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The Countable Case Fraïssé’s Construction

The Age of a Structure

Let L be a signature.

Let D be an L-structure.

The age of D is the class K of all finitely generated structures that
can be embedded in D.

What interests us is not the structures in K but their isomorphism
types.

So we shall also call a class J the age of D if the structures in J are,
up to isomorphism, exactly the finitely generated substructures of D.

For example, saying that D has “countable age” will mean that D has
just countably many isomorphism types of finitely generated
substructure.
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The Countable Case Fraïssé’s Construction

Ages and Properties

We call a class an age if it is the age of some structure.

If K is an age, then clearly K is non-empty and has the following two
properties:

1. (Hereditary Property, HP) If A ∈K and B is a finitely generated
substructure of A then B is isomorphic to some structure in K.

2. (Joint Embedding Property, JEP)

If A,B are in K then there is C in K, such that both
A and B are embeddable in C .

A

C

✲

B

✲
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The Countable Case Fraïssé’s Construction

Sufficiency of the Condition (Construction)

Theorem

Suppose L is a signature and K is a non-empty finite or countable set of
finitely generated L-structures which has the HP and the JEP. Then K is
the age of some finite or countable structure.

List the structures in K , possibly with repetitions, as (Ai : i <ω).
Define a chain (Bi : i <ω) of structures isomorphic to structures in K,
as follows:

First, put B0 =A0.
Suppose Bi has been chosen.
Use the joint embedding property to find a structure B ′ in K such that
both Bi and Ai+1 are embeddable in B ′.
Take Bi+1 to be an isomorphic copy of B ′ which extends Bi .

Finally, let C be the union
⋃
i<ωBi .

C is the union of countably many structures which are at most
countable. So C is at most countable.
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The Countable Case Fraïssé’s Construction

Sufficiency of the Condition (Propeties)

We must show that K is the age of C .

By construction every structure in K is embeddable in C .

Let A be any finitely generated substructure of C .

The finitely many generators of A lie in some Bi .

So A is isomorphic to a structure in K (by the hereditary property).

So K is the age of C .

The theorem holds even if L has function symbols.

But one way to guarantee that K is at most countable is to assume
that L is a finite signature with no function symbols.

When there are no function symbols and only finitely many constant
symbols, a finitely generated structure is the same thing as a finite
structure.
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The Countable Case Fraïssé’s Construction

The Amalgamation Property

All infinite linear orderings have exactly the same age, namely the
finite linear orderings.

To investigate the sense in which the finite linear orderings “tend to”
the rationals rather than, say, the ordering of the integers, Fraïssé
singled out the amalgamation property.

(Amalgamation Property, AP)

If A,B ,C are in K and e : A → B , f : A → C

are embeddings, then there are D in K and em-
beddings g : B → D and h : C → D, such that
ge = hf .

B

A

e ✲

D

g
✲

C
h

✲
f ✲

Warning: In general JEP is not a special case of AP.

Think, for instance, of the class of fields.
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The Countable Case Fraïssé’s Construction

Linear Orderings and the Amalgamation Property

Claim: The class of all finite linear orderings has the amalgamation
property.

The simplest way to see this is to start with the case where:

A is a substructure of B and C ;
The maps e :A→B and f :A→C are inclusions;
A is exactly the overlap of B and C .

In this case we can form D as an extension of B .

Working by induction on the cardinality of C , we add the elements of
C one by one in the appropriate places.

The general case then follows by diagram chasing.
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The Countable Case Fraïssé’s Construction

Ultrahomogeneity

A structure D is called ultrahomogeneous if every isomorphism
between finitely generated substructures of D extends to an
automorphism of D.

The usually terminology is homogeneous, but there are other notions
that are known by this name.
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The Countable Case Fraïssé’s Construction

Fraïssé’s Theorem

Theorem (Fraïssé’s Theorem)

Let L be a countable signature and let K be a non-empty finite or
countable set of finitely generated L-structures which has HP, JEP and AP.
Then there is an L-structure D, unique up to isomorphism, such that:

1. D has cardinality ≤ω;

2. K is the age of D;

3. D is ultrahomogeneous.

Sometimes, the structure D of the theorem is referred to as the
universal homogeneous structure of age K.

We will call it the Fraïssé limit of the class K.

The Fraïssé limit of the class K is only determined up to isomorphism.

The rest of this section is devoted to the proof of Fraïssé’s Theorem.
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The Countable Case Fraïssé’s Construction

Weak Homogeneity

A structure D is weakly homogeneous if it has the property:

If A,B are finitely generated substructures of D,
A⊆B and f :A→D is an embedding, then there
is an embedding g :B →D which extends f .

A
f✲ D

B

⊆
❄ g

✲

If D is ultrahomogeneous, then clearly D is weakly homogeneous.
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The Countable Case Fraïssé’s Construction

Universality Lemma

Lemma

Let C and D be L-structures which are both at most countable. Suppose
the age of C is included in the age of D, and D is weakly homogeneous.
Then C is embeddable in D. In fact any embedding from a finitely
generated substructure of C into D can be extended to an embedding of C
into D.

Let f0 :A0 →D be an embedding of a finitely generated substructure
A0 of C into D. We extend f0 to an embedding fω :C →D.

C is at most countable. So it can be written as a union
⋃
n<ωAn of a

chain of finitely generated substructures, starting with A0.

By induction on n we define an increasing chain of embeddings
fn :An →D.
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The Countable Case Fraïssé’s Construction

Universality Lemma (Cont’d)

By induction on n we define an increasing chain of embeddings
fn :An →D.

The first embedding f0 is given.
Suppose fn has just been defined. The age of D includes that of C . So
there is an isomorphism g :An+1 →B, where B is a substructure of D.
Then fn ·g

−1 embeds g(An) into D. By weak homogeneity, this
embedding extends to an embedding h :B →D.
Let fn+1 :An+1 →D be hg . Then fn ⊆ fn+1.

This defines the chain of maps fn.

Finally, take fω to be the union of the fn, n <ω.

Based on the lemma, we say that a countable structure D of age K is
universal (for K) if every finite or countable structure of an age that
is included in K is embeddable in D.

The lemma tells us that countable weakly homogeneous structures are
universal for their age.
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The Countable Case Fraïssé’s Construction

Uniqueness Proof of Fraïssé’s Theorem

Lemma

(a) Let C and D be L-structures with the same age. Suppose that C and
D are both at most countable and are both weakly homogeneous.
Then C is isomorphic to D.
In fact if A is a finitely generated substructure of C and f :A→D is
an embedding, then f extends to an isomorphism from C to D.

(b) A finite or countable structure is ultrahomogeneous (and hence is the
Fraïssé limit of its age) if and only if it is weakly homogeneous.

(a) Express C and D as the unions of chains (Cn : n<ω) and (Dn : n <ω)
of finitely generated substructures.
Define a chain (fn : n<ω) of isomorphisms between finitely generated
substructures of C and D, so that, for each n:

The domain of f2n includes Cn;
The image of f2n+1 includes Dn.

This is done as in the proof of the previous lemma.
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The Countable Case Fraïssé’s Construction

Uniqueness Proof of Fraïssé’s Theorem (Cont’d)

Then the union of the fn is an isomorphism from C to D.

To get the last sentence of Part (a), take:

C0 to be A;
D0 to be f (A).

Then proceed with the construction of the chain (fn : n <ω).

(b) We have already noted that ultrahomogeneous structures are weakly
homogeneous.

The converse follows at once from Part (a), taking C =D.
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The Countable Case Fraïssé’s Construction

The Uncountable Case: Counterexample

If C and D are not countable, then Part (a) of the lemma fails.

Example: Let η be the order type of the rationals.

Consider:

The order type η ·ω1 (=ω1 copies of η laid in a row);
Its mirror image ξ.

Both η ·ω1 and ξ are weakly homogeneous.

Both have the same age, namely the set of all finite linear orderings.

But clearly they are not isomorphic:

In η ·ω1 every element has uncountably many successors;
This fails in ξ.
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The Countable Case Fraïssé’s Construction

The Uncountable Case: A Positive Result

Lemma

Suppose C and D are weakly homogeneous L-structures with the same age.
Then C is back-and-forth equivalent to D. So C ≡∞,ω D.
If, moreover, C ⊆D, then, for every c in C , (C ,c)≡∞,ω (D ,c). So C 4D.

The lemma constructs a back-and-forth system from C to D.

By a previous lemma, C and C are back-and-forth equivalent.

A previous theorem gives the connection with L∞,ω.
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The Countable Case Fraïssé’s Construction

Existence Proof of Fraïssé’s Theorem (Lemma)

Lemma

Let J be a set of finitely generated L-structures, and (Di : i <α) a chain of
L-structures. If, for each i <α, the age of Di is included in J, then the age
of the union

⋃
i<αDi is also included in J. If each Di has age J, then

⋃
i<αDi has age J.

Let A be in the age of
⋃
i<αDi .

Then A is a finitely generated substructure of
⋃
i<αDi .

The set of generators belongs to some Dj , j <α.

Thus, A is in the age of Dj .

By hypothesis, A is in J.

For the second statement, let A be in J.

By hypothesis, A is in the age of Di .

Thus, A is in the age of
⋃
i<αDi .
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The Countable Case Fraïssé’s Construction

Existence Proof of Fraïssé’s Theorem

We return to the Existence Proof of Fraïssé’s Theorem.

Henceforth we assume that K is non-empty, has HP, JEP and AP, and
contains at most countably many isomorphism types of structure.

We suppose without loss that K is closed under isomorphic copies.
We construct a chain (Di : i <ω) of structures in K, such that:

If A and B are structures in K, with A⊆B, and there is an embedding
f :A→Di for some i <ω, then there are j > i and an embedding
g :B →Dj which extends f . We take D to be the union

⋃
i<ωDi .

Then the age of D is included in K by the lemma.

In fact the age of D is exactly K. Suppose A is in K. Then by JEP,
there is B in K such that A⊆B and D0 is embeddable in B . By the
displayed condition, the identity map on D0 extends to an embedding
of B in some Dj . Thus, B and A lie in the age of D.

Thus, the condition tells us that D is weakly homogeneous.

So by a previous lemma, it is ultrahomogeneous of age K.
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The Countable Case Fraïssé’s Construction

Existence Proof of Fraïssé’s Theorem (The Chain)

It remains to construct the chain.

Let P be a countable set of pairs of structures (A,B) such that:

A,B ∈K;
A⊆B.

We can choose P so that it includes a representative of each
isomorphism type of such pairs.

Take a bijection π :ω×ω→ω such that π(i , j)≥ i , for all i and j .

Let D0 be any structure in K.
Suppose Dk has been chosen.
List as ((fkj ,Akj ,Bkj ) : j <ω) the triples (f ,A,B) where:

(A,B) ∈P;

f :A→Dk .

Construct Dk+1 by the amalgamation property, so that if k = π(i , j)
then fij extends to an embedding of Bij into Dk+1.
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The Countable Case Fraïssé’s Construction

Necessity of the Conditions

Theorem

Let L be a countable signature and D a finite or countable structure which
is ultrahomogeneous. Let K be the age of D.

K is non-empty;

K has at most countably many isomorphism types of structure;

K satisfies HP, JEP and AP.

We already know everything except that K satisfies amalgamation.

We may assume K contains all finitely generated substructures of D.

Let A,B ,C be in K and e :A→B , f :A→C be embeddings.

Then there are isomorphisms iA :A→A′, iB :B →B ′ and iC :C →C ′

where A′,B ′,C ′ are substructures of D.
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The Countable Case Fraïssé’s Construction

Necessity of the Conditions (Cont’d)

So iA ·e−1 embeds e(A) into D.
By weak homogeneity there is an
embedding jB :B →D which ex-
tends iA ·e−1.
So the bottom left quadrilateral
in the diagram commutes.

〈jB(B)∪ jC (C )〉

jB(B) ⊆

✲

jC (C )

✛
⊇

B

i B✲
A′ ⊆

✲✛

⊇
C

✛jC

e(A)

✛
⊇

f (A)
⊆

✲

A

iA

✻

f

✲✛

e

Likewise, the bottom right quadrilateral commutes.

The top square also commutes.

Hence, the outer maps give the needed amalgam.
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The Countable Case Omitting Types

Subsection 2

Omitting Types
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The Countable Case Omitting Types

Realizing and Omitting Sets of Formulas

Let L be a first-order language and T a theory in L.

Let Φ(x) be a set of formulas of L, with x = (x0, . . . ,xn−1).

We say that Φ is realized in an L-structure A if there is a tuple a of
elements of A, such that A |=Φ(a).

We say A omits Φ if Φ is not realized in A.

We look at situations in which T has a model that omits Φ.
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The Countable Case Omitting Types

Example

Let L be a first-order language and T a theory in L.

Let Φ(x) be a set of formulas of L, with x = (x0, . . . ,xn−1).

Suppose the following holds.
There is a formula θ(x) of L such that:

T ∪ {∃xθ} has a model;

For every formula φ(x) in Φ, T ⊢∀x(θ→φ).

If T is a complete theory, then the condition implies that T ⊢∃xθ.

So T certainly has no model that omits Φ.

The next theorem implies that when the language L is countable, the
converse holds too, even if T is not a complete theory.

If every model of T realizes Φ then the condition is true.
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The Countable Case Omitting Types

Example: A Type Omitted

Let L be a first-order language whose signature consists of unary
relation symbols Pi , i <ω.
Let T be the theory in L which consists of all the sentences:

∃xP0(x);
∃x¬P0(x);
∃x(P0(x)∧P1(x));
∃x(P0(x)∧¬P1(x));
∃x(¬P0(x)∧P1(x));
etc. (through all the possible combinations).

For every s ⊆ω, define

Φs(x)= {Pi (x) : i ∈ s}∪ {¬Pi (x) : i 6∈ s}.

Given a structure A, define, for all s ⊆ω,

|Φs(A)| = |{a ∈ dom(A) :Φs(a)}|.
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The Countable Case Omitting Types

Example: A Type Omitted (Cont’d)

Claim: If A is a model of T , the A is determined up to isomorphism
by {|Φs (A)| : s ∈ω}.

Suppose A and B are models of T , such that |Φs(A)| = |Φs(B)|, s ⊆ω.

For all s ⊆ω, let fs :Φs(A)→Φs(B) be a bijection.

Then f =
⋃
s⊆ω fs is an isomorphism from A to B .

Claim: Let s ⊆ω, A a model of T , with |A| ≤ 2ω. There exists an
elementary extension A4B , such that |B | = 2ω and |Φs(B)| = 2ω.

Let B ′ be a set disjoint from A, such that |B ′| = 2ω.

Construct B as follows:
dom(B)= dom(A)∪B ′;
For all b ∈B and all i <ω,

PB
i (b) iff (b ∈A and PA

i
(b)) or (b 6∈A and i ∈ s).

Then, by the Elementary Diagram Lemma, it is clear that A4B .
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The Countable Case Omitting Types

Example: A Type Omitted (Cont’d)

Claim: Let A be a model of T , with |A| ≤ 2ω.

There exists an elementary extension A4C , such that |C | = 2ω and
|Φs(C )| = 2ω, for all s ⊆ω.

By repeated application of the preceding claim.

Claim: T is complete.

Suppose A, B are models of T .

By the Downward Löwenheim-Skolem Theorem, there exist models A′

and B ′, such that A′ 4A and B ′ 4B , with

|A′
| ≤ 2ω and |B ′

| ≤ 2ω.

By the last claim, there exist models A′′ and B ′′, such that:
A′

4A′′ and B ′
4B ′′;

|A′′| = 2ω and |B ′′| = 2ω;
For all s ⊆ω, |Φs(A

′′)| = |Φs(B
′′)| = 2ω.

By the first claim, it follows that A′′ ∼=B ′′.

Therefore, A≡B . So T is complete.
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The Countable Case Omitting Types

Example: A Type Omitted (Cont’d)

Recall that, is s is any subset of ω,

Φs(x)= {Pi (x) : i ∈ s}∪ {¬Pi (x) : i 6∈ s}.

T has a countable model A.

A must omit at least one of the continuum many sets Φs , s ⊆ω.

By symmetry, if s ⊆ω, there must be a countable model of T which
omits Φs .

However, a model of T cannot omit all the sets Φs , or it would be
empty.

Note that it takes infinitely many first-order formulas to specify Φs .

So, if Φ is Φs , for some s ⊆ω, then there does not exist a formula θ,
as in the previous example.
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The Countable Case Omitting Types

Supported and Principal Types

Let L be a first-order language and T a theory in L.

Let Φ(x) be a set of formulas of L.

We say that a formula θ of L is a support of Φ over T if:

T ∪ {∃xθ} has a model;
For every formula φ(x) in Φ, T ⊢∀x(θ→φ).

If a support θ of Φ is in Φ, we say that θ generates Φ over T .

We say Φ(x) is a supported type over T if Φ has a support over T .

We say that Φ is a principal type over T if Φ has a generator over T .

The set Φ is said to be unsupported (resp. non-principal) over T if
it is not a supported (resp. principal) type over T .
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The Countable Case Omitting Types

Complete Formulas

Note that if p(x) is a complete type over the empty set, then a
formula φ(x) of L is a support of p if and only if it generates p.

Suppose p(x) is a complete type over the empty set.

Let φ(x) be a support of p(x).

Then T ∪ {∃xφ(x)} is consistent.

So T ∪ {∃x
∧
Ψ(x) :Ψ⊆ω p(x)}∪ {∃xφ(x)} is consistent.

But T ∪ {∃x
∧
Ψ(x) :Ψ⊆ω p(x)} is maximally consistent.

So we must have φ(x) ∈ p(x).

Therefore, φ(x) generates p(x).

A complete type p is principal if and only if it is supported.

We say that a formula φ(x) is complete (for T ) if it generates a
complete type of T .
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The Countable Case Omitting Types

Countable Omitting Types Theorem

Theorem (Countable Omitting Types Theorem)

Let L be a countable first-order language, T a theory in L which has a
model. For each m<ω, let Φm be an unsupported set over T in L. Then
T has a model which omits all the sets Φm.

The theorem is trivial when T has an empty model.

So we can assume that T has a non-empty model.

Let L+ be the first-order language obtained from L by adding
countably many new constants ci , i <ω, to be known as witnesses.

We define an increasing chain (Ti : i <ω) of finite sets of sentences of
L+, such that for every i , T ∪Ti has a model.

Take T−1 to be the empty theory.

Then T ∪T−1 =T has a model which is an L+-structure.

The intention is that T+ =
⋃
i<ωTi , will be a Hintikka set for L+.

The canonical model of T+ will be a model of T omitting all Φm.
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The Countable Case Omitting Types

Countable Omitting Types Theorem (Task List)

To ensure that T+ will have these properties, we carry out various
tasks as we build the chain.
(1) Ensure that for every sentence φ of L+, either φ or ¬φ is in T+.

(2)ψ(x) (For each formula ψ(x) of L+:) Ensure that if ∃xψ(x) is in T+, then

there are infinitely many witnesses c such that ψ(c) is in T+.
(3)m (For each m<ω:) Ensure that for every tuple c of distinct witnesses

(of appropriate length) there is a formula φ(x) in Φm, such that the
formula ¬φ(c) is in T+.

If these hold, by a previous theorem, T+ will be a Hintikka set.

Write A+ for the canonical model of the atomic sentences in T+.

Then A+ |=T+ and every element is named by a closed term.

By the tasks (2), where ψ(x) are the formulas x = t (t a closed term),
every element of A+ is named by infinitely many witnesses.

So every tuple of elements is named by a tuple of distinct witnesses.

This, together with (3), ensures that A+ omits all the types Φm.

The required model of T will be A+ |L.
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The Countable Case Omitting Types

Countable Omitting Types Theorem (Delegating Tasks)

There are countably many tasks in the list.

Task (1) is one;
A Task (2)ψ(x) for each formula ψ(x);
A Task (3)m for each m<ω.

We have countably many “experts” and give them one task each.

We partition ω into infinitely many infinite sets.

We assign one of these sets to each expert.

Suppose Ti−1 has been chosen.

If i is in the set assigned to some expert E , then E will choose Ti .
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The Countable Case Omitting Types

Countable Omitting Types Theorem (Task (1))

First consider the expert who handles Task (1).

Let X be her subset of ω.

Let her list as (φi : i ∈X ) all the sentences of L+.

Suppose Ti−1 has been chosen and i is in X .

Consider whether T ∪Ti−1∪ {φi } has a model.

If it has, she should put Ti =Ti−1∪ {φi };
If not, then every model of T ∪Ti is a model of ¬φi .
We can take Ti to be Ti−1∪ {¬φi }.

In this way Task (1) is accomplished by the time the chain is complete.
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The Countable Case Omitting Types

Countable Omitting Types Theorem (Tasks (2))

Next consider the expert who deals with Task (2)ψ.

She waits until she is given a set Ti−1 which contains ∃xψ(x).

Every time this happens, she looks for a witness c not used in Ti−1.

There is such a witness, because Ti−1 is finite.

Then a model of T ∪Ti−1 can be made into a model of ψ(c) by
choosing a suitable interpretation for c .

Let her take Ti to be Ti−1∪ {ψ(c)}.

Otherwise she should do nothing.

This strategy works, because her subset of ω contains arbitrarily large
numbers.
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The Countable Case Omitting Types

Countable Omitting Types Theorem (Tasks (3))

Consider the expert who handles Task (3)m, where Φm is a type in n

variables.

Let Y be her assigned subset of ω.

She lists as {c i : i ∈Y } all the n-tuples c of distinct witnesses.

Suppose Ti−1 has been given, with i in Y .

She writes
∧
Ti−1 as a sentence χ(c i ,d), where:

χ(x ,y) is in L;

d lists the distinct witnesses which occur in Ti−1 but not in c i .

By assumption, the theory T ∪ {∃x∃yχ(x ,y)} has a model.

The set Φm is unsupported over T .

Hence, there is φ(x) in Φm, such that T 6⊢ ∀x(∃yχ(x ,y)→φ(x)).

By the Lemma on Constants, T 6⊢ χ(c i ,d)→φ(c i ).

Now, she can put Ti =Ti−1∪ {¬φ(c i )}.

In this way, she also fulfills her task.
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The Countable Case Omitting Types

Enforceable Properties

In the proof of the theorem, each expert has to make sure that the
theory T+ has some particular property π.

The proof shows that the expert can make T+ have π, provided that
she is allowed to choose Ti for infinitely many i .

We can express this in terms of a game G (π,X ).

There are two players, ∀ and ∃.
X is an infinite subset of ω, with ω\X infinite and 0 6∈X .
The players have to pick the sets Ti in turn;
Player ∃ makes the choice of Ti if and only if i ∈X .
Player ∃ wins if T+ has property π; otherwise ∀ wins.

We say that π is enforceable if player ∃ has a winning strategy for
this game.
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The Countable Case Omitting Types

Enforceable Properties: Remarks

One can show that whether π is enforceable is independent of the
choice of X , provided that both X and ω\X are infinite.

Some properties of T+ are really properties of the canonical model A+,
e.g., that every element of A+ is named by infinitely many witnesses.

So, we may talk of “enforceable properties” of A+ (in place of T+).
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The Countable Case Omitting Types

Atomic and Prime Models

A structure A is called atomic if for every tuple a of elements of A,
the complete type tpA(a) of a in A is principal.

A model A of a theory T is said to be prime if A can be elementarily
embedded in every model of T .

Recall that Sn(T ) is the set of complete first-order types
p(x0, . . . ,xn−1) over the empty set with respect to models of T .
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The Countable Case Omitting Types

Complete Types and Atomic and Prime Models

Theorem

Let L be a countable first-order language and T a complete theory in L

which has infinite models.

(a) If for every n<ω, Sn(T ) is at most countable, then T has a countable
atomic model.

(b) If A is a countable atomic L-structure which is a model of T , then A

is a prime model of T .

(a) There are only countably many non-principal complete types.

By the theorem, we can omit all of them in some model A of T .

By hypothesis, T is complete and has infinite models.

So A can be found with cardinality ω.
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The Countable Case Omitting Types

Atomic and Prime Models (Part (b))

(b) Let B be any model of T .

Claim: If a,b are n-tuples realizing the same complete type in A,B ,
respectively, and d is any element of B , then there is c of A, such that
ac ,bd realize the same complete (n+1)-type in A,B respectively.

Since the complete type of bd is principal by assumption, it has a
generator ψ(x ,y). Since a and b realize the same complete type, and
B |= ∃yψ(b,y), we infer that A |= ∃yψ(a,y). Hence there is an element
c in A, such that A |=ψ(a,c). Then ac realizes the same complete
type as bd . This proves the claim.

Now let b0,b1, . . . list all the elements of B . Work by induction on n.

Using the claim we find a0,a1, . . . of A so that, for all n,

(A,a0, . . . ,an−1)≡ (B ,b0, . . . ,bn−1).

By the Elementary Diagram Lemma, bi 7→ ai is an elementary
embedding of B into A.
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The Countable Case Omitting Types

Atomic Elementarily Equivalent Structures

In short, if T is complete and all the sets Sn(T ) are countable then
there is a “smallest” countable model of T .

The proof of the theorem can be adapted to prove another useful
result which has nothing to do with countable structures.

Theorem

Let L be a countable first-order language. Let A and B be two elementarily
equivalent L-structures, both of which are atomic. Then A and B are
back-and-forth equivalent.

Let a and b be tuples in A and B respectively, such that (A,a)≡ (B ,b).

With an argument exactly the same as in the theorem, we show that:

For every c of A, there is d of B, such that (A,a,c)≡ (B ,b,d);

For every d of B, there is c of A, such that (A,a,c)≡ (B ,b,d).
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The Countable Case Countable Categoricity

Subsection 3

Countable Categoricity
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The Countable Case Countable Categoricity

ω-Categoricity

A complete theory which has exactly one countable model up to
isomorphism is said to be ω-categorical.

A structure A is ω-categorical if Th(A) is ω-categorical.
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The Countable Case Countable Categoricity

Theorem of Engeler, Ryll-Nardzewski and Svenonius

Theorem (Theorem of Engeler, Ryll-Nardzewski and Svenonius)

Let L be a countable first-order language and T a complete theory in L

which has infinite models. Then the following are equivalent:

(a) Any two countable models of T are isomorphic.

(b) If A is any countable model of T , then Aut(A) is oligomorphic (i.e.,
for every n<ω, Aut(A) has only finitely many orbits in its action on
n-tuples of elements of A).

(c) T has a countable model A such that Aut(A) is oligomorphic.

(d) Some countable model of T realizes only finitely many complete
n-types for each n<ω.

(e) For each n<ω, Sn(T ) is finite.

(f) For each x = (x0, . . . ,xn−1), there are only finitely many pairwise
non-equivalent formulas φ(x) of L modulo T .

(g) For each n<ω, every type in Sn(T ) is principal.
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The Countable Case Countable Categoricity

Proof ((b)⇒(c)⇒(d)⇒(e))

(b)⇒(c): T has a countable model by the Downward Löwenheim
Skolem Theorem.

(c)⇒(d): Let A be an oligomorphic countable model of T .

Suppose for some n <ω, A realizes infinitely many complete n-types.

Then Aut(A) has infinitely many orbits on n-tuples of A, contradiction.

(d)⇒(e): Let A be a countable model of T realizing only finitely many
complete n-types for each n<ω. For a fixed n, let p0, . . . ,pk−1 be the
distinct types in Sn(T ) which are realized in A.

For each pi there exists φi(x) in L in pi but not in pj , j 6= i .

Now A |=∀x
∨
i<k φi (x) and T is a complete theory.

So sentence ∀x
∨
i<k φi(x) is a consequence of T .

If ψ(x) is in L and i < k , A |= ∀xy(φi (x)∧φi (y)→ (ψ(x)↔ψ(y))).

So T ⊢∀xy(φi (x)∧φi (y)→ (ψ(x)↔ψ(y))).

It follows that p0, . . . ,pk−1 are the only types in Sn(T ).
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The Countable Case Countable Categoricity

Proof ((e)⇒(f)⇒(g))

(e)⇒(f): Suppose two formulas φ(x) and ψ(x) of L lie in exactly the
same types ∈ Sn(T ). Then φ and ψ must be equivalent modulo T .

So if Sn(T ) has finite cardinality k , there are at most 2k

non-equivalent formulas φ(x) of L modulo T .

(f)⇒(g): For any n<ω and x = (x0, . . . ,xn−1), take a maximal family
of pairwise non-equivalent formulas φ(x) of L modulo T . Assuming
(f), this family is finite.

Let p be any type ∈ Sn(T ).

Let θ be the conjunction of all formulas of the family which are in p.

Then θ is a support of p.
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The Countable Case Countable Categoricity

Proof ((a)⇔(g))

(a)⇒(g): Suppose (g) fails.

Then for some n<ω, there is a non-principal type q in Sn(T ).

By the omitting types theorem, T has a model A which omits q.

By the definition of types, T also has a model B which realizes q.

Since T is complete and has infinite models, both A and B are infinite.

By the Downward Löwenheim-Skolem theorem we can suppose that
both A and B are countable.

Hence T has two countable models which are not isomorphic.

Thus (a) fails.

(g)⇒(a): By (g) all models of T are atomic.

Hence, they are back-and-forth equivalent by a previous theorem.

By a previous theorem, all countable models of T are isomorphic.
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The Countable Case Countable Categoricity

Proof ((g)⇔(b))

(g)⇒(b): Again we deduce from (g) that all models of T are atomic.

Claim: If A,B are countable models of T and a,b are n-tuples in A,B ,
respectively, such that (A,a)≡ (B ,b), then there is an isomorphism
from A to B which takes a to b.

This follows by the last theorem of the preceding section.

Let A be a countable model of T .

Let a,b be n-tuples which realize the same complete type in A.

By the claim, a and b lie in the same orbit of Aut(A).

To deduce (b), we need only show that (g) implies (e).
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The Countable Case Countable Categoricity

Proof ((g)⇔(b) Cont’d)

To deduce (b), we need only show that (g) implies (e).

Assume Sn(T ) is infinite. Suppose Sn(T ) contains λ principal types.

Let θi(x), i <λ, be supports of these types.

Take an n-tuple c of distinct new constants and define

T ′ :=T ∪ {¬θi (c) : i <λ}.

If (A,a) is a model of T ′, then A is a model of T in which a realizes a
non-principal type.

So it suffices to prove that T ′ has a model.

Let Φ(x) be a finite subset of {θi (x) : i <λ}.

Since Sn(T ) is infinite, there is a type p(x) in Sn(T ) distinct from the
types generated by the formulas in Φ.

Hence every finite subset of T ′ has a model.

By the Compactness Theorem, T ′ has a model.
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The Countable Case Countable Categoricity

ω-Categoricity and Local Finiteness

Corollary

If A is an ω-categorical structure, then A is locally finite.
In fact there is a (unique) function f :ω→ω, depending only on Th(A),
with the property that, for each n<ω, f (n) is the least number m, such
that every n-generator substructure of A has at most m elements.

Let a be an n-tuple of elements of A.

Let c 6= d be elements of the substructure 〈a〉A generated by a.

The complete types of ac and ad over the empty set say how c and d

are generated. So tpA(ac) 6= tpA(ad).

So by Part (e) of the theorem for n+1, 〈a〉A is finite.

This proves the first sentence.
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The Countable Case Countable Categoricity

ω-Categoricity and Local Finiteness (Cont’d)

Let B be the unique countable structure elementarily equivalent to A.

By Part (b) of the theorem, for each n<ω, there are finitely many
orbits of n-tuples in B .

Let b0, . . . ,bk−1 be representatives of these orbits.

Write mi for the number of elements of the substructure 〈bi 〉B of B
generated by bi .

Then define
f (n)=max(mi : i < k).

A and B realize exactly the same types in Sn(T ), namely all of them.

So this choice of f works for A as well as B .
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The Countable Case Countable Categoricity

Example: ω-Categorical Groups

By the corollary, every countable ω-categorical group is locally finite
and has finite exponent.

For abelian groups, this provides a good description.

Any abelian group A of finite exponent is a direct sum of finite cyclic
groups.

We can write down a first-order theory which says how often each
cyclic group occurs in the sum (where the number of times is either 0,
1, 2, . . . or infinity).

So an infinite abelian group is ω-categorical if and only if it has finite
exponent.

For groups in general the situation is much more complicated.
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The Countable Case Countable Categoricity

n-Tuples in the Same Orbit

Corollary

Let L be a countable first-order language. Let A be an L-structure which is
either finite, or countable and ω-categorical. Then for any positive integer
n, a pair a,b of n-tuples from A are in the same orbit under Aut(A) if and
only if they satisfy the same formulas of L.

This is almost the claim in (g)⇒(b) of the Theorem of Engeler,
Ryll-Nardzewski and Svenonius, except that A may be finite.

As in that proof, it suffices to show that A is atomic.

If A is countable and ω-categorical, we get it by (g) of the theorem.

If A is finite, we deduce it by the argument of (d)⇒(e) in the proof of
the theorem.
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The Countable Case Countable Categoricity

n-Tuples in the Same Orbit (Rephrasing)

Recall that a formula is complete if it generates a complete type.

Corollary

Let L be a countable first-order language. Let A be an L-structure which is
either finite, or countable and ω-categorical. Then for each n,

There are finitely many complete formulas φi (x0, . . . ,xn−1), i < kn, of L for
Th(A);

The orbits of Aut(A) on (domA)n are exactly the sets φi (A
n), i < kn.

There are finitely many types of Sn(T ).

All of them are principal.

The conclusion follows by the preceding corollary.
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The Countable Case Countable Categoricity

Automorphism Groups and Definitional Equivalence

We can almost recover A from the permutation group Aut(A).

Theorem

Let A be a countable ω-categorical L-structure with domain Ω, and let B
be the canonical structure for Aut(A) on Ω. Then the relations on Ω which
are first-order definable in A without parameters are exactly the same as
those definable in B without parameters. In other words, A and B are
definitionally equivalent.

By definition of the canonical structure B , it has the same
automorphism group as A, say G .

Write L′ for the language of B , assuming it is disjoint from L.

Let R be an n-ary relation symbol of L.

Then RA is a union of finitely many orbits of G on Ω.

So R can be defined by a disjunction of formulas of L′ which define
these orbits. The same argument works in the other direction.
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The Countable Case Countable Categoricity

Interpretations and ω-Categoricity

We note that interpretations always preserve ω-categoricity.

Theorem

Let K and L be countable first-order languages, Γ an interpretation of L in
K , and A an ω-categorical K -structure. Then ΓA is ω-categorical.

Let A′ be a countable structure which is elementarily equivalent to A.

Then ΓA′ =ΓA by the reduction theorem. So it suffices to show that
ΓA′ is ω-categorical. By the construction in a previous theorem, every
element of ΓA′ is an equivalence class of the relation =Γ on dom(A′).
Write a= for the equivalence class containing the tuple a.

Each automorphism α of A′ induces an automorphism Γ(α) of ΓA′, by
the rule Γ(α)(a=)= (αa)=. Aut(A′) is oligomorphic. So Aut(ΓA′) is
oligomorphic too.

In particular, relativized reducts of ω-categorical structures are
ω-categorical.
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The Countable Case ω-Categorical Structures by Fraïssé’s Method

Subsection 4

ω-Categorical Structures by Fraïssé’s Method
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The Countable Case ω-Categorical Structures by Fraïssé’s Method

Uniform Local Finiteness

Fraïssé’s construction has proved to be a very versatile way of building
ω-categorical structures.

The trick is to make sure that if K is the class whose Fraïssé limit we
are taking, the sizes of the structures in K are kept under control by
the number of generators.

We say that a structure A is uniformly locally finite if there is a
function f :ω→ω, such that:

For every substructure B of A, if B has a generator set of cardinality at
most n, then B itself has cardinality at most f (n).

We say that a class K of structures is uniformly locally finite if there
is a function f :ω→ω, such that the displayed condition holds for
every structure A in K.

If the signature of K is finite and has no function symbols, then K is
uniformly locally finite.
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The Countable Case ω-Categorical Structures by Fraïssé’s Method

ω-Categorical Structures by Fraïssé’s Method

Theorem

Suppose that the signature L is finite and K is a countable uniformly
locally finite set of finitely generated L-structures with HP, JEP and AP.
Let M be the Fraïssé limit of K and T the first-order theory Th(M) of M.

(a) T is ω-categorical;

(b) T has quantifier elimination.

First we show that there is an ∀2 theory U in L whose models are
precisely the weakly homogeneous structures of age K.

We discuss, next, two crucial points for the construction of U .
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The Countable Case ω-Categorical Structures by Fraïssé’s Method

ω-Categorical Structures by Fraïssé (Preparation)

Two crucial points for the construction of U .

Let A is any finite L-structure with n generators a.

By our assumption on L, there exists a quantifier-free formula
ψ=ψA,a(x0, . . . ,xn−1), such that:

For any L-structure B and n-tuple b of elements of B, B |=ψ(b) if and

only if there is an isomorphism from A to 〈b〉B which takes a to b.

In fact ψA,a is a conjunction of literals satisfied by a in A.

By the uniform local finiteness, for each n<ω, there are only finitely
many isomorphism types of structures in K with n generators.
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The Countable Case ω-Categorical Structures by Fraïssé’s Method

ω-Categorical Structures by Fraïssé (Constructing U)

Take U0 to be the set of all sentences of the form

∀x(ψA,a(x)→∃yψB ,ab(x ,y)),

where:
B is a structure in K generated by a tuple ab of distinct elements;
A is the substructure generated by a.

In case a is empty, the sentence reduces to ∃yψB ,b(y).

Take U1 to be the set of all sentences of the form

∀x
∨

A,a

ψA,a(x),

where the disjunction ranges over all pairs A,a, such that:
A is in K;
a is a tuple of the same length as x which generates A.

Uniform local finiteness implies that this is a finite disjunction.
Write U for the union U0∪U1.

Clearly M is a model of U .
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The Countable Case ω-Categorical Structures by Fraïssé’s Method

ω-Categorical Structures by Fraïssé (ω-Categoricity)

Suppose D is any countable model of U .

When a is empty, the sentences in U0 say that every one-generator
structure in K is embeddable in D.

In general the sentences in U0 say that if A,B are finitely generated
substructures of D, A⊆B , B comes from A by adding one more
generator, and f :A→D is an embedding, then there is an embedding
g :B →D which extends f .

It is not hard to see, using induction on the number of generators, that
these two facts imply that every structure in K is embeddable in D.

So, taken with U1, they tell us that the age of D is exactly K.

Using the sentences U0 again, an induction on the size of
dom(B)\dom(A) tells us that D is weakly homogeneous.

By a previous lemma, D is isomorphic to M.

Hence, U is ω-categorical, and U is a set of axioms for T .
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The Countable Case ω-Categorical Structures by Fraïssé’s Method

ω-Categorical Structures by Fraïssé (Quantifier Elimination)

Suppose now that φ(x) is a formula of L with x non-empty.

Let X be the set of all tuples a in M, such that M |=φ(a).

If a is in X , and b is such that there is an isomorphism e : 〈a〉M →〈b〉M
taking a to b, then e extends to an automorphism of M.

So b is in X too.

It follows that φ is equivalent modulo T to the disjunction of all the
formulas ψ〈a〉,a(x) with a in X .

This is a finite disjunction of quantifier-free formulas.

Finally, let φ is a sentence of L.

Since T is complete, φ is equivalent modulo T to either ¬⊥ or ⊥.

So T has quantifier elimination.
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The Countable Case ω-Categorical Structures by Fraïssé’s Method

Homogeneity, Finiteness, Categoricity, Quantifier Elimination

Corollary

Let L be a finite signature and M a countable L-structure. Then the
following are equivalent:

(a) M is ultrahomogeneous and uniformly locally finite.

(b) Th(M) is ω-categorical and has quantifier elimination.

(a)⇒(b) By the preceding theorem.

(b)⇒(a) By a previous corollary, if Th(M) is ω-categorical, then it is
uniformly locally finite.

By another corollary, if M is countable and ω-categorical, then, for
every n, a pair a, b of n-tuples M are in the same orbit under Aut(M)
iff they satisfy the same L-formulas.

Thus, if Th(M) has quantifier elimination, it is ultrahomogeneous.

We describe two applications of the theorem in detail.
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The Countable Case ω-Categorical Structures by Fraïssé’s Method

First Application: The Random Graph

A graph is a structure consisting of:

A set X ;
An irreflexive symmetric binary relation R defined on X .

The elements of X are called the vertices.

An edge is a pair of vertices {a,b} such that aRb.

We say that two vertices a,b are adjacent if {a,b} is an edge.

A path of length n is a sequence of edges

{a0,a1}, {a1,a2}, . . . , {an−2,an−1}, {an−1,an}.

The path is a cycle if an = a0.

A subgraph of a graph G is simply a substructure of G .

We write L for the first-order language appropriate for graphs

Its signature consists of just one binary relation symbol R .
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The Countable Case ω-Categorical Structures by Fraïssé’s Method

Properties of Finite Graphs and the Random Graph

Lemma

Let K be the class of all finite graphs.

The signature of K contains only finitely many symbols.

K contains arbitrarily large finite structures.

K is uniformly locally finite.

The class K has HP, JEP and AP.

All of these facts are relatively obvious.

So by previous theorems:

K has a Fraïssé limit A;
Th(A) is ω-categorical and has quantifier elimination.

The structure A is a countable graph.

It is known as the random graph and denoted by Γ.
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The Countable Case ω-Categorical Structures by Fraïssé’s Method

Characterization of the Random Graph

Theorem

Let A be a countable graph. The following are equivalent:

(a) A is the random graph Γ.

(b) For all disjoint finite sets X and Y of vertices of A, there is a vertex
not in X ∪Y , adjacent to all vertices in X and to no vertices in Y .

(a)⇒(b): Let A be the random graph Γ.

Let X ,Y be disjoint finite sets of vertices of Γ.

Construct a finite graph G as follows:

The vertices of G are the vertices in X ∪Y together with one new
vertex u;
Vertices in X ∪Y are adjacent in G if they are adjacent in Γ;
u is adjacent to all the vertices in X and none of the vertices in Y .
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The Countable Case ω-Categorical Structures by Fraïssé’s Method

Characterization of the Random Graph (Cont’d)

Γ is the Fraïssé limit of K.

So there is an embedding f :G → Γ.

The restriction of f to X ∪Y is an isomorphism between finite
substructures of Γ.

So it extends to an automorphism g of Γ.

Then g−1(f (u)) is the element described in (b).
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The Countable Case ω-Categorical Structures by Fraïssé’s Method

Characterization of the Random Graph (Converse)

(b)⇒(a): Assume (b).

Claim: Suppose G ⊆H are finite graphs and f :G →A is an
embedding. Then f extends to an embedding g :H →A.

By induction on the number n of vertices in H but not in G .

Clearly we only need worry about the case n= 1.

Let w be the vertex which is in H but not in G .
Let X be the set of vertices f (x), with x in G and adjacent to w in H .
Let Y be the set of vertices f (y), with y in G but not adjacent to w .

By (b) there exists u in A which is adjacent to all of X and none of Y .

We extend f to g by putting g(w)= u.

Taking G to be the empty structure, it follows that every finite graph
is embeddable in A. So the age of A is K. Taking G to be a
substructure of A, it follows that A is weakly homogeneous.

So by a previous lemma, A is the Fraïssé limit of K.
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The Countable Case ω-Categorical Structures by Fraïssé’s Method

Second Application: The Random Structure

Let L be a non-empty finite signature.

Let K be the class of all finite L-structures.

Then clearly K has HP, JEP and AP, and there are just countably
many isomorphism types of structures in K.

So K has a countable Fraïssé limit.

It is known as the random structure of signature L.

It is denoted by Ran(L).
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The Countable Case ω-Categorical Structures by Fraïssé’s Method

Axioms and Completeness

Let T be the set of all sentences of L of the form

∀x(ψ(x)→∃yχ(x ,y)),

such that for some finite L-structure B and some listing of the
elements of B without repetition as bc :

The formula ψ(x) lists the literals satisfied by b in B;

The formula χ(x ,y) lists the literals satisfied by bc in B.

Inspection shows that T consists of exactly the sentences U0 seen in
the proof of a previous theorem.

The sentences U1 of the same proof are trivially satisfied in this case.

So T is a set of axioms for the theory of Ran(L).

In particular T is complete.
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The Countable Case ω-Categorical Structures by Fraïssé’s Method

µn(φ)

Let n<ω.

Let φ(x0, . . . ,xn−1) be a formula of L.

Let a be a tuple of objects ai , i < n.

We write κn(φ) for the number of non-isomorphic L-structures B

whose distinct elements are a0, . . . ,an−1, such that B |=φ(a).

We write µn(φ(a)) for the ratio

κn(φ(a))

κn(∀xx = x)
.

This is the proportion of those L-structures with elements a0, . . . ,an−1

for which φ(a) is true.
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Calculating lim→∞µn(φ)

Lemma

Let φ be any sentence in T . Then limn→∞µn(φ)= 1.

Let φ be the sentence ∀x(ψ(x)→∃yχ(x ,y)).

We show limn→∞µn(¬φ)= 0.

Since µn(¬φ)= 1−µn(φ), this will prove the lemma.

Suppose x is (x0, . . . ,xm−1), and n>m.

Consider those structures B whose distinct elements are a0, . . . ,an−1,
such that

B |=ψ(a0, . . . ,am−1).

We determine the probability p that

B |= ∀y¬χ(a0, . . . ,am−1,y).
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Calculating lim→∞µn(φ) (Cont’d)

The n−m elements am, . . . ,an−1 have equal and independent chances
of serving for y .

So the probability p must be the (n−m)-th power of the probability
that

B |=¬χ(a0, . . . ,am−1,am).

But, the signature of L is not empty.

So there is some positive real k < 1, such that

B |= ¬χ(a0, . . . ,am−1,am) with probability k .

So p = kn−m.

Next, consider those L-structures C whose distinct elements are
a0, . . . ,an−1.

We estimate the probability q =µn(¬φ) that C |= ¬φ.

George Voutsadakis (LSSU) Model Theory January 2024 77 / 78



The Countable Case ω-Categorical Structures by Fraïssé’s Method

Calculating lim→∞µn(φ) (Cont’d)

q is at most the probability that C |=ψ(c)∧∀y¬χ(c ,y) for a tuple c of
distinct elements of C , times the number of ways of choosing c in C .

So
µn(¬φ)≤ nm ·kn−m =γ ·nm ·kn, where γ= k−m

.

Since 0< k < 1, we have nm ·kn
n→∞
→ 0.

It follows that limn→∞ (¬φ)= 0.

Theorem (Zero-One Law)

Let φ be any first-order sentence of a finite relational signature. Then
limn→∞µn(φ) is either 0 or 1.

We have already seen that T is a complete theory.

If φ is a consequence of T , by the lemma limn→∞µn(φ) is 1.
If φ is not a consequence of T , then T implies ¬φ.
So limn→∞ (¬φ) is 1. Thus, limn→∞µn(φ) is 0.
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