Introduction to Number Theory

George Voutsadakis¹

¹Mathematics and Computer Science Lake Superior State University

LSSU Math 400

Divisibility

- Foundations
- Division Algorithm
- Greatest Common Divisor
- Euclid's Algorithm
- Fundamental Theorem
- Properties of the Primes

Natural Numbers

- The set 1,2,3,... of all natural numbers will be denoted by N.
 N is a given set for which the Peano axioms are satisfied.
- They imply the following properties:
 - Addition and multiplication can be defined on \mathbb{N} , such that the commutative, associative and distributive laws are valid.
 - An ordering on \mathbb{N} can be introduced so that either m < n or n < m, for any distinct elements m, n in \mathbb{N} .
 - The principle of mathematical induction holds.
 - Every non-empty subset of ${\rm I\!N}$ has a least element.

Integers, Rationals, Real and Complex Numbers

- We denote by \mathbb{Z} the set of integers $0, \pm 1, \pm 2, \dots$
- We denote by \mathbb{Q} the set of rationals, that is, the numbers $\frac{p}{q}$, with p in \mathbb{Z} and q in \mathbb{N} .
- The construction, commencing with $\mathbb N$, of $\mathbb Z$, $\mathbb Q$ and then,
 - ${\scriptstyle \bullet}\,$ through Cauchy sequences, of the real numbers ${\mathbb R};$ and
 - ${\ensuremath{\,\circ\,}}$ through ordered pairs, of the complex numbers $\mathbb{C},$
 - forms the basis of mathematical analysis and it is assumed known.

Division Algorithm

Divisibility

• Suppose that a, b are elements of \mathbb{N} .

One says that b divides a (written b | a) if there exists an element c of \mathbb{N} , such that a = bc.

- In this case b is referred to as a divisor of a, and a is called a multiple of b.
- The relation b | a is reflexive and transitive but not symmetric: In fact, if b | a and a | b, then a = b.
- If $b \mid a$, then $b \leq a$; so a natural number has only finitely many divisors.
- The concept of divisibility is readily extended to \mathbb{Z} :

If *a*, *b* are elements of \mathbb{Z} , with $b \neq 0$, then *b* is said to **divide** *a* if there exists *c* in \mathbb{Z} , such that a = bc.

The Division Algorithm

The Division Algorithm

For any a, b in \mathbb{Z} , with b > 0, there exist q, r in \mathbb{Z} , such that

a = bq + r and $0 \le r < b$.

- Suppose bq is the largest multiple of b that does not exceed a.
 Then the integer r = a bq is certainly non-negative.
 Since b(q+1) > a, we have r < b.
- The result remains valid for any integer $b \neq 0$ provided that the bound r < b is replaced by r < |b|.

Greatest Common Divisor

Greatest Common Divisor

• By the **greatest common divisor** of natural numbers *a*, *b* we mean an element *d* of ℕ, such that

 $d \mid a$ and $d \mid b$,

and, for every d' of \mathbb{N} ,

 $d' \mid a$ and $d' \mid b$ imply $d' \mid d$.

Existence of Greatest Common Divisors

Existence of Greatest Common Divisors

Given natural numbers a, b, the greatest common divisor d of a and b exists and is unique.

- Consider the set of all natural numbers of the form ax + by with x, y in Z. The set is not empty since, for instance, it contains a and b. Hence, there is a least member d, say. Now d = ax + by, for some integers x, y.
 - Clearly, every common divisor of *a* and *b* divides *d*.
 - By the division algorithm, a = dq + r, for some q, r in Z, with 0 ≤ r < d. But, then, r = a - dq = a - (ax + by)q = a(1 - qx) + b(-qy). From the minimal property of d, it follows that r = 0. So d | a.
 - Similarly, *d* | *b*

d is unique: Any other such number d' would divide *d*. Since, similarly, $d \mid d'$, we have d = d'.

Relatively Prime Pairs of Numbers

- We signify the greatest common divisor of a, b by (a, b).
- For any n in IN, the equation ax + by = n is soluble in integers x, y if and only if (a, b) divides n.
- In the case (a, b) = 1, we say that a and b are relatively prime or coprime (or that a is prime to b).

Then the equation ax + by = n is always soluble.

Relatively Prime Numbers

- The concept of coprimality can be extended to more than two numbers.
- Any elements a_1, \ldots, a_m of \mathbb{N} have a greatest common divisor $d = (a_1, \ldots, a_m)$, such that

 $d = a_1 x_1 + \dots + a_m x_m,$

for some integers x_1, \ldots, x_m .

- If d = 1, we say that a_1, \ldots, a_m are relatively prime.
- In the case of relatively prime a_1, \ldots, a_m , the equation

$$a_1x_1 + \cdots + a_mx_m = n$$

is always soluble.

Euclid's Algorithm

Euclid's Algorithm

- Euclid's algorithm is a method for finding the greatest common divisor *d* of *a*, *b*:
 - By the division algorithm, there exist integers q_1, r_1 , such that $a = bq_1 + r_1$ and $0 \le r_1 < b$.
 - If $r_1 \neq 0$, then there exist integers q_2, r_2 , such that $b = r_1q_2 + r_2$, and $0 \le r_2 < r_1$.
 - If $r_2 \neq 0$, then there exist integers q_3, r_3 , such that $r_1 = r_2q_3 + r_3$ and $0 \le r_3 < r_2$.
 - Continuing thus, one obtains a decreasing sequence $r_1, r_2, ...$ satisfying $r_{j-2} = r_{j-1}q_j + r_j$.
 - The sequence terminates when $r_{k+1} = 0$, for some k, that is, when $r_{k-1} = r_k q_{k+1}$.

Euclid's Algorithm (Cont'd)

• Claim: $d = r_k$.

Consider the equations

 $a = bq_{1} + r_{1}, \qquad 0 < r_{1} < b;$ $b = r_{1}q_{2} + r_{2}, \qquad 0 < r_{2} < r_{1};$ $r_{1} = r_{2}q_{3} + r_{3}, \qquad 0 < r_{3} < r_{2};$... $r_{k-2} = r_{k-1}q_{k} + r_{k}, \qquad 0 < r_{k} < r_{k-1};$ $r_{k-1} = r_{k}q_{k+1}.$

Every common divisor of *a* and *b* divides $r_1, r_2, ..., r_k$. Viewing the equations in the reverse order, r_k divides each r_j . Hence, r_k divides also *b* and *a*.

Applying Euclid's Algorithm I

• Euclid's algorithm enables the integers x, y, such that d = ax + by to be explicitly calculated.

Example: Take a = 187 and b = 35.

Then, following Euclid, we have

 $187 = 35 \cdot 5 + 12$, $35 = 12 \cdot 2 + 11$, $12 = 11 \cdot 1 + 1$.

Thus, we see that (187, 35) = 1. Moreover

$$1 = 12 - 11 \cdot 1 = 12 - (35 - 12 \cdot 2) = 12 \cdot 3 - 35$$

= (187 - 35 \cdot 5) \cdot 3 - 35 = 185 \cdot 3 + 35 \cdot (-16).

Hence, a solution of the equation 187x + 35y = 1 in integers x, y is given by x = 3, y = -16.

Applying Euclid's Algorithm II

• Example: Take a = 1000 and b = 45. Then we get

$$1000 = 45 \cdot 22 + 10, \quad 45 = 10 \cdot 4 + 5, \quad 10 = 5 \cdot 2.$$

So d = 5. The solutions to ax + by = d can then be calculated from

$$5 = 45 - 10 \cdot 4 = 45 - (1000 - 45 \cdot 22)4$$

= 1000 \cdot (-4) + 45 \cdot 89.

This gives x = -4, y = 89.

Fundamental Theorem

Prime Numbers and Prime Decomposition

• A natural number, other than 1, is called a **prime** if it is divisible only by itself and 1.

The smallest primes are therefore given by 2,3,5,7,11,...

- Let n be any natural number other than 1. The least divisor of n that exceeds 1 is plainly a prime, say p₁. If n ≠ p₁, then, similarly, there is a prime p₂ dividing n/p₁. If n ≠ p₁p₂, then there is a prime p₃ dividing n/p₁p₂ and so on. After a finite number of steps, we obtain n = p₁...p_m;
- By grouping together we get the standard factorization (or canonical decomposition) n = p₁^{j₁} ··· p_k^{j_k}, where p₁,..., p_k denote distinct primes and j₁,..., j_k are elements of ℕ.

Uniqueness of the Factorization

Uniqueness of Prime Factorization

The standard factorization is unique except for the order of the factors.

If a prime p divides a product mn of natural numbers, then either p divides m or p divides n. If p does not divide m, then (p, m) = 1. Hence, there exist integers x, y, such that px + my = 1. Thus, we have pnx + mny = n. Hence, p divides n.

More generally we conclude that if p divides $n_1n_2\cdots n_k$, then p divides n_ℓ , for some ℓ .

Now suppose that, apart from the factorization $n = p_1^{j_1} \cdots p_k^{j_k}$, there is another decomposition and that p' is one of the primes occurring therein. From the preceding conclusion, we obtain $p' = p_{\ell}$, for some ℓ . Hence we deduce that, if the standard factorization for $\frac{n}{p'}$ is unique, then so also is that for n.

The conclusion now follows by induction.

Greatest Common Divisor and Prime Decomposition

- It is simple to express the greatest common divisor (a, b) of elements a, b of N in terms of the primes occurring in their decompositions. We can write a = p₁^{α₁}...p_k^{α_k} and b = p₁^{β₁}...p_k^{β_k}, where p₁,...,p_k are distinct primes and the α's and β's are non-negative integers. Then (a, b) = p₁^{γ₁}...p_k^{γ_k}, where γ_ℓ = min(α_ℓ, β_ℓ).
- With the same notation, the **lowest common multiple** of *a*, *b* is defined by

$$\{a,b\}=p_1^{\delta_1}\cdots p_k^{\delta_k},$$

where $\delta_{\ell} = \max(\alpha_{\ell}, \beta_{\ell})$.

Then we have

$$(a,b)\{a,b\}=ab.$$

Properties of the Primes

Infinitude of Primes

Theorem

There exist infinitely many primes.

• Assume there are only finitely many, say *n*, different primes $p_1, p_2, ..., p_n$.

The number $k = p_1 p_2 \cdots p_n + 1$ is not a prime, since it is greater than all available primes.

So it has at least one prime factor, say p_m ,

i.e., there exists a number ℓ , such that $k = p_m \ell$.

But now we get

$$1 = k - p_1 p_2 \cdots p_n = p_m \ell - p_1 p_2 \cdots p_n$$

= $p_m (\ell - p_1 \cdots p_{m-1} p_{m+1} \cdots p_n),$

i.e., $p_m \mid 1$, a contradiction.

One Consequence

Corollary

If p_n is the *n*-th prime in ascending order of magnitude, then p_m divides $p_1 \cdots p_n + 1$, for some $m \ge n + 1$.

• The preceding proof showed that none of the primes $p_1, p_2, ..., p_n$ divides $p_1 p_2 \cdots p_n + 1$.

It then follows that some prime $p_m > p_1, p_2, ..., p_n$ (i.e., such that $m \ge n+1$) must divide $p_1p_2\cdots p_n+1$.

Bound on the Size of the *n*-th Prime

Theorem (Bound on the Size of p_n)

If p_n is the *n*-th prime in ascending order of magnitude, then $p_n < 2^{2^n}$.

- By induction on *n*.
 - For n = 1, $p_1 = 2 < 4 = 2^{2^1}$.
 - Suppose $p_k < 2^{2^k}$, for all $k \le n$, where $n \ge 2$.
 - Then we obtain

$$p_{n+1} \leq p_1 \cdots p_n + 1 < 2^2 \cdot 2^{2^2} \cdot 2^{2^3} \cdots 2^{2^n} + 1$$

$$= 2^{2+2^2 + \dots + 2^n} + 1 = 2^{2(1+2+\dots+2^{n-1})} + 1$$

$$= 2^{2\frac{2^{n-1}}{2-1}} + 1 = 2^{2^{n+1}-2} + 1$$

$$< 2^{2^{n+1}-1} < 2^{2^{n+1}}.$$

The Prime Number Theorem

 Hadamard and de la Vallée Poussin proved independently in 1896 that, as n→∞,

where $f \sim g$ means $\frac{f}{g} \xrightarrow{n \to \infty} 1$.

 The result is equivalent to the assertion that the number π(x) of primes p ≤ x satisfies

$$\pi(x) \sim \frac{x}{\log x}$$
, as $x \to \infty$.

Two Unsolved Problems

- **Goldbach Conjecture** (letter to Euler of 1742): Every even integer (> 2) is the sum of two primes.
- **Twin-Prime Conjecture**: There exist infinitely many pairs of primes, such as 3,5 and 17,19, that differ by 2.
- By ingenious work on sieve methods, Chen showed in 1974 that these conjectures are valid if one of the primes is replaced by a number with at most two prime factors (assuming, in the Goldbach case, that the even integer is sufficiently large).
- Studies on Goldbach's conjecture gave rise to:
 - the Hardy-Littlewood Circle Method of analysis;
 - the celebrated **Theorem of Vinogradov**: Every sufficiently large odd integer is the sum of three primes.
- Recently, Yitang Zhang (UC-Santa Barbara), James Maynard (Oxford) and Terence Tao (UCLA) have contributed to new breakthroughs towards proving the Twin-Prime Conjecture.