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Arithmetical Functions The Function [x ]

Subsection 1

The Function [x ]

George Voutsadakis (LSSU) Number Theory January 2023 3 / 44



Arithmetical Functions The Function [x ]

The Integral and Fractional Parts of a Real Number

For any real x , denote by [x ] the largest integer ≤ x ,

i.e., the unique integer such that x −1< [x ]≤ x .

[x ] is called the integral part of x .

{x} = x − [x ] is called the fractional part of x .

It satisfies 0≤ {x} < 1.
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Arithmetical Functions The Function [x ]

Properties of the Integral and Fractional Parts

Proposition

Let x ,y be real numbers.

[x +y ]≥ [x ]+ [y ];

for any positive integer n, [x +n]= [x ]+n;

[x
n
]=

[

[x ]
n

]

.

We have {x +y } =

{

{x}+ {y }, if {x}+ {y } < 1
{x}+ {y }−1, if {x}+ {y } ≥ 1

Therefore, {x +y } ≤ {x}+ {y }.

So [x +y ]= x +y − {x +y } = [x ]+ {x}+ [y ]+ {y }− {x +y } ≥ [x ]+ [y ].

[x +n]= x +n− {x +n} = x +n− {x} = [x ]+n.

Suppose
[x ]
n

= q+ r
n

with 0≤ r < n.

Then [x
n
]=

[

[x ]+{x}

n

]

=
[

q+ r
n
+

{x}

n

]

= [q]=
[

[x ]
n

]

.
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Arithmetical Functions The Function [x ]

Max Power of a Prime Dividing a Factorial

Proposition

Let n be a positive integer and p a prime. Suppose ℓ=max {k : pk | n!}.
Then,

ℓ=

∞
∑

j=1

[

n

pj

]

.

Among the numbers 1,2, . . . ,n, there are:

[ np ] that are divisible by p;

[ n
p2 ] that are divisible by p2;

...

So we get

ℓ=

n
∑

m=1

∞
∑

j=1

pj |m

1=

∞
∑

j=1

n
∑

m=1
pj |m

1=

∞
∑

j=1

[

n

pj

]

.

George Voutsadakis (LSSU) Number Theory January 2023 6 / 44



Arithmetical Functions The Function [x ]

A Bound on the Max Power

Corollary

Let n be a positive integer and p a prime. Suppose ℓ=max {k : pk | n!}.
Then,

ℓ≤

[

n

p−1

]

.

Using the preceding proposition, we get

ℓ = [n
p
]+ [ n

p2 ]+ [ n
p3 ]+·· ·

≤
n
p
+

n
p2 +

n
p3 +·· ·

=
n
p
(1+ 1

p
+

1
p2 +·· ·)

=

n
p

1− 1
p

= n
p−1

.

The result follows, since ℓ is an integer.
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Arithmetical Functions The Function [x ]

Binomial and Multinomial Coefficients

Corollary

Let m,n be positive integers, with n≤m. The binomial coefficient

(

m

n

)

=
m!

n!(m−n)!

is an integer.

For every prime p:

The max power of p dividing m! is
∑

∞
j=1

[

m

pj

]

;

The max power of p dividing n!(m−n)! is
∑∞

j=1

[

n
pj

]

+
∑∞

j=1

[

m−n
pj

]

.

The result follows by noting that [m
pj ]≥ [ n

pj ]+ [m−n
pj ].

More generally, if n1, . . . ,nk are positive integers such that
n1+ ·· ·+nk =m, then the expression m!

n1!···nk !
is an integer.
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Arithmetical Functions Multiplicative Functions

Subsection 2

Multiplicative Functions
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Arithmetical Functions Multiplicative Functions

Multiplicative Functions

A real function f defined on the positive integers is said to be
multiplicative if

f (m)f (n)= f (mn), for all m,n with (m,n)= 1.

If f is multiplicative and does not vanish identically then f (1)= 1.

There exists n, such that f (n) 6= 0.

Then, f (n)= f (n ·1)= f (n)f (1). It follows that f (1)= 1.

If f is multiplicative and n = p
j1
1
· · ·p

jk
k

in standard form then

f (n)= f (p
j1
1
) · · · f (p

jk
k
).

Thus, to evaluate f , it suffices to calculate its values on the prime
powers.
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Arithmetical Functions Multiplicative Functions

A Further Property of Multiplicative Functions

Proposition

If f is multiplicative and if

g(n)=
∑

d |n

f (d),

where the sum is over all divisors d of n, then g is a multiplicative function.

Suppose (m,n)= 1.

Then we have

g(mn) =
∑

d |mn f (d) (definition)
=

∑

d |m

∑

d ′|n f (dd
′) ((m,n)= 1)

=
∑

d |m f (d)
∑

d ′|n f (d
′) (sums)

= g(m)g(n). (definition)
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Arithmetical Functions Euler’s (Totient) Function ϕ(n)

Subsection 3

Euler’s (Totient) Function ϕ(n)
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Arithmetical Functions Euler’s (Totient) Function ϕ(n)

Euler’s (Totient) Function ϕ(n)

By ϕ(n) we mean the number of numbers 1,2, . . . ,n that are relatively
prime to n.

We have, e.g.,

ϕ(1)= 1, ϕ(2)= 1, ϕ(3)= 2, ϕ(4)= 2.

We will show, in the next chapter, that ϕ is multiplicative.
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Arithmetical Functions Euler’s (Totient) Function ϕ(n)

Value of ϕ on Prime Powers

Proposition

For any prime p,
ϕ(pj)= pj −pj−1

.

There are pj numbers between 1 and pj .

Of those, pj

p
= pj−1 are divisible by p.

So we obtain
ϕ(pj)= pj −pj−1

.
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Arithmetical Functions Euler’s (Totient) Function ϕ(n)

A Formula for ϕ(n)

Claim: ϕ(n)= n
∏

p|n(1−
1
p
).

Let p1, . . . ,pk be the distinct prime factors of n. Then it suffices to
show that ϕ(n) is given by

n−
∑

r

n

pr
+

∑

r>s

n

prps
−

∑

r>s>t

n

prpspt
+·· ·

But n
pr

is the number of numbers 1,2, . . . ,n that are divisible by pr ;
n

prps
is the number that are divisible by prps ; and so on. Hence, the

above expression is

n
∑

m=1






1−

∑

r
pr |m

1+
∑

r>s
prps |m

1−·· ·






=

n
∑

m=1

(

1−

(

ℓ

1

)

+

(

ℓ

2

)

−·· ·

)

,

where ℓ= ℓ(m) is the number of primes p1, . . . ,pk that divide m. Now
the summand on the right is (1−1)ℓ = 0 if ℓ> 0, and it is 1 if ℓ= 0,
whence the required result follows.
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Arithmetical Functions Euler’s (Totient) Function ϕ(n)

An Alternative Combinatorial Proof

The formula

n−
∑

r

n

pr
+

∑

r>s

n

prps
−

∑

r>s>t

n

prpspt
+·· ·

can be obtained alternatively as an immediate application of the
Inclusion-Exclusion Principle.

The respective sums in the required expression for φ(n) give the
number of elements in the set 1,2, . . . ,n that possess precisely 1,2,3, . . .

of the properties of divisibility by pj for 1≤ j ≤ k ;

The Principle (or rather the complement of it) gives the analogous
expression for the number of elements in an arbitrary set of n objects
that possess none of k possible properties.
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Arithmetical Functions Euler’s (Totient) Function ϕ(n)

A Sum Formula for ϕ

Proposition
∑

d |nϕ(d)= n.

As mentioned, ϕ is multiplicative.

By a preceding proposition, g(n)=
∑

d |nϕ(d) is also multiplicative.

For p a prime, we get

g(pj) =
∑

d |pj ϕ(d)=ϕ(1)+ϕ(p)+ϕ(p2)+·· ·+ϕ(pj)

= 1+ (p−1)+ (p2 −p)+·· ·+ (pj −pj−1)= pj .

Therefore, if n= p
j1
1
· · ·p

jk
k

,

g(n)= g(pj1
1
· · ·p

jk
k
)= g(pj1

1
) · · ·g(pjk

k
)= p

j1
1
· · ·p

jk
k
= n.
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Arithmetical Functions The Möbius Function µ(n)

Subsection 4

The Möbius Function µ(n)
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Arithmetical Functions The Möbius Function µ(n)

The Möbius Function µ(n)

The Möbius function is defined, for any positive integer n, as

µ(n)=

{

0, if n contains a squared factor

(−1)k , if n= p1 · · ·pk as a product of k distinct primes
.

By convention, µ(1)= 1.

Proposition

µ is multiplicative.

Suppose (m,n)= 1. Then m= p
j1
1
· · ·p

jk
k

and n= q
i1
1
· · ·q

iℓ
ℓ
, where

p1, . . . ,pk ,q1, . . . ,qℓ are distinct primes.

Now we have

µ(mn) = µ(pj1
1
· · ·p

jk
k
q
i1
1
· · ·q

iℓ
ℓ
)

=

{

0, if any of j1, . . . , jk , i1, . . . , iℓ > 1

(−1)k(−1)ℓ, if j1 = ·· · = jk = i1 = ·· · = iℓ = 1

= µ(p
j1
1
· · ·p

jk
k
)µ(qi1

1
· · ·q

iℓ
ℓ
)=µ(m)µ(n).
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Arithmetical Functions The Möbius Function µ(n)

The Function ν(n)

Since the Möbius function is multiplicative, the function

ν(n)=
∑

d |n

µ(d)

is also multiplicative.

For all prime powers pj , with j > 0, we have ν(pj)= 0.
Indeed, we have

ν(pj) =
∑

d |pj µ(d)=µ(1)+µ(p)+µ(p2)+·· ·+µ(pj)

= 1+ (−1)+0+·· · +0= 0.

Hence we obtain:

ν(n)=

{

0, if n> 1
1, if n= 1

If n= p
j1
1
· · ·p

jk
k

,

ν(n)= ν(pj1
1
· · ·p

jk
k
)= ν(pj1

1
) · · ·ν(pjk

k
)=

{

0, if n> 1
1, if n= 1
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Arithmetical Functions The Möbius Function µ(n)

The Möbius Inversion Formula

Theorem (The Möbius Inversion Formula)

Let f be any arithmetical function, i.e., a function defined on the positive
integers. Then

g(n)=
∑

d |n

f (d) iff f (n)=
∑

d |n

µ(d)g(
n

d
).

(⇒) We have
∑

d |nµ(d)g(
n
d
) =

∑

d |n

∑

d ′|
n
d
µ(d)f (d ′)=

∑

d ′|n f (d
′)

∑

d | n
d ′
µ(d)

=
∑

d ′|n f (d
′)ν( n

d ′ )= f (n).

(⇐) We also have
∑

d |n f (d) =
∑

d |n f (
n
d
)=

∑

d |n

∑

d ′|
n
d
µ( n

dd ′ )g(d ′)

=
∑

d ′|ng(d
′)

∑

d | n
d ′
µ(

n/d ′

d
)

=
∑

d ′|ng(d
′)ν( n

d ′ )= g(n).
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Arithmetical Functions The Möbius Function µ(n)

Euler and Möbius Functions

Theorem

The Euler and Möbius functions are related by the equation

ϕ(n)= n
∑

d |n

µ(d)

d
.

Using the expression ϕ(n)= n
∏

p|n

(1− 1
p
), we get

ϕ(n) = n
(

1−
∑

pi |n
1
pi
+

∑

pi ,pj |n
1

pipj
−·· ·

)

= n
(

1+
∑

pi |n
µ(pi )
pi

+
∑

pi ,pj |n
µ(pipj )
pipj

+·· ·

)

= n
∑

d |n
µ(d)
d

.

An alternative is to use the formula n=
∑

d |n

ϕ(d).

Then, by Möbius Inversion, ϕ(n)=
∑

d |nµ(d)
n
d
= n

∑

d |n
µ(d)
d

.
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Arithmetical Functions The Möbius Function µ(n)

Möbius Inversion for Functions over the Reals

Theorem

Let f be a real function.

If g(x)=
∑

n≤x f (
x
n
), then f (x)=

∑

n≤x µ(n)g(
x
n
).

We have

∑

n≤x µ(n)g(
x
n
) =

∑

n≤x

∑

m≤
x
n
µ(n)f ( x

mn
)

=
∑

ℓ≤x
∑

m|ℓµ(
ℓ
m
)f (xℓ )

=
∑

ℓ≤x f (
x
ℓ )

∑

d |ℓµ(d)
=

∑

ℓ≤x f (
x
ℓ )ν(ℓ)= f (x).
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Arithmetical Functions The Functions τ(n) and σ(n)

Subsection 5

The Functions τ(n) and σ(n)
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Arithmetical Functions The Functions τ(n) and σ(n)

The Functions τ and σ

For any positive integer n, define:

τ(n) = the number of divisors of n;
σ(n) = the sum of the divisors of n.

We have
τ(n)=

∑

d |n

1, σ(n)=
∑

d |n

d .

Both τ(n) and σ(n) are multiplicative.

E.g., for (m,n)= 1,

τ(m ·n)=
∑

d |mn

1=
∑

(d1|m,d2|n)

1=
∑

d1|m

1 ·
∑

d2|n

1= τ(m)τ(n).
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Arithmetical Functions The Functions τ(n) and σ(n)

Formulas for τ and σ

For any prime power pj , we have

τ(pj) = j +1;

σ(pj) = 1+p+·· ·+pj =
pj+1−1
p−1

.

Thus, if pj is the highest power of p that divides n, then

τ(n)=
∏

p|n

(j +1), σ(n)=
∏

p|n

pj+1−1

p−1
.
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Arithmetical Functions The Functions τ(n) and σ(n)

Estimates for the Sizes of τ(n) and σ(n)

We have τ(n)< cnδ, for any δ> 0, where c is a number depending
only on δ.

The function f (n)=
τ(n)

nδ is multiplicative and satisfies f (pj)= j+1

pjδ < 1,

for all but a finite number of values of p and j . The exceptions are
bounded in terms of δ.

Further, we have

σ(n)= n
∑

d |n

1

d
≤ n

∑

d≤n

1

d
< n(1+ logn).
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Arithmetical Functions The Functions τ(n) and σ(n)

Lower Bound for ϕ(n)

The estimate σ(n)< n(1+ logn) implies

ϕ(n)>
1

4

n

logn
, n> 1.

In fact the function f (n)=
σ(n)ϕ(n)

n2 is multiplicative. For any prime

power pj , we have

f (pj)=σ(pj)
ϕ(pj)

(pj)2
=
pj+1−1

p−1

pj −pj−1

p2j
= 1−

1

pj+1
≥ 1−

1

p2
.

But
∏

p|n

(1−
1

p2
)≥

∞
∏

m=2

(1−
1

m2
)=

1

2
.

So σ(n)ϕ(n)≥ 1
2
n2.

Combining with σ(n)< 2n logn, for n> 2, we get the bound.

George Voutsadakis (LSSU) Number Theory January 2023 28 / 44



Arithmetical Functions Average Orders

Subsection 6

Average Orders
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Arithmetical Functions Average Orders

Average Order of τ

Proposition

For every real x ,
∑

n≤x

τ(n)= x logx +O(x).

We have
∑

n≤x

τ(n)=
∑

n≤x

∑

d |n

1=
∑

d≤x

∑

m≤
x
d

1=
∑

d≤x

[x

d

]

.

But
∑

d≤x
1
d
= logx +O(1), whence,

∑

n≤x τ(n)= x logx +O(x).

The Proposition implies that

1

x

∑

n≤x

τ(n)
x →∞
∼ logx .
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Arithmetical Functions Average Orders

Average Order of σ

Proposition

For every real x ,
∑

n≤x

σ(n)=
1

12
π2x2

+O(x logx).

We have

∑

n≤x σ(n) =
∑

n≤x

∑

d |n
n
d
=

∑

d≤x

∑

m≤
x
d
m

=
∑

d≤x
1
2
[ x
d
]([ x

d
]+1)= 1

2
x2 ∑

d≤x
1
d2 +O(x

∑

d≤x
1
d
).

But
∑

d≤x
1
d2 =

∑

∞
d=1

1
d2 +O( 1

x
)= π2

6
+O( 1

x
), whence,

∑

n≤x σ(n)=
1
12
π2x2+O(x logx).

Since
∑

n ∼
1
2
x2, the “average order” of σ(n) is 1

6
π2n.
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Arithmetical Functions Average Orders

Average Order of ϕ

Proposition

For every real x ,
∑

n≤x

ϕ(n)=
3

π2
x2

+O(x logx).

We have
∑

n≤x ϕ(n) =
∑

n≤x

∑

d |nµ(d)
n
d
=

∑

d≤x µ(d)
∑

m≤
x
d
m

=
∑

d≤x µ(d)(
1
2
( x
d
)2+O( x

d
))

=
1
2
x2∑

d≤x
µ(d)
d2 +O(x

∑

d≤x
µ(d)
d

).

But
∑

d≤x
µ(d)

d2 =
∑∞

d=1

µ(d)

d2 +O( 1
x
)= 6

π2 +O( 1
x
), whence,

∑

n≤x ϕ(n)=
3
π2 x

2+O(x logx).

Since
∑

n ∼
1
2
x2, the “average order” of ϕ(n) is 6n

π2 .
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Arithmetical Functions Average Orders

Probability of Being Relatively Prime

Corollary

The probability that two integers are relatively prime is 6
π2 .

The experiment consists of drawing an unordered pair of two integers
from 1,2, . . . ,n at random.

The size of the sample space is n+
(n
2

)

= n+
n(n−1)

2
=

n(n+1)
2

.

The samples consisting of relatively prime members are

ϕ(1)+ϕ(2)+·· · +ϕ(n)=
3

π2
n2

+O(n logn).

Thus, at the limit, the probability of a positive outcome is

3n2

π2
·

2

n2
=

6

π2
.

George Voutsadakis (LSSU) Number Theory January 2023 33 / 44



Arithmetical Functions Perfect Numbers

Subsection 7

Perfect Numbers
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Arithmetical Functions Perfect Numbers

Perfect Numbers

A natural number n is said to be perfect if

σ(n)= 2n,

i.e., if n is equal to the sum of its divisors other than itself.

Example: 6 and 28 are perfect numbers.

6 = 1+2+3;
28 = 1+2+4+7+14.

Whether there exist any odd perfect numbers is a notorious unresolved
problem.
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Arithmetical Functions Perfect Numbers

Even Perfect Numbers

Theorem

An even number is perfect if and only if it has the form 2p−1(2p −1), where
both p and 2p −1 are primes.

Suppose, first, that n= 2p−1(2p −1), where both p and 2p −1 are
primes.

Note that the list of divisors of n is

1,2,22
, . . . ,2p−1

,2p −1,2(2p −1), . . . ,2p−1(2p −1)= n.

Thus, the sum of those divisors < n is:

1+2+22+·· ·+2p−1+ (2p −1)(1+2+·· · +2p−2)

=
2p−1
2−1

+ (2p −1)2p−1−1
2−1

= (2p −1)+ (2p −1)(2p−1−1)= 2p−1(2p −1).
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Arithmetical Functions Perfect Numbers

Even Perfect Numbers (Converse)

We now prove the necessity.

Suppose σ(n)= 2n and n = 2km, with k ,m> 0 and m odd.

Then we get

2k+1m= 2n=σ(n)=σ(2km)=σ(2k )σ(m)= 2k+1σ(m).

So, for some ℓ> 0, we have σ(m)= 2k+1ℓ and m= (2k+1−1)ℓ.

If ℓ> 1, then m would have distinct divisors ℓ,m and 1.

Thus, σ(m)≥ ℓ+m+1 and ℓ+m= 2k+1ℓ=σ(m), a contradiction.

Thus ℓ= 1 and σ(m)= 2k+1 =m+1. So m is a prime.

Hence, m is a Mersenne prime and, therefore, k +1 is a prime p.

In conclusion, we get n= 2km= 2p−1(2p −1).
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Arithmetical Functions The Riemann Zeta-Function

Subsection 8

The Riemann Zeta-Function
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Arithmetical Functions The Riemann Zeta-Function

The Riemann Zeta Function

The Riemann zeta-function is given by

ζ(s)=
∞
∑

n=1

1

ns
, s a complex variable.

For s =σ+ it, with σ,t real, the series

converges absolutely for σ> 1;

converges uniformly for σ> 1+δ, for any δ> 0.
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Zeta-Function and Primes: The Euler Product

Theorem (Zeta Function and Euler Product)

ζ(s)=
∏

p

1

1− 1
ps

, for all σ> 1.

For any positive integer N,

∏

p≤N

1

1− 1
ps

=
∏

p≤N

(1+
1

ps
+

1

p2s
+·· ·)=

∑

m

1

ms
,

where m runs through all the positive integers that are divisible only
by primes ≤N.

Moreover,
∣

∣

∣

∣

∣

∑

m

1

ms
−

∑

n≤N

1

ns

∣

∣

∣

∣

∣

≤
∑

n>N

1

nσ
N →∞

−→ 0.
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Möbius Function and Zeta Function

Theorem

1

ζ(s)
=

∞
∑

n=1

µ(n)

ns
.

We have

ζ(s)
∑

∞
n=1

µ(n)
ns

=
∑

∞
m=1

1
ms

∑

∞
n=1

µ(n)
ns

=
∑

∞
m,n=1

1
ms

µ(n)
ns

=
∑∞

m,n=1
µ(n)
(mn)s =

∑∞

k=1

∑

d |k
µ(d)
k s

=
∑∞

k=1
1
k s

∑

d |k µ(d)=
∑∞

k=1

ν(k)
k s = 1.
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Euler Function and Zeta Function

Theorem

ζ(s −1)

ζ(s)
=

∞
∑

n=1

ϕ(n)

ns
.

We have

ζ(s)
∑∞

n=1

ϕ(n)
ns

=
∑∞

m=1
1
ms

∑∞
n=1

ϕ(n)
ns

=
∑∞

m,n=1
1
ms

ϕ(n)
ns

=
∑∞

m,n=1

ϕ(n)
(mn)s =

∑∞

k=1

∑

d |k
ϕ(d)
k s

=
∑∞

k=1
1
k s

∑

d |k ϕ(d)=
∑∞

k=1
k
k s

=
∑∞

k=1
1

k s−1 = ζ(s −1).
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τ and Zeta Function

Theorem

(ζ(s))2 =
∞
∑

n=1

τ(n)

ns
.

We have

(ζ(s))2 =
∑∞

m=1
1
ms

∑∞
n=1

1
ns

=
∑∞

m,n=1
1
ms

1
ns

=
∑

∞
m,n=1

1
(mn)s

=
∑

∞
k=1

∑

d |k
1
k s

=
∑

∞

k=1
1
k s

∑

d |k 1=
∑

∞

k=1

τ(k)
k s .
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σ and Zeta Function

Theorem

ζ(s)ζ(s −1)=
∞
∑

n=1

σ(n)

ns
.

We have

ζ(s)ζ(s −1) =
∑

∞
m=1

1
ms

∑

∞
n=1

1
ns−1 =

∑

∞
m,n=1

1
ms

n
ns

=
∑∞

m,n=1
n

(mn)s =
∑∞

k=1

∑

d |k
d
k s

=
∑

∞
k=1

1
k s

∑

d |k d =
∑

∞
k=1

σ(k)
k s .
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