complete theory, then we can replace " $T \cup \{\exists \overline{x} \land \Psi\}$ is consistent" by the equivalent " $T \vdash \exists \overline{x} \land \Psi$ ".

- Let A be an L-structure.
- Let X be a set of elements of A.
- Let n be a positive integer.
- Denote $S_n(X; A)$ the set of complete *n*-types over X with respect to A. 0
- When A is fixed we write simply $S_n(X)$.
- When T is a complete theory, we write $S_n(T)$ for the set of complete types of T.
- The sets $S_n(X;A)$ are known as the **Stone spaces** of A.

Subsection 3

Elementary Amalgamation

Amalgamation Theorems

- An amalgamation theorem is a theorem of the following shape:
 - We are given two models B, C of some theory T, and a structure A (not necessarily a model of T), which is embedded into both B and C.
 - The theorem states that there is a third model D of T, such that both B and C are embeddable into D by embeddings which agree on A. The embeddings may be required to preserve certain formulas.

Construction and Classification

• There are two ways of using amalgamation.

- One is to build up a structure *M* by:
 - Taking smaller structures;
 - Extending them;
 - Amalgamating the extensions.
- The second way is not to construct but to classify.
 - We classify all the ways of extending the bottom structure A;
 - Then we classify the ways of amalgamating these extensions.

In favorable cases this leads to a structural classification of all the models of a theory.

Stability theory is an example that follows this path.

Elementary Amalgamation Theorem

Theorem (Elementary Amalgamation Theorem)

Let *L* be a first-order language. Let *B* and *C* be *L*-structures and $\overline{a}, \overline{c}$ sequences of elements of *B*, *C*, respectively, such that $(B, \overline{a}) \equiv (C, \overline{c})$.

Then there exist an elementary extension D of B and an elementary embedding $g: C \to D$, such that $g(\overline{c}) = \overline{a}$. In a picture, where $f: \langle \overline{a} \rangle \to C$ is the unique embedding which takes \overline{a} to \overline{c} (by the Diagram Lemma).

 Replacing C by an isomorphic copy if necessary, we can assume that ā = c
 , and otherwise B and C have no elements in common. Consider the theory

$$T = \operatorname{eldiag}(B) \cup \operatorname{eldiag}(C),$$

where each element names itself.

George Voutsadakis (LSSU)

Elementary Amalgamation Theorem (Lemma)

Claim: T has a model.

By the Compactness Theorem, it suffices to show that every finite subset of T has a model.

Let T_0 be a finite subset of T.

 T_0 contains just finitely many sentences from eldiag(C).

Let their conjunction be $\phi(\overline{a}, \overline{d})$, where:

• $\phi(\overline{x}, \overline{y})$ is a formula of *L*;

• \overline{d} consists of pairwise distinct elements in C but not in \overline{a} . Of course only finitely many variables in \overline{x} occur free in ϕ . If T_0 has no model then $\operatorname{eldiag}(B) \vdash \neg \phi(\overline{a}, \overline{d})$. But the elements \overline{d} are distinct and they are not in B. So, by the Lemma on Constants, $\operatorname{eldiag}(B) \vdash \forall \overline{y} \neg \phi(\overline{a}, \overline{y})$. But then $(B, \overline{a}) \models \forall \overline{y} \neg \phi(\overline{a}, \overline{y})$. So $(C, \overline{c}) \models \forall \overline{y} \neg \phi(\overline{c}, \overline{y})$ by hypothesis. This contradicts that $\phi(\overline{a}, \overline{d})$ is in $\operatorname{eldiag}(C)$.

Elementary Amalgamation Theorem (Conclusion)

• Let D^+ be a model of T. Let D be the reduct $D^+|_I$. Now $D^+ \models \operatorname{eldiag}(B)$. By the Elementary Diagram Lemma, we can assume that: • D is an elementary extension of B; • $b^{D^+} = b$, for all elements b of B. Define $g(d) = d^{D^+}$, for each element d of C. Now $D^+ \models \operatorname{eldiag}(C)$. By the Elementary Diagram Lemma again, g is an elementary embedding of C into D. Finally

$$g(\overline{c}) = g(\overline{a}) \quad (\overline{a} = \overline{c}) \\ = \overline{a}^{D^+} \quad (\text{definition of } g) \\ = \overline{a}. \quad (\overline{a} \text{ in } B)$$

Consequences

• In the theorem \overline{a} can be empty.

In this case the theorem says that any two elementarily equivalent structures can be elementarily embedded together into some structure.

• The theorem can be rephrased as follows:

If $(B,\overline{a}) \equiv (C,\overline{c})$ and \overline{d} is any sequence of elements of C, then there is an elementary extension B' of B containing elements \overline{b} such that $(B',\overline{a},\overline{b}) \equiv (C,\overline{c},\overline{d})$.

One of the most important consequences is the following:
If A is any structure, we can simultaneously realize all the complete types with respect to A in a single elementary extension of A.
This is discussed in the following result.

Realization of Types in Elementary Extensions

Corollary

Let L be a first-order language and A an L-structure. Then there is an elementary extension B of A, such that every type over dom(A) with respect to A is realized in B.

It suffices to realize all maximal types over dom(A) with respect to A.
Let these be P_i, i < λ, with λ a cardinal.

For $i < \lambda$, let $A \preccurlyeq A_i$ and \overline{a}_i in A_i , such that $p_i = tp_{A_i}(\overline{a}_i/dom A)$.

Define an elementary chain $(B_i : i \leq \lambda)$ by induction as follows:

- *B*₀ is *A*;
- For each limit ordinal $\delta \leq \lambda$, $B_{\delta} = \bigcup_{i < \delta} B_i$ (which is an elementary extension of each B_i by a previous theorem).
- When B_i has been defined and $i < \lambda$, use the theorem to choose B_{i+1} to be an elementary extension of B_i , such that there is an elementary embedding $e_i : A_i \rightarrow B_{i+1}$ which is the identity on A.

Put $B = B_{\lambda}$. For each $i < \lambda$, $e_i(\overline{a}_i)$ is a tuple in B_{λ} realizing p_i .

The Case of Elementary Extensions

- Consider the case of the theorem where \overline{a} lists the elements of an elementary substructure A of B.
- In this case the theorem tells us the following.
- If A, B and C are L-structures and $A \preccurlyeq B$ and $A \preccurlyeq C$,

then there are an elementary extension D of B and an elementary embedding $g: C \rightarrow D$, such that, putting C' = g(C), the shown diagram of elementary inclusions commutes.

Heir-Coheir Amalgams

• Consider again the diagram

• We call it an **heir-coheir amalgam** if: For every first-order formula $\psi(\overline{x}, \overline{y})$ of *L* and all tuples $\overline{b}, \overline{c}$ from B, C', respectively, if $D \models \psi(\overline{b}, \overline{c})$, then there is \overline{a} in *A*, such that $B \models \psi(\overline{b}, \overline{a})$.

• We say also that it is an heir-coheir amalgam of B and C over A.

 It is an heir-coheir amalgam of B" and C" over A whenever B" and C" are elementary extensions of A, such that there are isomorphisms i: B" → B and j: C" → C' which are the identity on A.

Example: Vector Spaces

 Suppose A is an infinite vector space over a field K. Let B and C be vector spaces with A as subspace. Put B = B₁ ⊕ A and C = C₁ ⊕ A. We can amalgamate B and C over A by putting D = B₁ ⊕ C₁ ⊕ A. Suppose some equation

$$\sum_{i < m} \lambda_i b_i = \sum_{j < n} \mu_j c_j$$

holds in *D*, where the b_i are in *B* and the c_j are in *C*. Let $\pi: D \to B_1 \oplus A$ be the projection along C_1 . Then $\sum_{i < m} \lambda_i \pi(b_i) = \sum_{j < n} \mu_j \pi(c_j)$. But $\pi(b_i) = b_i$ and $\pi(c_j)$ lies in *A*. Thus, the heir-coheir condition holds for $\psi := \sum_{i < m} \lambda_i x_i = \sum_{j < n} \mu_j y_j$. In fact, since *A* is infinite, one can show that the condition holds whenever ψ is quantifier free. Then, by quantifier elimination, it follows that *D* forms an heir-coheir amalgam of *B* and *C* over *A*.

George Voutsadakis (LSSU)

Amalgam of Elementary Extensions

• The next theorem says that heir-coheir amalgams always exist when *B* and *C* are elementary extensions of *A*.

Theorem

Let A, B and C be L-structures such that $A \preccurlyeq B$ and $A \preccurlyeq C$. Then there exist an elementary extension D of B and an elementary embedding $g: C \rightarrow D$ such that the diagram (with C' = g(C)) is an heir-coheir amalgam.

 We assume that (domB) ∩ (domC) = dom(A), so that constants behave properly in diagrams. Then we take T to be the theory

eldiag(B) \cup eldiag(C) $\cup \{\neg \psi(\overline{b}, \overline{c}) : \psi$ is a first-order formula of L and \overline{b} is a tuple in B, such that $B \models \neg \psi(\overline{b}, \overline{a})$ for all \overline{a} in A}.
Amalgam of Elementary Extensions (Cont'd)

• Suppose *T* has no model. By the Compactness Theorem, there are:

- A tuple \overline{a} from A;
- A tuple \overline{d} of distinct elements in C but not in A;
- A tuple \overline{b} of elements of B;
- A sentence $\theta(\overline{a}, \overline{d})$ in eldiag(C);
- Sentences $\psi_i(\overline{b}, \overline{a}, \overline{d}), i < k;$

such that:

- $B \models \neg \psi_i(\overline{b}, \overline{a}', \overline{a}'')$, for all $\overline{a}', \overline{a}''$ in A;
- eldiag(B) $\vdash \theta(\overline{a}, \overline{d}) \rightarrow \psi_0(\overline{b}, \overline{a}, \overline{d}) \lor \cdots \lor \psi_{k-1}(\overline{b}, \overline{a}, \overline{d}).$

Quantifying out the constants d, by the Lemma on Constants, we get

$$B \models \forall \overline{y}(\theta(\overline{a},\overline{y}) \to \psi_0(\overline{b},\overline{a},\overline{y}) \lor \cdots \lor \psi_{k-1}(\overline{b},\overline{a},\overline{y})).$$

We also have $C \models \exists \overline{y} \theta(\overline{a}, \overline{y})$. So $A \models \exists \overline{y} \theta(\overline{a}, \overline{y})$. Hence, $A \models \theta(\overline{a}, \overline{a}'')$, for some \overline{a}'' in A. So $B \models \theta(\overline{a}, \overline{a}'')$. Thus, $B \models \psi_i(\overline{b}, \overline{a}, \overline{a}'')$, for some i < k. This is a contradiction.

The rest of the proof is as in the Elementary Amalgamation Theorem.

The Strong Elementary Amalgamation Property

• If the diagram is an heir-coheir amalgam, then the overlap of *B* and *C* in *D* is precisely *A*.

Suppose b = g(c), for some b in B and some c in C.

By the heir-coheir property, b = a, for some a in A.

- Amalgams with this minimum-overlap property are said to be strong.
- In this terminology we have just shown that first-order logic has the strong elementary amalgamation property.

Example: Vector Spaces (Cont'd)

• We present a more abstract proof that $D = B_1 \oplus C_1 \oplus A$ is an heir-coheir amalgam of $B = B_1 \oplus A$ and $C = C_1 \oplus A$ over A.

Since A is infinite, $A \preccurlyeq B$ and $A \preccurlyeq C$ by quantifier elimination.

By the theorem, some vector space D' forms an heir-coheir amalgam of B and C over A.

- Identifying B and C with their images in D', we may suppose that B and C generate D'.
- If D'' is the subspace of D' generated by B and C, then, by quantifier elimination $D'' \preccurlyeq D'$.

Now D' is a strong amalgam of B and C over A.

This means precisely that $D' = B_1 \oplus C_1 \oplus A$.

So D' is D.

Thus, D is an heir-coheir amalgam of B and C over A.

Example: Algebraically Closed Fields

- Suppose that in the figure:
 - Both *B* and *C* are the field of complex numbers;
 - A is the field of reals;
 - *D* is some algebraically closed field which amalgamates *B* and *C* over *A*.

Let:

- i, -i be the square roots of -1 regarded as elements of B;
- j, -j be the square roots of -1 regarded as elements of C.
- Then in *D*, *i* must be identified with either *j* or -j.

So the amalgam is not strong.

• This example shows that, if $\langle \overline{a} \rangle_B$ in the Elementary Amalgamation Theorem is not algebraically closed in B, then, in general, there is no hope of making the amalgam D strong.

Algebraic Elements and Algebraically Closed Subsets

- Let *B* be an *L*-structure.
- Let X be a set of elements of B.
- We say that an element b of B is algebraic over X if there are a first-order formula $\phi(x, \overline{y})$ of L and a tuple \overline{a} in X, such that

$$B \models \phi(b,\overline{a}) \land \exists_{\leq n} x \phi(x,\overline{a}),$$

for some finite *n*.

- We write $\operatorname{acl}_B(X)$ for the set of all elements of B algebraic over X.
- If \overline{a} lists the elements of X, we also write $\operatorname{acl}_B(\overline{a})$, for $\operatorname{acl}_B(X)$.

Algebraically Closed Subsets

- Let *B* be an *L*-structure.
- Let X be a set of elements of B.
- The operator acl satisfies the following properties.
 - 1. $X \subseteq \operatorname{acl}_B(X);$
 - 2. $Y \subseteq \operatorname{acl}_B(X)$ implies $\operatorname{acl}_B(Y) \subseteq \operatorname{acl}_B(X)$;
 - 3. If $B \preccurlyeq C$, then $\operatorname{acl}_B(X) = \operatorname{acl}_C(X)$.
- By Property 3, we can often write acl(X) for acl_B(X) without danger of confusion.
- We say that a tuple \overline{b} is algebraic over X if every element in \overline{b} is algebraic over X.
- We say that a type Φ(x̄) over a set X with respect to B is algebraic if every tuple realizing it is algebraic over X.

Non-algebraic Elements and Elementary Extensions

Lemma

Let *B* be an *L*-structure, *X* a set of elements of *B* listed as \overline{a} , and *b* an element of *B*. Suppose $b \notin \operatorname{acl}_B(X)$.

- (a) There is an elementary extension A of B with an element $c \notin dom(B)$, such that $(B, \overline{a}, b) \equiv (A, \overline{a}, c)$.
- (b) There is an elementary extension D of B, with an elementary substructure C containing X, such that $b \notin dom(C)$.
- (a) Let c be a new constant.
 Let p(x) be the complete type of b over X.
 It suffices to show

```
\mathsf{eldiag}(B) \cup p(c) \cup \{c \neq d : d \in \mathsf{dom}(B)\}
```

has a model.

Non-algebraic Elements and Elementary Extensions (b)

 Suppose that eldiag(B) ∪ p(c) ∪ {c ≠ d : d ∈ dom(B)} has no model. By the Compactness Theorem and the Lemma on Constants, there are finitely many d₀,..., d_{n-1} in B and a formula φ(x) of p(x) (note p(x) is closed under ∧), such that

$$\mathsf{eldiag}(B) \vdash \forall x(\phi(x) \to x = d_0 \lor \cdots \lor x = d_{n-1}).$$

Hence
$$B \models \phi(b) \land \exists_{\leq n} x \phi(x)$$
.

We conclude that $b \in \operatorname{acl}_B(X)$, a contradiction.

(b) Take A and c as in Part (a).

Since $(A, \overline{a}, b) \equiv (A, \overline{a}, c)$, the Amalgamation Theorem gives us an elementary extension D of A and an elementary embedding $g : A \rightarrow D$, such that $g(\overline{a}) = \overline{a}$ and g(b) = c.

Then D is an elementary extension of g(B) and $g(b) = c \notin dom(B)$. So the lemma holds if g(B) and B are taken for B and C, respectively.

| / 76

Strong Amalgamation over Algebraically Closed Sets

 We can make the amalgam strong in the amalgamation theorem whenever \label{a}_B is algebraically closed in B (or in C, by symmetry).

Theorem (Strong Elementary Amalgamation over Algebraically Closed Sets)

Let *B* and *C* be *L*-structures and \overline{a} a sequence of elements in both *B* and *C* such that $(B,\overline{a}) \equiv (C,\overline{a})$. Then there exist an elementary extension *D* of *B* and an elementary embedding $g: C \to D$, such that $g(\overline{a}) = \overline{a}$ and $(\operatorname{dom} B) \cap g(\operatorname{dom} C) = \operatorname{acl}_B(\overline{a})$.

Replacing C by an isomorphic copy if necessary, we can assume that B and C have no elements in common other than those in a.
 Consider the theories

$$T = \text{eldiag}(B) \cup \text{eldiag}(C);$$

 $T^+ = T \cup \{b \neq c : b \in \operatorname{dom}(B) \setminus \operatorname{acl}_B(\overline{a}) \text{ and } c \in \operatorname{dom}(C) \setminus \operatorname{acl}_C(\overline{a})\},\$

where each element names itself.

Amalgamation over Algebraically Closed Sets (Cont'd)

- Suppose we have shown that T⁺ has a model.
 Suppose D and g are defined, as in the Amalgamation Theorem, using T⁺ in place of T.
 - Then $g(\overline{a}) = \overline{a}$.
 - It easily follows that g maps $\operatorname{acl}_{C}(\overline{a})$ onto $\operatorname{acl}_{B}(\overline{a})$.
 - Thus, we have $\operatorname{acl}_B(\overline{a}) \subseteq (\operatorname{dom} B) \cap g(\operatorname{dom} C)$.
 - The sentences " $b \neq c$ " guarantee the opposite inclusion.
 - It remains only to show that T^+ has a model.
 - Assume for contradiction that T^+ has no model.

By compactness, there are finite subsets Y of dom(B)\acl_B(\overline{a}) and Z of dom(C)\acl_C(\overline{a}), such that for every elementary extension D of B and elementary embedding $g: C \to D$, with $g(\overline{a}) = \overline{a}$, $Y \cap g(Z) \neq \emptyset$. Choose D and g to make $Y \cap g(Z)$ as small as possible. To save notation we can assume that g is the identity so that $C \preccurlyeq D$.

Amalgamation over Algebraically Closed Sets (Cont'd)

• Since $Y \cap Z \neq \emptyset$, there is some $b \in Y \cap Z$.

By the lemma, there is an elementary extension D' of D, with an elementary substructure C' containing \overline{a} , such that $b \notin \text{dom}(C')$. Applying the preceding theorem to the elementary embedding $C' \preccurlyeq D'$ (the same embedding twice over), we find:

- An elementary extension E of D';
- An elementary embedding $e: D' \rightarrow E$ which is the identity on C', such that

 $(\operatorname{dom} D') \cap e(\operatorname{dom} D') = \operatorname{dom}(C').$

Now we finish the proof by showing that $Y \cap e(Z) \subsetneq Y \cap Z$.

• $Y \cap e(Z) \subseteq Y \cap Z$. Suppose $d \in Y \cap e(Z)$. Then d is in C'. Hence, e(d) = d.

• b is in $(Y \cap Z) \setminus (Y \cap e(Z))$.

b is in D' but not in C'. So $b \notin e(\operatorname{dom} D')$. Hence, $b \notin e(Z)$.

Thus, *e* contradicts the choice of $Y \cap g(Z)$ as minimal.

Subsection 4

Amalgamation and Preservation

Preservation of Existential Sentences

- Let L be a language.
- Let A and B be L-structures.
- We write $A \Rightarrow_1 B$ to mean that:

For every first-order existential sentence ϕ of L,

 $A \models \phi$ implies $B \models \phi$.

Likewise we write A ⇒⁺₁ B to mean that:
 For every first-order ∃⁺₁ sentence of L,

 $A \models \phi$ implies $B \models \phi$.

Note that ⇒₁ implies ⇒⁺₁.
Note, also, that if f : ⟨ā⟩_B → C is a homomorphism, then
(C, f(ā)) ⇒⁺₁ (B,ā) implies f is an embedding.

Existential Amalgamation Theorem

Theorem (Existential Amalgamation Theorem)

Let *B* and *C* be *L*-structures, \overline{a} a sequence of elements of *B* and $f : \langle \overline{a} \rangle \to C$ a homomorphism such that $(C, f(\overline{a})) \Rightarrow_1 (B, \overline{a})$. Then there exist an elementary extension *D* of *B* and an embedding $g : C \to D$, such that $g(f(\overline{a})) = \overline{a}$. In a picture, where $(C, f(\overline{a})) \Rightarrow_1 (B, \overline{a})$.

The assumptions imply that f is an embedding. So we can replace C by an isomorphic copy and assume that f is the identity on ⟨a⟩_B, and that ⟨a⟩_B is the overlap of dom(B) and dom(C). As in the Amalgamation Theorem, it suffices to show that the theory T = eldiag(B) ∪ diag(C) has a model.

If *T* has no model, by compactness, there is a conjunction $\phi(\overline{a}, d)$ of finitely many sentences in diag(*C*), such that $(B,\overline{a}) \models \neg \exists \overline{y} \phi(\overline{a}, \overline{y})$. Since $\phi(\overline{a}, \overline{y})$ is quantifier-free and $(C,\overline{a}) \Rightarrow_1 (B,\overline{a})$, we infer that $(C,\overline{a}) \models \neg \exists \overline{y} \phi(\overline{a}, \overline{y})$. This contradicts that $\phi(\overline{a}, \overline{d})$ is true in *C*.

The case of Empty Tuple

• Since we allow structures to be empty, the tuple \overline{a} in the theorem can be the empty tuple.

Corollary

Let *B* and *C* be *L*-structures such that $C \Rightarrow_1 B$. Then *C* is embeddable in some elementary extension of *B*.

- Amalgamation theorems like the preceding theorem tend to spawn offspring of the following kinds:
 - (i) Criteria for a structure to be expandable or extendable in certain ways;
 - (ii) Syntactic criteria for a formula or set of formulas to be preserved under certain model theoretic operations (results of this kind are called preservation theorems);
 - (iii) Interpolation theorems.

We provide examples.

Extendability of a Structure to a Model

- Let T be a theory in a first-order language L.
- T_{\forall} is the set of all \forall_1 sentences of L which are consequences of T.

Corollary

Let T be a theory in a first-order language L. Then the models of T_{\forall} are precisely the substructures of models of T.

Any substructure of a model of *T* is certainly a model of *T*[∀] by a previous result.

Conversely, let C be a model of T_{\forall} .

We must show that C is a substructure of a model of T.

By the corollary, it suffices to find a model B of T such that $C \Rightarrow_1 B$. We find B as follows.

Extendability of a Structure to a Model (Cont'd)

• Let U be the set of all \exists_1 sentences ϕ of L, such that $C \models \phi$. Claim: $T \cup U$ has a model.

If not, then by the compactness theorem, there is some finite set $\{\phi_0, \dots, \phi_{k-1}\}$ of sentences in U, such that $T \vdash \neg \phi_0 \lor \dots \lor \neg \phi_{k-1}$. $\neg \phi_0 \lor \dots \neg \phi_{k-1}$ is logically equivalent to an \forall_1 sentence θ . Moreover, $T \vdash \theta$. So $\theta \in T_{\forall}$. Hence, $C \models \theta$. This is absurd, since $C \models \phi_i$, for each i < k. So $T \cup U$ has a model as claimed.

```
Let B^+ be any model of T \cup U.
```

Let *B* the *L*-reduct of B^+ .

Characterization of Formulas Preserved by Substructures

Theorem (Łoś-Tarski Theorem)

Let T be a theory in a first-order language L and $\Phi(\overline{x})$ a set of formulas of L. (The sequence of variables \overline{x} need not be finite.) Then the following are equivalent:

- (a) If A and B are models of T, A⊆B, ā is a sequence of elements of A and B ⊨ ∧ Φ(ā), then A ⊨ ∧ Φ(ā). (Φ is preserved in substructures for models of T.)
- (b) Φ is equivalent modulo T to a set $\Psi(\overline{x})$ of \forall_1 formulas of L.

(b) \Rightarrow (a) By a previous corollary. (a) \Rightarrow (b) Suppose (a) holds. We first prove (b) under the assumption that Φ is a set of sentences. Define

$$\Psi := (T \cup \Phi)_{\forall}.$$

Formulas Preserved by Substructures (Cont'd)

- By the corollary, among models of *T*, the models of Ψ are precisely the substructures of models of Φ.
 By (a), every such substructure is itself a model of Φ.
 So Φ and Ψ are equivalent modulo *T*.
- We turn to the case where x̄ is not empty.
 Form the language L(c̄) by adding new constants c̄ to L.
 Suppose Φ(x̄) is preserved in substructures for L-structures which are models of T. Then it is not hard to see that Φ(c̄) must be preserved in substructures for L(c̄)-structures which are models of T.
 But Φ(c̄) is a set of sentences.
 - So the previous argument shows that $\Phi(\overline{c})$ is equivalent modulo T to a set $\Psi(\overline{c})$ of \forall_1 sentences of $L(\overline{c})$.
 - By the Lemma on Constants, $T \vdash \forall \overline{x} (\land \Phi(\overline{x}) \leftrightarrow \land \Psi(\overline{x}))$.
 - Thus, $\Phi(\overline{x})$ is equivalent to $\Psi(\overline{x})$ modulo T, in the language $L(\overline{c})$. Hence, they are also equivalent in the language L.

Preservation Theorems for Single Formulas

- If Φ in the Łoś-Tarski Theorem is a single formula, then one more application of compactness boils Ψ down to a single ∀₁ formula.
- In short, modulo any first-order theory *T*, the formulas preserved in substructures are precisely the ∀₁ formulas.
- Note that ∃₁ formulas are up to logical equivalence just the negations of ∀₁ formulas.

Corollary

If T is a theory in a first-order language L and ϕ is a formula of L, then the following are equivalent:

- (a) ϕ is preserved by embeddings between models of T;
- (b) ϕ is equivalent modulo T to an \exists_1 formula of L.
 - The full dual of the Łoś-Tarski Theorem is also true, with sets of ∃₁ formulas rather than single ∃₁ formulas.

An Interpolation Theorem

• The Interpolation Theorem associated with the Existential Amalgamation Theorem is an elaboration of the Łoś-Tarski Theorem (which it obviously implies, in the case of single formulas).

Theorem

Let T be a theory in a first-order language L and let $\phi(\overline{x})$, $\chi(\overline{x})$ be formulas of L. Then the following are equivalent:

- (a) Whenever $A \subseteq B$, A and B are models of T, \overline{a} is a tuple in A and $B \models \phi(\overline{a})$, then $A \models \chi(\overline{a})$.
- (b) There is an \forall_1 formula $\psi(\overline{x})$ of *L* such that $T \vdash \forall \overline{x}(\phi \rightarrow \psi) \land \forall \overline{x}(\psi \rightarrow \chi)$. (ψ is an "interpolant" between ϕ and χ .)
 - The proof is an adaptation of the Łoś-Tarski Theorem.

Variants of Existential Amalgamation

- The Existential Amalgamation Theorem has infinitely many variants for different classes of formulas, with only trivial changes in the proof.
- Each of these variants has its own preservation and interpolation theorems.
- Two variants are given without proof.

Theorem

Let *L* be a first-order language, and let *B* and *C* be *L*-structures, \overline{a} a sequence of elements of *C* and $f : \langle \overline{a} \rangle_C \to B$ a homomorphism such that $(C,\overline{a}) \Rightarrow_1^+ (B, f(\overline{a}))$. Then there exist an elementary extension *D* of *B* and a homomorphism $g : C \to D$ which extends *f*.

Variants of Existential Amalgamation (Cont'd)

- Let *L* be a first-order language.
- Let A, B be L-structures.
- We write $A \Rightarrow_2 B$ to mean that:

For every \exists_2 sentence ϕ of L,

$$A \models \phi$$
 implies $B \models \phi$.

$$B \models \phi$$
 implies $A \models \phi$.

Theorem

Let *L* be a first-order language, *B* and *C L*-structures, \overline{a} a sequence of elements of *B* and $f : \langle \overline{a} \rangle_B \to C$ an embedding such that $(C, f(\overline{a})) \Longrightarrow_2 (B, \overline{a})$. Then there exist an elementary extension *D* of *B* and an embedding $g : C \to D$, such that *g* preserves all \forall_1 formulas of *L*.

Formulas Preserved by Unions of Chains

Theorem (Chang-Łoś-Suszko Theorem)

Let T be a theory in a first-order language L, and $\Phi(\overline{x})$ a set of formulas of L. Then the following are equivalent:

- (a) $\wedge \Phi$ is preserved in unions of chains $(A_i : i < \gamma)$ whenever $\bigcup_{i < \gamma} A_i$ and all the A_i , $i < \gamma$, are models of T.
- (b) Φ is equivalent modulo T to a set of \forall_2 formulas of L.

 $(b) \Rightarrow (a)$ By a previous theorem.

(a) \Rightarrow (b) Assume (a) holds. Just as in the proof of the Łoś-Tarski Theorem, we can assume that Φ is a set of sentences.

Let Ψ be the set of all \forall_2 sentences of L which are consequences of $T \cup \Phi$. We must show that $T \cup \Psi \vdash \Phi$.

For this it will be enough to prove that every model of $T \cup \Psi$ is elementarily equivalent to a union of some chain of models of $T \cup \Phi$ which is itself a model of T.

George Voutsadakis (LSSU)

Formulas Preserved by Unions of Chains (Cont'd)

Let A₀ be any model of T ∪ Ψ. We construct an elementary chain (A_i : i < ω), extensions B_i ⊇ A_i and embeddings g_i : B_i → A_{i+1} so that the following diagram commutes:

Requirement: For each $i < \omega$, $B_i \models T \cup \Phi$ and $(B_i, \overline{a}_i) \Rightarrow_1 (A_i, \overline{a}_i)$ when \overline{a}_i lists all the elements of A_i .

The diagram is constructed in two steps, assuming that A_i has already been chosen.

- One first extends A_i to a structure B_i satisfying the Requirement;
- Then, having A_i and B_i , we construct A_{i+1} .

Formulas Preserved by Unions of Chains (Cont'd)

• Given A_i , we construct B_i . We know $A_0 \preccurlyeq A_i$. So $A_i \models (T \cup \Phi)_{\forall_2}$, where $(T \cup \Phi)_{\forall_2}$ denotes the set of all \forall_2 consequences of $T \cup \Phi$. We want to find B_i so that:

• $B_i \models T \cup \Phi$;

•
$$A_i \subseteq B_i$$
;

•
$$(B_i,\overline{a}_i) \Longrightarrow_1 (A_i,\overline{a}_i).$$

By the preceding Variant of Existential Amalgamation, it suffices to find a model C of $T \cup \Phi$, such that $A_i \Rightarrow_2 C$. Let U be the set of all \exists_2 sentences ϕ , such that $A_i \models \phi$.

We must show that $T \cup \Phi \cup U$ has a model.

If not, by compactness, there exists finite $\{\phi_0, \dots, \phi_{k-1}\} \subseteq U$, such that $T \cup \Phi \vdash \neg \phi_1 \vee \cdots \vee \neg \phi_{k-1}$. Since all ϕ_i 's are \exists_2 , the sentence $\neg \phi_1 \vee \cdots \neg \phi_{k-1}$ is a equivalent to a \forall_2 sentence θ . But $T \cup \Phi \vdash \theta$. Hence, $\theta \in (T \cup \Phi)_{\forall_2}$. Therefore, $A_i \models \theta$. This contradicts $A \models \phi_i$, for all i < k.

Formulas Preserved by Unions of Chains (Cont'd)

Now, by the Existential Amalgamation Theorem and the second part of the Requirement, there are an elementary extension A_{i+1} of A_i and an embedding $g_i: B_i \rightarrow A_{i+1}$, such that g is the identity on A_i . In the diagram we can replace each B_i by its image under g_i . Thus, we assume that all the maps are inclusions. Then $\bigcup_{i < \omega} A_i$ and $\bigcup_{i < \omega} B_i$ are the same structure C. By the Tarski- Vaught Elementary Chain Theorem $A_0 \preccurlyeq C$. So C is a model of T and the union of a chain of models B_i of $T \cup \Phi$, and A_0 is elementarily equivalent to C, as required. Just as with the Łoś-Tarski Theorem, using compactness, we get:

A formula ϕ of *L* is preserved in unions of chains (where all the structures are models of *T*) if and only if ϕ is equivalent modulo *T* to a \forall_2 formula of *L*.

Subsection 5

Expanding the Language

Expansion Theorem

Theorem

Let L_1 and L_2 be first-order languages, $L = L_1 \cap L_2$, B an L_1 -structure, C an L_2 -structure, and \overline{a} a sequence of elements of B and of C, such that $(B |_L, \overline{a}) \equiv (C |_L, \overline{a})$. Then there are an $(L_1 \cup L_2)$ -structure D such that $B \preccurlyeq D |_{L_1}$, and an elementary embedding $g : C \rightarrow D |_{L_2}$, such that $g(\overline{a}) = \overline{a}$.

Note that an almost invisible alteration of the proof of the Elementary Amalgamation gives a weak version of the theorem we want.
 Under our hypotheses, there are an elementary extension D of B and an elementary embedding g: C |_L→ D |_L, such that g(ā) = ā.
 (It suffices to show that eldiag(B) ∪ eldiag(C |_L) has a model.)

Expansion Theorem (Cont'd)

• Put $B_0 = B$, $C_0 = C$.

Use the weak version of the theorem, alternately from this side and from that, to build up a commutative diagram

where the maps from B_i to C_i and from C_i to B_{i+1} are elementary embeddings of the *L*-reducts.

The diagram induces an isomorphism $e: \bigcup_{i < \omega} B_i \mid_L \rightarrow \bigcup_{i < \omega} C_i \mid_L$.

 $\bigcup_{i < \omega} B_i |_L$ is an L_1 -structure.

 $\bigcup_{i < \omega} C_i |_L$ is an L_2 -structure.

Use *e* and $\bigcup_{i < \omega} C_i |_L$ to expand $\bigcup_{i < \omega} B_i |_L$ to an $(L_1 \cup L_2)$ -structure *D*. By the elementary chain theorem, *D* is as required.

A Characterization Theorem

- The theorem generates characterization and interpolation theorems.
- Suppose L and L^+ are first-order languages with $L \subseteq L^+$.
- If T is an L^+ -theory, T_L denotes the set of all consequences of T in L.

Corollary

Let *L* and *L*⁺ be first-order languages with $L \subseteq L^+$ and *T* a theory in *L*⁺. Let *A* be an *L*-structure. Then $A \models T_L$ if and only if for some model *B* of *T*, $A \preccurlyeq B \mid_L$.

• First, suppose $B \models T$ and $A \preccurlyeq B \mid_L$. Then $B \mid_I \models T_I$. Hence, $A \models T_I$.

Assume, conversely, that $A \models T_L$.

We show, there exists a model B of T, such that $(B|_L,\overline{a}) \equiv (A,\overline{a})$.

A Characterization Theorem (Cont'd)

We find a model B of T, such that (B |_L, ā) ≡ (A, ā). Consider the theory eldiag(A) ∪ T. It suffices to show that it has a model. If not, by compactness, there exists finite {φ₀(ā),...,φ_{k-1}(ā)} ⊆ eldiag(A), such that

$$T \vdash \neg \phi_0(\overline{a}) \lor \cdots \lor \neg \phi_{k-1}(\overline{a}).$$

Thus, by definition, $\neg \phi_0(\overline{a}) \lor \cdots \lor \neg \phi_{k-1}(\overline{a}) \in T_L$. By hypothesis, $A \models T_L$. Hence, $A \models \neg \phi_0(\overline{a}) \lor \cdots \lor \neg \phi_{k-1}(\overline{a})$. This contradicts $\phi_i(\overline{a}) \in \text{eldiag}(A)$, for all i < k.

An Interpolation Theorem

Theorem

Let L_1, L_2 be first-order languages, $L = L_1 \cap L_2$ and T_1, T_2 theories in L_1, L_2 , respectively, such that $T_1 \cup T_2$ has no model. Then there is some sentence ψ of L, such that $T_1 \vdash \psi$ and $T_2 \vdash \neg \psi$.

• Take
$$\Psi = (T_1)_L$$
.

By compactness, it suffices to show that $\Psi \cup T_2$ has no model. Towards a contradiction, let *C* be a model of $\Psi \cup T_2$.

By the preceding corollary there is an L_1 -structure B, such that $C \mid_L \leq B \mid_L$ and $B \models T_1$. Then $B \mid_L \equiv C \mid_L$.

By the preceding theorem, there are an $(L_1 \cup L_2)$ -structure D, such that $B \preccurlyeq D|_{L_1}$ and an elementary embedding $g: C \rightarrow D|_{L_2}$. Now, on the one hand, $B \preccurlyeq D|_{L_1}$. So $D \models T_1$. On the other hand, g is elementary. So $D \models T_2$.

Thus $T_1 \cup T_2$ does have a model, a contradiction.

Craig's Interpolation Theorem

Corollary (Craig's Interpolation Theorem)

Let L_1, L_2 be first-order languages, $L = L_1 \cap L_2$ and ϕ, χ sentences of L_1, L_2 , respectively, such that $\phi \vdash \chi$. Then there is a sentence ψ of $L_1 \cap L_2$, such that $\phi \vdash \psi$ and $\psi \vdash \chi$.

By hypothesis, {φ, ¬χ} is inconsistent.
 Thus, by the theorem, there exists a sentence ψ of L, such that

$$\phi \vdash \psi$$
 and $\neg \chi \vdash \neg \psi$.

The second is equivalent to $\psi \vdash \chi$.

A Preservation Theorem

• This preservation theorem talks about formulas which are preserved under taking off symbols and putting them back on again.

Theorem

Let L and L^+ be first-order languages with $L \subseteq L^+$, let T be a theory in L^+ and $\phi(\overline{x})$ a formula of L^+ . Then the following are equivalent:

- (a) If A and B are models of T and $A|_L = B|_L$, then for all tuples \overline{a} in A, $A \models \phi(\overline{a})$ if and only if $B \models \phi(\overline{a})$.
- (b) $\phi(\overline{x})$ is equivalent modulo T to a formula $\psi(\overline{x})$ of L.
 - From the Expansion Theorem, as a corresponding result followed from the Existential Amalgamation Theorem.
 - The implication (a)⇒(b) in the case where φ is an unnested atomic formula R(x₀,...,x_{n-1}) or F(x₀,...,x_{n-1}) = x_n is known as Beth's Definability Theorem.

Beth's Definability Theorem

- Let L and L^+ be first-order languages with $L \subseteq L^+$.
- Let T be a theory in L⁺.
- A relation symbol R of T⁺ is implicitly defined by T in terms of L if whenever A and B are models of T with A |_L = B |_L, then R^A = R^B.
- A function symbol F of T^+ is **implicitly defined by** T **in terms of** L if whenever A and B are models of T with $A|_L = B|_L$, then, for all \overline{a} in A, $F^A(\overline{a}) = F^B(\overline{a})$.
- *R* is explicitly defined by *T* in terms of *L* if *T* has some consequence of the form ∀*x*(*Rx*↔ ψ), where ψ(*x*) is a formula of *L*.
- F is explicitly defined by T in terms of L if T has some consequence of the form ∀x̄y(F(x̄) = y ↔ ψ), where ψ(x̄, y) is in L.
- It is immediate that, if R (or F) is explicitly defined by T in terms of L, then it is implicitly defined by T in terms of L.
- Beth's Theorem states the converse: Relative to a first-order theory, implicit definability equals explicit definability.
Padoa's Method

- The notion of implicit definability makes sense in a broader context.
- Let L and L^+ be languages (not necessarily first-order), with $L \subseteq L^+$.
- Let T a theory in L^+ .
- Let R a relation symbol of L⁺.
- We say that R is **implicitly defined by** T **in terms of** L if, whenever A and B are models of T with $A|_L = B|_L$, then $R^A = R^B$.
- Padoa's method for proving the undefinability of *R* by *T* in terms of *L* involves producing models *A* and *B* of *T*, such that
 - $A|_L = B|_L;$ • $R^A \neq R^B.$

• If L and L^+ are not first-order, Beth's Theorem may fail.

A Refinement of the Łoś-Tarski Theorem

- Local theorems are theorems of the following form.
 - If "enough" finitely generated substructures of a structure A belong to a certain class **K**, then A also belongs to **K**.

Theorem

Let *L* be a first-order language and K a PC'_{Δ} class of *L*-structures. Suppose that K is closed under taking substructures. Then K is axiomatized by a set of \forall_1 sentences of *L*.

- The theorem refines the Łoś-Tarski Theorem.
- Its proof is a refinement of the earlier proof.
- Let **K** be the PC'_{Δ} class $\{B_P : B \models U\}$. Define

 $T^* = \{\phi \ \forall_1 \text{ sentence in } L : B \models U \text{ implies } B_P \models \phi\}.$

Every structure in K is a model of T^* .

A Refinement of the Łoś-Tarski Theorem (Cont'd)

Claim: Every model A of T^* is in K.

Consider the theory $diag(A) \cup \{P(a) : a \in dom A\} \cup U$.

Claim: This theory has a model.

If not, then by the Compactness Theorem, there are a conjunction $\psi(\overline{x})$ of literals of L, and a tuple \overline{a} of distinct elements a_0, \ldots, a_{m-1} of A, such that $A \models \psi(\overline{a})$ and $U \vdash P(a_0) \land \cdots \land P(a_{m-1}) \rightarrow \neg \psi(\overline{a})$. By the lemma on constants, $U \vdash \forall \overline{x} (Px_0 \land \dots \land Px_{m-1} \rightarrow \neg \psi(\overline{x})).$ Hence the sentence $\forall \overline{x} \neg \psi(\overline{x})$ is in T^* . So it must be true in A. This contradicts the fact that $A \models \psi(\overline{a})$ and proves the claim. By the claim there is a model D of the theory. By the Diagram Lemma, A is embeddable in D_P . But D_P is in K and K is closed under substructures. Since **K** is closed under isomorphic copies, it follows that A is in **K**.

Example: Faithful Linear Representations of Groups

• Let *n* be a positive integer and *G* a group. We say that *G* has a **faithful** *n*-**dimensional linear representation** if *G* is embeddable in $GL_n(F)$, the group of invertible *n*-by-*n* matrices over some field *F*.

Corollary

Let n be a positive integer and G a group. Suppose that every finitely generated subgroup of G has a faithful n-dimensional linear representation. Then G has a faithful n-dimensional linear representation.

Let K be the class of groups with faithful *n*-dimensional linear representations. We note that K is closed under substructures. There is a theory U in a suitable first-order language, such that K is precisely the class {B_P : B ⊨ U}. By the theorem, K is axiomatized by an ∀₁ theory T. If G is not in K, then there is some sentence ∀xψ(x) in T, with ψ quantifier-free, such that G ⊨ ∃x¬ψ(x). Find a tuple ā in G so that G ⊨ ¬ψ(ā). Then the subgroup ⟨ā⟩_G is not in K.