Introduction to Number Theory

George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science
Lake Superior State University

LSSU Math 400

- Foundations
- Division Algorithm
- Greatest Common Divisor
- Euclid's Algorithm
- Fundamental Theorem
- Properties of the Primes

Subsection 1

Foundations

Natural Numbers

- The set $1,2,3, \ldots$ of all natural numbers will be denoted by \mathbb{N}. IN is a given set for which the Peano axioms are satisfied.
- They imply the following properties:
- Addition and multiplication can be defined on \mathbb{N}, such that the commutative, associative and distributive laws are valid.
- An ordering on \mathbb{N} can be introduced so that either $m<n$ or $n<m$, for any distinct elements m, n in \mathbb{N}.
- The principle of mathematical induction holds.
- Every non-empty subset of \mathbb{N} has a least element.

Integers, Rationals, Real and Complex Numbers

- We denote by \mathbb{Z} the set of integers $0, \pm 1, \pm 2, \ldots$.
- We denote by \mathbb{Q} the set of rationals, that is, the numbers $\frac{p}{q}$, with p in \mathbb{Z} and q in \mathbb{N}.
- The construction, commencing with \mathbb{N}, of \mathbb{Z}, \mathbb{Q} and then,
- through Cauchy sequences, of the real numbers \mathbb{R}; and
- through ordered pairs, of the complex numbers \mathbb{C}, forms the basis of mathematical analysis and it is assumed known.

Subsection 2

Division Algorithm

- Suppose that a, b are elements of \mathbb{N}.

One says that b divides $a($ written $b \mid a$) if there exists an element c of \mathbb{N}, such that $a=b c$.

- In this case b is referred to as a divisor of a, and a is called a multiple of b.
- The relation $b \mid a$ is reflexive and transitive but not symmetric: In fact, if $b \mid a$ and $a \mid b$, then $a=b$.
- If $b \mid a$, then $b \leq a$; so a natural number has only finitely many divisors.
- The concept of divisibility is readily extended to \mathbb{Z} :

If a, b are elements of \mathbb{Z}, with $b \neq 0$, then b is said to divide a if there exists c in \mathbb{Z}, such that $a=b c$.

The Division Algorithm

The Division Algorithm

For any a, b in \mathbb{Z}, with $b>0$, there exist q, r in \mathbb{Z}, such that

$$
a=b q+r \quad \text { and } \quad 0 \leq r<b .
$$

- Suppose $b q$ is the largest multiple of b that does not exceed a. Then the integer $r=a-b q$ is certainly non-negative.
Since $b(q+1)>a$, we have $r<b$.
- The result remains valid for any integer $b \neq 0$ provided that the bound $r<b$ is replaced by $r<|b|$.

Subsection 3

Greatest Common Divisor

Greatest Common Divisor

- By the greatest common divisor of natural numbers a, b we mean an element d of \mathbb{N}, such that

$$
d \mid a \text { and } d \mid b,
$$

and, for every d^{\prime} of \mathbb{N},

$$
d^{\prime} \mid a \text { and } d^{\prime} \mid b \text { imply } d^{\prime} \mid d .
$$

Existence of Greatest Common Divisors

Given natural numbers a, b, the greatest common divisor d of a and b exists and is unique.

- Consider the set of all natural numbers of the form $a x+b y$ with x, y in \mathbb{Z}. The set is not empty since, for instance, it contains a and b. Hence, there is a least member d, say. Now $d=a x+b y$, for some integers x, y.
- Clearly, every common divisor of a and b divides d.
- By the division algorithm, $a=d q+r$, for some q, r in \mathbb{Z}, with $0 \leq r<d$. But, then, $r=a-d q=a-(a x+b y) q=a(1-q x)+b(-q y)$. From the minimal property of d, it follows that $r=0$. So $d \mid a$.
- Similarly, $d \mid b$
d is unique: Any other such number d^{\prime} would divide d. Since, similarly, $d \mid d^{\prime}$, we have $d=d^{\prime}$.

Relatively Prime Pairs of Numbers

- We signify the greatest common divisor of a, b by (a, b).
- For any n in \mathbb{N}, the equation $a x+b y=n$ is soluble in integers x, y if and only if (a, b) divides n.
- In the case $(a, b)=1$, we say that a and b are relatively prime or coprime (or that a is prime to b).
Then the equation $a x+b y=n$ is always soluble.

Relatively Prime Numbers

- The concept of coprimality can be extended to more than two numbers.
- Any elements a_{1}, \ldots, a_{m} of \mathbb{N} have a greatest common divisor $d=\left(a_{1}, \ldots, a_{m}\right)$, such that

$$
d=a_{1} x_{1}+\cdots+a_{m} x_{m}
$$

for some integers x_{1}, \ldots, x_{m}.

- If $d=1$, we say that a_{1}, \ldots, a_{m} are relatively prime.
- In the case of relatively prime a_{1}, \ldots, a_{m}, the equation

$$
a_{1} x_{1}+\cdots+a_{m} x_{m}=n
$$

is always soluble.

Subsection 4

Euclid's Algorithm

Euclid's Algorithm

- Euclid's algorithm is a method for finding the greatest common divisor d of a, b :
- By the division algorithm, there exist integers q_{1}, r_{1}, such that $a=b q_{1}+r_{1}$ and $0 \leq r_{1}<b$.
- If $r_{1} \neq 0$, then there exist integers q_{2}, r_{2}, such that $b=r_{1} q_{2}+r_{2}$, and $0 \leq r_{2}<r_{1}$.
- If $r_{2} \neq 0$, then there exist integers q_{3}, r_{3}, such that $r_{1}=r_{2} q_{3}+r_{3}$ and $0 \leq r_{3}<r_{2}$.
- Continuing thus, one obtains a decreasing sequence r_{1}, r_{2}, \ldots satisfying $r_{j-2}=r_{j-1} q_{j}+r_{j}$.
- The sequence terminates when $r_{k+1}=0$, for some k, that is, when $r_{k-1}=r_{k} q_{k+1}$.

Euclid's Algorithm (Cont'd)

- Claim: $d=r_{k}$.

Consider the equations

$$
\begin{array}{ll}
a=b q_{1}+r_{1}, & 0<r_{1}<b ; \\
b=r_{1} q_{2}+r_{2}, & 0<r_{2}<r_{1} ; \\
r_{1}=r_{2} q_{3}+r_{3}, & 0<r_{3}<r_{2} ; \\
\cdots & \\
r_{k-2}=r_{k-1} q_{k}+r_{k}, & 0<r_{k}<r_{k-1} ; \\
r_{k-1}=r_{k} q_{k+1} . &
\end{array}
$$

Every common divisor of a and b divides $r_{1}, r_{2}, \ldots, r_{k}$.
Viewing the equations in the reverse order, r_{k} divides each r_{j}. Hence, r_{k} divides also b and a.

Applying Euclid's Algorithm

- Euclid's algorithm enables the integers x, y, such that $d=a x+b y$ to be explicitly calculated.
Example: Take $a=187$ and $b=35$.
Then, following Euclid, we have

$$
187=35 \cdot 5+12, \quad 35=12 \cdot 2+11, \quad 12=11 \cdot 1+1
$$

Thus, we see that $(187,35)=1$. Moreover

$$
\begin{aligned}
1 & =12-11 \cdot 1=12-(35-12 \cdot 2)=12 \cdot 3-35 \\
& =(187-35 \cdot 5) \cdot 3-35=185 \cdot 3+35 \cdot(-16) .
\end{aligned}
$$

Hence, a solution of the equation $187 x+35 y=1$ in integers x, y is given by $x=3, y=-16$.

Applying Euclid's Algorithm |I

- Example: Take $a=1000$ and $b=45$. Then we get

$$
1000=45 \cdot 22+10, \quad 45=10 \cdot 4+5, \quad 10=5 \cdot 2 .
$$

So $d=5$.
The solutions to $a x+b y=d$ can then be calculated from

$$
\begin{aligned}
5 & =45-10 \cdot 4=45-(1000-45 \cdot 22) 4 \\
& =1000 \cdot(-4)+45 \cdot 89 .
\end{aligned}
$$

This gives $x=-4, y=89$.

Subsection 5

Fundamental Theorem

Prime Numbers and Prime Decomposition

- A natural number, other than 1 , is called a prime if it is divisible only by itself and 1 .
The smallest primes are therefore given by $2,3,5,7,11, \ldots$
- Let n be any natural number other than 1 .

The least divisor of n that exceeds 1 is plainly a prime, say p_{1}. If $n \neq p_{1}$, then, similarly, there is a prime p_{2} dividing $\frac{n}{p_{1}}$.
If $n \neq p_{1} p_{2}$, then there is a prime p_{3} dividing $\frac{n}{p_{1} p_{2}}$ and so on.
After a finite number of steps, we obtain $n=p_{1} \cdots p_{m}$;

- By grouping together we get the standard factorization (or canonical decomposition) $n=p_{1}^{j_{1}} \cdots p_{k}^{j_{k}}$, where p_{1}, \ldots, p_{k} denote distinct primes and j_{1}, \ldots, j_{k} are elements of \mathbb{N}.

Uniqueness of Prime Factorization

The standard factorization is unique except for the order of the factors.

- If a prime p divides a product $m n$ of natural numbers, then either p divides m or p divides n. If p does not divide m, then $(p, m)=1$. Hence, there exist integers x, y, such that $p x+m y=1$. Thus, we have $p n x+m n y=n$. Hence, p divides n.
More generally we conclude that if p divides $n_{1} n_{2} \cdots n_{k}$, then p divides n_{ℓ}, for some ℓ.
Now suppose that, apart from the factorization $n=p_{1}^{j_{1}} \cdots p_{k}^{j_{k}}$, there is another decomposition and that p^{\prime} is one of the primes occurring therein. From the preceding conclusion, we obtain $p^{\prime}=p_{\ell}$, for some ℓ. Hence we deduce that, if the standard factorization for $\frac{n}{p^{\prime}}$ is unique, then so also is that for n.
The conclusion now follows by induction.
- It is simple to express the greatest common divisor (a, b) of elements a, b of \mathbb{N} in terms of the primes occurring in their decompositions.
We can write $a=p_{1}^{\alpha_{1}} \cdots p_{k}^{\alpha_{k}}$ and $b=p_{1}^{\beta_{1}} \cdots p_{k}^{\beta_{k}}$, where p_{1}, \ldots, p_{k} are distinct primes and the α 's and β^{\prime} 's are non-negative integers.
Then $(a, b)=p_{1}^{\gamma_{1}} \cdots p_{k}^{\gamma_{k}}$, where $\gamma_{\ell}=\min \left(\alpha_{\ell}, \beta_{\ell}\right)$.
- With the same notation, the lowest common multiple of a, b is defined by

$$
\{a, b\}=p_{1}^{\delta_{1}} \cdots p_{k}^{\delta_{k}},
$$

where $\delta_{\ell}=\max \left(\alpha_{\ell}, \beta_{\ell}\right)$.

- Then we have

$$
(a, b)\{a, b\}=a b
$$

Subsection 6

Properties of the Primes

Infinitude of Primes

Theorem

There exist infinitely many primes.

- Assume there are only finitely many, say n, different primes $p_{1}, p_{2}, \ldots, p_{n}$.
The number $k=p_{1} p_{2} \cdots p_{n}+1$ is not a prime, since it is greater than all available primes.
So it has at least one prime factor, say p_{m},
i.e., there exists a number ℓ, such that $k=p_{m} \ell$.

But now we get

$$
\begin{aligned}
1 & =k-p_{1} p_{2} \cdots p_{n}=p_{m} \ell-p_{1} p_{2} \cdots p_{n} \\
& =p_{m}\left(\ell-p_{1} \cdots p_{m-1} p_{m+1} \cdots p_{n}\right),
\end{aligned}
$$

i.e., $p_{m} \mid 1$, a contradiction.

One Consequence

Corollary

If p_{n} is the n-th prime in ascending order of magnitude, then p_{m} divides $p_{1} \cdots p_{n}+1$, for some $m \geq n+1$.

- The preceding proof showed that none of the primes $p_{1}, p_{2}, \ldots, p_{n}$ divides $p_{1} p_{2} \cdots p_{n}+1$.
It then follows that some prime $p_{m}>p_{1}, p_{2}, \ldots, p_{n}$ (i.e., such that $m \geq n+1$) must divide $p_{1} p_{2} \cdots p_{n}+1$.

Bound on the Size of the n-th Prime

Theorem (Bound on the Size of p_{n})

If p_{n} is the n-th prime in ascending order of magnitude, then $p_{n}<2^{2^{n}}$.

- By induction on n.
- For $n=1, p_{1}=2<4=2^{2^{1}}$.
- Suppose $p_{k}<2^{2^{k}}$, for all $k \leq n$, where $n \geq 2$.
- Then we obtain

$$
\begin{aligned}
p_{n+1} & \leq p_{1} \cdots p_{n}+1<2^{2} \cdot 2^{2^{2}} \cdot 2^{2^{3}} \cdots 2^{2^{n}}+1 \\
& =2^{2+2^{2}+\cdots+2^{n}}+1=2^{2\left(1+2+\cdots+2^{n-1}\right)}+1 \\
& =2^{2^{\frac{2^{n}-1}{2-1}}+1=2^{2^{n+1}-2}+1} \\
& <2^{2^{n+1}-1}<2^{2^{n+1}}
\end{aligned}
$$

The Prime Number Theorem

- Hadamard and de la Vallée Poussin proved independently in 1896 that, as $n \rightarrow \infty$,

$$
p_{n} \sim n \log n,
$$

where $f \sim g$ means $\frac{f}{g} \xrightarrow{n \rightarrow \infty} 1$.

- The result is equivalent to the assertion that the number $\pi(x)$ of primes $p \leq x$ satisfies

$$
\pi(x) \sim \frac{x}{\log x}, \text { as } x \rightarrow \infty
$$

- Goldbach Conjecture (letter to Euler of 1742): Every even integer (>2) is the sum of two primes.
- Twin-Prime Conjecture: There exist infinitely many pairs of primes, such as 3,5 and 17,19 , that differ by 2 .
- By ingenious work on sieve methods, Chen showed in 1974 that these conjectures are valid if one of the primes is replaced by a number with at most two prime factors (assuming, in the Goldbach case, that the even integer is sufficiently large).
- Studies on Goldbach's conjecture gave rise to:
- the Hardy-Littlewood Circle Method of analysis;
- the celebrated Theorem of Vinogradov: Every sufficiently large odd integer is the sum of three primes.
- Recently, Yitang Zhang (UC-Santa Barbara), James Maynard (Oxford) and Terence Tao (UCLA) have contributed to new breakthroughs towards proving the Twin-Prime Conjecture.

