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The First-Order Case: Compactness [SCompactness forFirst-Order Eogic

Subsection 1

Compactness for First-Order Logic
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The First-Order Case: Compactness

Theorem (Compactness Theorem for First-Order Logic)

Let T be a first-order theory. If every finite subset of T has a model, then
T has a model.

o Let L be a first-order language and T a theory in L.

Assume first that every finite subset of T has a non-empty model.
We employ the following strategy:
o We show that T can be extended to a Hintikka set T+ in a larger
first-order language L™.
o Then, by a previous theorem, some L*-structure A is a model of T*.
o So the reduct A" |; will be a model of T.

Write « for the cardinality of L.

Let ¢;, i <k, be distinct constants not in L.

We call these constants witnesses.

Let L* be the first-order language got by adding the ¢;’s to L.
Then L™ has x sentences, say ¢;, i <k.

George Voutsadakis (LSSU) Model Theory



The First-Order Case: Compactness

o We shall define an increasing chain (T;:i<x) of theories in L*, so
that the following hold, where all models are L*-structures.

For each i < «, every finite subset of T; has a model.
For each i <k, the number of witnesses ¢, which are used in T; but
not in Uj<; T; is finite.

The definition is by induction on .

We put To=T.

At limit ordinals we take Ts=U;<s T;.

Clearly these definitions respect Conditions 1 and 2.

Note that Condition 1 is true at Tg because of our assumption that
every finite subset of T has a non-empty model.
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The First-Order Case: Compactness

o For successor ordinals i +1 we, first, define

T;u{¢p;}, if every finite subset of
g = this set has a model
T;, otherwise

We, then, define T;,; based on T!

i+1°
o Suppose ¢; € T/ ; and ¢; has the form 3xy, for some formula y(x).
Then, by Condition 2 there is a witness which is not used in TI.’
We choose the earliest such witness c;.
We define Tiy1 =T/ U{u/(cj)}
o Suppose ¢; ¢ T/ ; or ¢; is not of the form Ixy.
We define T,+1 = T il

These definitions clearly ensure Condition 2.

We must show that Condition 1 remains true when ¢ € T, /+1 Uiy (c)l.
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The First-Order Case: Compactness

o Let U be a finite subset of T;,;.
Let A be any L"-structure which is a model of Uu {3xy}.
Then there is an element a of A such that A|=w(a).

Take such an element a, and let B be the L* -structure which is
exactly like A except that CjB =a.

Since the witness ¢; never occurs in U, B is still a model of U.
Since ¢ never occurs in ¥(x), Bl=y(a).

So B=y(c).

This shows that Condition 1 still holds.
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The First-Order Case: Compactness

: T« is a Hintikka set for L*.
By a previous theorem, it suffices to prove three things:
Every finite subset of T, has a model. This holds by Condition 1.
For every sentence ¢ of L*, either ¢p or 7 is in Ty.
To prove this, suppose ¢ is ¢; and —¢p is ¢;. If p& Ty, then ¢pi ¢ Tii1.
Thus, there is a finite subset U of T;, such that Uu {¢} has no model.
By the same argument, if 7¢p & Ty, then there is a finite subset U’ of
Tj, such that U'u{=¢} has no model. Now Uu U’ is a finite subset of
T«. So it has a model A. Either Al=¢ or Al==¢. We have a
contradiction either way. Thus at least one of ¢, ¢ is in Ty.
For every sentence Ixw(x) in Ty, there is a closed term t of L*, such
that y(t) € Tx.
For this, suppose Ixw(x) is ¢;. Since ¢; € Ty, ¢ € TI.’+1. So T;s1
contains a sentence y/(c;), where ¢; is a witness. Then y/(¢;) is in Tx.
Thus T is a Hintikka set Tt for Lt and T< T*. So T has a model.
In the exceptional case when some finite subset of T has only the

empty model, the empty L-structure must be a model of all T.
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The First-Order Case: Compactness

Corollary

If T is a first-order theory, ¥ a first-order sentence and T 1, then U+ v,
for some finite subset U of T.

o Suppose to the contrary that U/ vy, for every finite subset U of T.

Thus, for every finite subset U of T, there exists a model of U which
does not satisfy .

Equivalently, every finite subset of T U {=w} has a model.
So, by the Compactness Theorem, T U {—y} has a model.
Therefore, T fw.
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The First-Order Case: Compactness

o A set is recursively enumerable (r.e. for short) if and only if it can
be listed by a Turing machine.

Corollary

Suppose L is a recursive first-order language, and T is a recursively
enumerable theory in L. Then the set of consequences of T in L is also
recursively enumerable.

o Using one's favorite proof calculus, ne can recursively enumerate all
the consequences in L of a finite set of sentences.

Since T is r. e., we can recursively enumerate its finite subsets.

The preceding corollary says that every consequence of T is a
consequence of one of these finite subsets.
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The First-Order Case: Compactness

o First-order logic cannot distinguish between infinite cardinals.

o So every infinite structure has arbitrarily large elementary extensions.

Corollary (Upward Léwenheim-Skolem Theorem)

Let L be a first-order language of cardinality <A and A an infinite
L-structure of cardinality <A. Then A has an elementary extension of
cardinality A.
o Name the elements of A.
Let eldiag(A) be the elementary diagram of A.
Let ¢;, i <A, be A new constants.

Define
T =eldiag(A) u{ci #¢j:i<j<A}
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The First-Order Case: Compactness

o . Every finite subset of T has a model.

Suppose U is a finite subset of T. Then for some n<w, just n of the
new constants ¢; occur in U. Since A is infinite, we can choose n
distinct elements of A. A model of T assigns to each ¢; one of these
elements.

By the Compactness Theorem, T has a model B.

Since B is a model of eldiag(A), by the Elementary Diagram Lemma,
there is an elementary embedding e: A— B];.

Replacing elements of the image of e by the corresponding elements of
A, we make B |; an elementary extension of A.

Since Bl= T, we have cl.“3 =4 CJB, whenever j < j < A.
Hence B|; has at least A elements.

To bring the cardinality of B|; down to exactly A, we invoke the
downward Lowenheim-Skolem theorem.
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The First-Order Case: Compactness

o The compactness theorem fails for infinitary languages.
. Let ¢;, i <w, be distinct constants.
Consider the theory T consisting of

Co#C1,C0 7 C2,C0 £ C3y..ny

V a=c.

0<i<w

Every proper subset of T has a model.
But T itself has no model.
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The First-Order Case: Compactness Types

Subsection 2

Types
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The First-Order Case: Compactness

Let L be a first-order language and A an L-structure.
Let X be a set of elements of A and b a tuple of elements of A.

Let 3 be a sequence listing the elements of X.

¢ © ¢ ¢

The complete type of b over X (with respect to A, in the
variables X) is the set of all formulas ¥(X,a), such that:
o w(X,y)isin L;
o Al=w(b,a).
o More loosely, the complete type of b over X is everything we can say
about b in terms of X.
o The tuple a may be infinite, but, since each formula w(x,y) of L has
only finitely many free variables, only a finite part of X is mentioned in

v(x,3).
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The First-Order Case: Compactness

©

We denote the complete type of b over X with respect to A by
tpa(b/X), or tpa(b/a), where 3 lists the elements of X.

o The elements of X are called the parameters of the complete type.
o Complete types are written p, g, r etc.

o One writes p(x) if one wants to show that the variables of the type
are X.

o We write tp,(b) for tpa(b/®), the type of b over the empty set of
parameters.

o Note that if B is an elementary extension of A, then

tpg(b/X) =tpa(b/X).
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The First-Order Case: Compactness

o Let p(x) be a set of formulas of L with parameters from X.

o We say that p(x) is a complete type over X (with respect to A, in
the variables X) if it is the complete type of some tuple b over X with
respect to some elementary extension of A.

o Putting it loosely again, a complete type over X is everything we can
say in terms of X about some possible tuple b of elements that are in
A or, perhaps, in an elementary extension of A.
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The First-Order Case: Compactness

©

A type over X (with respect to A, in the variables x) is a subset of a
complete type over X.

We shall write ®,¥,®(x) etc. for types.
A type is called an n-type, n<w, if it has just n free variables.

©

©

©

We say that a type ®(x) over X is realized by a tuple bin Aif
@ ctpy(b/X).
o If @ is not realized by any tuple in A, we say that A omits ®.

o We say that a set ®(x) of formulas of L, with parameters in A, is
finitely realized in A if for every finite subset ¥ of @,

AEIX N\ VY.
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The First-Order Case: Compactness

Theorem

Let L be a first-order language, A an L-structure, X a set of elements of A
and ®(xp,...,xp—1) a set of formulas of L with parameters from X. Then,
writing X for (xo,...,Xn-1),
®(x) is a type over X with respect to A if and only if @ is finitely
realized in A;
®(x) is a complete type over X with respect to A if and only if ®(x)
is a set of formulas of L with parameters from X, which is maximal
with the property that it is finitely realized in A.

In particular, if @ is finitely realized in A, then it can be extended to a
complete type over X with respect to A.
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The First-Order Case: Compactness

Suppose @ is a type over X with respect to A.

Then, there are an elementary extension B of A and an n-tuple bin
B, such that B = A®(b).

Let W be a finite subset of ®.

Then B = AW(b). Hence, B |= IX A\ ¥(X).

But A< B and the sentence is first-order. So A= 3Ix A\ ¥(x).
For the converse, we use again elementary diagrams.
Suppose @ is finitely realized in A.

Form eldiag(A).

Take an n-tuple of distinct new constants ¢ =(cp,...,Cn-1)-
Define T to be the theory

T =eldiag(A) u®(c).
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The First-Order Case: Compactness

o . Every finite subset of T has a model.
Let U be a finite subset of T.
Let ¥ be the set of formulas w(X) of @, such that w(c)e U.
By assumption Al=3xA Y. Hence, for some 3 in A, AEAVY(a).
By interpreting the constants € as names of the elements a, we make
A into a model of U. This proves the claim.
By the Compactness Theorem, T has a model C.

Since C |=eldiag(A), by the Elementary Diagram Lemma, there exists
an elementary embedding e: A— C|;.

By making the usual replacements, we can assume that A< C|;.
Let b be the tuple cC. Since CET, CE /\<I>(E).
So b satisfies ®(X) in some elementary extension of A.

We conclude that @ is a type over X with respect to A.



The First-Order Case: Compactness

Suppose @ is a complete type over X.

Then @ contains either ¢ or ¢, for each formula ¢(x) of L with
parameters from X.

This implies that ® is a maximal type over X with respect to A.
Suppose, now, that @ is a maximal type over X with respect to A.
Then for some b in some elementary extension B of A, B = /\<D(B).
So @ is included in the complete type of b over X.

By maximality, it must equal this complete type.
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The First-Order Case: Compactness

o By the Characterization Theorem, if X is the empty set of parameters,
then the question whether @ is a type over X with respect to A
depends only on Th(A).

o Types over the empty set with respect to A are also known as the
types of Th(A).

o More generally, let T be any theory in a first-order language.

o A type of T is a set ®(x) of formulas of L such that T U{Ix AW} is
consistent for every finite subset ¥(x) of ®.

o A complete type of T is a maximal type of T.

o If T happens to be a complete theory, then we can replace
“Tu{dx AW} is consistent” by the equivalent “T F3IxAWY".
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The First-Order Case: Compactness

Let A be an L-structure.

Let X be a set of elements of A.

Let n be a positive integer.

Denote S,(X;A) the set of complete n-types over X with respect to A.
When A is fixed we write simply S,(X).

When T is a complete theory, we write S,(T) for the set of complete
types of T.

¢ © ¢ ¢ ¢ ¢

©

The sets S,(X;A) are known as the Stone spaces of A.
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The First-Order Case: Compactness [SElementary Amalgamation

Subsection 3

Elementary Amalgamation
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The First-Order Case: Compactness

o An amalgamation theorem is a theorem of the following shape:

We are given two models B, C of some theory

B C
T, and a structure A (not necessarily a model \ /
of T), which is embedded into both B and C. A

The theorem states that there is a third model D
D of T, such that both B and C are embed- / \
dable into D by embeddings which agree on A. B c

The embeddings may be required to preserve
certain formulas. \ /
A
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The First-Order Case: Compactness

o There are two ways of using amalgamation.
o One is to a structure M by:

o Taking smaller structures;
o Extending them;
o Amalgamating the extensions.

o The second way is not to construct but to
o We classify all the ways of extending the bottom structure A;
o Then we classify the ways of amalgamating these extensions.
In favorable cases this leads to a structural classification of all the
models of a theory.
Stability theory is an example that follows this path.
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The First-Order Case: Compactness

Theorem (Elementary Amalgamation Theorem)

Let L be a first-order language. Let B and C be L-structures and 3,¢
sequences of elements of B, C, respectively, such that (B,3) =(C,¢).

Then there exist an elementary extension D of B = D <
and an elementary embedding g : C — D, such that / \
g(c)=3a. In a picture, where f: (@ — C is the B ¢
unique embedding which takes a to ¢ (by the Dia- :\3\ /:

gram Lemma). (B

o Replacing C by an isomorphic copy if necessary, we can assume that
a=7¢, and otherwise B and C have no elements in common.
Consider the theory

T =eldiag(B) ueldiag(C),

where each element names itself.
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The First-Order Case: Compactness

: T has a model.
By the Compactness Theorem, it suffices to show that every finite
subset of T has a model.
Let Ty be a finite subset of T.
To contains just finitely many sentences from eldiag(C).

Let their conjunction be ¢(3,d), where:
o ¢(X,y) is a formula of L;
o d consists of pairwise distinct elements in C but not in a.

Of course only finitely many variables in x occur free in ¢.

If Ty has no model then eldiag(B) F —¢ (3, d).

But the elements d are distinct and they are not in B.

So, by the Lemma on Constants, eldiag(B) F Vy—¢(3,Y).

But then (B,a) = Vy—¢(a,y). So (C,c) = Vy—¢(c,y) by hypothesis.
This contradicts that ¢(3,d) is in eldiag(C).
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The First-Order Case: Compactness

o Let D* be a model of T.
Let D be the reduct D' |;.
Now D* |= eldiag(B).
By the Elementary Diagram Lemma, we can assume that:

o D is an elementary extension of B;
+
o bP" = b, for all elements b of B.

Define g(d) = dP", for each element d of C.
Now D* |=eldiag(C).
By the Elementary Diagram Lemma again, g is an elementary
embedding of C into D.
Finally

g(c) = g(@ (a=9)

= 3P (definition of g)

a. (ain B)
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The First-Order Case: Compactness

o In the theorem 2 can be empty.

In this case the theorem says that any two elementarily equivalent
structures can be elementarily embedded together into some structure.

o The theorem can be rephrased as follows:

If (B,3) =(C,<) and d is any sequence of elements of C, then there is
an elementary extension B’ of B containing elements b such that
(B',a,b)=(C,<c,d).

o One of the most important consequences is the following:

If Ais any structure, we can simultaneously realize all the complete
types with respect to A in a single elementary extension of A.

This is discussed in the following result.
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The First-Order Case: Compactness

Corollary

Let L be a first-order language and A an L-structure. Then there is an
elementary extension B of A, such that every type over dom(A) with
respect to A is realized in B.

o It suffices to realize all maximal types over dom(A) with respect to A.
Let these be P;, i <A, with A a cardinal.
For i<A, let A< A; and 3; in Aj, such that p; =tpy,(a;/domA).
Define an elementary chain (B;:i<A) by induction as follows:

o Byis A;

o For each limit ordinal 6 <A, Bs =U;<s Bi (which is an elementary
extension of each B; by a previous theorem).

o When B; has been defined and i < A, use the theorem to choose Bj,1
to be an elementary extension of B;, such that there is an elementary
embedding e;: A; — B;;1 which is the identity on A.

Put B=By. For each i <A, €j(3;) is a tuple in B, realizing p;.
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The First-Order Case: Compactness

o Consider the case of the theorem where 3 lists the elements of an
elementary substructure A of B.

o In this case the theorem tells us the following.
o If A B and C are L-structures and A< B and A< C,

/\
\/

then there are an elementary extension D of B and an elementary
embedding g: C — D, such that, putting C' = g(C), the shown
diagram of elementary inclusions commutes.
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The First-Order Case: Compactness

o Consider again the diagram

D

i
N
B C’
QAé

o We call it an heir-coheir amalgam if:
For every first-order formula y/(x,y) of L and all tuples b, from B, C',
respectively, if D |=w(b,€), then there is 3 in A, such that B = w(b,3).
o We say also that it is an heir-coheir amalgam of B and C over A.
o It is an heir-coheir amalgam of B” and C” over A whenever B”
and C" are elementary extensions of A, such that there are
isomorphisms i: B” — B and j: C” — C’ which are the identity on A.
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The First-Order Case: Compactness

o Suppose A is an infinite vector space over a field K.
Let B and C be vector spaces with A as subspace.
Put B=Bi®Aand C=(C o A.
We can amalgamate B and C over A by putting D=B; & C; @ A.
Suppose some equation
2 Aibi=) g
i<m j<n
holds in D, where the b; are in B and the ¢; are in C.
Let w: D — B; ® A be the projection along C;.
Then X< Aim(bi) = Xj<n pjm(c;)-
But 7(b;) = b; and 7(¢;) lies in A.
Thus, the heir-coheir condition holds for v := Y ;cm Aix; = Xjcnity;.
In fact, since A is infinite, one can show that the condition holds
whenever v is quantifier free. Then, by quantifier elimination, it
follows that D forms an heir-coheir amalgam of B and C over A.
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The First-Order Case: Compactness

o The next theorem says that heir-coheir amalgams always exist when B
and C are elementary extensions of A.

Let A, B and C be L-structures such that A< B and A< C. PN D =
Then there exist an elementary extension D of B and an N .
elementary embedding g : C — D such that the diagram B ¢
(with C'=g(C)) is an heir-coheir amalgam. :\I\ A/;;

o We assume that (domB)n(domC) =dom(A), so that constants
behave properly in diagrams. Then we take T to be the theory

eldiag(B) ueldiag(C) u{~w(b,T): v is a first-order formula of L
and b is a tuple in B, such that B |= —y(b,3) for all 3 in A}
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The First-Order Case: Compactness

o Suppose T has no model. By the Compactness Theorem, there are:

o A tuple a from A;
o A tuple d of distinct elements in C but not in A:
o A tuple b of elements of B:
o A sentence 0(3,d) in eldiag(C);
o Sentences 1//,-(5,5,3), i<k;

such that:
o Bl=-wi(h3,3"), forall 7,3" in A
o eldiag(B)F0(3,d) — wo(b,3,d) V- vy, 1(b,3,d).

Quantifying out the constants d, by the Lemma on Constants, we get

BEVY(0(37) — wo(b,3y) V- vyk_1(b3Y)).

We also have C =3y6(3,y). So AE=3y0(3,y). Hence, A=0(3,3"),
for some 3" in A. So B|=6(3,3"). Thus, B=v;(b,3,3"), for some

i < k. This is a contradiction.

The rest of the proof is as in the Elementary Amalgamation Theorem.
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The First-Order Case: Compactness

o If the diagram is an heir-coheir amalgam, then the overlap of B and C
in D is precisely A.

D

2
B C
N A

!
Suppose b= g(c), for some b in B and some c in C.
By the heir-coheir property, b= a, for some a in A.
o Amalgams with this minimum-overlap property are said to be strong.

o In this terminology we have just shown that first-order logic has the
strong elementary amalgamation property.
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The First-Order Case: Compactness

o We present a more abstract proof that D=B;® C;® A is an
heir-coheir amalgam of B=B;® A and C= C; @ A over A.

Since A is infinite, A< B and A< C by quantifier elimination.

By the theorem, some vector space D’ forms an heir-coheir amalgam
of B and C over A.

Identifying B and C with their images in D', we may suppose that B
and C generate D'.

If D" is the subspace of D’ generated by B and C, then, by quantifier
elimination D" < D'.

Now D’ is a strong amalgam of B and C over A.
This means precisely that D' = B; & C; @ A.
So D' is D.

Thus, D is an heir-coheir amalgam of B and C over A.
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The First-Order Case: Compactness

o Suppose that in the figure: D
o Both B and C are the field of complex numbers; / \
B C

o A is the field of reals; \ /
A

o D is some algebraically closed field which
amalgamates B and C over A.

Let:

o i,—i be the square roots of —1 regarded as elements of B;
@ j,—j be the square roots of —1 regarded as elements of C.

Then in D, i must be identified with either j or —j.
So the amalgam is not strong.

o This example shows that, if (a)g in the Elementary Amalgamation
Theorem is not algebraically closed in B, then, in general, there is no
hope of making the amalgam D strong.
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The First-Order Case: Compactness

o Let B be an L-structure.
o Let X be a set of elements of B.

o We say that an element b of B is algebraic over X if there are a
first-order formula ¢(x,y) of L and a tuple 3 in X, such that

B = ¢(b,3) AJ<pxp(x,3),

for some finite n.
o We write aclg(X) for the set of all elements of B algebraic over X.

o If 3 lists the elements of X, we also write aclg(3@), for aclg(X).
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The First-Order Case: Compactness

o Let B be an L-structure.

o Let X be a set of elements of B.
o The operator acl satisfies the following properties.
X caclg(X);
Y caclg(X) implies aclg(Y) caclg(X);
If B=< C, then aclg(X) =acl¢(X).
o By Property 3, we can often write acl(X) for aclg(X) without danger
of confusion.
o We say that a tuple b is algebraic over X if every element in b is
algebraic over X.
o We say that a type ®(x) over a set X with respect to B is algebraic
if every tuple realizing it is algebraic over X.
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The First-Order Case: Compactness

Lemma

Let B be an L-structure, X a set of elements of B listed as a, and b an
element of B. Suppose b ¢ aclg(X).

There is an elementary extension A of B with an element ¢ ¢ dom(B),
such that (B,3,b) = (A 3,¢).

There is an elementary extension D of B, with an elementary
substructure C containing X, such that b¢dom(C).

Let ¢ be a new constant.

Let p(x) be the complete type of b over X.
It suffices to show

eldiag(B)up(c)u{c#d:dedom(B)}

has a model.
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The First-Order Case: Compactness

o Suppose that eldiag(B)up(c)u{c #d:dedom(B)} has no model.

By the Compactness Theorem and the Lemma on Constants, there are
finitely many dp,...,d,—1 in B and a formula ¢(x) of p(x) (note p(x)
is closed under A), such that

eldiag(B) F Vx(¢p(x) > x=doVv---Vx =dp_1).

Hence B = ¢p(b) A <pxp(x).

We conclude that b€ aclg(X), a contradiction.

Take A and ¢ as in Part (a).

Since (A,a,b) =(A,3,c), the Amalgamation Theorem gives us an
elementary extension D of A and an elementary embedding g: A— D,
such that g(a) =2 and g(b) =c.

Then D is an elementary extension of g(B) and g(b) = c ¢dom(B).
So the lemma holds if g(B) and B are taken for B and C, respectively.
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The First-Order Case: Compactness

o We can make the amalgam strong in the amalgamation theorem
whenever (a)g is algebraically closed in B (or in C, by symmetry).

Theorem (Strong Elementary Amalgamation over Algebraically Closed Sets)

Let B and C be L-structures and a a sequence of elements in both B and
C such that (B,3)=(C,3a). Then there exist an elementary extension D of
B and an elementary embedding g: C — D, such that g(a) =32 and
(domB)ng(domC) = aclg(a).

o Replacing C by an isomorphic copy if necessary, we can assume that B
and C have no elements in common other than those in 3.

Consider the theories
T = eldiag(B)ueldiag(C);
T* = Tu{b#c:bedom(B)\aclg(a) and c € dom(C)\aclc(a)},
where each element names itself.



The First-Order Case: Compactness

o Suppose we have shown that TT has a model.

Suppose D and g are defined, as in the Amalgamation Theorem, using
T+ in place of T.

Then g(a) =a.

It easily follows that g maps acl¢(a) onto aclg(a).

Thus, we have aclg(3) = (domB)n g(domC).

The sentences “b # ¢’ guarantee the opposite inclusion.

It remains only to show that T+ has a model.

Assume for contradiction that T* has no model.

By compactness, there are finite subsets Y of dom(B)\aclg(a) and Z
of dom(C)\acl¢c(3), such that for every elementary extension D of B
and elementary embedding g: C — D, with g(a)=3, Y ng(2)# 2.
Choose D and g to make Y ng(Z) as small as possible.

To save notation we can assume that g is the identity so that C < D.
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The First-Order Case: Compactness

o Since YNZ # @, there is some be YNnZ.

By the lemma, there is an elementary extension D' of D, with an
elementary substructure C’ containing &, such that b¢ dom(C’).
Applying the preceding theorem to the elementary embedding C' < D’
(the same embedding twice over), we find:

o An elementary extension E of D’;

o An elementary embedding e: D' — E which is the identity on C’, such

that
(domD’)ne(domD") = dom(C").

Now we finish the proof by showing that Y ne(Z)gYnZ.
o Yne(Z)eYnZ.
Suppose d€ Yne(Z). Then d isin C'. Hence, e(d)=d.
o bisin (YNZ)\(Yne(Z)).
bisin D’ but not in C'. So b¢ e(domD’). Hence, be e(Z).
Thus, e contradicts the choice of Y ng(Z) as minimal.
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Subsection 4

Amalgamation and Preservation
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The First-Order Case: Compactness

o Let L be a language.
o Let A and B be L-structures.
o We write A= B to mean that:
For every first-order existential sentence ¢ of L,
AE=¢ implies Bl=¢.
o Likewise we write Aéf B to mean that:
For every first-order Elir sentence of L,
AE=¢ implies Bl=¢.
o Note that =1 implies 3;.
o Note, also, that if f:(@)g — C is a homomorphism, then

(C,f(3)) =7 (B,a) implies f is an embedding.
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The First-Order Case: Compactness

Theorem (Existential Amalgamation Theorem)

Let B and C be L-structures, a a sequence of ele- PN D -
ments of B and f: (@ — C a homomorphism such that / \
(C,f(a)) =1 (B,a). Then there exist an elementary ex- B ¢
tension D of B and an embedding g: C — D, such that \S\_ /‘4\
g(f(3))=3. In a picture, where (C,£(3)) =1 (B,3). @s

o The assumptions imply that f is an embedding.
So we can replace C by an isomorphic copy and assume that f is the
identity on (a)g, and that (a)p is the overlap of dom(B) and dom(C).
As in the Amalgamation Theorem, it suffices to show that the theory
T = eldiag(B) udiag(C) has a model.
If T has no model, by compactness, there is a conjunction ¢(3a,d) of
finitely many sentences in diag(C), such that (B,3) = 73y ¢(a,y).
Since ¢(3,y) is quantifier-free and (C,3) =1 (B,3), we infer that
(C,3) = ~3y¢(a,y). This contradicts that ¢(3,d) is true in C.
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The First-Order Case: Compactness

o Since we allow structures to be empty, the tuple @ in the theorem can
be the empty tuple.

Corollary
Let B and C be L-structures such that C =1 B. Then C is embeddable in
some elementary extension of B.

o Amalgamation theorems like the preceding theorem tend to spawn
offspring of the following kinds:

Criteria for a structure to be expandable or extendable in certain ways;
Syntactic criteria for a formula or set of formulas to be preserved under
certain model theoretic operations (results of this kind are called
preservation theorems);

Interpolation theorems.

We provide examples.
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The First-Order Case: Compactness

o Let T be a theory in a first-order language L.
o Ty is the set of all V1 sentences of L which are consequences of T.

Corollary

Let T be a theory in a first-order language L. Then the models of Ty are
precisely the substructures of models of T.

o Any substructure of a model of T is certainly a model of Ty by a
previous result.
Conversely, let C be a model of Ty.
We must show that C is a substructure of a model of T.
By the corollary, it suffices to find a model B of T such that C =1 B.
We find B as follows.
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The First-Order Case: Compactness

o Let U be the set of all 3; sentences ¢ of L, such that C |= ¢.
: TuU has a model.

If not, then by the compactness theorem, there is some finite set
{¢o,...,Px_1} of sentences in U, such that TF-¢pgV---Vvdy_ 1.

o V -+ g1 is logically equivalent to an Vi sentence 6.
Moreover, T 6. So O € Ty.

Hence, C =6.

This is absurd, since C |= ¢, for each i < k.

So T u U has a model as claimed.

Let B* be any model of Tu U.

Let B the L-reduct of B*.
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The First-Order Case: Compactness

Theorem (tos-Tarski Theorem)

Let T be a theory in a first-order language L and ®(x) a set of formulas of
L. (The sequence of variables X need not be finite.) Then the following are
equivalent:

If A and B are models of T, A< B, 3 is a sequence of elements of A
and B = A®(3), then A= A®(3). (@ is preserved in substructures for
models of T.)

® is equivalent modulo T to a set W(x) of V; formulas of L.

(b)=(a) By a previous corollary.
(a)=(b) Suppose (a) holds.
We first prove (b) under the assumption that @ is a set of sentences.

Define
V.= (TUCD)V.
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The First-Order Case: Compactness

o By the corollary, among models of T, the models of ¥ are precisely
the substructures of models of ®.
By (a), every such substructure is itself a model of ®.
So ® and ¥ are equivalent modulo T.

o We turn to the case where X is not empty.
Form the language L(<) by adding new constants ¢ to L.
Suppose ®@(x) is preserved in substructures for L-structures which are
models of T. Then it is not hard to see that ®(c) must be preserved
in substructures for L(¢)-structures which are models of T.
But ®@(<) is a set of sentences.
So the previous argument shows that ®(¢) is equivalent modulo T to
a set (<) of V; sentences of L(¢).
By the Lemma on Constants, T F Vx(A®(x) — A¥(X)).
Thus, ®(x) is equivalent to ¥(x) modulo T, in the language L(<).
Hence, they are also equivalent in the language L.
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The First-Order Case: Compactness

o If @ in the Los-Tarski Theorem is a single formula, then one more
application of compactness boils ¥ down to a single V; formula.

o In short, modulo any first-order theory T, the formulas preserved in
substructures are precisely the V; formulas.
o Note that 3; formulas are up to logical equivalence just the negations

of V1 formulas.

Corollary
If T is a theory in a first-order language L and ¢ is a formula of L, then the
following are equivalent:

¢ is preserved by embeddings between models of T;

¢ is equivalent modulo T to an 3; formula of L.

o The full dual of the tos-Tarski Theorem is also true, with sets of 3;
formulas rather than single 3; formulas.
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The First-Order Case: Compactness

o The Interpolation Theorem associated with the Existential
Amalgamation Theorem is an elaboration of the tos-Tarski Theorem
(which it obviously implies, in the case of single formulas).

Theorem

Let T be a theory in a first-order language L and let ¢(x), x(X) be
formulas of L. Then the following are equivalent:

Whenever Ac B, A and B are models of T, 3 is a tuple in A and B = ¢(3),
then A= x(3).

There is an V; formula w(x) of L such that T+ Vx(¢— v)AVx(y — ).
(v is an “interpolant” between ¢ and y.)

o The proof is an adaptation of the tos-Tarski Theorem.
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The First-Order Case: Compactness

o The Existential Amalgamation Theorem has infinitely many variants
for different classes of formulas, with only trivial changes in the proof.

o Each of these variants has its own preservation and interpolation
theorems.

o Two variants are given without proof.

Theorem

Let L be a first-order language, and let B and C be L-structures, a a
sequence of elements of C and f:(3@)c — B a homomorphism such that
(C,a)=7 (B,f(a)). Then there exist an elementary extension D of B and
a homomorphism g: C — D which extends f.
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The First-Order Case: Compactness

o Let L be a first-order language.

o Let A, B be L-structures.
o We write A=, B to mean that:
For every 35 sentence ¢ of L,

AE¢ implies Bl ¢.
o Equivalently, A=, B if and only if:
For every V5 sentence ¢ of L,

B¢ implies AlE=¢.

Theorem

Let L be a first-order language, B and C L-structures, 3 a sequence of
elements of B and f:(a)g — C an embedding such that
(C,f(3))=2(B,3a). Then there exist an elementary extension D of B and
an embedding g: C — D, such that g preserves all V1 formulas of L.
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The First-Order Case: Compactness

Theorem (Chang-tos-Suszko Theorem)

Let T be a theory in a first-order language L, and ®(x) a set of formulas of
L. Then the following are equivalent:

A® is preserved in unions of chains (A;:i<Yy) whenever Uj<, A; and
all the A;, i <y, are models of T.

® is equivalent modulo T to a set of V5 formulas of L.

(b)=(a) By a previous theorem.

(a)=(b) Assume (a) holds. Just as in the proof of the tos-Tarski
Theorem, we can assume that @ is a set of sentences.

Let ¥ be the set of all V5 sentences of L which are consequences of
Tu®. We must show that TUWY - @.

For this it will be enough to prove that every model of TUW is
elementarily equivalent to a union of some chain of models of TU®
which is itself a model of T.



The First-Order Case: Compactness

o Let Ag be any model of TuW¥. We construct an elementary chain
(Aj:i<w), extensions B; 2 A; and embeddings g;: B — Aj;1 so that
the following diagram commutes:

N
SN TN TN

A Ay A
< < <

Requirement: For each i<w, Bj|E Tu® and (B;,a;) =1 (Aj,a;) when
3; lists all the elements of A;.

The diagram is constructed in two steps, assuming that A; has already
been chosen.

o One first extends A; to a structure B; satisfying the Requirement;
o Then, having A; and B;, we construct A;,1.
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The First-Order Case: Compactness

o Given A;, we construct B;.
We know Ag < Aj. So A;j = (T u®)y,, where (T U®)y, denotes the
set of all V5 consequences of T u®.
We want to find B; so that:
o Bil=Tua,
o A€ B;;
) (B,‘,E,‘) =1 (A,‘,E,‘).
By the preceding Variant of Existential Amalgamation, it suffices to
find a model C of Tu®, such that A; =, C.
Let U be the set of all 3, sentences ¢, such that A; = ¢.
We must show that Tu®u U has a model.
If not, by compactness, there exists finite {¢,...,¢px_1} < U, such that
TU®F ¢y V-V pg_1. Since all ¢;'s are 35, the sentence
Sy V- g1 is a equivalent to a V, sentence . But TUD 6.
Hence, 8 € (T U®)y,. Therefore, A; = 6.
This contradicts A= ¢, for all i < k.
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The First-Order Case: Compactness

o Now, by the Existential Amalgamation Theorem and the second part
of the Requirement, there are an elementary extension A;,1 of A; and
an embedding g;: B; — A;j41, such that g is the identity on A;.

In the diagram we can replace each B; by its image under g;.

Thus, we assume that all the maps are inclusions.

Then Uj<p A; and U<, B; are the same structure C.

By the Tarski- Vaught Elementary Chain Theorem Ap < C.

So C is a model of T and the union of a chain of models B; of Tu®,
and Ag is elementarily equivalent to C, as required.

o Just as with the tos-Tarski Theorem, using compactness, we get:

A formula ¢ of L is preserved in unions of chains (where all the
structures are models of T) if and only if ¢ is equivalent modulo T to
a Vo formula of L.
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The First-Order Case: Compactness [SEXpanding the Eanguage

Subsection 5

Expanding the Language

George Voutsadakis (LSSU) Model Theory January 2024 64 / 76



The First-Order Case: Compactness

Theorem

Let Ly and L; be first-order languages, L =Ly nLy, B an L;-structure, C an
Lo-structure, and a a sequence of elements of B and of C, such that
(Bl,a)=(Clr,a). Then there are an (L; U Lp)-structure D such that
B=<D]|,, and an elementary embedding g: C — D|,,, such that g(a) =a.

o Note that an almost invisible alteration of the proof of the Elementary
Amalgamation gives a weak version of the theorem we want.

Under our hypotheses, there are an elementary extension D of B and
an elementary embedding g: C |, — D |, such that g(a) =a.

(It suffices to show that eldiag(B) ueldiag(C |.) has a model.)
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The First-Order Case: Compactness

o Put Bp=B, (,=C.
Use the weak version of the theorem, alternately from this side and
from that, to bwld up a commutatw{e dlagram

O/

S /\/\

\

where the maps from B; to C; and from C; to B;,; are elementary
embeddings of the L-reducts.

The diagram induces an isomorphism e: Uiy Bi l1— Ui<w Gi |-

Ui<w Bi |1 is an Lq-structure.

Ui<w Ci |1 is an Ly-structure.

Use e and Ui, G |1 to expand Uj<, Bi | to an (Ly U Ly)-structure D.
By the elementary chain theorem, D is as required.

George Voutsadakis (LSSU) Model Theory



The First-Order Case: Compactness

o The theorem generates characterization and interpolation theorems.
o Suppose L and L* are first-order languages with L< L*.

o If T is an L*-theory, T; denotes the set of all consequences of T in L.

Corollary
Let L and L* be first-order languages with L< L* and T a theory in L.
Let A be an L-structure. Then A= T, if and only if for some model B of
T,A<B]l,.
o First, suppose Bl=T and A< B|;.
Then B|;E T;. Hence, Al=T;.
Assume, conversely, that A= T;.
We show, there exists a model B of T, such that (B|;,3)=(A,3).
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The First-Order Case: Compactness

o We find a model B of T, such that (B|;,3) =(A,3).
Consider the theory eldiag(A)u T.
It suffices to show that it has a model.

If not, by compactness, there exists finite

{bo(3),...,Pk-1(3)} celdiag(A), such that
TE¢o(a) V- -V pr_1(3).

Thus, by definition, =¢o(a) v--- v ¢py_1(a) e T;.

By hypothesis, Al=T;.

Hence, Al=2¢o(3) V-V ¢pr_1(3).

This contradicts ¢;(3) € eldiag(A), for all i < k.
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The First-Order Case: Compactness

Theorem

Let L1, L, be first-order languages, L= L1 n L, and Ty, T» theories in Ly, Ly,
respectively, such that T; U T, has no model. Then there is some sentence
w of L, such that Ty~ and T F .

o Take ¥ =(T1);.
By compactness, it suffices to show that ¥ U T, has no model.
Towards a contradiction, let C be a model of YU T>.
By the preceding corollary there is an Li-structure B, such that
Cl;<B]| and Bl=T;. Then B|;=C|,.
By the preceding theorem, there are an (L; U Ly)-structure D, such
that B D|;, and an elementary embedding g: C — D|,.
Now, on the one hand, B<D|;,. So D= T;.
On the other hand, g is elementary. So D |= T».
Thus T;uU T, does have a model, a contradiction.
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The First-Order Case: Compactness

Corollary (Craig's Interpolation Theorem)

Let Ly, L, be first-order languages, L=L;n L, and ¢, y sentences of Ly, Ly,
respectively, such that ¢ y. Then there is a sentence v of Ly n Ly, such
that ¢y and W y.

o By hypothesis, {¢, 7y} is inconsistent.

Thus, by the theorem, there exists a sentence v of L, such that

¢ty and -y k-

The second is equivalent to v I y.
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The First-Order Case: Compactness

o This preservation theorem talks about formulas which are preserved
under taking off symbols and putting them back on again.

Let L and L* be first-order languages with LS L™, let T be a theory in L*
and ¢(x) a formula of L*. Then the following are equivalent:

If A and B are models of T and A|,= B |, then for all tuples 3 in A,
A= ¢(a) if and only if B = ¢(a).

¢(X) is equivalent modulo T to a formula w(x) of L.
o From the Expansion Theorem, as a corresponding result followed from
the Existential Amalgamation Theorem.

o The implication (a)=(b) in the case where ¢ is an unnested atomic
formula R(xo,...,xn-1) or F(xo,...,Xn-1) = X, is known as Beth’s
Definability Theorem.
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The First-Order Case: Compactness

o Let L and L" be first-order languages with L< L*.

o Let T be a theory in L*.

o A relation symbol R of T* is implicitly defined by T in terms of L
if whenever A and B are models of T with A|;=B]|;, then RA= RE.

o A function symbol F of T is implicitly defined by T in terms of L
if whenever A and B are models of T with A|; =B/, then, for all 3in
A, FA(@) = FB(a).

o R is explicitly defined by T in terms of L if T has some
consequence of the form Vx(RXx — ), where y(x) is a formula of L.

o F is explicitly defined by T in terms of L if T has some
consequence of the form Vxy(F(x) =y < v), where y(X,y) is in L.

o It is immediate that, if R (or F) is explicitly defined by T in terms of
L, then it is implicitly defined by T in terms of L.

o Beth's Theorem states the converse: Relative to a first-order theory,
implicit definability equals explicit definability.
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The First-Order Case: Compactness

o The notion of implicit definability makes sense in a broader context.
o Let L and L* be languages (not necessarily first-order), with L< L*.
o Let T atheory in L*.

o Let R a relation symbol of L™.

°

We say that R is implicitly defined by T in terms of L if, whenever
A and B are models of T with A|;= B/, then R4A=RE.

o Padoa’s method for proving the undefinability of R by T in terms of
L involves producing models A and B of T, such that
o Al =Bl
o RA#RE.

©

If L and L* are not first-order, Beth's Theorem may fail.
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The First-Order Case: Compactness

o Local theorems are theorems of the following form.

If “enough” finitely generated substructures of a structure A belong to
a certain class K, then A also belongs to K.

Theorem

Let L be a first-order language and K a PC/, class of L-structures. Suppose
that K is closed under taking substructures. Then K is axiomatized by a
set of V; sentences of L.

o The theorem refines the tos-Tarski Theorem.
o lts proof is a refinement of the earlier proof.
o Let K be the PC), class {Bp: B = U}.

Define

T* ={¢p Vi sentence in L: B = U implies Bp |= ¢}.

Every structure in K is a model of T*.
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The First-Order Case: Compactness

: Every model A of T* is in K.
Consider the theory diag(A)u{P(a):aedomA}u U.
: This theory has a model.

If not, then by the Compactness Theorem, there are a conjunction
w(x) of literals of L, and a tuple 3 of distinct elements ay,...,am-1 of
A, such that Al=w(3) and UF P(ag) A--- A P(am-1) — ~w(3).

By the lemma on constants, Ut Vx(Pxg A--- A Pxm-1 — ~/(X)).
Hence the sentence Vx—y(X) is in T*. So it must be true in A.
This contradicts the fact that A |=w(3) and proves the claim.

By the claim there is a model D of the theory.

By the Diagram Lemma, A is embeddable in Dp.

But Dp is in K and K is closed under substructures.

Since K is closed under isomorphic copies, it follows that A is in K.
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The First-Order Case: Compactness

o Let n be a positive integer and G a group. We say that G has a
faithful n-dimensional linear representation if G is embeddable in
GL,(F), the group of invertible n-by-n matrices over some field F.

Corollary

Let n be a positive integer and G a group. Suppose that every finitely
generated subgroup of G has a faithful n-dimensional linear representation.
Then G has a faithful n-dimensional linear representation.

o Let K be the class of groups with faithful n-dimensional linear
representations. We note that K is closed under substructures.
There is a theory U in a suitable first-order language, such that K is
precisely the class {Bp : B |= U}. By the theorem, K is axiomatized by
an Vp theory T. If G is not in K, then there is some sentence Vxy/(x)
in T, with ¥ quantifier-free, such that G = 3x—w(x). Find a tuple 3
in G so that G |= ~y/(3). Then the subgroup (a)¢ is not in K.
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