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Subsection 1
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Congruences Definitions

Congruence Modulo n

Suppose that a,b are integers and that n is a natural number.

By a≡ b (mod n) one means n divides b−a.

We say that a is congruent to b modulo n.

If 0≤ b < n then one refers to b as the residue of a (mod n).
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Congruences Definitions

Residue Classes

Proposition

Congruence modulo n is a equivalence relation on Z.

One needs to verify reflexivity, symmetry and transitivity:

n | 0= a−a. So a≡ a.

a≡ b iff n | b−a iff n | −(b−a) iff n | a−b iff b ≡ a.

a≡ b and b ≡ c iff n | b−a and n | c −b imply n | (b−a)+ (c −b) iff

n | c −a iff a≡ c .

The equivalence classes are called residue classes or congruence

classes.

By a complete set of residues (mod n) one means a set of n
integers, one from each residue class (mod n).
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Congruences Definitions

Operations on Classes Modulo n

Proposition

If a≡ a′ (mod n) and b ≡ b′ (mod n), then:

a+b ≡ a′+b′ and a−b ≡ a′−b′ (mod n);

a ·b ≡ a′ ·b′ (mod n).

We show the case of addition, since subtraction is similar.

We have a≡ a′ and b ≡ b′ iff n | a′−a and n | b′−b imply
n | (a′−a)+ (b′−b) iff n | (a′+b′)− (a+b) iff a+b ≡ a′+b′.

For multiplication, we get:

a≡ a′ and b ≡ b′ iff n | a′−a and n | b′−b imply n | (a′−a)b and
n | a′(b′−b) imply n | (a′−a)b+a′(b′−b) iff n | a′b′−ab iff a′b′ ≡ ab.
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Congruences Definitions

Polynomial Operations on Classes Modulo n

Proposition

If f (x)= cnx
n+cn−1x

n−1+·· ·+c1x +c0 is any polynomial with integer
coefficients, then

a≡ a′ (mod n) implies f (a)≡ f (a′) (mod n).

First, note that, by the preceding theorem and an easy induction, if
a≡ a′, then, for every positive i , ai ≡ a′i .

Thus, again by the preceding theorem, for all i , cia
i ≡ cia

′i .

Using the preceding theorem once more,

cna
n
+cn−1a

n−1
+·· ·+c1a+c0 ≡ cna

′n
+cn−1a

′n−1
+·· ·+c1a

′
+c0,

i.e., f (a)≡ f (a′).
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Congruences Definitions

An Additional Property

Proposition

If ka≡ ka′ (mod n), for some natural number k , with (k ,n)= 1, then a≡ a′

(mod n).

We reason as follows:

ka≡ ka′ iff n | ka′−ka iff n | k(a′−a) implies, since (k ,n)= 1, n | a′−a

iff a≡ a′.

It follows that, if a1, . . . ,an is a complete set of residues (mod n) and
(k ,n)= 1, then so is ka1, . . . ,kan.
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Congruences Definitions

A Generalization

Proposition

If k is any natural number,

ka≡ ka′ (mod n) implies a≡ a′ (mod
n

(k ,n)
).

We have

ka≡ ka′ (mod n) iff n | ka′−ka iff n | k(a′−a) implies n
(k ,n) |

k
(k ,n)(a

′−a)

implies, since ( k
(k ,n) ,

n
(k ,n))= 1, n

(k ,n) | a
′−a iff a≡ a′ (mod n

(k ,n)).

George Voutsadakis (LSSU) Number Theory January 2023 9 / 49



Congruences Chinese Remainder Theorem

Subsection 2

Chinese Remainder Theorem
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Congruences Chinese Remainder Theorem

Solving a Linear Congruence

Proposition

Let a,n be natural numbers and let b be any integer. The linear congruence
ax ≡ b (mod n) is soluble for some integer x if and only if (a,n) divides b.

Suppose, first, that, for some integer x , ax ≡ b (mod n).

Then, we get n | b−ax , i.e., there exists k , such that b−ax = kn, or
b = ax +kn. Since (a,n) | a and (a,n) | n, we get (a,n) | b.

Suppose that d = (a,n) divides b.

Let a′ = a
d
, b′ = b

d
and n′ = n

d
.

It suffices to solve a′x ≡ b′ (mod n′).

This has precisely one solution (mod n′), since (a′,n′)= 1.

So, a′x runs through a complete set of residues (mod n′) as x runs
through such a set.
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Congruences Chinese Remainder Theorem

Solving a Linear Congruence (Remarks)

Keep the notation of the preceding slide.

Suppose x ′ is any solution of a′x ′ ≡ b′ (mod n′).

Then the complete set of solutions (mod n) of

ax ≡ b (mod n)

is given by
x = x ′+mn′, m= 1,2, . . . ,d .

Hence, when d := (a,n) divides b, the congruence ax ≡ b (mod n) has
precisely d solutions (mod n).
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Congruences Chinese Remainder Theorem

The Field Fp

If p is a prime and if a is not divisible by p, then the congruence
ax ≡ b (mod p) is always soluble.

In fact, there is a unique solution (mod p).

This implies that the residues 0,1, . . . ,p−1 form a field under addition
and multiplication (mod p),

i.e., every non-zero element has a unique multiplicative inverse.

We shall denote the field of residues (mod p) by Fp.

Obviously the field has characteristic p.

Since any other finite field with characteristic p is a vector space over
Fp, it must have q = pe elements, for some e.

An essentially unique field with q elements actually exists.
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Congruences Chinese Remainder Theorem

The Chinese Remainder Theorem

The Chinese Remainder Theorem

Let n1, . . . ,nk be natural numbers, such that (ni ,nj)= 1 for i 6= j . For any
integers c1, . . . ,ck , the congruences

x ≡ cj (mod nj), 1≤ j ≤ k ,

are soluble simultaneously for some integer x . In fact, there is a unique
solution modulo n= n1 · · ·nk .

Let mj =
n
nj

, 1≤ j ≤ k . Then (mj ,nj)= 1 and, thus, there is xj , such

that mjxj ≡ cj (mod nj). Moreover, mixi ≡ 0 (mod nj), for all i 6= j .
Thus, for all j , m1x1+·· ·+mkxk ≡ cj (mod nj).

If x ,y are two solutions, then x ≡ y (mod nj), for 1≤ j ≤ k .

Since the nj are coprime in pairs, we have x ≡ y (mod n).
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Congruences Chinese Remainder Theorem

A Generalization of the Chinese Remainder Theorem

Theorem (Generalized Chinese Remainder Theorem)

If n1, . . . ,nk are coprime in pairs, then the congruences

ajxj ≡ bj (mod nj), 1≤ j ≤ k ,

are soluble simultaneously if and only if (aj ,nj) divides bj , for all j .

Suppose n1, . . . ,nk are coprime in pairs.

By the Chinese Remainder Theorem, y ≡ bj (mod nj), j = 1, . . . ,k , are
soluble simultaneously for some y .

By the first theorem, ajxj ≡ bj mod nj is soluble iff (aj ,nj) | bj .
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Congruences Chinese Remainder Theorem

Example

Consider the congruences

x ≡ 2 (mod 5), x ≡ 3 (mod 7), x ≡ 4 (mod 11).

The solution is given by x = 77x1+55x2+35x3, where x1, x2, x3 satisfy

2x1 ≡ 2 (mod 5), 6x2 ≡ 3 (mod 7), 2x3 ≡ 4 (mod 11).

Thus, we can take x1 = 1, x2 = 4, x3 = 2.

These give x = 367, i.e., the complete solution is x ≡−18 (mod 385).
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Congruences Chinese Remainder Theorem

Example

Consider the congruences

x ≡ 1 (mod 3), x ≡ 2 (mod 10), x ≡ 3 (mod 11).

The solution is given by x = 110x1+33x2+30x3, where x1, x2, x3

satisfy

2x1 ≡ 1 (mod 3), 3x2 ≡ 2 (mod 10), 8x3 ≡ 3 (mod 11).

Thus, we can take x1 = 2, x2 = 4, x3 = 10.

These give x = 652, i.e., the complete solution is x ≡−8 (mod 330).
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Congruences The Theorems of Fermat and Euler

Subsection 3

The Theorems of Fermat and Euler

George Voutsadakis (LSSU) Number Theory January 2023 18 / 49



Congruences The Theorems of Fermat and Euler

Reduced Set of Residues

A reduced set of residues (mod n) is a set of ϕ(n) numbers, one
from each of the ϕ(n) residue classes that consist of numbers
relatively prime to n.

The set
{a : 1≤ a≤ n and (a,n)= 1}

is a reduced set of residues (mod n).
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Congruences The Theorems of Fermat and Euler

Multiplicativity of ϕ

Theorem (Multiplicativity of ϕ)

ϕ is multiplicative.

Let n,n′ be natural numbers with (n,n′)= 1. Let a and a′ run through
reduced sets of residues (mod n) and (mod n′), respectively. To see
that ϕ(n)ϕ(n′)=ϕ(nn′), we must show that an′+a′n runs through a
reduced set of residues (mod nn′).
First, note that:

(a,n)= 1 implies (an′+a′n,n)= 1;

(a′,n′)= 1 implies (an′+a′n,n′)= 1.

Now, since (n,n′)= 1, we get (an′+a′n,nn′)= 1.
Note, also, that any two distinct numbers of this form are incongruent
(mod nn′).

Let an′+a′n≡ bn′+b′n (mod nn′). Then, nn′ | (bn′+b′n)−(an′+a′n).
Hence, nn′ | (b−a)n′+ (b′−a′)n. Since (n,n′)= 1, we get a= b and
a′ = b′.
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Congruences The Theorems of Fermat and Euler

Multiplicativity of ϕ (Cont’d)

Finally, we show that if (b,nn′)= 1, then

b ≡ an′+a′n (mod nn′),

for some a,a′ as above.

Since (n,n′)= 1, there exist integers m,m′ satisfying mn′+m′n= 1.

Suppose for some prime p > 1, p | bm and p | n. Then, since, by

mn′+m′n= 1, p ∤m. So p | b. But, then p | (b,nn′), contradicting

(b,nn′)= 1.

We conclude (bm,n)= 1. So a≡ bm (mod n), for some a.

Similarly, a′ ≡ bm′ (mod n′), for some a′,

These a,a′ have the required property.
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Congruences The Theorems of Fermat and Euler

Fermat’s Theorem and Euler’s Theorem

(Theorem (Euler’s Theorem)

If a,n are natural numbers with (a,n)= 1, then

aϕ(n) ≡ 1 (mod n).

Since (a,n)= 1, as x runs through a reduced set of residues (mod n),
so also does ax .

Hence,
∏
(ax)≡

∏
(x) (mod n), where the products are taken over all

x in the reduced set.

Upon canceling
∏
(x) from both sides, we get the result.

Corollary (Fermat’s Theorem)

If a is any natural number and if p is any prime then ap ≡ a (mod p).

In particular, if (a,p)= 1, then ap−1 ≡ 1 (mod p).

George Voutsadakis (LSSU) Number Theory January 2023 22 / 49



Congruences Wilson’s Theorem

Subsection 4

Wilson’s Theorem
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Congruences Wilson’s Theorem

Wilson’s Theorem

The result is attributed to Wilson, but the statement was first
published by Waring in 1770 and a proof was by Lagrange.

Theorem (Wilson’s Theorem)

(p−1)!≡−1 (mod p), for any prime p.

Being obvious for p = 2, we assume that p is odd.

For every a, with 0< a< p, there is a unique a′, with 0< a′ < p, such
that aa′ ≡ 1 (mod p).

Further, if a= a′, then a2 ≡ 1 (mod p), whence a= 1 or a= p−1.

Thus, the set 2,3, . . . ,p−2 can be divided into 1
2
(p−3) pairs a,a′, with

aa′ ≡ 1 (mod p).

Hence, we have 2 ·3 · · ·(p−2)≡ 1 (mod p).

So (p−1)!≡ p−1≡−1 (mod p).
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Congruences Wilson’s Theorem

A Converse to Wilson’s Theorem

Theorem (Converse to Wilson’s Theorem)

An integer n> 1 is a prime if and only if (n−1)!≡−1 (mod n).

If n is a prime, the congruence holds by Wilson’s Theorem.

Suppose n is not a prime, e.g., n= kℓ, with k ,ℓ< n.

Assume to the contrary that (n−1)!≡−1 (mod n).

Then k | n | (n−1)!+1.

But k | (n−1)!.

These give k | 1, a contradiction.
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Congruences Wilson’s Theorem

A Solution to a Congruence

Theorem

If p is a prime, with p ≡ 1 (mod 4), then the congruence x2 ≡−1 (mod p)
has solutions x =±(r !), where r = 1

2
(p−1).

All following congruences are taken (mod p):

(±(r !))2 ≡ (±p−1
2
!)2 ≡ p−1

2
!p−1

2
!

≡ 1 ·2 · · · p−1
2
(−p−1

2
) · · ·(−2)(−1)

≡ 1 ·2 · · · p−1
2
(p−1

2
+1)(p−1

2
+2) · · · (p−1

2
+

p−1
2
)

≡ 1 ·2 · · ·(p−1)≡ (p−1)!≡ −1.

Note that the congruence has no solutions when p ≡ 3 (mod 4).

Otherwise we would have

xp−1
= x2r

≡ (−1)r =−1 (mod p),

contradicting Fermat’s Theorem.
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Congruences Lagrange’s Theorem

Subsection 5

Lagrange’s Theorem
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Congruences Lagrange’s Theorem

Lagrange’s Theorem

Theorem (Lagrange’s Theorem)

Let f (x) be a polynomial, with integer coefficients and with degree n.
Suppose p is a prime and the leading coefficient of f is not divisible by p.
The congruence f (x)≡ 0 (mod p) has at most n solutions (mod p).

The theorem holds for n= 1, by a previous result.
We assume that it is valid for polynomials with degree n−1.
We prove the theorem for polynomials with degree n.
Not that, for any integer a, f (x)− f (a)= (x −a)g(x), where g is a
polynomial with:

degree n−1;

integer coefficients;

the same leading coefficient as f .

By hypothesis, g(x)≡ 0 (mod p) has ≤ n−1 solutions (mod p).
But, if f (x)≡ 0 (mod p) has a solution x = a, then all solutions of the
congruence satisfy (x −a)g(x)≡ 0 (mod p).
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Congruences Lagrange’s Theorem

Factorization, Fermat’s and Wilson’s Theorems

We write f (x)≡ g(x) (mod p) to signify that the coefficients of like
powers of x in the polynomials f ,g are congruent (mod p).

It is clear that if the congruence f (x)≡ 0 (mod p) has its full
complement a1, . . . ,an of solutions (mod p), then

f (x)≡ c(x −a1) · · ·(x −an) (mod p),

where c is the leading coefficient of f .

In particular, by Fermat’s theorem, we have

xp−1
−1≡ (x −1) · · ·(x −p+1) (mod p).

On comparing constant coefficients, we obtain another proof of
Wilson’s theorem.
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Congruences Lagrange’s Theorem

Lagrange’s Theorem Using Fp

Theorem (Lagrange’s Theorem)

The number of zeros in Fp of a polynomial defined over this field cannot
exceed its degree.

We assume the result is valid for polynomials with degree n−1.

We prove the theorem for polynomials with degree n.

Supposing that f (x) is a polynomial over Fp with degree n and with
at least one zero a in Fp.

Then
f (x)= f (x)− f (a)= (x −a)g(x)

where g(x) is a polynomial over Fp with degree n−1.

Since, by the hypothesis, g(x) has at most n−1 roots, f (x) has at
most n roots.
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Congruences Lagrange’s Theorem

Corollary

Corollary

The polynomial xd −1 has precisely d zeros in Fp , for each divisor d of
p−1.

Note that
xp−1

−1= (xd −1)g(x),

where g(x) has degree p−1−d .

By Fermat’s theorem, xp−1−1 has p−1 zeros in Fp .

by Lagrange’s theorem, g(x) has at most p−1−d zeros in Fp.

It follows that xd −1 has at least (p−1)− (p−1−d)= d zeros in Fp.

Example: Taking d = 4, we deduce that x2+1 has precisely two zeros
in Fp, when p ≡ 1 (mod 4).
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Congruences Lagrange’s Theorem

Prime Power and Composite Moduli

Lagrange’s theorem is false for prime power moduli.

E.g., x2 ≡ 1 (mod 8) has four solutions.

Lagrange’s theorem does not remain true for composite moduli.

Let m1, . . . ,mk be such that (mi ,mj )= 1, 1≤ i < j ≤ k .

Let f (x) be a polynomial with integer coefficients.

Assume f (x)≡ 0 (mod mj) has sj solutions (mod mj).

Then, by the Chinese Remainder Theorem, if m=m1 · · ·mk ,

f (x)≡ 0 (mod m)

has s = s1 · · ·sk solutions (mod m).
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Congruences Primitive Roots

Subsection 6

Primitive Roots
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Congruences Primitive Roots

Order

Let a,n be natural numbers with (a,n)= 1.

The least natural number d , such that ad ≡ 1 (mod n), is called the
order of a (mod n), and a is said to belong to d (mod n).

Proposition

The order d of a (mod n) divides every integer k , such that ak ≡ 1
(mod n).

By the division algorithm, k = dq+ r , with 0≤ r < d .

Thus, ar ≡ ak ≡ 1 (mod n), whence, r = 0.

By Euler’s theorem, the order d exists and it divides ϕ(n).
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Congruences Primitive Roots

Primitive Roots

By a primitive root (mod n) we mean a number that belongs to
ϕ(n) (mod n).

Thus, for a prime p, a primitive root (mod p) is an integer g , such
that:

g is not divisible by p;

p−1 is the smallest exponent with gp−1 ≡ 1 (mod p).

I.e., a primitive root (mod p) can be defined as a generator g of the
multiplicative group of the field Fp .

Example: Take p = 17.

The smallest primitive root is g = 3.

The respective powers of 3 (mod 17) are

3,9,10, 13, 5, 15, 11, 16, 14, 8, 7, 4, 12, 2, 6, 1.
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Congruences Primitive Roots

Number of Primitive Roots

Theorem

For every odd prime p, there exists a primitive root (mod p). More
precisely, there are exactly ϕ(p−1) primitive roots (mod p).

Each of 1,2, . . . ,p−1 belongs (mod p) to some divisor d of p−1.

Let ψ(d) be the number that belongs to d (mod p).

Clearly,
∑

d |(p−1)ψ(d)= p−1.

By a previous result, we have
∑

d |(p−1)ϕ(d)= p−1.

So, it suffices to prove that, if ψ(d) 6= 0, then ψ(d)=ϕ(d).

This would imply that ψ(d) 6= 0, for all d ,

and, therefore, that ψ(p−1)=ϕ(p−1).
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Congruences Primitive Roots

Number of Primitive Roots (Cont’d)

Claim: if ψ(d) 6= 0, then ψ(d)=ϕ(d).

Suppose that ψ(d) 6= 0.

Let a be a number that belongs to d (mod p).

Then a,a2, . . . ,ad are mutually incongruent solutions of xd ≡ 1
(mod p).

By Lagrange’s theorem, they represent all the solutions (in fact we
showed that the congruence has precisely d solutions (mod p)).

Subclaim: The numbers am, with 1≤m≤ d and (m,d)= 1 represent
all the numbers that belong to d (mod p).

Each of these has order d : If amd ′

≡ 1, then d |md ′, whence d | d ′.

If b belongs to d (mod p), then b ≡ am, for some m, 1≤m≤ d .

But bd/(m,d) ≡ (ad)m/(m,d) ≡ 1 (mod p). So (m,d)= 1.

We conclude that ψ(d)=ϕ(d).
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Congruences Primitive Roots

Working in Fp

By a primitive root (mod p) we mean a generator g of the
multiplicative group of Fp.
By the order of a non-zero element a of Fp we mean the least
positive integer d such that ad = 1.

Proposition

Let ψ(d) be the number of elements in Fp, with order d . If ψ(d) 6= 0, then
ψ(d)=ϕ(d).

Let a be in Fp, with order d . We show that the ϕ(d) elements am,
with 1≤m≤ d and (m,d)= 1 are precisely those with order d .
The am, with 1≤m≤ d , are distinct zeros of the polynomial xd −1,
and, thus, by Lagrange’s theorem, they are all the zeros. Hence, any
element with order d is given by am, for some m.

We have (am)d/(m,d) = (ad )m/(m,d) = 1. So (m,d)= 1.

Suppose (m,d)= 1. Then amd = 1 and md is the smallest multiple of

m divisible by d . So am has order d .
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Congruences Primitive Roots

The Prime Power Property

Theorem

Let g be a primitive root (mod p). There exists an integer x , such that
g ′ = g +px is a primitive root (mod pj), for all prime powers pj .

We have gp−1 = 1+py , for some integer y .

By the binomial theorem,

g ′p−1
= 1+pz , where z ≡ y + (p−1)gp−2x (mod p).

The coefficient of x is not divisible by p.

So, we can choose x , such that (z ,p)= 1.

Then g ′ has the required property.
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Congruences Primitive Roots

The Prime Power Property (Cont’d)

Suppose that g ′ belongs to d (mod pj).

Then d divides ϕ(pj)= pj−1(p−1).

But g ′ = g +px is a primitive root (mod p).

Therefore, p−1 divides d .

Hence,
d = pk(p−1), for some k < j .

Now, we get (mod pj):

1 ≡ g ′d = g ′pk(p−1) = (1+pz)p
k

p odd
= 1+pk+1zk , where (zk ,p)= 1.

So, pk+1zk ≡ 0 (mod pj) and (zk ,p)= 1.

These give j = k +1 and d =ϕ(pj).
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Congruences Primitive Roots

Existence of Primitive Roots Modulo n

Theorem

For any natural number n, there exists a primitive root (mod n) if and
only if n has the form 2, 4, pj or 2pj , where p is an odd prime.

We show, first, that, if n has the form 2, 4, pj or 2pj , where p is an
odd prime, then there exists a primitive root mod n.

1 is a primitive root (mod 2).
3 is a primitive root (mod 4).
A primitive root (mod pj ) exists by the preceding theorem.

Suppose g is a primitive root (mod pj ).
Let g ′ be the odd element of the pair g ,g +pj .

Then, we have

g ′ϕ(2pj) = g ′ϕ(pj) ≡ 1 (mod pj );

g ′ϕ(2pj) ≡ 1 (mod 2).

Therefore, g ′ϕ(2pj) ≡ 1 (mod 2pj).
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Congruences Primitive Roots

Existence of Primitive Roots Modulo n (Converse)

We show the necessity of the assertion.

Suppose n= n1n2, where (n1,n2)= 1 and n1 > 2,n2 > 2.

Let a be a natural number.

We have that ϕ(n1) and ϕ(n2) are even and

a
1
2ϕ(n) = (aϕ(n1))

1
2ϕ(n2) ≡ 1 (mod n1).

Similarly,

a
1
2ϕ(n) ≡ 1 (mod n2).

Hence
a

1
2ϕ(n) ≡ 1 (mod n).
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Congruences Primitive Roots

Existence of Primitive Roots Modulo n (Conclusion)

We finally show that there are no primitive roots (mod 2j), for j > 2.

By induction, we have, for all odd numbers a,

a2j−2
≡ 1 (mod 2j).

Check that this is true for j = 3.

Suppose that a2k−2
≡ 1 (mod 2k), for some k > 3.

Then, we have a2k−2
−1= 2km, for some m.

Now we get

a2k−1
= a2k−2+2k−2

= a2k−2
a2k−2

= (2km+1)2

= 22km2+2 ·2km+1= 2k+1(2k−1m2+m)+1.

Therefore, a2k−1
≡ 1 (mod 2k+1).
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Congruences Indices

Subsection 7

Indices
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Congruences Indices

Indices

Let g be a primitive root (mod n).

The numbers
gℓ

, ℓ= 0,1, . . . ,ϕ(n)−1,

form a reduced set of residues (mod n).

For every integer a, with (a,n)= 1, there is a unique ℓ, such that

gℓ
≡ a (mod n).

The exponent ℓ is called the index of a with respect to g and it is
denoted by indga.
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Congruences Indices

Properties of Indices

Proposition

Let g be a primitive root (mod n).

indga+ indgb ≡ indg (ab) (mod ϕ(n));

indg1= 0;

indgg = 1.

Suppose ℓ= indga and m= indgb.

Then gℓ ≡ a (mod n) and gm ≡ b (mod n).

It follows that gℓ+m ≡ ab (mod n).

Thus, indg (ab)= ℓ+m (mod ϕ(n)).

g0 ≡ 1 (mod n).

g1 ≡ g (mod n).
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Congruences Indices

Power Rule for Indices

Proposition

Let g be a primitive root (mod n). For every natural m, we have

indg (a
m)≡m indga (mod ϕ(n)).

Let ℓ= indga. So gℓ ≡ a (mod n).

Then gmℓ = (gℓ)m ≡ am (mod n).

It follows that m ingga=mℓ≡ indg (a
m) (mod ϕ(n)).
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Congruences Indices

Index of −1

Proposition

If g is a primitive root (mod n), then indg (−1)= 1
2
ϕ(n), for n> 2.

Suppose ℓ= indg (−1).

Then gℓ ≡−1 (mod n) and 0≤ ℓ<ϕ(n).

Thus, g2ℓ ≡ 1 (mod n) and 0≤ 2ℓ< 2ϕ(n).

It follows that 2ℓ=ϕ(n).

Therefore, indg (−1)=
ϕ(n)

2
.
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Congruences Indices

Using Indices

Example: Consider xn ≡ a (mod p), where p is a prime.

We have n indgx ≡ indga (mod p−1).

Thus, if (n,p−1)= 1, then there is just one solution.

Consider x5 ≡ 2 (mod 7).

Let g = 3, a primitive root (mod 7).

5 ind3x ≡ ind32 (mod 6)

5 ind3x ≡ 2 (mod 6)

ind3x ≡ 4 (mod 6)

x ≡ 34 ≡ 4 (mod 7)
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