Introduction to Number Theory

George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science
Lake Superior State University

LSSU Math 400

(1) Arithmetical Functions

- The Function $[x]$
- Multiplicative Functions
- Euler's (Totient) Function $\varphi(n)$
- The Möbius Function $\mu(n)$
- The Functions $\tau(n)$ and $\sigma(n)$
- Average Orders
- Perfect Numbers
- The Riemann Zeta-Function

Subsection 1

The Function $[x]$

The Integral and Fractional Parts of a Real Number

- For any real x, denote by $[x]$ the largest integer $\leq x$, i.e., the unique integer such that $x-1<[x] \leq x$.
- $[x]$ is called the integral part of x.
- $\{x\}=x-[x]$ is called the fractional part of x.
- It satisfies $0 \leq\{x\}<1$.

Properties of the Integral and Fractional Parts

Proposition

Let x, y be real numbers.

- $[x+y] \geq[x]+[y]$;
- for any positive integer $n,[x+n]=[x]+n$;
- $\left[\frac{x}{n}\right]=\left[\frac{[x]}{n}\right]$.
- We have $\{x+y\}= \begin{cases}\{x\}+\{y\}, & \text { if }\{x\}+\{y\}<1 \\ \{x\}+\{y\}-1, & \text { if }\{x\}+\{y\} \geq 1\end{cases}$

Therefore, $\{x+y\} \leq\{x\}+\{y\}$.
So $[x+y]=x+y-\{x+y\}=[x]+\{x\}+[y]+\{y\}-\{x+y\} \geq[x]+[y]$.

- $[x+n]=x+n-\{x+n\}=x+n-\{x\}=[x]+n$.
- Suppose $\frac{[x]}{n}=q+\frac{r}{n}$ with $0 \leq r<n$.

Then $\left[\frac{x}{n}\right]=\left[\frac{[x]+\{x\}}{n}\right]=\left[q+\frac{r}{n}+\frac{\{x\}}{n}\right]=[q]=\left[\frac{[x]}{n}\right]$.

Max Power of a Prime Dividing a Factorial

Proposition

Let n be a positive integer and p a prime. Suppose $\ell=\max \left\{k: p^{k} \mid n!\right\}$. Then,

$$
\ell=\sum_{j=1}^{\infty}\left[\frac{n}{p^{j}}\right]
$$

- Among the numbers $1,2, \ldots, n$, there are:
- $\left[\frac{n}{p}\right]$ that are divisible by p;
- $\left[\frac{n}{p^{2}}\right]$ that are divisible by p^{2};

So we get

$$
\ell=\sum_{m=1}^{n} \sum_{\substack{j=1 \\ p^{j} \mid m}}^{\infty} 1=\sum_{j=1}^{\infty} \sum_{\substack{m=1 \\ p^{j} \mid m}}^{n} 1=\sum_{j=1}^{\infty}\left[\frac{n}{p^{j}}\right]
$$

A Bound on the Max Power

Corollary

Let n be a positive integer and p a prime. Suppose $\ell=\max \left\{k: p^{k} \mid n!\right\}$. Then,

$$
\ell \leq\left[\frac{n}{p-1}\right]
$$

- Using the preceding proposition, we get

$$
\begin{aligned}
\ell & =\left[\frac{n}{p}\right]+\left[\frac{n}{p^{2}}\right]+\left[\frac{n}{p^{3}}\right]+\cdots \\
& \leq \frac{n}{p}+\frac{n}{p^{2}}+\frac{n}{p^{3}}+\cdots \\
& =\frac{n}{p}\left(1+\frac{1}{p}+\frac{1}{p^{2}}+\cdots\right) \\
& =\frac{\frac{n}{p}}{1-\frac{1}{p}}=\frac{n}{p-1} .
\end{aligned}
$$

The result follows, since ℓ is an integer.

Binomial and Multinomial Coefficients

Corollary

Let m, n be positive integers, with $n \leq m$. The binomial coefficient

$$
\binom{m}{n}=\frac{m!}{n!(m-n)!}
$$

is an integer.

- For every prime p :
- The max power of p dividing $m!$ is $\sum_{j=1}^{\infty}\left[\frac{m}{p^{j}}\right]$;
- The max power of p dividing $n!(m-n)$! is $\sum_{j=1}^{\infty}\left[\frac{n}{p^{j}}\right]+\sum_{j=1}^{\infty}\left[\frac{m-n}{p^{j}}\right]$.

The result follows by noting that $\left[\frac{m}{p^{j}}\right] \geq\left[\frac{n}{p^{j}}\right]+\left[\frac{m-n}{p^{j}}\right]$.

- More generally, if n_{1}, \ldots, n_{k} are positive integers such that $n_{1}+\cdots+n_{k}=m$, then the expression $\frac{m!}{n_{1}!\cdots n_{k}!}$ is an integer.

Subsection 2

Multiplicative Functions

Multiplicative Functions

- A real function f defined on the positive integers is said to be multiplicative if

$$
f(m) f(n)=f(m n), \text { for all } m, n \text { with }(m, n)=1 .
$$

- If f is multiplicative and does not vanish identically then $f(1)=1$.

There exists n, such that $f(n) \neq 0$.
Then, $f(n)=f(n \cdot 1)=f(n) f(1)$. It follows that $f(1)=1$.

- If f is multiplicative and $n=p_{1}^{j_{1}} \cdots p_{k}^{j_{k}}$ in standard form then

$$
f(n)=f\left(p_{1}^{j_{1}}\right) \cdots f\left(p_{k}^{j_{k}}\right)
$$

- Thus, to evaluate f, it suffices to calculate its values on the prime powers.

A Further Property of Multiplicative Functions

Proposition

If f is multiplicative and if

$$
g(n)=\sum_{d \mid n} f(d),
$$

where the sum is over all divisors d of n, then g is a multiplicative function.

- Suppose $(m, n)=1$.

Then we have

$$
\begin{aligned}
g(m n) & =\sum_{d \mid m n} f(d) \quad \text { (definition) } \\
& =\sum_{d \mid m} \sum_{d^{\prime} \mid n} f\left(d d^{\prime}\right) \quad((m, n)=1) \\
& =\sum_{d \mid m} f(d) \sum_{d^{\prime}| |} f\left(d^{\prime}\right) \quad(\text { sums }) \\
& =g(m) g(n) . \quad \text { (definition) }
\end{aligned}
$$

Subsection 3

Euler's (Totient) Function $\varphi(n)$

Euler's (Totient) Function $\varphi(n)$

- By $\varphi(n)$ we mean the number of numbers $1,2, \ldots, n$ that are relatively prime to n.
We have, e.g.,

$$
\varphi(1)=1, \quad \varphi(2)=1, \quad \varphi(3)=2, \quad \varphi(4)=2 .
$$

- We will show, in the next chapter, that φ is multiplicative.

Value of φ on Prime Powers

Proposition

For any prime p,

$$
\varphi\left(p^{j}\right)=p^{j}-p^{j-1}
$$

- There are p^{j} numbers between 1 and p^{j}.

Of those, $\frac{p^{j}}{p}=p^{j-1}$ are divisible by p.
So we obtain

$$
\varphi\left(p^{j}\right)=p^{j}-p^{j-1}
$$

A Formula for $\varphi(n)$

Claim: $\varphi(n)=n \prod_{p \mid n}\left(1-\frac{1}{p}\right)$.
Let p_{1}, \ldots, p_{k} be the distinct prime factors of n. Then it suffices to show that $\varphi(n)$ is given by

$$
n-\sum_{r} \frac{n}{p_{r}}+\sum_{r>s} \frac{n}{p_{r} p_{s}}-\sum_{r>s>t} \frac{n}{p_{r} p_{s} p_{t}}+\cdots
$$

But $\frac{n}{p_{r}}$ is the number of numbers $1,2, \ldots, n$ that are divisible by p_{r}; $\frac{n}{p_{r} p_{s}}$ is the number that are divisible by $p_{r} p_{s}$; and so on. Hence, the above expression is

$$
\sum_{m=1}^{n}\left(1-\sum_{\substack{r \\ p_{r} \mid m}} 1+\sum_{\substack{r>s \\ p_{r} p_{s} \mid m}} 1-\cdots\right)=\sum_{m=1}^{n}\left(1-\binom{\ell}{1}+\binom{\ell}{2}-\cdots\right)
$$

where $\ell=\ell(m)$ is the number of primes p_{1}, \ldots, p_{k} that divide m. Now the summand on the right is $(1-1)^{\ell}=0$ if $\ell>0$, and it is 1 if $\ell=0$, whence the required result follows.

An Alternative Combinatorial Proof

- The formula

$$
n-\sum_{r} \frac{n}{p_{r}}+\sum_{r>s} \frac{n}{p_{r} p_{s}}-\sum_{r>s>t} \frac{n}{p_{r} p_{s} p_{t}}+\cdots
$$

can be obtained alternatively as an immediate application of the Inclusion-Exclusion Principle.
The respective sums in the required expression for $\phi(n)$ give the number of elements in the set $1,2, \ldots, n$ that possess precisely $1,2,3, \ldots$ of the properties of divisibility by p_{j} for $1 \leq j \leq k$;
The Principle (or rather the complement of it) gives the analogous expression for the number of elements in an arbitrary set of n objects that possess none of k possible properties.

A Sum Formula for φ

Proposition

$$
\sum_{d \mid n} \varphi(d)=n .
$$

- As mentioned, φ is multiplicative.

By a preceding proposition, $g(n)=\sum_{d \mid n} \varphi(d)$ is also multiplicative.
For p a prime, we get

$$
\begin{aligned}
g\left(p^{j}\right) & =\sum_{d \mid p^{j}} \varphi(d)=\varphi(1)+\varphi(p)+\varphi\left(p^{2}\right)+\cdots+\varphi\left(p^{j}\right) \\
& =1+(p-1)+\left(p^{2}-p\right)+\cdots+\left(p^{j}-p^{j-1}\right)=p^{j} .
\end{aligned}
$$

Therefore, if $n=p_{1}^{j_{1}} \cdots p_{k}^{j_{k}}$,

$$
g(n)=g\left(p_{1}^{j_{1}} \cdots p_{k}^{j_{k}}\right)=g\left(p_{1}^{j_{1}}\right) \cdots g\left(p_{k}^{j_{k}}\right)=p_{1}^{j_{1}} \cdots p_{k}^{j_{k}}=n .
$$

Subsection 4

The Möbius Function $\mu(n)$

The Möbius Function $\mu(n)$

- The Möbius function is defined, for any positive integer n, as

$$
\mu(n)= \begin{cases}0, & \text { if } n \text { contains a squared factor } \\ (-1)^{k}, & \text { if } n=p_{1} \cdots p_{k} \text { as a product of } k \text { distinct primes }\end{cases}
$$

By convention, $\mu(1)=1$.

Proposition

μ is multiplicative.

- Suppose $(m, n)=1$. Then $m=p_{1}^{j_{1}} \cdots p_{k}^{j_{k}}$ and $n=q_{1}^{i_{1}} \cdots q_{\ell}^{i_{\ell}}$, where $p_{1}, \ldots, p_{k}, q_{1}, \ldots, q_{\ell}$ are distinct primes.
Now we have

$$
\begin{aligned}
\mu(m n) & =\mu\left(p_{1}^{j_{1}} \cdots p_{k}^{j_{k}} q_{1}^{i_{1}} \cdots q_{\ell}^{i_{\ell}}\right) \\
& = \begin{cases}0, & \text { if any of } j_{1}, \ldots, j_{k}, i_{1}, \ldots, i_{\ell}>1 \\
(-1)^{k}(-1)^{\ell}, & \text { if } j_{1}=\cdots=j_{k}=i_{1}=\cdots=i_{\ell}=1\end{cases} \\
& =\mu\left(p_{1}^{j_{1}} \cdots p_{k}^{j_{k}}\right) \mu\left(q_{1}^{i_{1}} \cdots q_{\ell}\right)=\mu(m) \mu(n) .
\end{aligned}
$$

The Function $v(n)$

- Since the Möbius function is multiplicative, the function

$$
v(n)=\sum_{d \mid n} \mu(d)
$$

is also multiplicative.

- For all prime powers p^{j}, with $j>0$, we have $v\left(p^{j}\right)=0$. Indeed, we have

$$
\begin{aligned}
v\left(p^{j}\right) & =\sum_{d \mid p^{j}} \mu(d)=\mu(1)+\mu(p)+\mu\left(p^{2}\right)+\cdots+\mu\left(p^{j}\right) \\
& =1+(-1)+0+\cdots+0=0 .
\end{aligned}
$$

- Hence we obtain:

$$
v(n)= \begin{cases}0, & \text { if } n>1 \\ 1, & \text { if } n=1\end{cases}
$$

If $n=p_{1}^{j_{1}} \cdots p_{k}^{j_{k}}$,

$$
v(n)=v\left(p_{1}^{j_{1}} \cdots p_{k}^{j_{k}}\right)=v\left(p_{1}^{j_{1}}\right) \cdots v\left(p_{k}^{j_{k}}\right)= \begin{cases}0, & \text { if } n>1 \\ 1, & \text { if } n=1\end{cases}
$$

The Möbius Inversion Formula

Theorem (The Möbius Inversion Formula)

Let f be any arithmetical function, i.e., a function defined on the positive integers. Then

$$
g(n)=\sum_{d \mid n} f(d) \quad \text { iff } \quad f(n)=\sum_{d \mid n} \mu(d) g\left(\frac{n}{d}\right) .
$$

(\Rightarrow) We have

$$
\begin{aligned}
\sum_{d \mid n} \mu(d) g\left(\frac{n}{d}\right) & =\sum_{d \mid n} \sum_{d^{\prime} \left\lvert\, \frac{n}{d}\right.} \mu(d) f\left(d^{\prime}\right)=\sum_{d^{\prime} \mid n} f\left(d^{\prime}\right) \sum_{d \left\lvert\, \frac{n}{d^{\prime}}\right.} \mu(d) \\
& =\sum_{d^{\prime} \mid n} f\left(d^{\prime}\right) v\left(\frac{n}{d^{\prime}}\right)=f(n) .
\end{aligned}
$$

(\Leftarrow) We also have

$$
\begin{aligned}
\sum_{d \mid n} f(d) & =\sum_{d \mid n} f\left(\frac{n}{d}\right)=\sum_{d \mid n} \sum_{d^{\prime} \left\lvert\, \frac{n}{d}\right.} \mu\left(\frac{n}{d d^{\prime}}\right) g\left(d^{\prime}\right) \\
& =\sum_{d^{\prime} \mid n} g\left(d^{\prime}\right) \sum_{d \left\lvert\, \frac{n}{d^{\prime}}\right.} \mu\left(\frac{n / d^{\prime}}{d}\right) \\
& =\sum_{d^{\prime} \mid n} g\left(d^{\prime}\right) v\left(\frac{n}{d^{\prime}}\right)=g(n) .
\end{aligned}
$$

Euler and Möbius Functions

Theorem

The Euler and Möbius functions are related by the equation

$$
\varphi(n)=n \sum_{d \mid n} \frac{\mu(d)}{d}
$$

- Using the expression $\varphi(n)=n \prod_{p \mid n}\left(1-\frac{1}{p}\right)$, we get

$$
\begin{aligned}
\varphi(n) & =n\left(1-\sum_{p_{i} \mid n} \frac{1}{p_{i}}+\sum_{p_{i}, p_{j} \mid n} \frac{1}{p_{i} p_{j}}-\cdots\right) \\
& =n\left(1+\sum_{p_{i} \mid n} \frac{\mu\left(p_{i}\right)}{p_{i}}+\sum_{p_{i}, p_{j} \mid n} \frac{\mu\left(p_{i} p_{j}\right)}{p_{i} p_{j}}+\cdots\right)=n \sum_{d \mid n} \frac{\mu(d)}{d} .
\end{aligned}
$$

- An alternative is to use the formula $n=\sum_{d \mid n} \varphi(d)$.

Then, by Möbius Inversion, $\varphi(n)=\sum_{d \mid n} \mu(d) \frac{n}{d}=n \sum_{d \mid n} \frac{\mu(d)}{d}$.

Möbius Inversion for Functions over the Reals

Theorem

Let f be a real function.

$$
\text { If } g(x)=\sum_{n \leq x} f\left(\frac{x}{n}\right) \text {, then } f(x)=\sum_{n \leq x} \mu(n) g\left(\frac{x}{n}\right) \text {. }
$$

- We have

$$
\begin{aligned}
\sum_{n \leq x} \mu(n) g\left(\frac{x}{n}\right) & =\sum_{n \leq x} \sum_{m \leq \frac{x}{n}} \mu(n) f\left(\frac{x}{m n}\right) \\
& =\sum_{\ell \leq x} \sum_{m \mid \ell} \mu\left(\frac{\ell}{m}\right) f\left(\frac{x}{\ell}\right) \\
& =\sum_{\ell \leq x} f\left(\frac{x}{\ell}\right) \sum_{d \mid \ell} \mu(d) \\
& =\sum_{\ell \leq x} f\left(\frac{x}{\ell}\right) v(\ell)=f(x) .
\end{aligned}
$$

Subsection 5

The Functions $\tau(n)$ and $\sigma(n)$

The Functions τ and σ

- For any positive integer n, define:

$$
\begin{aligned}
\tau(n) & =\text { the number of divisors of } n ; \\
\sigma(n) & =\text { the sum of the divisors of } n .
\end{aligned}
$$

- We have

$$
\tau(n)=\sum_{d \mid n} 1, \quad \sigma(n)=\sum_{d \mid n} d .
$$

- Both $\tau(n)$ and $\sigma(n)$ are multiplicative.

$$
\text { E.g., for }(m, n)=1 \text {, }
$$

$$
\tau(m \cdot n)=\sum_{d \mid m n} 1=\sum_{\left(d_{1}\left|m, d_{2}\right| n\right)} 1=\sum_{d_{1} \mid m} 1 \cdot \sum_{d_{2} \mid n} 1=\tau(m) \tau(n) .
$$

Formulas for τ and σ

- For any prime power p^{j}, we have

$$
\begin{aligned}
\tau\left(p^{j}\right) & =j+1 ; \\
\sigma\left(p^{j}\right) & =1+p+\cdots+p^{j}=\frac{p^{j+1}-1}{p-1} .
\end{aligned}
$$

- Thus, if p^{j} is the highest power of p that divides n, then

$$
\tau(n)=\prod_{p \mid n}(j+1), \quad \sigma(n)=\prod_{p \mid n} \frac{p^{j+1}-1}{p-1} .
$$

Estimates for the Sizes of $\tau(n)$ and $\sigma(n)$

- We have $\tau(n)<c n^{\delta}$, for any $\delta>0$, where c is a number depending only on δ.
The function $f(n)=\frac{\tau(n)}{n^{\delta}}$ is multiplicative and satisfies $f\left(p^{j}\right)=\frac{j+1}{p^{j \delta}}<1$, for all but a finite number of values of p and j. The exceptions are bounded in terms of δ.
- Further, we have

$$
\sigma(n)=n \sum_{d \mid n} \frac{1}{d} \leq n \sum_{d \leq n} \frac{1}{d}<n(1+\log n) .
$$

Lower Bound for $\varphi(n)$

- The estimate $\sigma(n)<n(1+\log n)$ implies

$$
\varphi(n)>\frac{1}{4} \frac{n}{\log n}, \quad n>1 .
$$

In fact the function $f(n)=\frac{\sigma(n) \varphi(n)}{n^{2}}$ is multiplicative. For any prime power p^{j}, we have

$$
f\left(p^{j}\right)=\sigma\left(p^{j}\right) \frac{\varphi\left(p^{j}\right)}{\left(p^{j}\right)^{2}}=\frac{p^{j+1}-1}{p-1} \frac{p^{j}-p^{j-1}}{p^{2 j}}=1-\frac{1}{p^{j+1}} \geq 1-\frac{1}{p^{2}} .
$$

But

$$
\prod_{p \mid n}\left(1-\frac{1}{p^{2}}\right) \geq \prod_{m=2}^{\infty}\left(1-\frac{1}{m^{2}}\right)=\frac{1}{2} .
$$

So $\sigma(n) \varphi(n) \geq \frac{1}{2} n^{2}$.
Combining with $\sigma(n)<2 n \log n$, for $n>2$, we get the bound.

Subsection 6

Average Orders

Average Order of τ

Proposition

For every real x,

$$
\sum_{n \leq x} \tau(n)=x \log x+O(x)
$$

- We have

$$
\sum_{n \leq x} \tau(n)=\sum_{n \leq x} \sum_{d \mid n} 1=\sum_{d \leq x} \sum_{m \leq \frac{x}{d}} 1=\sum_{d \leq x}\left[\frac{x}{d}\right] .
$$

But $\sum_{d \leq x} \frac{1}{d}=\log x+O(1)$, whence, $\sum_{n \leq x} \tau(n)=x \log x+O(x)$.

- The Proposition implies that

$$
\frac{1}{x} \sum_{n \leq x} \tau(n)^{\times} \stackrel{\infty}{\sim} \log x .
$$

Average Order of σ

Proposition

For every real x,

$$
\sum_{n \leq x} \sigma(n)=\frac{1}{12} \pi^{2} x^{2}+O(x \log x) .
$$

- We have

$$
\begin{aligned}
\sum_{n \leq x} \sigma(n) & =\sum_{n \leq x} \sum_{d \mid n} \frac{n}{d}=\sum_{d \leq x} \sum_{m \leq \frac{x}{d}} m \\
& =\sum_{d \leq x} \frac{1}{2}\left[\frac{x}{d}\right]\left(\left[\frac{x}{d}\right]+1\right)=\frac{1}{2} x^{2} \sum_{d \leq x} \frac{1}{d^{2}}+O\left(x \sum_{d \leq x} \frac{1}{d}\right) .
\end{aligned}
$$

But $\sum_{d \leq x} \frac{1}{d^{2}}=\sum_{d=1}^{\infty} \frac{1}{d^{2}}+O\left(\frac{1}{x}\right)=\frac{\pi^{2}}{6}+O\left(\frac{1}{x}\right)$, whence, $\sum_{n \leq x} \sigma(n)=\frac{1}{12} \pi^{2} x^{2}+O(x \log x)$.

- Since $\sum n \sim \frac{1}{2} x^{2}$, the "average order" of $\sigma(n)$ is $\frac{1}{6} \pi^{2} n$.

Average Order of φ

Proposition

For every real x,

$$
\sum_{n \leq x} \varphi(n)=\frac{3}{\pi^{2}} x^{2}+O(x \log x)
$$

- We have

$$
\begin{aligned}
\sum_{n \leq x} \varphi(n) & =\sum_{n \leq x} \sum_{d \mid n} \mu(d) \frac{n}{d}=\sum_{d \leq x} \mu(d) \sum_{m \leq \frac{x}{d}} m \\
& =\sum_{d \leq x} \mu(d)\left(\frac{1}{2}\left(\frac{x}{d}\right)^{2}+O\left(\frac{x}{d}\right)\right) \\
& =\frac{1}{2} x^{2} \sum_{d \leq x} \frac{\mu(d)}{d^{2}}+O\left(x \sum_{d \leq x} \frac{\mu(d)}{d}\right) .
\end{aligned}
$$

But $\sum_{d \leq x} \frac{\mu(d)}{d^{2}}=\sum_{d=1}^{\infty} \frac{\mu(d)}{d^{2}}+O\left(\frac{1}{x}\right)=\frac{6}{\pi^{2}}+O\left(\frac{1}{x}\right)$, whence, $\sum_{n \leq x} \varphi(n)=\frac{3}{\pi^{2}} x^{2}+O(x \log x)$.

- Since $\sum n \sim \frac{1}{2} x^{2}$, the "average order" of $\varphi(n)$ is $\frac{6 n}{\pi^{2}}$.

Probability of Being Relatively Prime

Corollary

The probability that two integers are relatively prime is $\frac{6}{\pi^{2}}$.

- The experiment consists of drawing an unordered pair of two integers from $1,2, \ldots, n$ at random.
The size of the sample space is $n+\binom{n}{2}=n+\frac{n(n-1)}{2}=\frac{n(n+1)}{2}$.
The samples consisting of relatively prime members are

$$
\varphi(1)+\varphi(2)+\cdots+\varphi(n)=\frac{3}{\pi^{2}} n^{2}+O(n \log n) .
$$

Thus, at the limit, the probability of a positive outcome is

$$
\frac{3 n^{2}}{\pi^{2}} \cdot \frac{2}{n^{2}}=\frac{6}{\pi^{2}}
$$

Subsection 7

Perfect Numbers

Perfect Numbers

- A natural number n is said to be perfect if

$$
\sigma(n)=2 n,
$$

i.e., if n is equal to the sum of its divisors other than itself.

Example: 6 and 28 are perfect numbers.

$$
\begin{aligned}
6 & =1+2+3 \\
28 & =1+2+4+7+14
\end{aligned}
$$

- Whether there exist any odd perfect numbers is a notorious unresolved problem.

Even Perfect Numbers

Theorem

An even number is perfect if and only if it has the form $2^{p-1}\left(2^{p}-1\right)$, where both p and $2^{p}-1$ are primes.

- Suppose, first, that $n=2^{p-1}\left(2^{p}-1\right)$, where both p and $2^{p}-1$ are primes.
Note that the list of divisors of n is

$$
1,2,2^{2}, \ldots, 2^{p-1}, 2^{p}-1,2\left(2^{p}-1\right), \ldots, 2^{p-1}\left(2^{p}-1\right)=n .
$$

Thus, the sum of those divisors $<n$ is:

$$
\begin{aligned}
& 1+2+2^{2}+\cdots+2^{p-1}+\left(2^{p}-1\right)\left(1+2+\cdots+2^{p-2}\right) \\
& =\frac{2^{p}-1}{2-1}+\left(2^{p}-1\right) \frac{2^{p-1}-1}{2-1} \\
& =\left(2^{p}-1\right)+\left(2^{p}-1\right)\left(2^{p-1}-1\right)=2^{p-1}\left(2^{p}-1\right) .
\end{aligned}
$$

Even Perfect Numbers (Converse)

- We now prove the necessity.

Suppose $\sigma(n)=2 n$ and $n=2^{k} m$, with $k, m>0$ and m odd.
Then we get

$$
2^{k+1} m=2 n=\sigma(n)=\sigma\left(2^{k} m\right)=\sigma\left(2^{k}\right) \sigma(m)=2^{k+1} \sigma(m)
$$

So, for some $\ell>0$, we have $\sigma(m)=2^{k+1} \ell$ and $m=\left(2^{k+1}-1\right) \ell$.
If $\ell>1$, then m would have distinct divisors ℓ, m and 1 .
Thus, $\sigma(m) \geq \ell+m+1$ and $\ell+m=2^{k+1} \ell=\sigma(m)$, a contradiction.
Thus $\ell=1$ and $\sigma(m)=2^{k+1}=m+1$. So m is a prime.
Hence, m is a Mersenne prime and, therefore, $k+1$ is a prime p. In conclusion, we get $n=2^{k} m=2^{p-1}\left(2^{p}-1\right)$.

Subsection 8

The Riemann Zeta-Function

The Riemann Zeta Function

- The Riemann zeta-function is given by

$$
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}, \quad s \text { a complex variable. }
$$

- For $s=\sigma+i t$, with σ, t real, the series
- converges absolutely for $\sigma>1$;
- converges uniformly for $\sigma>1+\delta$, for any $\delta>0$.

Zeta-Function and Primes: The Euler Product

Theorem (Zeta Function and Euler Product)

$$
\zeta(s)=\prod_{p} \frac{1}{1-\frac{1}{p^{5}}}, \text { for all } \sigma>1 .
$$

- For any positive integer N,

$$
\prod_{p \leq N} \frac{1}{1-\frac{1}{p^{s}}}=\prod_{p \leq N}\left(1+\frac{1}{p^{s}}+\frac{1}{p^{2 s}}+\cdots\right)=\sum_{m} \frac{1}{m^{s}},
$$

where m runs through all the positive integers that are divisible only by primes $\leq N$.

Moreover,

$$
\left|\sum_{m} \frac{1}{m^{s}}-\sum_{n \leq N} \frac{1}{n^{s}}\right| \leq \sum_{n>N} \frac{1}{n^{\sigma}} \xrightarrow{N \rightarrow \infty} 0 .
$$

Möbius Function and Zeta Function

Theorem

$$
\frac{1}{\zeta(s)}=\sum_{n=1}^{\infty} \frac{\mu(n)}{n^{s}}
$$

- We have

$$
\begin{aligned}
\zeta(s) \sum_{n=1}^{\infty} \frac{\mu(n)}{n^{s}} & =\sum_{m=1}^{\infty} \frac{1}{m^{s}} \sum_{n=1}^{\infty} \frac{\mu(n)}{n^{s}}=\sum_{m, n=1}^{\infty} \frac{1}{m^{s}} \frac{\mu(n)}{n^{s}} \\
& =\sum_{m, n=1}^{\infty} \frac{\mu(n)}{(m n)^{s}}=\sum_{k=1}^{\infty} \sum_{d \mid k} \frac{\mu(d)}{k^{s}} \\
& =\sum_{k=1}^{\infty} \frac{1}{k^{s}} \sum_{d \mid k} \mu(d)=\sum_{k=1}^{\infty} \frac{v(k)}{k^{s}}=1 .
\end{aligned}
$$

Euler Function and Zeta Function

Theorem

$$
\frac{\zeta(s-1)}{\zeta(s)}=\sum_{n=1}^{\infty} \frac{\varphi(n)}{n^{s}}
$$

- We have

$$
\begin{aligned}
\zeta(s) \sum_{n=1}^{\infty} \frac{\varphi(n)}{n^{s}} & =\sum_{m=1}^{\infty} \frac{1}{m^{s}} \sum_{n=1}^{\infty} \frac{\varphi(n)}{n^{s}}=\sum_{m, n=1}^{\infty} \frac{1}{m^{s}} \frac{\varphi(n)}{n^{s}} \\
& =\sum_{m, n=1}^{\infty} \frac{\varphi(n)}{(m n)^{s}}=\sum_{k=1}^{\infty} \sum_{d \mid k} \frac{\varphi(d)}{k^{s}} \\
& =\sum_{k=1}^{\infty} \frac{1}{k^{s}} \sum_{d \mid k} \varphi(d)=\sum_{k=1}^{\infty} \frac{k}{k^{s}} \\
& =\sum_{k=1}^{\infty} \frac{1}{k^{s-1}}=\zeta(s-1)
\end{aligned}
$$

τ and Zeta Function

Theorem

$$
(\zeta(s))^{2}=\sum_{n=1}^{\infty} \frac{\tau(n)}{n^{s}}
$$

- We have

$$
\begin{aligned}
(\zeta(s))^{2} & =\sum_{m=1}^{\infty} \frac{1}{m^{s}} \sum_{n=1}^{\infty} \frac{1}{n^{s}}=\sum_{m, n=1}^{\infty} \frac{1}{m^{s}} \frac{1}{n^{s}} \\
& =\sum_{m, n=1}^{\infty} \frac{1}{(m n)^{s}}=\sum_{k=1}^{\infty} \sum_{d \mid k} \frac{1}{k^{s}} \\
& =\sum_{k=1}^{\infty} \frac{1}{k^{s}} \sum_{d \mid k} 1=\sum_{k=1}^{\infty} \frac{\tau(k)}{k^{s}} .
\end{aligned}
$$

σ and Zeta Function

Theorem

$$
\zeta(s) \zeta(s-1)=\sum_{n=1}^{\infty} \frac{\sigma(n)}{n^{s}}
$$

- We have

$$
\begin{aligned}
\zeta(s) \zeta(s-1) & =\sum_{m=1}^{\infty} \frac{1}{m^{s}} \sum_{n=1}^{\infty} \frac{1}{n^{s-1}}=\sum_{m, n=1}^{\infty} \frac{1}{m^{s}} \frac{n}{n^{s}} \\
& =\sum_{m, n=1}^{\infty} \frac{n}{(m n)^{s}}=\sum_{k=1}^{\infty} \sum_{d \mid k} \frac{d}{k^{s}} \\
& =\sum_{k=1}^{\infty} \frac{1}{k^{s}} \sum_{d \mid k} d=\sum_{k=1}^{\infty} \frac{\sigma(k)}{k^{s}} .
\end{aligned}
$$

