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The First-Order Case: Compactness Compactness for First-Order Logic

The Compactness Theorem

Theorem (Compactness Theorem for First-Order Logic)

Let T be a first-order theory. If every finite subset of T has a model, then
T has a model.

Let L be a first-order language and T a theory in L.

Assume first that every finite subset of T has a non-empty model.
We employ the following strategy:

We show that T can be extended to a Hintikka set T+ in a larger
first-order language L+.
Then, by a previous theorem, some L+-structure A is a model of T+.
So the reduct A+ |L will be a model of T .

Write κ for the cardinality of L.

Let ci , i <κ, be distinct constants not in L.

We call these constants witnesses.

Let L+ be the first-order language got by adding the ci ’s to L.

Then L+ has κ sentences, say φi , i < κ.
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The First-Order Case: Compactness Compactness for First-Order Logic

The Compactness Theorem (Cont’d)

We shall define an increasing chain (Ti : i ≤ κ) of theories in L+, so
that the following hold, where all models are L+-structures.

1. For each i ≤κ, every finite subset of Ti has a model.
2. For each i <κ, the number of witnesses ck which are used in Ti but

not in
⋃

j<i Tj is finite.

The definition is by induction on i .

We put T0 =T .

At limit ordinals we take Tδ =
⋃

i<δTi .

Clearly these definitions respect Conditions 1 and 2.

Note that Condition 1 is true at T0 because of our assumption that
every finite subset of T has a non-empty model.
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The First-Order Case: Compactness Compactness for First-Order Logic

The Compactness Theorem (Successor Ordinals)

For successor ordinals i +1 we, first, define

T ′
i+1 =







Ti ∪ {φi }, if every finite subset of
this set has a model

Ti , otherwise

We, then, define Ti+1 based on T ′
i+1

.

Suppose φi ∈T
′
i+1

and φi has the form ∃xψ, for some formula ψ(x).
Then, by Condition 2 there is a witness which is not used in T ′

i+1
.

We choose the earliest such witness cj .
We define Ti+1 =T ′

i+1
∪ {ψ(cj )}.

Suppose φi 6∈T
′
i+1

or φi is not of the form ∃xψ.
We define Ti+1 =T ′

i+1
.

These definitions clearly ensure Condition 2.

We must show that Condition 1 remains true when φ ∈T ′
i+1

∪ {ψ(cj )}.
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The First-Order Case: Compactness Compactness for First-Order Logic

The Compactness Theorem (Condition 1)

Let U be a finite subset of Ti+1.

Let A be any L+-structure which is a model of U ∪ {∃xψ}.

Then there is an element a of A such that A |=ψ(a).

Take such an element a, and let B be the L+ -structure which is
exactly like A except that cB

j
= a.

Since the witness cj never occurs in U , B is still a model of U .

Since cj never occurs in ψ(x), B |=ψ(a).

So B |=ψ(cj).

This shows that Condition 1 still holds.
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The First-Order Case: Compactness Compactness for First-Order Logic

The Compactness Theorem (Conclusion)

Claim: Tκ is a Hintikka set for L+.
By a previous theorem, it suffices to prove three things:
(a) Every finite subset of Tκ has a model. This holds by Condition 1.
(b) For every sentence φ of L+, either φ or ¬φ is in Tκ.

To prove this, suppose φ is φi and ¬φ is φj . If φ 6∈Tκ, then φi 6∈Ti+1.
Thus, there is a finite subset U of Ti , such that U ∪ {φ} has no model.
By the same argument, if ¬φ 6∈Tκ, then there is a finite subset U ′ of
Tj , such that U ′∪ {¬φ} has no model. Now U ∪U ′ is a finite subset of
Tκ. So it has a model A. Either A |=φ or A |= ¬φ. We have a
contradiction either way. Thus at least one of φ,¬φ is in Tκ.

(c) For every sentence ∃xψ(x) in Tκ, there is a closed term t of L+, such
that ψ(t) ∈Tκ.
For this, suppose ∃xψ(x) is φi . Since φi ∈Tκ, φi ∈T

′
i+1

. So Ti+1

contains a sentence ψ(cj ), where cj is a witness. Then ψ(cj ) is in Tκ.

Thus Tκ is a Hintikka set T+ for L+ and T ⊆T+. So T has a model.

In the exceptional case when some finite subset of T has only the
empty model, the empty L-structure must be a model of all T .
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The First-Order Case: Compactness Compactness for First-Order Logic

Compactness for First-Order Theories

Corollary

If T is a first-order theory, ψ a first-order sentence and T ⊢ψ, then U ⊢ψ,
for some finite subset U of T .

Suppose to the contrary that U 6⊢ψ, for every finite subset U of T .

Thus, for every finite subset U of T , there exists a model of U which
does not satisfy ψ.

Equivalently, every finite subset of T ∪ {¬ψ} has a model.

So, by the Compactness Theorem, T ∪ {¬ψ} has a model.

Therefore, T 6⊢ψ.
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The First-Order Case: Compactness Compactness for First-Order Logic

Recursive Enumeration

A set is recursively enumerable (r.e. for short) if and only if it can
be listed by a Turing machine.

Corollary

Suppose L is a recursive first-order language, and T is a recursively
enumerable theory in L. Then the set of consequences of T in L is also
recursively enumerable.

Using one’s favorite proof calculus, ne can recursively enumerate all
the consequences in L of a finite set of sentences.

Since T is r. e., we can recursively enumerate its finite subsets.

The preceding corollary says that every consequence of T is a
consequence of one of these finite subsets.
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The First-Order Case: Compactness Compactness for First-Order Logic

Upward Löwenheim-Skolem Theorem

First-order logic cannot distinguish between infinite cardinals.

So every infinite structure has arbitrarily large elementary extensions.

Corollary (Upward Löwenheim-Skolem Theorem)

Let L be a first-order language of cardinality ≤λ and A an infinite
L-structure of cardinality ≤λ. Then A has an elementary extension of
cardinality λ.

Name the elements of A.

Let eldiag(A) be the elementary diagram of A.

Let ci , i <λ, be λ new constants.

Define
T = eldiag(A)∪ {ci 6= cj : i < j <λ}.
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The First-Order Case: Compactness Compactness for First-Order Logic

Upward Löwenheim-Skolem Theorem (Cont’d)

Claim: Every finite subset of T has a model.

Suppose U is a finite subset of T . Then for some n<ω, just n of the
new constants ci occur in U . Since A is infinite, we can choose n

distinct elements of A. A model of T assigns to each ci one of these
elements.

By the Compactness Theorem, T has a model B .

Since B is a model of eldiag(A), by the Elementary Diagram Lemma,
there is an elementary embedding e :A→B |L.

Replacing elements of the image of e by the corresponding elements of
A, we make B |L an elementary extension of A.

Since B |=T , we have cB
i
6= cB

j
, whenever i < j <λ.

Hence B |L has at least λ elements.

To bring the cardinality of B |L down to exactly λ, we invoke the
downward Löwenheim-Skolem theorem.
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The First-Order Case: Compactness Compactness for First-Order Logic

Compactness in Infinitary Languages?

The compactness theorem fails for infinitary languages.

Example: Let ci , i <ω, be distinct constants.

Consider the theory T consisting of

c0 6= c1,c0 6= c2,c0 6= c3, . . . ,
∨

0<i<ω

c0 = ci .

Every proper subset of T has a model.

But T itself has no model.
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The First-Order Case: Compactness Types

Subsection 2

Types
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The First-Order Case: Compactness Types

Complete Types

Let L be a first-order language and A an L-structure.

Let X be a set of elements of A and b a tuple of elements of A.

Let a be a sequence listing the elements of X .

The complete type of b over X (with respect to A, in the
variables x) is the set of all formulas ψ(x ,a), such that:

ψ(x ,y ) is in L;

A |=ψ(b,a).

More loosely, the complete type of b over X is everything we can say
about b in terms of X .

The tuple a may be infinite, but, since each formula ψ(x ,y) of L has
only finitely many free variables, only a finite part of X is mentioned in
ψ(x ,a).
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The First-Order Case: Compactness Types

Notation on Complete Types

We denote the complete type of b over X with respect to A by
tpA(b/X ), or tpA(b/a), where a lists the elements of X .

The elements of X are called the parameters of the complete type.

Complete types are written p,q,r etc.

One writes p(x) if one wants to show that the variables of the type
are x .

We write tpA(b) for tpA(b/;), the type of b over the empty set of
parameters.

Note that if B is an elementary extension of A, then

tpB(b/X )= tpA(b/X ).
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The First-Order Case: Compactness Types

Complete Types over a Set of Elements

Let p(x) be a set of formulas of L with parameters from X .

We say that p(x) is a complete type over X (with respect to A, in
the variables x) if it is the complete type of some tuple b over X with
respect to some elementary extension of A.

Putting it loosely again, a complete type over X is everything we can
say in terms of X about some possible tuple b of elements that are in
A or, perhaps, in an elementary extension of A.
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The First-Order Case: Compactness Types

Types and Realizability

A type over X (with respect to A, in the variables x) is a subset of a
complete type over X .

We shall write Φ,Ψ,Φ(x) etc. for types.

A type is called an n-type, n<ω, if it has just n free variables.

We say that a type Φ(x) over X is realized by a tuple b in A if
Φ⊆ tpA(b/X ).

If Φ is not realized by any tuple in A, we say that A omits Φ.

We say that a set Φ(x) of formulas of L, with parameters in A, is
finitely realized in A if for every finite subset Ψ of Φ,

A |= ∃x
∧

Ψ.
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The First-Order Case: Compactness Types

Characterization of Types and Complete Types

Theorem

Let L be a first-order language, A an L-structure, X a set of elements of A
and Φ(x0, . . . ,xn−1) a set of formulas of L with parameters from X . Then,
writing x for (x0, . . . ,xn−1),

(a) Φ(x) is a type over X with respect to A if and only if Φ is finitely
realized in A;

(b) Φ(x) is a complete type over X with respect to A if and only if Φ(x)
is a set of formulas of L with parameters from X , which is maximal
with the property that it is finitely realized in A.

In particular, if Φ is finitely realized in A, then it can be extended to a
complete type over X with respect to A.
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The First-Order Case: Compactness Types

Characterization of Types (Proof)

(a) Suppose Φ is a type over X with respect to A.

Then, there are an elementary extension B of A and an n-tuple b in
B , such that B |=

∧

Φ(b).

Let Ψ be a finite subset of Φ.

Then B |=
∧

Ψ(b). Hence, B |= ∃x
∧

Ψ(x).

But A4B and the sentence is first-order. So A |= ∃x
∧

Ψ(x).

For the converse, we use again elementary diagrams.

Suppose Φ is finitely realized in A.

Form eldiag(A).

Take an n-tuple of distinct new constants c = (c0, . . . ,cn−1).

Define T to be the theory

T = eldiag(A)∪Φ(c).
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The First-Order Case: Compactness Types

Characterization of Types (Cont’d)

Claim: Every finite subset of T has a model.

Let U be a finite subset of T .

Let Ψ be the set of formulas ψ(x) of Φ, such that ψ(c) ∈U .

By assumption A |= ∃x
∧

Ψ. Hence, for some a in A, A |=
∧

Ψ(a).

By interpreting the constants c as names of the elements a, we make
A into a model of U . This proves the claim.

By the Compactness Theorem, T has a model C .

Since C |= eldiag(A), by the Elementary Diagram Lemma, there exists
an elementary embedding e :A→C |L.

By making the usual replacements, we can assume that A4C |L.

Let b be the tuple cC . Since C |=T , C |=
∧

Φ(b).

So b satisfies Φ(x) in some elementary extension of A.

We conclude that Φ is a type over X with respect to A.
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The First-Order Case: Compactness Types

Characterization of Complete Types

(b) Suppose Φ is a complete type over X .

Then Φ contains either φ or ¬φ, for each formula φ(x) of L with
parameters from X .

This implies that Φ is a maximal type over X with respect to A.

Suppose, now, that Φ is a maximal type over X with respect to A.

Then for some b in some elementary extension B of A, B |=
∧

Φ(b).

So Φ is included in the complete type of b over X .

By maximality, it must equal this complete type.
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The First-Order Case: Compactness Types

Types of First-Order Theories

By the Characterization Theorem, if X is the empty set of parameters,
then the question whether Φ is a type over X with respect to A

depends only on Th(A).

Types over the empty set with respect to A are also known as the
types of Th(A).

More generally, let T be any theory in a first-order language.

A type of T is a set Φ(x) of formulas of L such that T ∪ {∃x
∧

Ψ} is
consistent for every finite subset Ψ(x) of Φ.

A complete type of T is a maximal type of T .

If T happens to be a complete theory, then we can replace
“T ∪ {∃x

∧

Ψ} is consistent” by the equivalent “T ⊢∃x
∧

Ψ”.
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The First-Order Case: Compactness Types

Stone Spaces of a Structure

Let A be an L-structure.

Let X be a set of elements of A.

Let n be a positive integer.

Denote Sn(X ;A) the set of complete n-types over X with respect to A.

When A is fixed we write simply Sn(X ).

When T is a complete theory, we write Sn(T ) for the set of complete
types of T .

The sets Sn(X ;A) are known as the Stone spaces of A.
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The First-Order Case: Compactness Elementary Amalgamation

Subsection 3

Elementary Amalgamation
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The First-Order Case: Compactness Elementary Amalgamation

Amalgamation Theorems

An amalgamation theorem is a theorem of the following shape:

We are given two models B ,C of some theory
T , and a structure A (not necessarily a model
of T ), which is embedded into both B and C .

B C

A

✲

✛

The theorem states that there is a third model
D of T , such that both B and C are embed-
dable into D by embeddings which agree on A.
The embeddings may be required to preserve
certain formulas.

D

B

✲

C

✛

A

✲

✛

George Voutsadakis (LSSU) Model Theory January 2024 26 / 76



The First-Order Case: Compactness Elementary Amalgamation

Construction and Classification

There are two ways of using amalgamation.
One is to build up a structure M by:

Taking smaller structures;

Extending them;

Amalgamating the extensions.

The second way is not to construct but to classify.

We classify all the ways of extending the bottom structure A;

Then we classify the ways of amalgamating these extensions.

In favorable cases this leads to a structural classification of all the
models of a theory.
Stability theory is an example that follows this path.
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The First-Order Case: Compactness Elementary Amalgamation

Elementary Amalgamation Theorem

Theorem (Elementary Amalgamation Theorem)

Let L be a first-order language. Let B and C be L-structures and a,c

sequences of elements of B ,C , respectively, such that (B ,a)≡ (C ,c).

Then there exist an elementary extension D of B

and an elementary embedding g :C →D, such that
g(c) = a. In a picture, where f : 〈a〉 → C is the
unique embedding which takes a to c (by the Dia-
gram Lemma).

D

B

4 ✲

C

✛ g

〈a〉B
f
✲

✛

⊇

Replacing C by an isomorphic copy if necessary, we can assume that
a= c , and otherwise B and C have no elements in common.

Consider the theory

T = eldiag(B)∪eldiag(C ),

where each element names itself.
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The First-Order Case: Compactness Elementary Amalgamation

Elementary Amalgamation Theorem (Lemma)

Claim: T has a model.

By the Compactness Theorem, it suffices to show that every finite
subset of T has a model.

Let T0 be a finite subset of T .

T0 contains just finitely many sentences from eldiag(C ).

Let their conjunction be φ(a,d), where:
φ(x ,y) is a formula of L;

d consists of pairwise distinct elements in C but not in a.

Of course only finitely many variables in x occur free in φ.

If T0 has no model then eldiag(B)⊢¬φ(a,d).

But the elements d are distinct and they are not in B .

So, by the Lemma on Constants, eldiag(B)⊢∀y¬φ(a,y).

But then (B ,a) |=∀y¬φ(a,y). So (C ,c) |= ∀y¬φ(c ,y) by hypothesis.

This contradicts that φ(a,d) is in eldiag(C ).
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The First-Order Case: Compactness Elementary Amalgamation

Elementary Amalgamation Theorem (Conclusion)

Let D+ be a model of T .

Let D be the reduct D+ |L.

Now D+ |= eldiag(B).

By the Elementary Diagram Lemma, we can assume that:
D is an elementary extension of B;
bD

+
= b, for all elements b of B.

Define g(d)= dD+

, for each element d of C .

Now D+ |= eldiag(C ).

By the Elementary Diagram Lemma again, g is an elementary
embedding of C into D.

Finally
g(c) = g(a) (a= c)

= aD
+

(definition of g)
= a. (a in B)
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The First-Order Case: Compactness Elementary Amalgamation

Consequences

In the theorem a can be empty.

In this case the theorem says that any two elementarily equivalent
structures can be elementarily embedded together into some structure.

The theorem can be rephrased as follows:

If (B ,a)≡ (C ,c) and d is any sequence of elements of C , then there is
an elementary extension B ′ of B containing elements b such that
(B ′,a,b)≡ (C ,c ,d).

One of the most important consequences is the following:

If A is any structure, we can simultaneously realize all the complete
types with respect to A in a single elementary extension of A.

This is discussed in the following result.
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The First-Order Case: Compactness Elementary Amalgamation

Realization of Types in Elementary Extensions

Corollary

Let L be a first-order language and A an L-structure. Then there is an
elementary extension B of A, such that every type over dom(A) with
respect to A is realized in B .

It suffices to realize all maximal types over dom(A) with respect to A.

Let these be Pi , i <λ, with λ a cardinal.

For i <λ, let A4Ai and ai in Ai , such that pi = tpAi
(ai/domA).

Define an elementary chain (Bi : i ≤λ) by induction as follows:
B0 is A;
For each limit ordinal δ≤λ, Bδ =

⋃

i<δBi (which is an elementary
extension of each Bi by a previous theorem).
When Bi has been defined and i < λ, use the theorem to choose Bi+1

to be an elementary extension of Bi , such that there is an elementary
embedding ei :Ai →Bi+1 which is the identity on A.

Put B =Bλ. For each i <λ, ei(ai ) is a tuple in Bλ realizing pi .
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The First-Order Case: Compactness Elementary Amalgamation

The Case of Elementary Extensions

Consider the case of the theorem where a lists the elements of an
elementary substructure A of B .

In this case the theorem tells us the following.

If A,B and C are L-structures and A4B and A4C ,

D

B

4 ✲

C ′

✛ <

A
4

✲

✛

<

then there are an elementary extension D of B and an elementary
embedding g :C →D, such that, putting C ′ = g(C ), the shown
diagram of elementary inclusions commutes.
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The First-Order Case: Compactness Elementary Amalgamation

Heir-Coheir Amalgams

Consider again the diagram

D

B

4✲

C ′

✛<

A
4
✲

✛

<

We call it an heir-coheir amalgam if:

For every first-order formula ψ(x ,y ) of L and all tuples b,c from B ,C ′,

respectively, if D |=ψ(b,c), then there is a in A, such that B |=ψ(b,a).

We say also that it is an heir-coheir amalgam of B and C over A.

It is an heir-coheir amalgam of B ′′ and C ′′ over A whenever B ′′

and C ′′ are elementary extensions of A, such that there are
isomorphisms i :B ′′→B and j :C ′′ →C ′ which are the identity on A.
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The First-Order Case: Compactness Elementary Amalgamation

Example: Vector Spaces

Suppose A is an infinite vector space over a field K .

Let B and C be vector spaces with A as subspace.

Put B =B1⊕A and C =C1⊕A.

We can amalgamate B and C over A by putting D =B1⊕C1⊕A.

Suppose some equation
∑

i<m

λibi =
∑

j<n

µjcj

holds in D, where the bi are in B and the cj are in C .

Let π :D →B1⊕A be the projection along C1.

Then
∑

i<mλiπ(bi)=
∑

j<nµjπ(cj ).

But π(bi)= bi and π(cj) lies in A.

Thus, the heir-coheir condition holds for ψ :=
∑

i<mλixi =
∑

j<nµjyj .

In fact, since A is infinite, one can show that the condition holds
whenever ψ is quantifier free. Then, by quantifier elimination, it
follows that D forms an heir-coheir amalgam of B and C over A.
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The First-Order Case: Compactness Elementary Amalgamation

Amalgam of Elementary Extensions

The next theorem says that heir-coheir amalgams always exist when B

and C are elementary extensions of A.

Theorem

Let A,B and C be L-structures such that A4B and A4C .
Then there exist an elementary extension D of B and an
elementary embedding g : C → D such that the diagram
(with C ′ = g(C )) is an heir-coheir amalgam.

D

B

4✲

C ′

✛<

A
4
✲

✛

<

We assume that (domB)∩ (domC )= dom(A), so that constants
behave properly in diagrams. Then we take T to be the theory

eldiag(B)∪eldiag(C )∪ {¬ψ(b,c) :ψ is a first-order formula of L

and b is a tuple in B , such that B |= ¬ψ(b,a) for all a in A}.
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The First-Order Case: Compactness Elementary Amalgamation

Amalgam of Elementary Extensions (Cont’d)

Suppose T has no model. By the Compactness Theorem, there are:
A tuple a from A;
A tuple d of distinct elements in C but not in A;
A tuple b of elements of B;
A sentence θ(a,d) in eldiag(C );

Sentences ψi (b,a,d), i < k ;

such that:
B |= ¬ψi (b,a′,a′′), for all a′,a′′ in A;

eldiag(B)⊢ θ(a,d)→ψ0(b,a,d)∨·· ·∨ψk−1(b,a,d).

Quantifying out the constants d , by the Lemma on Constants, we get

B |= ∀y(θ(a,y)→ψ0(b,a,y)∨·· ·∨ψk−1(b,a,y)).

We also have C |= ∃yθ(a,y). So A |= ∃yθ(a,y). Hence, A |= θ(a,a′′),
for some a′′ in A. So B |= θ(a,a′′). Thus, B |=ψi(b,a,a′′), for some
i < k . This is a contradiction.

The rest of the proof is as in the Elementary Amalgamation Theorem.
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The First-Order Case: Compactness Elementary Amalgamation

The Strong Elementary Amalgamation Property

If the diagram is an heir-coheir amalgam, then the overlap of B and C

in D is precisely A.

D

B

4✲

C ′

✛<

A
4
✲

✛

<

Suppose b = g(c), for some b in B and some c in C .

By the heir-coheir property, b = a, for some a in A.

Amalgams with this minimum-overlap property are said to be strong.

In this terminology we have just shown that first-order logic has the
strong elementary amalgamation property.
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The First-Order Case: Compactness Elementary Amalgamation

Example: Vector Spaces (Cont’d)

We present a more abstract proof that D =B1⊕C1⊕A is an
heir-coheir amalgam of B =B1⊕A and C =C1⊕A over A.

Since A is infinite, A4B and A4C by quantifier elimination.

By the theorem, some vector space D ′ forms an heir-coheir amalgam
of B and C over A.

Identifying B and C with their images in D ′, we may suppose that B
and C generate D ′.

If D ′′ is the subspace of D ′ generated by B and C , then, by quantifier
elimination D ′′4D ′.

Now D ′ is a strong amalgam of B and C over A.

This means precisely that D ′ =B1⊕C1⊕A.

So D ′ is D.

Thus, D is an heir-coheir amalgam of B and C over A.
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The First-Order Case: Compactness Elementary Amalgamation

Example: Algebraically Closed Fields

Suppose that in the figure:

Both B and C are the field of complex numbers;

A is the field of reals;

D is some algebraically closed field which
amalgamates B and C over A.

D

B

✲

C

✛

A

✲

✛

Let:

i ,−i be the square roots of −1 regarded as elements of B;
j ,−j be the square roots of −1 regarded as elements of C .

Then in D, i must be identified with either j or −j .

So the amalgam is not strong.

This example shows that, if 〈a〉B in the Elementary Amalgamation
Theorem is not algebraically closed in B , then, in general, there is no
hope of making the amalgam D strong.
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The First-Order Case: Compactness Elementary Amalgamation

Algebraic Elements and Algebraically Closed Subsets

Let B be an L-structure.

Let X be a set of elements of B .

We say that an element b of B is algebraic over X if there are a
first-order formula φ(x ,y) of L and a tuple a in X , such that

B |=φ(b,a)∧∃≤nxφ(x ,a),

for some finite n.

We write aclB(X ) for the set of all elements of B algebraic over X .

If a lists the elements of X , we also write aclB(a), for aclB(X ).
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The First-Order Case: Compactness Elementary Amalgamation

Algebraically Closed Subsets

Let B be an L-structure.

Let X be a set of elements of B .

The operator acl satisfies the following properties.

1. X ⊆ aclB(X );
2. Y ⊆ aclB(X ) implies aclB(Y )⊆ aclB(X );
3. If B 4C , then aclB(X )= aclC (X ).

By Property 3, we can often write acl(X ) for aclB(X ) without danger
of confusion.

We say that a tuple b is algebraic over X if every element in b is
algebraic over X .

We say that a type Φ(x) over a set X with respect to B is algebraic

if every tuple realizing it is algebraic over X .
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The First-Order Case: Compactness Elementary Amalgamation

Non-algebraic Elements and Elementary Extensions

Lemma

Let B be an L-structure, X a set of elements of B listed as a, and b an
element of B . Suppose b 6∈ aclB(X ).

(a) There is an elementary extension A of B with an element c 6∈ dom(B),
such that (B ,a,b)≡ (A,a,c).

(b) There is an elementary extension D of B , with an elementary
substructure C containing X , such that b 6∈ dom(C ).

(a) Let c be a new constant.

Let p(x) be the complete type of b over X .

It suffices to show

eldiag(B)∪p(c)∪ {c 6= d : d ∈ dom(B)}

has a model.
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The First-Order Case: Compactness Elementary Amalgamation

Non-algebraic Elements and Elementary Extensions (b)

Suppose that eldiag(B)∪p(c)∪ {c 6= d : d ∈ dom(B)} has no model.

By the Compactness Theorem and the Lemma on Constants, there are
finitely many d0, . . . ,dn−1 in B and a formula φ(x) of p(x) (note p(x)
is closed under ∧), such that

eldiag(B)⊢∀x(φ(x)→ x = d0∨·· ·∨x = dn−1).

Hence B |=φ(b)∧∃≤nxφ(x).

We conclude that b ∈ aclB(X ), a contradiction.

(b) Take A and c as in Part (a).

Since (A,a,b)≡ (A,a,c), the Amalgamation Theorem gives us an
elementary extension D of A and an elementary embedding g :A→D,
such that g(a)= a and g(b)= c .

Then D is an elementary extension of g(B) and g(b)= c 6∈ dom(B).

So the lemma holds if g(B) and B are taken for B and C , respectively.
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The First-Order Case: Compactness Elementary Amalgamation

Strong Amalgamation over Algebraically Closed Sets

We can make the amalgam strong in the amalgamation theorem
whenever 〈a〉B is algebraically closed in B (or in C , by symmetry).

Theorem (Strong Elementary Amalgamation over Algebraically Closed Sets)

Let B and C be L-structures and a a sequence of elements in both B and
C such that (B ,a)≡ (C ,a). Then there exist an elementary extension D of
B and an elementary embedding g :C →D, such that g(a)= a and
(domB)∩g(domC )= aclB(a).

Replacing C by an isomorphic copy if necessary, we can assume that B
and C have no elements in common other than those in a.

Consider the theories

T = eldiag(B)∪eldiag(C );
T+ = T ∪ {b 6= c : b ∈ dom(B)\aclB(a) and c ∈ dom(C )\aclC (a)},

where each element names itself.
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The First-Order Case: Compactness Elementary Amalgamation

Amalgamation over Algebraically Closed Sets (Cont’d)

Suppose we have shown that T+ has a model.

Suppose D and g are defined, as in the Amalgamation Theorem, using
T+ in place of T .

Then g(a)= a.

It easily follows that g maps aclC (a) onto aclB(a).

Thus, we have aclB(a)⊆ (domB)∩g(domC ).

The sentences “b 6= c” guarantee the opposite inclusion.

It remains only to show that T+ has a model.

Assume for contradiction that T+ has no model.

By compactness, there are finite subsets Y of dom(B)\aclB(a) and Z

of dom(C )\aclC (a), such that for every elementary extension D of B
and elementary embedding g :C →D, with g(a)= a, Y ∩g(Z ) 6= ;.

Choose D and g to make Y ∩g(Z ) as small as possible.

To save notation we can assume that g is the identity so that C 4D.
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The First-Order Case: Compactness Elementary Amalgamation

Amalgamation over Algebraically Closed Sets (Cont’d)

Since Y ∩Z 6= ;, there is some b ∈Y ∩Z .

By the lemma, there is an elementary extension D ′ of D, with an
elementary substructure C ′ containing a, such that b 6∈ dom(C ′).

Applying the preceding theorem to the elementary embedding C ′ 4D ′

(the same embedding twice over), we find:
An elementary extension E of D ′;
An elementary embedding e :D ′ →E which is the identity on C ′, such
that

(domD ′)∩e(domD ′)= dom(C ′).

Now we finish the proof by showing that Y ∩e(Z )áY ∩Z .
Y ∩e(Z )⊆Y ∩Z .
Suppose d ∈Y ∩e(Z ). Then d is in C ′. Hence, e(d)= d .
b is in (Y ∩Z )\(Y ∩e(Z )).
b is in D ′ but not in C ′. So b 6∈ e(domD ′). Hence, b 6∈ e(Z ).

Thus, e contradicts the choice of Y ∩g(Z ) as minimal.
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The First-Order Case: Compactness Amalgamation and Preservation

Subsection 4

Amalgamation and Preservation
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The First-Order Case: Compactness Amalgamation and Preservation

Preservation of Existential Sentences

Let L be a language.

Let A and B be L-structures.
We write A⇛1 B to mean that:

For every first-order existential sentence φ of L,

A |=φ implies B |=φ.

Likewise we write A⇛+
1 B to mean that:

For every first-order ∃+
1

sentence of L,

A |=φ implies B |=φ.

Note that ⇛1 implies ⇛+
1
.

Note, also, that if f : 〈a〉B →C is a homomorphism, then

(C , f (a))⇛+
1 (B ,a) implies f is an embedding.
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The First-Order Case: Compactness Amalgamation and Preservation

Existential Amalgamation Theorem

Theorem (Existential Amalgamation Theorem)

Let B and C be L-structures, a a sequence of ele-
ments of B and f : 〈a〉 → C a homomorphism such that
(C , f (a))⇛1 (B ,a). Then there exist an elementary ex-
tension D of B and an embedding g : C →D, such that
g(f (a))= a. In a picture, where (C , f (a))⇛1 (B ,a).

D

B

4✲

C

✛ g

〈a〉B
f

✲

✛

⊇

The assumptions imply that f is an embedding.

So we can replace C by an isomorphic copy and assume that f is the
identity on 〈a〉B , and that 〈a〉B is the overlap of dom(B) and dom(C ).

As in the Amalgamation Theorem, it suffices to show that the theory
T = eldiag(B)∪diag(C ) has a model.

If T has no model, by compactness, there is a conjunction φ(a,d) of
finitely many sentences in diag(C ), such that (B ,a) |= ¬∃yφ(a,y).

Since φ(a,y) is quantifier-free and (C ,a)⇛1 (B ,a), we infer that
(C ,a) |=¬∃yφ(a,y). This contradicts that φ(a,d) is true in C .
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The First-Order Case: Compactness Amalgamation and Preservation

The case of Empty Tuple

Since we allow structures to be empty, the tuple a in the theorem can
be the empty tuple.

Corollary

Let B and C be L-structures such that C ⇛1 B . Then C is embeddable in
some elementary extension of B .

Amalgamation theorems like the preceding theorem tend to spawn
offspring of the following kinds:

(i) Criteria for a structure to be expandable or extendable in certain ways;
(ii) Syntactic criteria for a formula or set of formulas to be preserved under

certain model theoretic operations (results of this kind are called
preservation theorems);

(iii) Interpolation theorems.

We provide examples.
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The First-Order Case: Compactness Amalgamation and Preservation

Extendability of a Structure to a Model

Let T be a theory in a first-order language L.

T∀ is the set of all ∀1 sentences of L which are consequences of T .

Corollary

Let T be a theory in a first-order language L. Then the models of T∀ are
precisely the substructures of models of T .

Any substructure of a model of T is certainly a model of T∀ by a
previous result.

Conversely, let C be a model of T∀.

We must show that C is a substructure of a model of T .

By the corollary, it suffices to find a model B of T such that C ⇛1 B .

We find B as follows.
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The First-Order Case: Compactness Amalgamation and Preservation

Extendability of a Structure to a Model (Cont’d)

Let U be the set of all ∃1 sentences φ of L, such that C |=φ.

Claim: T ∪U has a model.

If not, then by the compactness theorem, there is some finite set
{φ0, . . . ,φk−1} of sentences in U , such that T ⊢¬φ0∨·· ·∨¬φk−1.

¬φ0∨·· ·¬φk−1 is logically equivalent to an ∀1 sentence θ.

Moreover, T ⊢ θ. So θ ∈T∀.

Hence, C |= θ.

This is absurd, since C |=φi , for each i < k .

So T ∪U has a model as claimed.

Let B+ be any model of T ∪U .

Let B the L-reduct of B+.
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The First-Order Case: Compactness Amalgamation and Preservation

Characterization of Formulas Preserved by Substructures

Theorem (Łoś-Tarski Theorem)

Let T be a theory in a first-order language L and Φ(x) a set of formulas of
L. (The sequence of variables x need not be finite.) Then the following are
equivalent:

(a) If A and B are models of T , A⊆B , a is a sequence of elements of A
and B |=

∧

Φ(a), then A |=
∧

Φ(a). (Φ is preserved in substructures for
models of T .)

(b) Φ is equivalent modulo T to a set Ψ(x) of ∀1 formulas of L.

(b)⇒(a) By a previous corollary.

(a)⇒(b) Suppose (a) holds.

We first prove (b) under the assumption that Φ is a set of sentences.

Define
Ψ := (T ∪Φ)∀.
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The First-Order Case: Compactness Amalgamation and Preservation

Formulas Preserved by Substructures (Cont’d)

By the corollary, among models of T , the models of Ψ are precisely
the substructures of models of Φ.

By (a), every such substructure is itself a model of Φ.

So Φ and Ψ are equivalent modulo T .

We turn to the case where x is not empty.

Form the language L(c) by adding new constants c to L.

Suppose Φ(x) is preserved in substructures for L-structures which are
models of T . Then it is not hard to see that Φ(c) must be preserved
in substructures for L(c)-structures which are models of T .

But Φ(c) is a set of sentences.

So the previous argument shows that Φ(c) is equivalent modulo T to
a set Ψ(c) of ∀1 sentences of L(c).

By the Lemma on Constants, T ⊢∀x(
∧

Φ(x)↔
∧

Ψ(x)).

Thus, Φ(x) is equivalent to Ψ(x) modulo T , in the language L(c).

Hence, they are also equivalent in the language L.
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The First-Order Case: Compactness Amalgamation and Preservation

Preservation Theorems for Single Formulas

If Φ in the Łoś-Tarski Theorem is a single formula, then one more
application of compactness boils Ψ down to a single ∀1 formula.

In short, modulo any first-order theory T , the formulas preserved in
substructures are precisely the ∀1 formulas.

Note that ∃1 formulas are up to logical equivalence just the negations
of ∀1 formulas.

Corollary

If T is a theory in a first-order language L and φ is a formula of L, then the
following are equivalent:

(a) φ is preserved by embeddings between models of T ;

(b) φ is equivalent modulo T to an ∃1 formula of L.

The full dual of the Łoś-Tarski Theorem is also true, with sets of ∃1

formulas rather than single ∃1 formulas.
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The First-Order Case: Compactness Amalgamation and Preservation

An Interpolation Theorem

The Interpolation Theorem associated with the Existential
Amalgamation Theorem is an elaboration of the Łoś-Tarski Theorem
(which it obviously implies, in the case of single formulas).

Theorem

Let T be a theory in a first-order language L and let φ(x), χ(x) be
formulas of L. Then the following are equivalent:

(a) Whenever A⊆B, A and B are models of T , a is a tuple in A and B |=φ(a),
then A |=χ(a).

(b) There is an ∀1 formula ψ(x) of L such that T ⊢∀x(φ→ψ)∧∀x(ψ→χ).
(ψ is an “interpolant” between φ and χ.)

The proof is an adaptation of the Łoś-Tarski Theorem.
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The First-Order Case: Compactness Amalgamation and Preservation

Variants of Existential Amalgamation

The Existential Amalgamation Theorem has infinitely many variants
for different classes of formulas, with only trivial changes in the proof.

Each of these variants has its own preservation and interpolation
theorems.

Two variants are given without proof.

Theorem

Let L be a first-order language, and let B and C be L-structures, a a
sequence of elements of C and f : 〈a〉C →B a homomorphism such that
(C ,a)⇛+

1 (B , f (a)). Then there exist an elementary extension D of B and
a homomorphism g :C →D which extends f .
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The First-Order Case: Compactness Amalgamation and Preservation

Variants of Existential Amalgamation (Cont’d)

Let L be a first-order language.

Let A,B be L-structures.
We write A⇛2 B to mean that:

For every ∃2 sentence φ of L,

A |=φ implies B |=φ.

Equivalently, A⇛2 B if and only if:
For every ∀2 sentence φ of L,

B |=φ implies A |=φ.

Theorem

Let L be a first-order language, B and C L-structures, a a sequence of
elements of B and f : 〈a〉B →C an embedding such that
(C , f (a))⇛2 (B ,a). Then there exist an elementary extension D of B and
an embedding g :C →D, such that g preserves all ∀1 formulas of L.
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The First-Order Case: Compactness Amalgamation and Preservation

Formulas Preserved by Unions of Chains

Theorem (Chang-Łoś-Suszko Theorem)

Let T be a theory in a first-order language L, and Φ(x) a set of formulas of
L. Then the following are equivalent:

(a)
∧

Φ is preserved in unions of chains (Ai : i <γ) whenever
⋃

i<γAi and
all the Ai , i < γ, are models of T .

(b) Φ is equivalent modulo T to a set of ∀2 formulas of L.

(b)⇒(a) By a previous theorem.

(a)⇒(b) Assume (a) holds. Just as in the proof of the Łoś-Tarski
Theorem, we can assume that Φ is a set of sentences.

Let Ψ be the set of all ∀2 sentences of L which are consequences of
T ∪Φ. We must show that T ∪Ψ⊢Φ.

For this it will be enough to prove that every model of T ∪Ψ is
elementarily equivalent to a union of some chain of models of T ∪Φ

which is itself a model of T .
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The First-Order Case: Compactness Amalgamation and Preservation

Formulas Preserved by Unions of Chains (Cont’d)

Let A0 be any model of T ∪Ψ. We construct an elementary chain
(Ai : i <ω), extensions Bi ⊇Ai and embeddings gi :Bi →Ai+1 so that
the following diagram commutes:

B0 B1 B2

A0
4

✲

⊆
✲

A1
4

✲

⊆
✲

g
0✲

A2
4

✲

⊆
✲

g
1✲

· · ·

✲

Requirement: For each i <ω, Bi |=T ∪Φ and (Bi ,ai )⇛1 (Ai ,ai) when
ai lists all the elements of Ai .

The diagram is constructed in two steps, assuming that Ai has already
been chosen.

One first extends Ai to a structure Bi satisfying the Requirement;
Then, having Ai and Bi , we construct Ai+1.
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The First-Order Case: Compactness Amalgamation and Preservation

Formulas Preserved by Unions of Chains (Cont’d)

Given Ai , we construct Bi .
We know A0 4Ai . So Ai |= (T ∪Φ)∀2 , where (T ∪Φ)∀2 denotes the
set of all ∀2 consequences of T ∪Φ.
We want to find Bi so that:

Bi |=T ∪Φ;
Ai ⊆Bi ;
(Bi ,ai )⇛1 (Ai ,ai ).

By the preceding Variant of Existential Amalgamation, it suffices to
find a model C of T ∪Φ, such that Ai ⇛2 C .
Let U be the set of all ∃2 sentences φ, such that Ai |=φ.
We must show that T ∪Φ∪U has a model.
If not, by compactness, there exists finite {φ0, . . . ,φk−1} ⊆U , such that
T ∪Φ⊢¬φ1∨·· ·∨¬φk−1. Since all φi ’s are ∃2, the sentence
¬φ1∨·· ·¬φk−1 is a equivalent to a ∀2 sentence θ. But T ∪Φ⊢ θ.
Hence, θ ∈ (T ∪Φ)∀2 . Therefore, Ai |= θ.
This contradicts A |=φi , for all i < k .
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The First-Order Case: Compactness Amalgamation and Preservation

Formulas Preserved by Unions of Chains (Cont’d)

Now, by the Existential Amalgamation Theorem and the second part
of the Requirement, there are an elementary extension Ai+1 of Ai and
an embedding gi :Bi →Ai+1, such that g is the identity on Ai .

In the diagram we can replace each Bi by its image under gi .

Thus, we assume that all the maps are inclusions.

Then
⋃

i<ωAi and
⋃

i<ωBi are the same structure C .

By the Tarski- Vaught Elementary Chain Theorem A0 4C .

So C is a model of T and the union of a chain of models Bi of T ∪Φ,
and A0 is elementarily equivalent to C , as required.

Just as with the Łoś-Tarski Theorem, using compactness, we get:

A formula φ of L is preserved in unions of chains (where all the
structures are models of T ) if and only if φ is equivalent modulo T to
a ∀2 formula of L.
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The First-Order Case: Compactness Expanding the Language

Subsection 5

Expanding the Language
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The First-Order Case: Compactness Expanding the Language

Expansion Theorem

Theorem

Let L1 and L2 be first-order languages, L= L1∩L2, B an L1-structure, C an
L2-structure, and a a sequence of elements of B and of C , such that
(B |L,a)≡ (C |L,a). Then there are an (L1 ∪L2)-structure D such that
B 4D |L1

, and an elementary embedding g :C →D |L2
, such that g(a)= a.

Note that an almost invisible alteration of the proof of the Elementary
Amalgamation gives a weak version of the theorem we want.

Under our hypotheses, there are an elementary extension D of B and
an elementary embedding g :C |L→D |L, such that g(a)= a.

(It suffices to show that eldiag(B)∪eldiag(C |L) has a model.)
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The First-Order Case: Compactness Expanding the Language

Expansion Theorem (Cont’d)

Put B0 =B , C0 =C .

Use the weak version of the theorem, alternately from this side and
from that, to build up a commutative diagram

B0

4
✲ B1

4
✲ B2

4
✲ · · ·

〈a〉B

⊆
✲

C0
4

✲

✲

✲

C1
4

✲

✲

✲

· · ·

✲

where the maps from Bi to Ci and from Ci to Bi+1 are elementary
embeddings of the L-reducts.

The diagram induces an isomorphism e :
⋃

i<ωBi |L→
⋃

i<ωCi |L.
⋃

i<ωBi |L is an L1-structure.
⋃

i<ωCi |L is an L2-structure.

Use e and
⋃

i<ωCi |L to expand
⋃

i<ωBi |L to an (L1 ∪L2)-structure D.

By the elementary chain theorem, D is as required.
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The First-Order Case: Compactness Expanding the Language

A Characterization Theorem

The theorem generates characterization and interpolation theorems.

Suppose L and L+ are first-order languages with L⊆ L+.

If T is an L+-theory, TL denotes the set of all consequences of T in L.

Corollary

Let L and L+ be first-order languages with L⊆ L+ and T a theory in L+.
Let A be an L-structure. Then A |=TL if and only if for some model B of
T , A4B |L.

First, suppose B |=T and A4B |L.

Then B |L|=TL. Hence, A |=TL.

Assume, conversely, that A |=TL.

We show, there exists a model B of T , such that (B |L,a)≡ (A,a).
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The First-Order Case: Compactness Expanding the Language

A Characterization Theorem (Cont’d)

We find a model B of T , such that (B |L,a)≡ (A,a).

Consider the theory eldiag(A)∪T .

It suffices to show that it has a model.

If not, by compactness, there exists finite
{φ0(a), . . . ,φk−1(a)} ⊆ eldiag(A), such that

T ⊢¬φ0(a)∨·· ·∨¬φk−1(a).

Thus, by definition, ¬φ0(a)∨·· ·∨¬φk−1(a) ∈TL.

By hypothesis, A |=TL.

Hence, A |= ¬φ0(a)∨·· ·∨¬φk−1(a).

This contradicts φi (a) ∈ eldiag(A), for all i < k .
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The First-Order Case: Compactness Expanding the Language

An Interpolation Theorem

Theorem

Let L1,L2 be first-order languages, L= L1∩L2 and T1,T2 theories in L1,L2,
respectively, such that T1∪T2 has no model. Then there is some sentence
ψ of L, such that T1 ⊢ψ and T2 ⊢¬ψ.

Take Ψ= (T1)L.

By compactness, it suffices to show that Ψ∪T2 has no model.

Towards a contradiction, let C be a model of Ψ∪T2.

By the preceding corollary there is an L1-structure B , such that
C |L4B |L and B |=T1. Then B |L≡C |L.

By the preceding theorem, there are an (L1∪L2)-structure D, such
that B 4D |L1

and an elementary embedding g :C →D |L2
.

Now, on the one hand, B 4D |L1
. So D |=T1.

On the other hand, g is elementary. So D |=T2.

Thus T1∪T2 does have a model, a contradiction.
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The First-Order Case: Compactness Expanding the Language

Craig’s Interpolation Theorem

Corollary (Craig’s Interpolation Theorem)

Let L1,L2 be first-order languages, L= L1∩L2 and φ,χ sentences of L1,L2,
respectively, such that φ⊢ χ. Then there is a sentence ψ of L1∩L2, such
that φ⊢ψ and ψ⊢ χ.

By hypothesis, {φ,¬χ} is inconsistent.

Thus, by the theorem, there exists a sentence ψ of L, such that

φ⊢ψ and ¬χ⊢¬ψ.

The second is equivalent to ψ⊢ χ.
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The First-Order Case: Compactness Expanding the Language

A Preservation Theorem

This preservation theorem talks about formulas which are preserved
under taking off symbols and putting them back on again.

Theorem

Let L and L+ be first-order languages with L⊆ L+, let T be a theory in L+

and φ(x) a formula of L+. Then the following are equivalent:

(a) If A and B are models of T and A |L=B |L, then for all tuples a in A,
A |=φ(a) if and only if B |=φ(a).

(b) φ(x) is equivalent modulo T to a formula ψ(x) of L.

From the Expansion Theorem, as a corresponding result followed from
the Existential Amalgamation Theorem.

The implication (a)⇒(b) in the case where φ is an unnested atomic
formula R(x0, . . . ,xn−1) or F (x0, . . . ,xn−1)= xn is known as Beth’s

Definability Theorem.
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The First-Order Case: Compactness Expanding the Language

Beth’s Definability Theorem

Let L and L+ be first-order languages with L⊆ L+.

Let T be a theory in L+.

A relation symbol R of T+ is implicitly defined by T in terms of L

if whenever A and B are models of T with A |L=B |L, then RA =RB .

A function symbol F of T+ is implicitly defined by T in terms of L

if whenever A and B are models of T with A |L=B |L, then, for all a in
A, FA(a)= FB(a).

R is explicitly defined by T in terms of L if T has some
consequence of the form ∀x(Rx ↔ψ), where ψ(x) is a formula of L.

F is explicitly defined by T in terms of L if T has some
consequence of the form ∀xy(F (x)= y ↔ψ), where ψ(x ,y) is in L.

It is immediate that, if R (or F ) is explicitly defined by T in terms of
L, then it is implicitly defined by T in terms of L.

Beth’s Theorem states the converse: Relative to a first-order theory,
implicit definability equals explicit definability.

George Voutsadakis (LSSU) Model Theory January 2024 72 / 76



The First-Order Case: Compactness Expanding the Language

Padoa’s Method

The notion of implicit definability makes sense in a broader context.

Let L and L+ be languages (not necessarily first-order), with L⊆ L+.

Let T a theory in L+.

Let R a relation symbol of L+.

We say that R is implicitly defined by T in terms of L if, whenever
A and B are models of T with A |L=B |L, then RA =RB .

Padoa’s method for proving the undefinability of R by T in terms of
L involves producing models A and B of T , such that

A |L=B |L;
RA 6=RB .

If L and L+ are not first-order, Beth’s Theorem may fail.
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The First-Order Case: Compactness Expanding the Language

A Refinement of the Łoś-Tarski Theorem

Local theorems are theorems of the following form.
If “enough” finitely generated substructures of a structure A belong to
a certain class K, then A also belongs to K.

Theorem

Let L be a first-order language and K a PC′
∆

class of L-structures. Suppose
that K is closed under taking substructures. Then K is axiomatized by a
set of ∀1 sentences of L.

The theorem refines the Łoś-Tarski Theorem.

Its proof is a refinement of the earlier proof.

Let K be the PC′
∆

class {BP :B |=U}.

Define

T ∗ = {φ ∀1 sentence in L :B |=U implies BP |=φ}.

Every structure in K is a model of T ∗.
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The First-Order Case: Compactness Expanding the Language

A Refinement of the Łoś-Tarski Theorem (Cont’d)

Claim: Every model A of T ∗ is in K.

Consider the theory diag(A)∪ {P(a) : a ∈ domA}∪U .

Claim: This theory has a model.

If not, then by the Compactness Theorem, there are a conjunction
ψ(x) of literals of L, and a tuple a of distinct elements a0, . . . ,am−1 of
A, such that A |=ψ(a) and U ⊢P(a0)∧·· ·∧P(am−1)→¬ψ(a).

By the lemma on constants, U ⊢∀x(Px0∧·· ·∧Pxm−1 →¬ψ(x)).

Hence the sentence ∀x¬ψ(x) is in T ∗. So it must be true in A.

This contradicts the fact that A |=ψ(a) and proves the claim.

By the claim there is a model D of the theory.

By the Diagram Lemma, A is embeddable in DP .

But DP is in K and K is closed under substructures.

Since K is closed under isomorphic copies, it follows that A is in K.
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The First-Order Case: Compactness Expanding the Language

Example: Faithful Linear Representations of Groups

Let n be a positive integer and G a group. We say that G has a
faithful n-dimensional linear representation if G is embeddable in
GLn(F ), the group of invertible n-by-n matrices over some field F .

Corollary

Let n be a positive integer and G a group. Suppose that every finitely
generated subgroup of G has a faithful n-dimensional linear representation.
Then G has a faithful n-dimensional linear representation.

Let K be the class of groups with faithful n-dimensional linear
representations. We note that K is closed under substructures.

There is a theory U in a suitable first-order language, such that K is
precisely the class {BP :B |=U}. By the theorem, K is axiomatized by
an ∀1 theory T . If G is not in K, then there is some sentence ∀xψ(x)
in T , with ψ quantifier-free, such that G |= ∃x¬ψ(x). Find a tuple a

in G so that G |= ¬ψ(a). Then the subgroup 〈a〉G is not in K.
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