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Arithmetical Functions

©

For any real x, denote by [x] the largest integer < x,

i.e., the unique integer such that x—1<[x] < x.

©

[x] is called the integral part of x.

©

{x} = x —[x] is called the fractional part of x.

©

It satisfies 0 < {x} < 1.
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Arithmetical Functions

Let x,y be real numbers.
o [x+ylz [x]+Iyv];

o for any positive integer n, [x +n| =[x]+n;
o [x]=[4].

{x}+ {y}, if (xb+{yt<1
xXt+{yt-1, if (x+{y}=1
Therefore, {x+y} < {x}+{y}.
So [x+y]=x+y—{x+yl=[x]+{x}+[y] +{y} - Ix+yt = [x] +[y]
O [x+nl=x+n—{x+n=x+n—{x}=[x]+n.
[Ln]=q+% with 0 < r<n.

Then [3]= 1) = g+ £+ 0] = [q] = [ 1].
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o We have {x+y}:{

o Suppose




Arithmetical Functions

Let n be a positive integer and p a prime. Suppose ¢ = max{k: p¥| nl}.
Then,

o Among the numbers 1,2,...,n, there are:
o [3] that are divisible by p;
° [p—”2] that are divisible by p?;

So we get
n o0 o0 n o0
‘=3 Z =) 2 1l=)
J: : m=1 _]:1
plm plm
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Arithmetical Functions

Corollary

Let n be a positive integer and p a prime. Suppose ¢ = max{k: p¥ | nl}.
Then,

n
p—1

/<

o Using the preceding proposition, we get
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The result follows, since ¢ is an integer.
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Arithmetical Functions

Corollary

Let m, n be positive integers, with n< m. The binomial coefficient

m m!
(n) - n!(m—n)!

is an integer.

o For every prime p:
o The max power of p dividing m! is Z°°1 [ ]

o The max power of p dividing n!(m—n)! is Z""l ] Zj"z’l %]
The result follows by noting that [;] > [E]+[%]

o More generally, if ny,...,nx are positive integers such that

. | . .
ny+ ---+ ng = m, then the expression ﬁ is an integer.
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Arithmetical Functions

o A real function f defined on the positive integers is said to be
multiplicative if

f(m)f(n)=f(mn), for all m,n with (m,n)=1.

o If f is multiplicative and does not vanish identically then (1) =1.
There exists n, such that f(n) #0.
Then, f(n)=1f(n-1)=1(n)f(1). It follows that f(1)=1.

o If f is multiplicative and n:p{1 p;(k in standard form then

f(n)=F(pf!)-F(p}).

o Thus, to evaluate f, it suffices to calculate its values on the prime
powers.
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Arithmetical Functions

If f is multiplicative and if

g(n) =) f(d),

dln

where the sum is over all divisors d of n, then g is a multiplicative function.

o Suppose (m,n) =1.

Then we have

Ydimnf(d) (definition)
Y gimZann (') ((m,m)=1)
Yaimf(d)Lanf(d’) (sums)
= g(m)g(n). (definition)

g(mn)
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Arithmetical Functions

o By ¢(n) we mean the number of numbers 1,2,...,n that are relatively
prime to n.

We have, e.g.,

p(1)=1 ¢(2)=1 ¢(3)=2 ¢(4)=2.

o We will show, in the next chapter, that ¢ is multiplicative.
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Arithmetical Functions

For any prime p, . o
o(p)=p -p".

o There are p/ numbers between 1 and p/.
Of those, % = p/~1 are divisible by p.
So we obtain

o(p)=p -p.
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Arithmetical Functions

co(n)=nlpn(1- %)
Let p1,...,px be the distinct prime factors of n. Then it suffices to
show that ¢(n) is given by
n
5 ; Pr " r;s PrPs  r>s>t PrPspt
But I is the number of numbers 1,2,...,n that are divisible by p,;
_n_ is the number that are divisible by prps; and so on. Hence, the

PrPs i .
above expression is

g2

n n

4 e

M=

1

where ¢ = ¢(m) is the number of primes ps,..., px that divide m. Now
the summand on the right is (1—1)” =0if¢>0,anditis1if £=0,
whence the required result follows.
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Arithmetical Functions

o The formula

n n

-y 24y

r Pr r>sPrPs r>s>t PrPsPt

4 e

can be obtained alternatively as an immediate application of the
Inclusion-Exclusion Principle.

The respective sums in the required expression for ¢(n) give the
number of elements in the set 1,2,...,n that possess precisely 1,2,3,...
of the properties of divisibility by p; for 1</ <k;

The Principle (or rather the complement of it) gives the analogous
expression for the number of elements in an arbitrary set of n objects
that possess none of k possible properties.
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Arithmetical Functions

Zdln (p(d) =n.

o As mentioned, ¢ is multiplicative.

By a preceding proposition, g(n) =Y. q4,¢(d) is also multiplicative.
For p a prime, we get

g(P) = Zape(d)=e1)+e(p)+e(p?)+---+o(p))
= 1+(p-1)+(p®-p)+---+(p/ - p’l) P

Therefore, if n= p{l p;(“

g(n)=g(pf - pl) =g(pl)-g(pf) =plt-pf=n.
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Arithmetical Functions

o The Mdbius function is defined, for any positive integer n, as

()=
By convention, u(1)=1.

u is multiplicative.

0, if n contains a squared factor
(-1)%, if n=py---px as a product of k distinct primes °

o Suppose (m,n)=1. Then mzp{l---p{f and nzq{l---q;", where
Pl Pk>q1,-.-,qp are distinct primes.
Now we have

p(mn)

“(pil... kkqil...qZ)

, ifany ijl,...,jk,il,...,ig>1
{ (-DR(-1)¢, ifji==jg=i=-=ip=1
u(ptt - p)ular - ) ) = p(m)u(n).



Arithmetical Functions

o Since the Mobius function is multiplicative, the function
v(n)=)_ u(d)
dln
is also multiplicative. ' '
o For all prime powers p/, with j >0, we have v(p’) =0.
Indeed, we have
v(p) = Tapip(d)=p(1)+p(p)+p(p?) +-- +u(p’)
1+(-1)+0+---+0=0.

o Hence we obtain:
v(n) = 0, ifn>1
11, ifn=1

|fn:p{1...p£<,

()= v(e] oy = v(ph) -y = | & ]
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Arithmetical Functions

Theorem (The M&bius Inversion Formula)

Let f be any arithmetical function, i.e., a function defined on the positive
integers. Then

g(n)=Y f(d) iff f(n)=Y u(d)e(3).
dln dln

We have

Zdlnﬂ(d)g(g) = Zdand’lg ,U(d)f(dl) = Zd’ln f(d’)zd|% p(d)
Yanf(d)v(g)=1(n).

We also have

Zdln f(d)

Lainf(g)=ZanLaz u(zg)e(d’)
Laing(d") iz u 7
Laing(d')v(g)=g(n).




Arithmetical Functions

The Euler and Mobius functions are related by the equation

p(m=ny M9 u(d)

dln

o Using the expression ¢(n) = nH(l— =), we get

pln
o(n) = n(l-Zpint+Zopmet )
= n(1+Zp H(pp' +Epupin” g ) = nZan
o An alternative is to use the formula n=) ¢(d)
din
Then, by Mobius Inversion, ¢(n) =X q,u(d)5 = nZdM#.
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Arithmetical Functions

Let f be a real function.

If g(x) =X nex f(%), then f(x) = Znsxu(n)g(%)'

o We have

Yosxi(n)g(3) = Zn<me<xﬂ(n)f(mL)
= Z[<X2m|1“( ) (%)

Yoexf(% ) ate p(d)

= Yr<x ( ) ( ) (

)-
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Arithmetical Functions

o For any positive integer n, define:

the number of divisors of n;
the sum of the divisors of n.

7(n)
(

o(n)

o We have

(n)=).1,  o(n)=)_d.

din din
o Both 7(n) and o(n) are multiplicative.

E.g., for (m,n)=1,
t(m-n)= ) 1= Y 1= ) 1-) l=1(m)r(n).

dlmn (d1lm,d>|n) dilm daln
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Arithmetical Functions

o For any prime power p/, we have

7(P)
a(p’)

j+1;
l+p+---+p/= pﬁl 1.

o Thus, if p/ is the highest power of p that divides n, then

+1 _
TG+, o(m=T12

pln pin P—1
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Arithmetical Functions

o We have 7(n) < cn®, for any 6 >0, where ¢ is a number depending
only on 6.

The function f(n) = % is multiplicative and satisfies f(p/) —1;51 <1,
for all but a finite number of values of p and j. The exceptions are
bounded in terms of §.

o Further, we have

—nZ—<nZ —<n(1+|ogn)

dln d<n
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Arithmetical Functions

o The estimate g(n) < n(1+logn) implies

In fact the function f(n) = % is multiplicative. For any prime
power p/, we have
. ' . el g et

- —=l= =1-—.
(p])2 p_]_ p2J P]+1 p2

But

[[0-5)= [11-75)=5

pln
So a(n)p(n) = %n2.
Combining with o(n) <2nlogn, for n>2, we get the bound.
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Arithmetical Functions

For every real x,
)" 1(n) = xlogx + O(x).

n=sx

o We have

Y=Y Y1=Y Y 1= Y [3].

n=sx n=xd\n d<)<m<X d<x

But ZdSX% =logx+ O(1), whence, ¥ ,<x7(n) = xlogx + O(x).
o The Proposition implies that

1
=Y 17(n) "~ logx.

X n=x
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Arithmetical Functions

For every real x,

Y o(n)= 1127r2x + O(xlogx).

o We have

Znsxo(n) = Zn<de|n d= Zd<xzm<x m
Tz 3B1(5]+1) = 12 Tyey L + O(x Tgex 3).

But Zd<x% =X d2 + O( = I O()l—() whence,
Y hexo(n) = 127'[ x2+ O(xlogx)

o Since ¥ n~ 3x2, the “average order” of o(n) is 27%n.
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Arithmetical Functions

For every real x,

Y ¢(n)= —x + O(xlogx).

n=sx

o We have

Znsx‘p(n) = Znstdlnﬂ( )3 = d<xﬂ(d)zms§m
= Zd<xu( )(3(3)°+0(%))
= e i d) O(x XL g=x @)-
But Yg<x ”(d) Z‘(’f T ”dg) + O( )= n% + O(%) whence,
Tnex®(n) = 5x% + O(xlogx).
o Since ¥.n~ $x2, the “average order” of ¢(n) is
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Arithmetical Functions

Corollary

The probability that two integers are relatively prime is n%.

o The experiment consists of drawing an unordered pair of two integers

from 1,2,...,n at random.

The size of the sample space is n+(5) =n+ "("2_1) = @

The samples consisting of relatively prime members are

3
©(1)+¢(2)+ - +¢(n) = —n”+ O(nlogn).
Thus, at the limit, the probability of a positive outcome is

3n%2 2 6

72 n2 ng?
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Arithmetical Functions

o A natural number n is said to be perfect if
o(n)=2n,

i.e., if nis equal to the sum of its divisors other than itself.

: 6 and 28 are perfect numbers.

6
28

1+2+3;
1+2+4+7+14.

o Whether there exist any odd perfect numbers is a notorious unresolved
problem.
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Arithmetical Functions

An even number is perfect if and only if it has the form 2P~1(2P —1), where
both p and 2P —1 are primes.

o Suppose, first, that n=2P~1(2P —1), where both p and 2P -1 are
primes.

Note that the list of divisors of n is
1,2,2%,...,2°P71 2P —1,2(2P ~1),...,2P7 (2P~ 1) = n.
Thus, the sum of those divisors < n is:

1+2+22 4+ 2P L4 (2P —1)(1+2+--- +2P72)
2P 1+(2 _1)2P |
—(2P 1)+(2P - 1)(2P1—1):2P-1(2P—1).
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Arithmetical Functions

o We now prove the necessity.

Suppose a(n) =2n and n=2%m, with k,m>0 and m odd.
Then we get

2k m =2n=0(n) = 0(2Xm) = ¢(2¥) o (m) = 25 1o (m).

So, for some £>0, we have o(m)=25*1¢ and m = (2k*1 - 1)¢.

If £>1, then m would have distinct divisors £,m and 1.

Thus, 6(m)=¢+m+1 and £+ m=2k*1¢ = g(m), a contradiction.
Thus £=1 and o(m)=2k*1=m+1. So m is a prime.

Hence, m is a Mersenne prime and, therefore, k+1 is a prime p.

In conclusion, we get n=2km=2P"1(2P 1)
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Arithmetical Functions

o The Riemann zeta-function is given by

1 .
—, s a complex variable.
S

o For s =0 +it, with o, t real, the series

o converges absolutely for o > 1;
o converges uniformly for ¢ >1+§, for any § > 0.
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Arithmetical Functions

Theorem (Zeta Function and Euler Product)

((s):H%, for all o > 1.

plop

o For any positive integer N,

1
[[ - 0+ p+p+)-T

p<N1 s p<N

1
m*

where m runs through all the positive integers that are divisible only
by primes < V.

Moreover,

1 1 oo
— SZFN_’Q

s
n=n 1 n>N

1
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Arithmetical Functions

1 oo
Rt
o We have
((5)2?10:1 pf(g) = m 1me Zcr’:o 1 png) = ?no,nzl # uf(yg)
o w(n) _ p(d)

=1 T = Loy Zalik 5o
o0 o0 k
= I A Tam(d) =2, =1,

George Voutsadakis (LSSU) Number Theory



Arithmetical Functions

¢(s-1) 3 ¢(n)

((5) n=1 n® .
o We have
{(s) X021 ns = m= 1mszf1%= On?,n=1#(prsg)
o) d
= m,n=1 (nfrr;))s = 12d|k%
= Zk 1% Zdlk(p( ) k= lli(S
= 7{021%:((5_1).
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Arithmetical Functions

o We have
2 _ _ 11
(((S)) - lmszn 1n5 - ?71011 IF?
o0
m,n=1{ mn)s =L 1Zdlk =
= Zk lkdeIkl Zk 1 k5 0
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Arithmetical Functions

2 a(n)

o)1)= 3. %)

((s)(s=1) = EoimrXolimT= Zonns 1##
= = 1(mn)s =i 1Zdlk ks

IR WINED YL
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