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Congruences

o Suppose that a, b are integers and that n is a natural number.
By a=b (mod n) one means n divides b— a.
We say that a is congruent to b modulo n.

o If 0= b < n then one refers to b as the residue of a (mod n).
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Congruences

Congruence modulo n is a equivalence relation on Z.

o One needs to verify reflexivity, symmetry and transitivity:
o n|l0=a—-a. So a=a.
o asbiffn|b—aiff n|—(b—a)iff n|a—-biff b=a.
o a=band b=ciff n|b—aand nlc—b imply n|(b—a)+(c—b) iff
nlc—aiffa=c.
o The equivalence classes are called residue classes or congruence
classes.
o By a complete set of residues (mod n) one means a set of n
integers, one from each residue class (mod n).
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Congruences

If a=a’ (mod n) and b= b’ (mod n), then:
o a+b=a'+b and a-b=a"-b (mod n);
o a-b=a'-b (mod n).

o We show the case of addition, since subtraction is similar.
We have a=a’ and b=b"iff n|a’—a and n| b’ — b imply
nl(a'=a)+(b'=b)iff n|(a'+b)—(a+b)iffa+b=a"+b.

o For multiplication, we get:
a=a and b=b'iff n|a’—aand n|b'—b imply n|(a’'—a)b and
nla'(b'—b) imply n|(a'—a)b+a'(b'—b) iff n|a'b' —ab iff a'b' = ab.
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Congruences

If £(x)=cpx"+cpo1x" 1 +---+c1x+ g is any polynomial with integer

coefficients, then

=3’ (mod n) implies f(a)=f(a') (mod n).

o First, note that, by the preceding theorem and an easy induction, if
a=a', then, for every positive i, a' = a"
Thus, again by the preceding theorem, for all i, c;a’ = ¢;a'".

Using the preceding theorem once more,
Cra "+ Cp1a™ 1+ +crat = cra +Cr1d" L+t c1d + o,
e, f(a)=1(a).
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Congruences

If ka=ka' (mod n), for some natural number k, with (k,n) =1, then a=a’

(mod n).

o We reason as follows:
ka = ka' iff n| ka' — ka iff n| k(a’ —a) implies, since (k,n)=1, n|a' —a
iff a= 2.

o It follows that, if aj,...,a, is a complete set of residues (mod n) and
(k,n)=1, then so is kaj,..., kap.
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Congruences

If k is any natural number,

n

(k, n)

).

ka=ka' (mod n) implies a=a (mod

o We have

ka= ka' (mod n) iff n| ka’ — ka iff n| k(a'—a) implies ﬁ | (k—'f,,)(a'—a)

k n )

implies, since ((k,n)’ ) = 1, ﬁ |a'—aiff a=a’ (mod (k_,,n))
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Congruences

Let a,n be natural numbers and let b be any integer. The linear congruence
ax =b (mod n) is soluble for some integer x if and only if (a,n) divides b.

o Suppose, first, that, for some integer x, ax=b (mod n).

Then, we get n| b—ax, i.e., there exists k, such that b—ax = kn, or
b=ax+ kn. Since (a,n)|a and (a,n) | n, we get (a,n)| b.

Suppose that d = (a, n) divides b.

Let a'=2, b'=25 and n'= 2.

It suffices to solve a’x=b" (mod n').

This has precisely one solution (mod n'), since (a’,n’) =1.

So, a'x runs through a complete set of residues (mod n') as x runs
through such a set.
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Congruences

o Keep the notation of the preceding slide.
o Suppose x’ is any solution of a’x’= b’ (mod n').

o Then the complete set of solutions (mod n) of
ax=b (mod n)

is given by
x=x'"+mn’, m=1,2,...,d.

o Hence, when d:=(a,n) divides b, the congruence ax=b (mod n) has
precisely d solutions (mod n).
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Congruences

o If pis a prime and if a is not divisible by p, then the congruence
ax=b (mod p) is always soluble.

o In fact, there is a unique solution (mod p).

o This implies that the residues 0,1,...,p—1 form a field under addition
and multiplication (mod p),

i.e., every non-zero element has a unique multiplicative inverse.
o We shall denote the field of residues (mod p) by IFp,.
o Obviously the field has characteristic p.

o Since any other finite field with characteristic p is a vector space over
Fp, it must have g = p® elements, for some e.

An essentially unique field with g elements actually exists.
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Congruences

The Chinese Remainder Theorem

Let ny,...,nk be natural numbers, such that (n;,nj) =1 for i #j. For any
integers ¢y, ..., ck, the congruences

x=¢ (modnj), 1lsjs<k,

are soluble simultaneously for some integer x. In fact, there is a unique
solution modulo n=ny---ny.

o Let m;= n , 1<j<k. Then (mj,n;) =1 and, thus, there is x;, such
that m;x; = ¢; (mod n;). Moreover, m;x; =0 (mod n;j), for all i #j.
Thus, for all j, myx; +---+ mexi = ¢; (mod nj).

If x,y are two solutions, then x =y (mod n;), for 1< j<k.

Since the n; are coprime in pairs, we have x =y (mod n).
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Congruences

Theorem (Generalized Chinese Remainder Theorem)

If ny,...,ng are coprime in pairs, then the congruences

ajxj=b; (mod nj), 1sjs<k,
are soluble simultaneously if and only if (a;, n;) divides b;, for all j.

o Suppose ny,..., n, are coprime in pairs.

By the Chinese Remainder Theorem, y = b; (mod nj), j=1,...,k, are
soluble simultaneously for some y.

By the first theorem, ajxj = b; mod n; is soluble iff (aj,nj) | bj.
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Congruences

o Consider the congruences
x=2 (mod5), x=3 (mod7), x=4 (mod1l).
The solution is given by x = 77x; +55x, +35x3, where x1, x», x3 satisfy

2x1=2 (mod5), 6xx=3 (mod7), 2x3=4 (mod 11).

Thus, we can take x;1 =1, xo =4, x3=2.
These give x =367, i.e., the complete solution is x = —18 (mod 385).
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Congruences

o Consider the congruences
x=1 (mod3), x=2 (mod10), x=3 (mod 11).

The solution is given by x = 110x; +33x, + 30x3, where x1, x2, x3
satisfy

2x3=1 (mod 3), 3xx=2 (mod10), 8x3=3 (mod 11).

Thus, we can take x; =2, xp =4, x3=10.

These give x =652, i.e., the complete solution is x = -8 (mod 330).
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Congruences

o A reduced set of residues (mod n) is a set of ¢(n) numbers, one
from each of the ¢(n) residue classes that consist of numbers
relatively prime to n.

o The set
{a:l<a<nand (a,n)=1}

is a reduced set of residues (mod n).
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Congruences

Theorem (Multiplicativity of ¢)

@ is multiplicative.

o Let n,n" be natural numbers with (n,n")=1. Let a and a’ run through
reduced sets of residues (mod n) and (mod n’), respectively. To see
that ¢(n)@(n’) = ¢@(nn"), we must show that an’+a’n runs through a
reduced set of residues (mod nn').

First, note that:

o (a,n)=1 implies (an’+a'n,n)=1;

o (a',n")=1 implies (an’ +a'n,n")=1.
Now, since (n,n") =1, we get (an’+a'n,nn") =1.
Note, also, that any two distinct numbers of this form are incongruent
(mod nn').
Let an’+a'n=bn"+b'n (mod nn'). Then, nn' | (bn’+b'n)—(an’ +a'n).
Hence, nn'| (b—a)n’ + (b —a’)n. Since (n,n') =1, we get a=b and
a=b.
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Congruences

o Finally, we show that if (b,nn") =1, then
b=an'+a'n (mod nn'),

for some a,a’ as above.
Since (n,n") =1, there exist integers m, m’ satisfying mn’ + m'n=1.
o Suppose for some prime p>1, p| bm and p|n. Then, since, by
mn'+m'n=1, ptm. So p|b. But, then p|(b,nn'), contradicting
(b,nn") =1.
We conclude (bm,n) =1. So a=bm (mod n), for some a.
o Similarly, a’ = bm’ (mod n'), for some &',

These a,a’ have the required property.
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Congruences

(Theorem (Euler’'s Theorem)

If a,n are natural numbers with (a,n) =1, then

a?M=1 (mod n).

o Since (a,n) =1, as x runs through a reduced set of residues (mod n),
so also does ax.

Hence, [1(ax) =T1(x) (mod n), where the products are taken over all
x in the reduced set.

Upon canceling [](x) from both sides, we get the result.

Corollary (Fermat's Theorem)

If ais any natural number and if p is any prime then a? = a (mod p).
o In particular, if (a,p)=1, then 2?1 =1 (mod p).
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Congruences

o The result is attributed to Wilson, but the statement was first
published by Waring in 1770 and a proof was by Lagrange.

Theorem (Wilson's Theorem)

(p—1)'=-1 (mod p), for any prime p.

o Being obvious for p=2, we assume that p is odd.
For every a, with 0 <a< p, there is a unique a’, with 0 < a’ < p, such
that aa’=1 (mod p).
Further, if a= 4/, then 2> =1 (mod p), whence a=1or a=p-1.
Thus, the set 2,3,...,p—2 can be divided into %(p—3) pairs a,a’, with
aa’=1 (mod p).
Hence, we have 2-3---(p—2)=1 (mod p).
So (p—-1)!=p-1=-1 (mod p).
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Congruences

Theorem (Converse to Wilson's Theorem)

An integer n> 1 is a prime if and only if (n—1)!=-1 (mod n).

o If nis a prime, the congruence holds by Wilson's Theorem.
Suppose n is not a prime, e.g., n= k¢, with k,¢ < n.
Assume to the contrary that (n—1)!=-1 (mod n).

Then k|n|(n-1)'+1.
But k| (n—1)L.
These give k|1, a contradiction.
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Congruences

If pis a prime, with p=1 (mod 4) then the congruence x?> = -1 (mod p)
has solutions x = +(r!), where r=1(p-1).

All following congruences are taken (mod p):

(x(r))? = (#2Fn2=2hiecl
= 1.2..PT—1(_P_—1)... -2)(-1)
= 1.2 212241y (2L +2)- (B + &)
= 1.2« (p-1)=(p-1)'!=-1

o Note that the congruence has no solutions when p=3 (mod 4).
Otherwise we would have

xP1=x2=(-1)"=-1 (mod p),
contradicting Fermat's Theorem.
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Congruences

Theorem (Lagrange's Theorem)

Let 7(x) be a polynomial, with integer coefficients and with degree n.
Suppose p is a prime and the leading coefficient of f is not divisible by p.
The congruence f(x)=0 (mod p) has at most n solutions (mod p).

o The theorem holds for n=1, by a previous result.
We assume that it is valid for polynomials with degree n—1.
We prove the theorem for polynomials with degree n.
Not that, for any integer a, f(x)—f(a)=(x—a)g(x), where g is a
polynomial with:
o degree n—1;
o integer coefficients;
o the same leading coefficient as f.
By hypothesis, g(x) =0 (mod p) has < n—1 solutions (mod p).
But, if f(x)=0 (mod p) has a solution x = a, then all solutions of the
congruence satisfy (x—a)g(x)=0 (mod p).
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Congruences

o We write f(x) = g(x) (mod p) to signify that the coefficients of like
powers of x in the polynomials f,g are congruent (mod p).

o It is clear that if the congruence f(x)=0 (mod p) has its full
complement aj,...,an of solutions (mod p), then

F(x)=c(x—a1)-(x~an) (mod p),

where c is the leading coefficient of f.

o In particular, by Fermat's theorem, we have
xPt_1=(x=1)---(x=p+1) (mod p).

o On comparing constant coefficients, we obtain another proof of
Wilson's theorem.
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Congruences

Theorem (Lagrange’s Theorem)

The number of zeros in IF, of a polynomial defined over this field cannot
exceed its degree.

o We assume the result is valid for polynomials with degree n—1.
We prove the theorem for polynomials with degree n.

Supposing that f(x) is a polynomial over IF, with degree n and with
at least one zero a in IF),.

Then
f(x)=f(x)-f(a) = (x-a)g(x)
where g(x) is a polynomial over IF, with degree n—1.

Since, by the hypothesis, g(x) has at most n—1 roots, f(x) has at
most n roots.
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Congruences

Corollary

The polynomial x¥ — 1 has precisely d zeros in I, for each divisor d of
p—1.

o Note that
xPl_1= (xd -1)g(x),

where g(x) has degree p—1—d.
o By Fermat's theorem, xP~1_1 has p—1 zeros in IFp.
o by Lagrange's theorem, g(x) has at most p—1—d zeros in Fp.

It follows that x? —1 has at least (p—1)—(p—1-d)=d zeros in F).

: Taking d =4, we deduce that x?+1 has precisely two zeros
in Fp, when p=1 (mod 4).
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Congruences

o Lagrange’s theorem is false for prime power moduli.
E.g., x>=1 (mod 8) has four solutions.
o Lagrange's theorem does not remain true for composite moduli.
Let my,...,my be such that (m;,m;) =1, 1<i<j<k.
Let 7(x) be a polynomial with integer coefficients.
Assume f(x) =0 (mod m;) has s; solutions (mod m;).

Then, by the Chinese Remainder Theorem, if m=my---my,
f(x)=0 (mod m)

has s =s; --- s solutions (mod m).
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Congruences

o Let a,n be natural numbers with (a,n) =1.

The least natural number d, such that a? =1 (mod n), is called the
order of a (mod n), and a is said to belong to d (mod n).

The order d of a (mod n) divides every integer k, such that ak =1
(mod n).

o By the division algorithm, k=dqg+r, with 0<r<d.
Thus, a"=ak=1 (mod n), whence, r=0.

o By Euler's theorem, the order d exists and it divides ¢(n).
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Congruences

o By a primitive root (mod n) we mean a number that belongs to

¢@(n) (mod n).
o Thus, for a prime p, a primitive root (mod p) is an integer g, such
that:

o g is not divisible by p;
o p—1is the smallest exponent with gP~1=1 (mod p).

o l.e., a primitive root (mod p) can be defined as a generator g of the
multiplicative group of the field I

. Take p=17.
The smallest primitive root is g = 3.

The respective powers of 3 (mod 17) are

3,9,10, 13, 5, 15, 11, 16, 14, 8, 7, 4, 12, 2, 6, 1.
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Congruences

For every odd prime p, there exists a primitive root (mod p). More
precisely, there are exactly ¢(p—1) primitive roots (mod p).

o Each of 1,2,...,p—1 belongs (mod p) to some divisor d of p—1.
Let w(d) be the number that belongs to d (mod p).
Clearly, Y.q(p-1)¥(d)=p-1.
By a previous result, we have ¥ gi(p-1)¢(d) =p—1.
So, it suffices to prove that, if w(d) #0, then y(d) = ¢(d).
This would imply that w(d) #0, for all d,
and, therefore, that w(p—1)=¢(p-1).
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Congruences

- if w(d) #0, then w(d) = ¢(d).
Suppose that y(d) #0.
Let a be a number that belongs to d (mod p).

Then a,a2,...,a% are mutually incongruent solutions of x4 =1

(mod p).
By Lagrange's theorem, they represent all the solutions (in fact we
showed that the congruence has precisely d solutions (mod p)).

: The numbers a™, with 1= m<d and (m,d) =1 represent
all the numbers that belong to d (mod p).

Each of these has order d: If ™ =1, then d | md’, whence d | d".
If b belongs to d (mod p), then b=a", for some m, L=< m<d.
But b?/(md) = (ad)ym/(md) = 1 (mod p). So (m,d) =1.

We conclude that w(d) = ¢(d).
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Congruences

o By a primitive root (mod p) we mean a generator g of the
multiplicative group of I,

o By the order of a non-zero element a of IFP we mean the least
positive integer d such that a9 =1.

Let y(d) be the number of elements in IFy,, with order d. If y(d) #0, then
y(d) = ¢(d).
o Let a bein IFp, with order d. We show that the ¢(d) elements a”,
with 1= m<d and (m,d) =1 are precisely those with order d.
The a™, with 1< m<d, are distinct zeros of the polynomial x9 -1,

and, thus, by Lagrange's theorem, they are all the zeros. Hence, any
element with order d is given by a™, for some m.
o We have (a™)d/(md) = (ad)ym/(md) =1 So (m,d)=1.
o Suppose (m,d)=1. Then a™ =1 and md is the smallest multiple of
m divisible by d. So a™ has order d.
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Congruences

Let g be a primitive root (mod p). There exists an integer x, such that
g' =g+ px is a primitive root (mod p/), for all prime powers p/.

o We have gP~! =1+ py, for some integer y.

By the binomial theorem,
gPl=14pz, where z=y +(p—1)g”P2x (mod p).

The coefficient of x is not divisible by p.
So, we can choose x, such that (z,p) =1.
Then g’ has the required property.
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Congruences

o Suppose that g’ belongs to d (mod p/).
Then d divides ¢(p/) =p/~1(p-1).
But g’ =g+ px is a primitive root (mod p).
Therefore, p—1 divides d.
Hence,
d= pk(p— 1), for some k <.

Now, we get (mod p/):

1

P

gd=gP Pl = (1+pz)”

d 1+Pk+1

g

zk, where (z,p)=1.

So, p¥*1z, =0 (mod p/) and (z,p) =1.

These give j=k+1 and d = ¢(p/).
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Congruences

For any natural number n, there exists a primitive root (mod n) if and
only if n has the form 2, 4, p/ or 2p/, where p is an odd prime.

o We show, first, that, if n has the form 2, 4, p/ or 2p/, where p is an
odd prime, then there exists a primitive root mod n.
o 1is a primitive root (mod 2).
3 is a primitive root (mod 4).
A primitive root (mod p/) exists by the preceding theorem.
Suppose g is a primitive root (mod p/).
Let g’ be the odd element of the pair g,g + p/.
Then, we have

¢ ¢ ¢

g?2P) = 1 (mod2).

Therefore, g’#(2”") =1 (mod 2p/).



Congruences

o We show the necessity of the assertion.
Suppose n= niny, where (ny,n)=1 and ny >2,np > 2.
Let a be a natural number.

We have that ¢(n;) and ¢(ny) are even and

Similarly,
1
a2?(M =1 (mod np).

Hence
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o We finally show that there are no primitive roots (mod 2/), for j > 2.

By induction, we have, for all odd numbers a,
2721 (mod 2).

Check that this is true for j = 3.
Suppose that 2> * =1 (mod 2), for some k > 3.

k-2
Then, we have a2~ —1=2km, for some m.
Now we get
k-1 k-2 k-2 k-2 k-2
a° = & =g & =2 mel)?

= PG L = S S S

Therefore, 22" =1 (mod 2k+1).
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Congruences

o Let g be a primitive root (mod n).

o The numbers
g[, ¢=0,1,...,¢(n)-1,

form a reduced set of residues (mod n).
o For every integer a, with (a,n) =1, there is a unique ¢, such that

gf=a (modn).

The exponent ¢ is called the index of a with respect to g and it is
denoted by indga.
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Let g be a primitive root (mod n).
o indga+indgb=indg(ab) (mod ¢(n));
0 indg1=0;
o indgg=1.

o Suppose ¢ =indga and m=indgb.
Then g =a (mod n) and g™ = b (mod n).
It follows that g™ =ab (mod n).
Thus, indg(ab) =€+ m (mod ¢(n)).

o g%=1 (mod n).

o gt=g (mod n).
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Let g be a primitive root (mod n). For every natural m, we have

indg(a™)=mindga (mod ¢(n)).

o Let £=indga. So g‘=a (mod n).
Then g™ = (g/)™=a™ (mod n).
It follows that m ingga=m¢ =indg(a™) (mod ¢(n)).
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Congruences

If g is a primitive root (mod n), then indg(~1) = $¢(n), for n>2.

o Suppose ¢ =indg(-1).
Then g/ =-1 (mod n) and 0< ¢ < ¢(n).
Thus, g2 =1 (mod n) and 0<2¢ < 2¢(n).
It follows that 2¢ = ¢(n).
Therefore, indg(-1) = @.
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: Consider x" =a (mod p), where p is a prime.
We have n indgx =indga (mod p—1).
Thus, if (n,p—1) =1, then there is just one solution.
o Consider x> =2 (mod 7).
Let g =3, a primitive root (mod 7).
5 ind3x =ind32 (mod 6)
5 ind3x =2 (mod 6)
ind3x =4 (mod 6)
x=3*=4 (mod 7)

George Voutsadakis (LSSU) Number Theory



	Congruences
	Definitions
	Chinese Remainder Theorem
	The Theorems of Fermat and Euler
	Wilson's Theorem
	Lagrange's Theorem
	Primitive Roots
	Indices


