Introduction to Number Theory

George Voutsadakis¹

¹Mathematics and Computer Science Lake Superior State University

LSSU Math 400

- Definitions
- Chinese Remainder Theorem
- The Theorems of Fermat and Euler
- Wilson's Theorem
- Lagrange's Theorem
- Primitive Roots
- Indices

Subsection 1

Definitions

Congruence Modulo *n*

- Suppose that a, b are integers and that n is a natural number. By a ≡ b (mod n) one means n divides b – a. We say that a is congruent to b modulo n.
- If $0 \le b < n$ then one refers to b as the **residue** of a (mod n).

Residue Classes

Proposition

Congruence modulo n is a equivalence relation on \mathbb{Z} .

• One needs to verify reflexivity, symmetry and transitivity:

•
$$n \mid 0 = a - a$$
. So $a \equiv a$.

- $a \equiv b$ iff n | b a iff n | -(b a) iff n | a b iff $b \equiv a$.
- $a \equiv b$ and $b \equiv c$ iff n | b a and n | c b imply n | (b a) + (c b) iff n | c a iff $a \equiv c$.
- The equivalence classes are called **residue classes** or **congruence classes**.
- By a **complete set of residues** (mod *n*) one means a set of *n* integers, one from each residue class (mod *n*).

Definitions

Operations on Classes Modulo *n*

Proposition

- If $a \equiv a' \pmod{n}$ and $b \equiv b' \pmod{n}$, then: • $a + b \equiv a' + b'$ and $a - b \equiv a' - b' \pmod{n}$; • $a \cdot b \equiv a' \cdot b' \pmod{n}$.
 - We show the case of addition, since subtraction is similar.
 We have a ≡ a' and b ≡ b' iff n | a' a and n | b' b imply n | (a' a) + (b' b) iff n | (a' + b') (a + b) iff a + b ≡ a' + b'.
 - For multiplication, we get:

$$a \equiv a'$$
 and $b \equiv b'$ iff $n \mid a' - a$ and $n \mid b' - b$ imply $n \mid (a' - a)b$ and $n \mid a'(b' - b)$ imply $n \mid (a' - a)b + a'(b' - b)$ iff $n \mid a'b' - ab$ iff $a'b' \equiv ab$.

Polynomial Operations on Classes Modulo *n*

Proposition

If $f(x) = c_n x^n + c_{n-1} x^{n-1} + \dots + c_1 x + c_0$ is any polynomial with integer coefficients, then

$$a \equiv a' \pmod{n}$$
 implies $f(a) \equiv f(a') \pmod{n}$.

First, note that, by the preceding theorem and an easy induction, if a ≡ a', then, for every positive i, aⁱ ≡ a'ⁱ.
 Thus, again by the preceding theorem, for all i, c_iaⁱ ≡ c_ia'ⁱ.
 Using the preceding theorem once more,

$$c_n a^n + c_{n-1} a^{n-1} + \dots + c_1 a + c_0 \equiv c_n a^{\prime n} + c_{n-1} a^{\prime n-1} + \dots + c_1 a^{\prime} + c_0,$$

i.e., $f(a) \equiv f(a')$.

An Additional Property

Proposition

If $ka \equiv ka' \pmod{n}$, for some natural number k, with (k, n) = 1, then $a \equiv a' \pmod{n}$.

• We reason as follows:

 $ka \equiv ka'$ iff $n \mid ka' - ka$ iff $n \mid k(a' - a)$ implies, since (k, n) = 1, $n \mid a' - a$ iff $a \equiv a'$.

It follows that, if a₁,..., a_n is a complete set of residues (mod n) and (k, n) = 1, then so is ka₁,..., ka_n.

Proposition

If k is any natural number,

$$ka \equiv ka' \pmod{n}$$
 implies $a \equiv a' \pmod{\frac{n}{(k,n)}}$.

We have $ka \equiv ka' \pmod{n}$ iff $n \mid ka' - ka$ iff $n \mid k(a' - a)$ implies $\frac{n}{(k,n)} \mid \frac{k}{(k,n)}(a' - a)$ implies, since $\left(\frac{k}{(k,n)}, \frac{n}{(k,n)}\right) = 1$, $\frac{n}{(k,n)} \mid a' - a$ iff $a \equiv a' \pmod{\frac{n}{(k,n)}}$.

Subsection 2

Chinese Remainder Theorem

Solving a Linear Congruence

Proposition

Let *a*, *n* be natural numbers and let *b* be any integer. The linear congruence $ax \equiv b \pmod{n}$ is soluble for some integer *x* if and only if (a, n) divides *b*.

• Suppose, first, that, for some integer x, $ax \equiv b \pmod{n}$. Then, we get $n \mid b - ax$, i.e., there exists k, such that b - ax = kn, or b = ax + kn. Since $(a, n) \mid a$ and $(a, n) \mid n$, we get $(a, n) \mid b$. Suppose that d = (a, n) divides b. Let $a' = \frac{a}{d}$, $b' = \frac{b}{d}$ and $n' = \frac{n}{d}$. It suffices to solve $a'x \equiv b' \pmod{n'}$. This has precisely one solution (mod n'), since (a', n') = 1. So, a'x runs through a complete set of residues (mod n') as x runs through such a set.

Solving a Linear Congruence (Remarks)

- Keep the notation of the preceding slide.
- Suppose x' is any solution of $a'x' \equiv b' \pmod{n'}$.
- Then the complete set of solutions (mod n) of

$$ax \equiv b \pmod{n}$$

is given by

$$x = x' + mn', \quad m = 1, 2, ..., d.$$

Hence, when d := (a, n) divides b, the congruence ax ≡ b (mod n) has precisely d solutions (mod n).

The Field $\mathbb{F}_{ ho}$

- If p is a prime and if a is not divisible by p, then the congruence ax ≡ b (mod p) is always soluble.
- In fact, there is a unique solution (mod p).
- This implies that the residues 0, 1, ..., p-1 form a field under addition and multiplication (mod p),
 - i.e., every non-zero element has a unique multiplicative inverse.
- We shall denote the field of residues $(\mod p)$ by \mathbb{F}_p .
- Obviously the field has characteristic *p*.
- Since any other finite field with characteristic p is a vector space over \mathbb{F}_p , it must have $q = p^e$ elements, for some e.

An essentially unique field with q elements actually exists.

The Chinese Remainder Theorem

The Chinese Remainder Theorem

Let $n_1, ..., n_k$ be natural numbers, such that $(n_i, n_j) = 1$ for $i \neq j$. For any integers $c_1, ..., c_k$, the congruences

$$x \equiv c_j \pmod{n_j}, \quad 1 \le j \le k,$$

are soluble simultaneously for some integer x. In fact, there is a unique solution modulo $n = n_1 \cdots n_k$.

Let m_j = n/n_j, 1 ≤ j ≤ k. Then (m_j, n_j) = 1 and, thus, there is x_j, such that m_jx_j ≡ c_j (mod n_j). Moreover, m_ix_i ≡ 0 (mod n_j), for all i ≠ j. Thus, for all j, m₁x₁+···+m_kx_k ≡ c_j (mod n_j). If x, y are two solutions, then x ≡ y (mod n_j), for 1 ≤ j ≤ k. Since the n_j are coprime in pairs, we have x ≡ y (mod n).

A Generalization of the Chinese Remainder Theorem

Theorem (Generalized Chinese Remainder Theorem)

If n_1, \ldots, n_k are coprime in pairs, then the congruences

 $a_j x_j \equiv b_j \pmod{n_j}, \quad 1 \le j \le k,$

are soluble simultaneously if and only if (a_j, n_j) divides b_j , for all j.

Suppose n₁,..., n_k are coprime in pairs.
 By the Chinese Remainder Theorem, y ≡ b_j (mod n_j), j = 1,..., k, are soluble simultaneously for some y.
 By the first theorem, a_ix_i ≡ b_i mod n_i is soluble iff (a_i, n_i) | b_i.

Example

Consider the congruences

 $x \equiv 2 \pmod{5}$, $x \equiv 3 \pmod{7}$, $x \equiv 4 \pmod{11}$.

The solution is given by $x = 77x_1 + 55x_2 + 35x_3$, where x_1 , x_2 , x_3 satisfy

 $2x_1 \equiv 2 \pmod{5}$, $6x_2 \equiv 3 \pmod{7}$, $2x_3 \equiv 4 \pmod{11}$.

Thus, we can take $x_1 = 1$, $x_2 = 4$, $x_3 = 2$. These give x = 367, i.e., the complete solution is $x \equiv -18 \pmod{385}$.

Example

• Consider the congruences

$$x \equiv 1 \pmod{3}$$
, $x \equiv 2 \pmod{10}$, $x \equiv 3 \pmod{11}$.

The solution is given by $x = 110x_1 + 33x_2 + 30x_3$, where x_1 , x_2 , x_3 satisfy

$$2x_1 \equiv 1 \pmod{3}$$
, $3x_2 \equiv 2 \pmod{10}$, $8x_3 \equiv 3 \pmod{11}$.

Thus, we can take $x_1 = 2$, $x_2 = 4$, $x_3 = 10$. These give x = 652, i.e., the complete solution is $x \equiv -8 \pmod{330}$.

Subsection 3

The Theorems of Fermat and Euler

Reduced Set of Residues

- A reduced set of residues (mod n) is a set of φ(n) numbers, one from each of the φ(n) residue classes that consist of numbers relatively prime to n.
- The set

$$\{a : 1 \le a \le n \text{ and } (a, n) = 1\}$$

is a reduced set of residues $(\mod n)$.

Multiplicativity of arphi

Theorem (Multiplicativity of φ)

 φ is multiplicative.

Let n, n' be natural numbers with (n, n') = 1. Let a and a' run through reduced sets of residues (mod n) and (mod n'), respectively. To see that φ(n)φ(n') = φ(nn'), we must show that an' + a'n runs through a reduced set of residues (mod nn'). First, note that:

•
$$(a, n) = 1$$
 implies $(an' + a'n, n) = 1$;
• $(a', n') = 1$ implies $(an' + a'n, n') = 1$.
Now, since $(n, n') = 1$, we get $(an' + a'n, nn') = 1$.
Note, also, that any two distinct numbers of this form are incongruent
(mod nn').
Let $an' + a'n \equiv bn' + b'n \pmod{nn'}$. Then, $nn' | (bn' + b'n) - (an' + a'n)$.
Hence, $nn' | (b-a)n' + (b'-a')n$. Since $(n, n') = 1$, we get $a = b$ and
 $a' = b'$

Multiplicativity of arphi (Cont'd)

• Finally, we show that if (b, nn') = 1, then

$$b \equiv an' + a'n \pmod{nn'},$$

for some a, a' as above.

Since (n, n') = 1, there exist integers m, m' satisfying mn' + m'n = 1.

- Suppose for some prime p > 1, p | bm and p | n. Then, since, by mn' + m'n = 1, p ∤ m. So p | b. But, then p | (b, nn'), contradicting (b, nn') = 1.
 We conclude (bm, n) = 1. So a ≡ bm (mod n), for some a.
 Similarly, c' = bm' (mod n') for some a'
- Similarly, $a' \equiv bm' \pmod{n'}$, for some a',

These a, a' have the required property.

Fermat's Theorem and Euler's Theorem

(Theorem (Euler's Theorem)

If a, n are natural numbers with (a, n) = 1, then

 $a^{\varphi(n)} \equiv 1 \pmod{n}.$

Since (a, n) = 1, as x runs through a reduced set of residues (mod n), so also does ax.

Hence, $\prod(ax) \equiv \prod(x) \pmod{n}$, where the products are taken over all x in the reduced set.

Upon canceling $\prod(x)$ from both sides, we get the result.

Corollary (Fermat's Theorem)

If a is any natural number and if p is any prime then $a^p \equiv a \pmod{p}$.

• In particular, if
$$(a, p) = 1$$
, then $a^{p-1} \equiv 1 \pmod{p}$.

Subsection 4

Wilson's Theorem

Wilson's Theorem

• The result is attributed to Wilson, but the statement was first published by Waring in 1770 and a proof was by Lagrange.

Theorem (Wilson's Theorem)

 $(p-1)! \equiv -1 \pmod{p}$, for any prime p.

• Being obvious for p = 2, we assume that p is odd.

For every *a*, with 0 < a < p, there is a unique *a'*, with 0 < a' < p, such that $aa' \equiv 1 \pmod{p}$.

Further, if a = a', then $a^2 \equiv 1 \pmod{p}$, whence a = 1 or a = p - 1.

Thus, the set 2,3,...,p-2 can be divided into $\frac{1}{2}(p-3)$ pairs a, a', with $aa' \equiv 1 \pmod{p}$.

Hence, we have $2 \cdot 3 \cdots (p-2) \equiv 1 \pmod{p}$.

So $(p-1)! \equiv p-1 \equiv -1 \pmod{p}$.

A Converse to Wilson's Theorem

Theorem (Converse to Wilson's Theorem)

An integer n > 1 is a prime if and only if $(n-1)! \equiv -1 \pmod{n}$.

If n is a prime, the congruence holds by Wilson's Theorem. Suppose n is not a prime, e.g., n = kℓ, with k, ℓ < n. Assume to the contrary that (n-1)! = -1 (mod n). Then k | n | (n-1)! + 1. But k | (n-1)!. These give k | 1, a contradiction.

A Solution to a Congruence

Theorem

If p is a prime, with $p \equiv 1 \pmod{4}$, then the congruence $x^2 \equiv -1 \pmod{p}$ has solutions $x = \pm (r!)$, where $r = \frac{1}{2}(p-1)$.

All following congruences are taken (mod p):

$$(\pm (r!))^2 \equiv (\pm \frac{p-1}{2}!)^2 \equiv \frac{p-1}{2}! \frac{p-1}{2}! \\ \equiv 1 \cdot 2 \cdots \frac{p-1}{2} (-\frac{p-1}{2}) \cdots (-2)(-1) \\ \equiv 1 \cdot 2 \cdots \frac{p-1}{2} (\frac{p-1}{2}+1) (\frac{p-1}{2}+2) \cdots (\frac{p-1}{2}+\frac{p-1}{2}) \\ \equiv 1 \cdot 2 \cdots (p-1) \equiv (p-1)! \equiv -1.$$

• Note that the congruence has no solutions when $p \equiv 3 \pmod{4}$. Otherwise we would have

$$x^{p-1} = x^{2r} \equiv (-1)^r = -1 \pmod{p},$$

contradicting Fermat's Theorem.

George Voutsadakis (LSSU)

Subsection 5

Lagrange's Theorem

Lagrange's Theorem

Theorem (Lagrange's Theorem)

Let f(x) be a polynomial, with integer coefficients and with degree n. Suppose p is a prime and the leading coefficient of f is not divisible by p. The congruence $f(x) \equiv 0 \pmod{p}$ has at most n solutions \pmod{p} .

- The theorem holds for n = 1, by a previous result.
 We assume that it is valid for polynomials with degree n-1.
 We prove the theorem for polynomials with degree n.
 Not that, for any integer a, f(x) f(a) = (x a)g(x), where g is a polynomial with:
 - degree n-1;
 - integer coefficients;
 - the same leading coefficient as f.

By hypothesis, $g(x) \equiv 0 \pmod{p}$ has $\leq n-1$ solutions \pmod{p} . But, if $f(x) \equiv 0 \pmod{p}$ has a solution x = a, then all solutions of the congruence satisfy $(x - a)g(x) \equiv 0 \pmod{p}$.

Factorization, Fermat's and Wilson's Theorems

- We write f(x) ≡ g(x) (mod p) to signify that the coefficients of like powers of x in the polynomials f,g are congruent (mod p).
- It is clear that if the congruence f(x) ≡ 0 (mod p) has its full complement a₁,..., a_n of solutions (mod p), then

$$f(x) \equiv c(x-a_1)\cdots(x-a_n) \pmod{p},$$

where c is the leading coefficient of f.

• In particular, by Fermat's theorem, we have

$$x^{p-1}-1 \equiv (x-1)\cdots(x-p+1) \pmod{p}.$$

• On comparing constant coefficients, we obtain another proof of Wilson's theorem.

Lagrange's Theorem Using $\mathbb{F}_{ ho}$

Theorem (Lagrange's Theorem)

The number of zeros in \mathbb{F}_p of a polynomial defined over this field cannot exceed its degree.

We assume the result is valid for polynomials with degree n-1.
 We prove the theorem for polynomials with degree n.
 Supposing that f(x) is a polynomial over 𝔽_p with degree n and with at least one zero a in 𝔽_p.

Then

$$f(x) = f(x) - f(a) = (x - a)g(x)$$

where g(x) is a polynomial over \mathbb{F}_p with degree n-1. Since, by the hypothesis, g(x) has at most n-1 roots, f(x) has at most n roots.

Corollary

Corollary

The polynomial $x^d - 1$ has precisely d zeros in \mathbb{F}_p , for each divisor d of p-1.

Note that

$$x^{p-1}-1=(x^d-1)g(x),$$

where g(x) has degree p-1-d.

- By Fermat's theorem, $x^{p-1}-1$ has p-1 zeros in \mathbb{F}_p .
- by Lagrange's theorem, g(x) has at most p-1-d zeros in \mathbb{F}_p .

It follows that $x^d - 1$ has at least (p-1) - (p-1-d) = d zeros in \mathbb{F}_p . Example: Taking d = 4, we deduce that $x^2 + 1$ has precisely two zeros in \mathbb{F}_p , when $p \equiv 1 \pmod{4}$.

Prime Power and Composite Moduli

- Lagrange's theorem is false for prime power moduli.
 E.g., x² ≡ 1 (mod 8) has four solutions.
- Lagrange's theorem does not remain true for composite moduli. Let m₁,..., m_k be such that (m_i, m_j) = 1, 1 ≤ i < j ≤ k. Let f(x) be a polynomial with integer coefficients. Assume f(x) ≡ 0 (mod m_j) has s_j solutions (mod m_j). Then, by the Chinese Remainder Theorem, if m = m₁...m_k,

$$f(x) \equiv 0 \pmod{m}$$

has $s = s_1 \cdots s_k$ solutions (mod m).

Subsection 6

Primitive Roots

Order

• Let a, n be natural numbers with (a, n) = 1.

The least natural number d, such that $a^d \equiv 1 \pmod{n}$, is called the order of a (mod n), and a is said to belong to d (mod n).

Proposition

The order d of a (mod n) divides every integer k, such that $a^k \equiv 1 \pmod{n}$.

• By the division algorithm, k = dq + r, with $0 \le r < d$.

Thus, $a^r \equiv a^k \equiv 1 \pmod{n}$, whence, r = 0.

• By Euler's theorem, the order d exists and it divides $\varphi(n)$.

Primitive Roots

- By a **primitive root** (mod *n*) we mean a number that belongs to $\varphi(n) \pmod{n}$.
- Thus, for a prime p, a primitive root (mod p) is an integer g, such that:
 - g is not divisible by p;
 - p-1 is the smallest exponent with $g^{p-1} \equiv 1 \pmod{p}$.
- I.e., a primitive root (mod p) can be defined as a generator g of the multiplicative group of the field 𝔽_p.

Example: Take p = 17.

The smallest primitive root is g = 3.

The respective powers of 3 (mod 17) are

```
3,9,10, 13, 5, 15, 11, 16, 14, 8, 7, 4, 12, 2, 6, 1.
```

Number of Primitive Roots

Theorem

For every odd prime p, there exists a primitive root (mod p). More precisely, there are exactly $\varphi(p-1)$ primitive roots (mod p).

Each of 1,2,...,p-1 belongs (mod p) to some divisor d of p-1. Let ψ(d) be the number that belongs to d (mod p). Clearly, Σ_{d|(p-1)}ψ(d) = p-1. By a previous result, we have Σ_{d|(p-1)}φ(d) = p-1. So, it suffices to prove that, if ψ(d) ≠ 0, then ψ(d) = φ(d). This would imply that ψ(d) ≠ 0, for all d, and, therefore, that ψ(p-1) = φ(p-1).

Number of Primitive Roots (Cont'd)

Claim: if
$$\psi(d) \neq 0$$
, then $\psi(d) = \varphi(d)$.

Suppose that $\psi(d) \neq 0$.

Let *a* be a number that belongs to $d \pmod{p}$.

Then $a, a^2, ..., a^d$ are mutually incongruent solutions of $x^d \equiv 1 \pmod{p}$.

By Lagrange's theorem, they represent all the solutions (in fact we showed that the congruence has precisely d solutions (mod p)).

Subclaim: The numbers a^m , with $1 \le m \le d$ and (m, d) = 1 represent all the numbers that belong to $d \pmod{p}$.

Each of these has order d: If $a^{md'} \equiv 1$, then $d \mid md'$, whence $d \mid d'$.

If b belongs to d (mod p), then $b \equiv a^m$, for some m, $1 \le m \le d$.

But
$$b^{d/(m,d)} \equiv (a^d)^{m/(m,d)} \equiv 1 \pmod{p}$$
. So $(m,d) = 1$.

We conclude that $\psi(d) = \varphi(d)$.

Working in \mathbb{F}_{p}

- By a primitive root (mod p) we mean a generator g of the multiplicative group of F_p.
- By the **order** of a non-zero element *a* of \mathbb{F}^p we mean the least positive integer *d* such that $a^d = 1$.

Proposition

Let $\psi(d)$ be the number of elements in \mathbb{F}_p , with order d. If $\psi(d) \neq 0$, then $\psi(d) = \varphi(d)$.

- Let a be in \mathbb{F}_p , with order d. We show that the $\varphi(d)$ elements a^m , with $1 \le m \le d$ and (m, d) = 1 are precisely those with order d. The a^m , with $1 \le m \le d$, are distinct zeros of the polynomial $x^d - 1$, and, thus, by Lagrange's theorem, they are all the zeros. Hence, any element with order d is given by a^m , for some m.
 - We have $(a^m)^{d/(m,d)} = (a^d)^{m/(m,d)} = 1$. So (m,d) = 1.
 - Suppose (m, d) = 1. Then a^{md} = 1 and md is the smallest multiple of m divisible by d. So a^m has order d.

The Prime Power Property

Theorem

Let g be a primitive root (mod p). There exists an integer x, such that g' = g + px is a primitive root (mod p^{j}), for all prime powers p^{j} .

$$g'^{p-1} = 1 + pz$$
, where $z \equiv y + (p-1)g^{p-2}x \pmod{p}$.

The coefficient of x is not divisible by p. So, we can choose x, such that (z, p) = 1. Then g' has the required property.

Primitive Roots

The Prime Power Property (Cont'd)

• Suppose that g' belongs to d (mod
$$p^{j}$$
).
Then d divides $\varphi(p^{j}) = p^{j-1}(p-1)$.
But $g' = g + px$ is a primitive root (mod p).
Therefore, $p-1$ divides d.
Hence,

$$d = p^k(p-1)$$
, for some $k < j$.

Now, we get $(\mod p^j)$:

$$1 \equiv g'^{d} = g'^{p^{k}(p-1)} = (1+pz)^{p^{k}} = 1 + p^{k+1}z_{k}, \text{ where } (z_{k},p) = 1.$$

So, $p^{k+1}z_k \equiv 0 \pmod{p^j}$ and $(z_k, p) = 1$. These give j = k+1 and $d = \varphi(p^j)$.

Existence of Primitive Roots Modulo *n*

Theorem

For any natural number *n*, there exists a primitive root (mod *n*) if and only if *n* has the form 2, 4, p^{j} or $2p^{j}$, where *p* is an odd prime.

- We show, first, that, if *n* has the form 2, 4, p^j or $2p^j$, where *p* is an odd prime, then there exists a primitive root mod *n*.
 - 1 is a primitive root (mod 2).
 - 3 is a primitive root (mod 4).
 - A primitive root $(\mod p^j)$ exists by the preceding theorem.
 - Suppose g is a primitive root $(\mod p^j)$. Let g' be the odd element of the pair $g, g + p^j$. Then, we have

$$g^{\prime \varphi(2p^{j})} = g^{\prime \varphi(p^{j})} \equiv 1 \pmod{p^{j}};$$

$$g^{\prime \varphi(2p^{j})} \equiv 1 \pmod{2}.$$

Therefore, $g'^{\varphi(2p^j)} \equiv 1 \pmod{2p^j}$.

Existence of Primitive Roots Modulo *n* (Converse)

• We show the necessity of the assertion.

Suppose $n = n_1 n_2$, where $(n_1, n_2) = 1$ and $n_1 > 2, n_2 > 2$. Let *a* be a natural number.

We have that $\varphi(n_1)$ and $\varphi(n_2)$ are even and

$$a^{\frac{1}{2}\varphi(n)} = (a^{\varphi(n_1)})^{\frac{1}{2}\varphi(n_2)} \equiv 1 \pmod{n_1}.$$

Similarly,

$$a^{\frac{1}{2}\varphi(n)} \equiv 1 \pmod{n_2}.$$

Hence

$$a^{\frac{1}{2}\varphi(n)} \equiv 1 \pmod{n}.$$

Existence of Primitive Roots Modulo *n* (Conclusion)

• We finally show that there are no primitive roots $(\mod 2^j)$, for j > 2. By induction, we have, for all odd numbers a,

$$a^{2^{j-2}} \equiv 1 \pmod{2^j}.$$

Check that this is true for j = 3. Suppose that $a^{2^{k-2}} \equiv 1 \pmod{2^k}$, for some k > 3. Then, we have $a^{2^{k-2}} - 1 = 2^k m$, for some m. Now we get

$$a^{2^{k-1}} = a^{2^{k-2}+2^{k-2}} = a^{2^{k-2}}a^{2^{k-2}} = (2^k m + 1)^2$$

= $2^{2^k}m^2 + 2 \cdot 2^k m + 1 = 2^{k+1}(2^{k-1}m^2 + m) + 1.$

Therefore, $a^{2^{k-1}} \equiv 1 \pmod{2^{k+1}}$.

Subsection 7

Indices

- Let g be a primitive root (mod n).
- The numbers

$$g^{\ell}$$
, $\ell = 0, 1, \dots, \varphi(n) - 1$,

form a reduced set of residues $(\mod n)$.

• For every integer a, with (a, n) = 1, there is a unique ℓ , such that

$$g^{\ell} \equiv a \pmod{n}.$$

The exponent ℓ is called the **index** of *a* with respect to *g* and it is denoted by $\operatorname{ind}_g a$.

Proposition

Let g be a primitive root $(\mod n)$. • $\operatorname{ind}_{\mathfrak{g}} a + \operatorname{ind}_{\mathfrak{g}} b \equiv \operatorname{ind}_{\mathfrak{g}}(ab) \pmod{\varphi(n)};$ • $\operatorname{ind}_{g} 1 = 0;$ • $\operatorname{ind}_{g} g = 1.$

```
• Suppose \ell = \operatorname{ind}_{g} a and m = \operatorname{ind}_{g} b.
   Then g^{\ell} \equiv a \pmod{n} and g^m \equiv b \pmod{n}.
   It follows that g^{\ell+m} \equiv ab \pmod{n}.
   Thus, \operatorname{ind}_{\varphi}(ab) = \ell + m \pmod{\varphi(n)}.
• g^0 \equiv 1 \pmod{n}.
• g^1 \equiv g \pmod{n}.
```

Indices

Power Rule for Indices

Proposition

Let g be a primitive root (mod n). For every natural m, we have

 $\operatorname{ind}_g(a^m) \equiv m \operatorname{ind}_g a \pmod{\varphi(n)}.$

Index of -1

Proposition

If g is a primitive root (mod n), then $\operatorname{ind}_g(-1) = \frac{1}{2}\varphi(n)$, for n > 2.

• Suppose
$$\ell = \operatorname{ind}_g(-1)$$
.
Then $g^{\ell} \equiv -1 \pmod{n}$ and $0 \le \ell < \varphi(n)$.
Thus, $g^{2\ell} \equiv 1 \pmod{n}$ and $0 \le 2\ell < 2\varphi(n)$.
It follows that $2\ell = \varphi(n)$.
Therefore, $\operatorname{ind}_g(-1) = \frac{\varphi(n)}{2}$.

Using Indices

Example: Consider $x^n \equiv a \pmod{p}$, where p is a prime. We have $n \operatorname{ind}_g x \equiv \operatorname{ind}_g a \pmod{p-1}$. Thus, if (n, p-1) = 1, then there is just one solution. • Consider $x^5 \equiv 2 \pmod{7}$. Let g = 3, a primitive root (mod 7). 5 $\operatorname{ind}_3 x \equiv \operatorname{ind}_3 2 \pmod{6}$ 5 ind₃ $x \equiv 2 \pmod{6}$ $ind_3x \equiv 4 \pmod{6}$ $x \equiv 3^4 \equiv 4 \pmod{7}$