Introduction to Number Theory

George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science
Lake Superior State University

LSSU Math 400

Congruences

- Definitions
- Chinese Remainder Theorem
- The Theorems of Fermat and Euler
- Wilson's Theorem
- Lagrange's Theorem
- Primitive Roots
- Indices

Subsection 1

Definitions

Congruence Modulo n

- Suppose that a, b are integers and that n is a natural number. By $a \equiv b(\bmod n)$ one means n divides $b-a$.
We say that a is congruent to b modulo n.
- If $0 \leq b<n$ then one refers to b as the residue of $a(\bmod n)$.

Residue Classes

Proposition

Congruence modulo n is a equivalence relation on \mathbb{Z}.

- One needs to verify reflexivity, symmetry and transitivity:
- $n \mid 0=a-a$. So $a \equiv a$.
- $a \equiv b$ iff $n \mid b-a$ iff $n \mid-(b-a)$ iff $n \mid a-b$ iff $b \equiv a$.
- $a \equiv b$ and $b \equiv c$ iff $n \mid b-a$ and $n \mid c-b$ imply $n \mid(b-a)+(c-b)$ iff $n \mid c-a$ iff $a \equiv c$.
- The equivalence classes are called residue classes or congruence classes.
- By a complete set of residues $(\bmod n)$ one means a set of n integers, one from each residue class $(\bmod n)$.

Operations on Classes Modulo n

Proposition

If $a \equiv a^{\prime}(\bmod n)$ and $b \equiv b^{\prime}(\bmod n)$, then:

- $a+b \equiv a^{\prime}+b^{\prime}$ and $a-b \equiv a^{\prime}-b^{\prime}(\bmod n)$;
- $a \cdot b \equiv a^{\prime} \cdot b^{\prime}(\bmod n)$.
- We show the case of addition, since subtraction is similar.

We have $a \equiv a^{\prime}$ and $b \equiv b^{\prime}$ iff $n \mid a^{\prime}-a$ and $n \mid b^{\prime}-b$ imply $n \mid\left(a^{\prime}-a\right)+\left(b^{\prime}-b\right)$ iff $n \mid\left(a^{\prime}+b^{\prime}\right)-(a+b)$ iff $a+b \equiv a^{\prime}+b^{\prime}$.

- For multiplication, we get:
$a \equiv a^{\prime}$ and $b \equiv b^{\prime}$ iff $n \mid a^{\prime}-a$ and $n \mid b^{\prime}-b$ imply $n \mid\left(a^{\prime}-a\right) b$ and $n \mid a^{\prime}\left(b^{\prime}-b\right)$ imply $n \mid\left(a^{\prime}-a\right) b+a^{\prime}\left(b^{\prime}-b\right)$ iff $n \mid a^{\prime} b^{\prime}-a b$ iff $a^{\prime} b^{\prime} \equiv a b$.

Polynomial Operations on Classes Modulo n

Proposition

If $f(x)=c_{n} x^{n}+c_{n-1} x^{n-1}+\cdots+c_{1} x+c_{0}$ is any polynomial with integer coefficients, then

$$
a \equiv a^{\prime} \quad(\bmod n) \quad \text { implies } \quad f(a) \equiv f\left(a^{\prime}\right)(\bmod n)
$$

- First, note that, by the preceding theorem and an easy induction, if $a \equiv a^{\prime}$, then, for every positive $i, a^{i} \equiv a^{\prime i}$.
Thus, again by the preceding theorem, for all $i, c_{i} a^{i} \equiv c_{i} a^{\prime i}$. Using the preceding theorem once more,

$$
c_{n} a^{n}+c_{n-1} a^{n-1}+\cdots+c_{1} a+c_{0} \equiv c_{n} a^{\prime n}+c_{n-1} a^{\prime n-1}+\cdots+c_{1} a^{\prime}+c_{0}
$$

i.e., $f(a) \equiv f\left(a^{\prime}\right)$.

An Additional Property

Proposition

If $k a \equiv k a^{\prime}(\bmod n)$, for some natural number k, with $(k, n)=1$, then $a \equiv a^{\prime}$ $(\bmod n)$.

- We reason as follows: $k a \equiv k a^{\prime}$ iff $n \mid k a^{\prime}-k a$ iff $n \mid k\left(a^{\prime}-a\right)$ implies, since $(k, n)=1, n \mid a^{\prime}-a$ iff $a \equiv a^{\prime}$.
- It follows that, if a_{1}, \ldots, a_{n} is a complete set of residues $(\bmod n)$ and $(k, n)=1$, then so is $k a_{1}, \ldots, k a_{n}$.

A Generalization

Proposition

If k is any natural number,

$$
k a \equiv k a^{\prime} \quad(\bmod n) \quad \text { implies } \quad a \equiv a^{\prime} \quad\left(\bmod \frac{n}{(k, n)}\right) .
$$

- We have
$k a \equiv k a^{\prime}(\bmod n)$ iff $n \mid k a^{\prime}-k a$ iff $n \mid k\left(a^{\prime}-a\right)$ implies $\frac{n}{(k, n)} \left\lvert\, \frac{k}{(k, n)}\left(a^{\prime}-a\right)\right.$ implies, since $\left(\frac{k}{(k, n)}, \frac{n}{(k, n)}\right)=1, \left.\frac{n}{(k, n)} \right\rvert\, a^{\prime}-a$ iff $a \equiv a^{\prime}\left(\bmod \frac{n}{(k, n)}\right)$.

Subsection 2

Chinese Remainder Theorem

Solving a Linear Congruence

Proposition

Let a, n be natural numbers and let b be any integer. The linear congruence $a x \equiv b(\bmod n)$ is soluble for some integer x if and only if (a, n) divides b.

- Suppose, first, that, for some integer $x, a x \equiv b(\bmod n)$.

Then, we get $n \mid b-a x$, i.e., there exists k, such that $b-a x=k n$, or $b=a x+k n$. Since $(a, n) \mid a$ and $(a, n) \mid n$, we get $(a, n) \mid b$.
Suppose that $d=(a, n)$ divides b.
Let $a^{\prime}=\frac{a}{d}, b^{\prime}=\frac{b}{d}$ and $n^{\prime}=\frac{n}{d}$.
It suffices to solve $a^{\prime} x \equiv b^{\prime}\left(\bmod n^{\prime}\right)$.
This has precisely one solution $\left(\bmod n^{\prime}\right)$, since $\left(a^{\prime}, n^{\prime}\right)=1$.
So, $a^{\prime} \times$ runs through a complete set of residues $\left(\bmod n^{\prime}\right)$ as x runs through such a set.

Solving a Linear Congruence (Remarks)

- Keep the notation of the preceding slide.
- Suppose x^{\prime} is any solution of $a^{\prime} x^{\prime} \equiv b^{\prime}\left(\bmod n^{\prime}\right)$.
- Then the complete set of solutions $(\bmod n)$ of

$$
a x \equiv b \quad(\bmod n)
$$

is given by

$$
x=x^{\prime}+m n^{\prime}, \quad m=1,2, \ldots, d
$$

- Hence, when $d:=(a, n)$ divides b, the congruence $a x \equiv b(\bmod n)$ has precisely d solutions $(\bmod n)$.
- If p is a prime and if a is not divisible by p, then the congruence $a x \equiv b(\bmod p)$ is always soluble.
- In fact, there is a unique solution $(\bmod p)$.
- This implies that the residues $0,1, \ldots, p-1$ form a field under addition and multiplication $(\bmod p)$,
i.e., every non-zero element has a unique multiplicative inverse.
- We shall denote the field of residues $(\bmod p)$ by \mathbb{F}_{p}.
- Obviously the field has characteristic p.
- Since any other finite field with characteristic p is a vector space over \mathbb{F}_{p}, it must have $q=p^{e}$ elements, for some e.
An essentially unique field with q elements actually exists.

The Chinese Remainder Theorem

The Chinese Remainder Theorem

Let n_{1}, \ldots, n_{k} be natural numbers, such that $\left(n_{i}, n_{j}\right)=1$ for $i \neq j$. For any integers c_{1}, \ldots, c_{k}, the congruences

$$
x \equiv c_{j} \quad\left(\bmod n_{j}\right), \quad 1 \leq j \leq k,
$$

are soluble simultaneously for some integer x. In fact, there is a unique solution modulo $n=n_{1} \cdots n_{k}$.

- Let $m_{j}=\frac{n}{n_{j}}, 1 \leq j \leq k$. Then $\left(m_{j}, n_{j}\right)=1$ and, thus, there is x_{j}, such that $m_{j} x_{j} \equiv c_{j}\left(\bmod n_{j}\right)$. Moreover, $m_{i} x_{i} \equiv 0\left(\bmod n_{j}\right)$, for all $i \neq j$. Thus, for all $j, m_{1} x_{1}+\cdots+m_{k} x_{k} \equiv c_{j}\left(\bmod n_{j}\right)$.
If x, y are two solutions, then $x \equiv y\left(\bmod n_{j}\right)$, for $1 \leq j \leq k$.
Since the n_{j} are coprime in pairs, we have $x \equiv y(\bmod n)$.

A Generalization of the Chinese Remainder Theorem

Theorem (Generalized Chinese Remainder Theorem)

If n_{1}, \ldots, n_{k} are coprime in pairs, then the congruences

$$
a_{j} x_{j} \equiv b_{j} \quad\left(\bmod n_{j}\right), \quad 1 \leq j \leq k,
$$

are soluble simultaneously if and only if $\left(a_{j}, n_{j}\right)$ divides b_{j}, for all j.

- Suppose n_{1}, \ldots, n_{k} are coprime in pairs.

By the Chinese Remainder Theorem, $y \equiv b_{j}\left(\bmod n_{j}\right), j=1, \ldots, k$, are soluble simultaneously for some y.
By the first theorem, $a_{j} x_{j} \equiv b_{j} \bmod n_{j}$ is soluble iff $\left(a_{j}, n_{j}\right) \mid b_{j}$.

Example

- Consider the congruences

$$
x \equiv 2 \quad(\bmod 5), \quad x \equiv 3 \quad(\bmod 7), \quad x \equiv 4 \quad(\bmod 11) .
$$

The solution is given by $x=77 x_{1}+55 x_{2}+35 x_{3}$, where x_{1}, x_{2}, x_{3} satisfy

$$
2 x_{1} \equiv 2 \quad(\bmod 5), \quad 6 x_{2} \equiv 3 \quad(\bmod 7), \quad 2 x_{3} \equiv 4 \quad(\bmod 11) .
$$

Thus, we can take $x_{1}=1, x_{2}=4, x_{3}=2$.
These give $x=367$, i.e., the complete solution is $x \equiv-18(\bmod 385)$.

Example

- Consider the congruences

$$
x \equiv 1 \quad(\bmod 3), \quad x \equiv 2 \quad(\bmod 10), \quad x \equiv 3 \quad(\bmod 11)
$$

The solution is given by $x=110 x_{1}+33 x_{2}+30 x_{3}$, where x_{1}, x_{2}, x_{3} satisfy

$$
2 x_{1} \equiv 1 \quad(\bmod 3), \quad 3 x_{2} \equiv 2 \quad(\bmod 10), \quad 8 x_{3} \equiv 3 \quad(\bmod 11) .
$$

Thus, we can take $x_{1}=2, x_{2}=4, x_{3}=10$.
These give $x=652$, i.e., the complete solution is $x \equiv-8(\bmod 330)$.

Subsection 3

The Theorems of Fermat and Euler

Reduced Set of Residues

- A reduced set of residues $(\bmod n)$ is a set of $\varphi(n)$ numbers, one from each of the $\varphi(n)$ residue classes that consist of numbers relatively prime to n.
- The set

$$
\{a: 1 \leq a \leq n \text { and }(a, n)=1\}
$$

is a reduced set of residues $(\bmod n)$.

Multiplicativity of φ

Theorem (Multiplicativity of φ)

φ is multiplicative.

- Let n, n^{\prime} be natural numbers with $\left(n, n^{\prime}\right)=1$. Let a and a^{\prime} run through reduced sets of residues $(\bmod n)$ and $\left(\bmod n^{\prime}\right)$, respectively. To see that $\varphi(n) \varphi\left(n^{\prime}\right)=\varphi\left(n n^{\prime}\right)$, we must show that $a n^{\prime}+a^{\prime} n$ runs through a reduced set of residues $\left(\bmod n n^{\prime}\right)$.
First, note that:
- $(a, n)=1$ implies $\left(a n^{\prime}+a^{\prime} n, n\right)=1$;
- $\left(a^{\prime}, n^{\prime}\right)=1$ implies $\left(a n^{\prime}+a^{\prime} n, n^{\prime}\right)=1$.

Now, since $\left(n, n^{\prime}\right)=1$, we get $\left(a n^{\prime}+a^{\prime} n, n n^{\prime}\right)=1$.
Note, also, that any two distinct numbers of this form are incongruent $\left(\bmod n n^{\prime}\right)$.
Let $a n^{\prime}+a^{\prime} n \equiv b n^{\prime}+b^{\prime} n\left(\bmod n n^{\prime}\right)$. Then, $n n^{\prime} \mid\left(b n^{\prime}+b^{\prime} n\right)-\left(a n^{\prime}+a^{\prime} n\right)$. Hence, $n n^{\prime} \mid(b-a) n^{\prime}+\left(b^{\prime}-a^{\prime}\right) n$. Since $\left(n, n^{\prime}\right)=1$, we get $a=b$ and $a^{\prime}=b^{\prime}$.

Multiplicativity of φ (Cont'd)

- Finally, we show that if $\left(b, n n^{\prime}\right)=1$, then

$$
b \equiv a n^{\prime}+a^{\prime} n \quad\left(\bmod n n^{\prime}\right),
$$

for some a, a^{\prime} as above.
Since $\left(n, n^{\prime}\right)=1$, there exist integers m, m^{\prime} satisfying $m n^{\prime}+m^{\prime} n=1$.

- Suppose for some prime $p>1, p \mid b m$ and $p \mid n$. Then, since, by $m n^{\prime}+m^{\prime} n=1, p \nmid m$. So $p \mid b$. But, then $p \mid\left(b, n n^{\prime}\right)$, contradicting $\left(b, n n^{\prime}\right)=1$. We conclude $(b m, n)=1$. So $a \equiv b m(\bmod n)$, for some a.
- Similarly, $a^{\prime} \equiv b m^{\prime}\left(\bmod n^{\prime}\right)$, for some a^{\prime},

These a, a^{\prime} have the required property.

Fermat's Theorem and Euler's Theorem

(Theorem (Euler's Theorem)

If a, n are natural numbers with $(a, n)=1$, then

$$
a^{\varphi(n)} \equiv 1 \quad(\bmod n)
$$

- Since $(a, n)=1$, as x runs through a reduced set of residues $(\bmod n)$, so also does $a x$.
Hence, $\Pi(a x) \equiv \Pi(x)(\bmod n)$, where the products are taken over all x in the reduced set.
Upon canceling $\Pi(x)$ from both sides, we get the result.

Corollary (Fermat's Theorem)

If a is any natural number and if p is any prime then $a^{p} \equiv a(\bmod p)$.

- In particular, if $(a, p)=1$, then $a^{p-1} \equiv 1(\bmod p)$.

Subsection 4

Wilson's Theorem

Wilson's Theorem

- The result is attributed to Wilson, but the statement was first published by Waring in 1770 and a proof was by Lagrange.

Theorem (Wilson's Theorem)

$(p-1)!\equiv-1(\bmod p)$, for any prime p.

- Being obvious for $p=2$, we assume that p is odd.

For every a, with $0<a<p$, there is a unique a^{\prime}, with $0<a^{\prime}<p$, such that $a a^{\prime} \equiv 1(\bmod p)$.
Further, if $a=a^{\prime}$, then $a^{2} \equiv 1(\bmod p)$, whence $a=1$ or $a=p-1$.
Thus, the set $2,3, \ldots, p-2$ can be divided into $\frac{1}{2}(p-3)$ pairs a, a^{\prime}, with $a a^{\prime} \equiv 1(\bmod p)$.
Hence, we have $2 \cdot 3 \cdots(p-2) \equiv 1(\bmod p)$.
So $(p-1)!\equiv p-1 \equiv-1(\bmod p)$.

A Converse to Wilson's Theorem

Theorem (Converse to Wilson's Theorem)

An integer $n>1$ is a prime if and only if $(n-1)!\equiv-1(\bmod n)$.

- If n is a prime, the congruence holds by Wilson's Theorem.

Suppose n is not a prime, e.g., $n=k \ell$, with $k, \ell<n$.
Assume to the contrary that $(n-1)!\equiv-1(\bmod n)$.
Then $k|n|(n-1)!+1$.
But $k \mid(n-1)$!.
These give $k \mid 1$, a contradiction.

A Solution to a Congruence

Theorem

If p is a prime, with $p \equiv 1(\bmod 4)$, then the congruence $x^{2} \equiv-1(\bmod p)$ has solutions $x= \pm(r!)$, where $r=\frac{1}{2}(p-1)$.

All following congruences are taken $(\bmod p)$:

$$
\begin{aligned}
(\pm(r!))^{2} & \equiv\left(\pm \frac{p-1}{2}!\right)^{2} \equiv \frac{p-1}{2}!\frac{p-1}{2}! \\
& \equiv 1 \cdot 2 \cdots \frac{p-1}{2}\left(-\frac{p-1}{2}\right) \cdots(-2)(-1) \\
& \equiv 1 \cdot 2 \cdots \frac{p-1}{2}\left(\frac{p-1}{2}+1\right)\left(\frac{p-1}{2}+2\right) \cdots\left(\frac{p-1}{2}+\frac{p-1}{2}\right) \\
& \equiv 1 \cdot 2 \cdots(p-1) \equiv(p-1)!\equiv-1 .
\end{aligned}
$$

- Note that the congruence has no solutions when $p \equiv 3(\bmod 4)$. Otherwise we would have

$$
x^{p-1}=x^{2 r} \equiv(-1)^{r}=-1 \quad(\bmod p),
$$

contradicting Fermat's Theorem.

Subsection 5

Lagrange's Theorem

Lagrange's Theorem

Theorem (Lagrange's Theorem)

Let $f(x)$ be a polynomial, with integer coefficients and with degree n. Suppose p is a prime and the leading coefficient of f is not divisible by p. The congruence $f(x) \equiv 0(\bmod p)$ has at most n solutions $(\bmod p)$.

- The theorem holds for $n=1$, by a previous result.

We assume that it is valid for polynomials with degree $n-1$.
We prove the theorem for polynomials with degree n.
Not that, for any integer $a, f(x)-f(a)=(x-a) g(x)$, where g is a polynomial with:

- degree $n-1$;
- integer coefficients;
- the same leading coefficient as f.

By hypothesis, $g(x) \equiv 0(\bmod p)$ has $\leq n-1$ solutions $(\bmod p)$. But, if $f(x) \equiv 0(\bmod p)$ has a solution $x=a$, then all solutions of the congruence satisfy $(x-a) g(x) \equiv 0(\bmod p)$.

Factorization, Fermat's and Wilson's Theorems

- We write $f(x) \equiv g(x)(\bmod p)$ to signify that the coefficients of like powers of x in the polynomials f, g are congruent $(\bmod p)$.
- It is clear that if the congruence $f(x) \equiv 0(\bmod p)$ has its full complement a_{1}, \ldots, a_{n} of solutions $(\bmod p)$, then

$$
f(x) \equiv c\left(x-a_{1}\right) \cdots\left(x-a_{n}\right) \quad(\bmod p)
$$

where c is the leading coefficient of f.

- In particular, by Fermat's theorem, we have

$$
x^{p-1}-1 \equiv(x-1) \cdots(x-p+1) \quad(\bmod p) .
$$

- On comparing constant coefficients, we obtain another proof of Wilson's theorem.

Lagrange's Theorem Using \mathbb{F}_{p}

Theorem (Lagrange's Theorem)

The number of zeros in \mathbb{F}_{p} of a polynomial defined over this field cannot exceed its degree.

- We assume the result is valid for polynomials with degree $n-1$. We prove the theorem for polynomials with degree n. Supposing that $f(x)$ is a polynomial over \mathbb{F}_{p} with degree n and with at least one zero a in \mathbb{F}_{p}.
Then

$$
f(x)=f(x)-f(a)=(x-a) g(x)
$$

where $g(x)$ is a polynomial over \mathbb{F}_{p} with degree $n-1$.
Since, by the hypothesis, $g(x)$ has at most $n-1$ roots, $f(x)$ has at most n roots.

Corollary

The polynomial $x^{d}-1$ has precisely d zeros in \mathbb{F}_{p}, for each divisor d of $p-1$.

- Note that

$$
x^{p-1}-1=\left(x^{d}-1\right) g(x)
$$

where $g(x)$ has degree $p-1-d$.

- By Fermat's theorem, $x^{p-1}-1$ has $p-1$ zeros in \mathbb{F}_{p}.
- by Lagrange's theorem, $g(x)$ has at most $p-1-d$ zeros in \mathbb{F}_{p}.

It follows that $x^{d}-1$ has at least $(p-1)-(p-1-d)=d$ zeros in \mathbb{F}_{p}.
Example: Taking $d=4$, we deduce that $x^{2}+1$ has precisely two zeros in \mathbb{F}_{p}, when $p \equiv 1(\bmod 4)$.

Prime Power and Composite Moduli

- Lagrange's theorem is false for prime power moduli.
E.g., $x^{2} \equiv 1(\bmod 8)$ has four solutions.
- Lagrange's theorem does not remain true for composite moduli.

Let m_{1}, \ldots, m_{k} be such that $\left(m_{i}, m_{j}\right)=1,1 \leq i<j \leq k$.
Let $f(x)$ be a polynomial with integer coefficients.
Assume $f(x) \equiv 0\left(\bmod m_{j}\right)$ has s_{j} solutions $\left(\bmod m_{j}\right)$.
Then, by the Chinese Remainder Theorem, if $m=m_{1} \cdots m_{k}$,

$$
f(x) \equiv 0 \quad(\bmod m)
$$

has $s=s_{1} \cdots s_{k}$ solutions $(\bmod m)$.

Subsection 6

Primitive Roots

- Let a, n be natural numbers with $(a, n)=1$. The least natural number d, such that $a^{d} \equiv 1(\bmod n)$, is called the order of $a(\bmod n)$, and a is said to belong to $d(\bmod n)$.

Proposition

The order d of $a(\bmod n)$ divides every integer k, such that $a^{k} \equiv 1$ $(\bmod n)$.

- By the division algorithm, $k=d q+r$, with $0 \leq r<d$. Thus, $a^{r} \equiv a^{k} \equiv 1(\bmod n)$, whence, $r=0$.
- By Euler's theorem, the order d exists and it divides $\varphi(n)$.

Primitive Roots

- By a primitive root $(\bmod n)$ we mean a number that belongs to $\varphi(n)(\bmod n)$.
- Thus, for a prime p, a primitive root $(\bmod p)$ is an integer g, such that:
- g is not divisible by p;
- $p-1$ is the smallest exponent with $g^{p-1} \equiv 1(\bmod p)$.
- l.e., a primitive root $(\bmod p)$ can be defined as a generator g of the multiplicative group of the field \mathbb{F}_{p}.
Example: Take $p=17$.
The smallest primitive root is $g=3$.
The respective powers of $3(\bmod 17)$ are

$$
3,9,10,13,5,15,11,16,14,8,7,4,12,2,6,1 .
$$

Number of Primitive Roots

Theorem

For every odd prime p, there exists a primitive root $(\bmod p)$. More precisely, there are exactly $\varphi(p-1)$ primitive roots $(\bmod p)$.

- Each of $1,2, \ldots, p-1$ belongs $(\bmod p)$ to some divisor d of $p-1$. Let $\psi(d)$ be the number that belongs to $d(\bmod p)$.
Clearly, $\sum_{d \mid(p-1)} \psi(d)=p-1$.
By a previous result, we have $\sum_{d \mid(p-1)} \varphi(d)=p-1$.
So, it suffices to prove that, if $\psi(d) \neq 0$, then $\psi(d)=\varphi(d)$.
This would imply that $\psi(d) \neq 0$, for all d, and, therefore, that $\psi(p-1)=\varphi(p-1)$.

Number of Primitive Roots (Cont'd)

Claim: if $\psi(d) \neq 0$, then $\psi(d)=\varphi(d)$.
Suppose that $\psi(d) \neq 0$.
Let a be a number that belongs to $d(\bmod p)$.
Then a, a^{2}, \ldots, a^{d} are mutually incongruent solutions of $x^{d} \equiv 1$ $(\bmod p)$.
By Lagrange's theorem, they represent all the solutions (in fact we showed that the congruence has precisely d solutions $(\bmod p)$).
Subclaim: The numbers a^{m}, with $1 \leq m \leq d$ and $(m, d)=1$ represent all the numbers that belong to $d(\bmod p)$.
Each of these has order d : If $a^{m d^{\prime}} \equiv 1$, then $d \mid m d^{\prime}$, whence $d \mid d^{\prime}$.
If b belongs to $d(\bmod p)$, then $b \equiv a^{m}$, for some $m, 1 \leq m \leq d$.
But $b^{d /(m, d)} \equiv\left(a^{d}\right)^{m /(m, d)} \equiv 1(\bmod p)$. So $(m, d)=1$.
We conclude that $\psi(d)=\varphi(d)$.

Working in \mathbb{F}_{p}

- By a primitive root $(\bmod p)$ we mean a generator g of the multiplicative group of \mathbb{F}_{p}.
- By the order of a non-zero element a of \mathbb{F}^{p} we mean the least positive integer d such that $a^{d}=1$.

Proposition

Let $\psi(d)$ be the number of elements in \mathbb{F}_{p}, with order d. If $\psi(d) \neq 0$, then $\psi(d)=\varphi(d)$.

- Let a be in \mathbb{F}_{p}, with order d. We show that the $\varphi(d)$ elements a^{m}, with $1 \leq m \leq d$ and $(m, d)=1$ are precisely those with order d. The a^{m}, with $1 \leq m \leq d$, are distinct zeros of the polynomial $x^{d}-1$, and, thus, by Lagrange's theorem, they are all the zeros. Hence, any element with order d is given by a^{m}, for some m.
- We have $\left(a^{m}\right)^{d /(m, d)}=\left(a^{d}\right)^{m /(m, d)}=1$. So $(m, d)=1$.
- Suppose $(m, d)=1$. Then $a^{m d}=1$ and $m d$ is the smallest multiple of m divisible by d. So a^{m} has order d.

The Prime Power Property

Theorem

Let g be a primitive root $(\bmod p)$. There exists an integer x, such that $g^{\prime}=g+p x$ is a primitive root $\left(\bmod p^{j}\right)$, for all prime powers p^{j}.

- We have $g^{p-1}=1+p y$, for some integer y.

By the binomial theorem,

$$
g^{\prime p-1}=1+p z, \text { where } z \equiv y+(p-1) g^{p-2} x \quad(\bmod p) .
$$

The coefficient of x is not divisible by p.
So, we can choose x, such that $(z, p)=1$.
Then g^{\prime} has the required property.

The Prime Power Property (Cont'd)

- Suppose that g^{\prime} belongs to $d\left(\bmod p^{j}\right)$.

Then d divides $\varphi\left(p^{j}\right)=p^{j-1}(p-1)$.
But $g^{\prime}=g+p x$ is a primitive root $(\bmod p)$.
Therefore, $p-1$ divides d.
Hence,

$$
d=p^{k}(p-1), \text { for some } k<j
$$

Now, we get $\left(\bmod p^{j}\right)$:

$$
\begin{array}{cc}
1 & \equiv \\
& g^{\prime d}=g^{\prime p^{k}}(p-1) \\
& \stackrel{\text { odd }}{=} \\
& 1+p^{k+1} z_{k}, \text { where }\left(z_{k}, p\right)=1
\end{array}
$$

So, $p^{k+1} z_{k} \equiv 0\left(\bmod p^{j}\right)$ and $\left(z_{k}, p\right)=1$.
These give $j=k+1$ and $d=\varphi\left(p^{j}\right)$.

Existence of Primitive Roots Modulo n

Theorem

For any natural number n, there exists a primitive root $(\bmod n)$ if and only if n has the form $2,4, p^{j}$ or $2 p^{j}$, where p is an odd prime.

- We show, first, that, if n has the form $2,4, p^{j}$ or $2 p^{j}$, where p is an odd prime, then there exists a primitive root $\bmod n$.
- 1 is a primitive root $(\bmod 2)$.
- 3 is a primitive root $(\bmod 4)$.
- A primitive root $\left(\bmod p^{j}\right)$ exists by the preceding theorem.
- Suppose g is a primitive root $\left(\bmod p^{j}\right)$.

Let g^{\prime} be the odd element of the pair $g, g+p^{j}$.
Then, we have

$$
\begin{aligned}
g^{\prime \varphi}\left(2 p^{j}\right) & =g^{\prime \varphi\left(p^{j}\right)} \equiv 1 \quad\left(\bmod p^{j}\right) \\
g^{\prime \varphi}\left(2 p^{j}\right) & \equiv 1 \quad(\bmod 2)
\end{aligned}
$$

Therefore, $g^{\prime \varphi\left(2 p^{j}\right)} \equiv 1\left(\bmod 2 p^{j}\right)$.

Existence of Primitive Roots Modulo n (Converse)

- We show the necessity of the assertion.

Suppose $n=n_{1} n_{2}$, where $\left(n_{1}, n_{2}\right)=1$ and $n_{1}>2, n_{2}>2$.
Let a be a natural number.
We have that $\varphi\left(n_{1}\right)$ and $\varphi\left(n_{2}\right)$ are even and

$$
a^{\frac{1}{2} \varphi(n)}=\left(a^{\varphi\left(n_{1}\right)}\right)^{\frac{1}{2} \varphi\left(n_{2}\right)} \equiv 1 \quad\left(\bmod n_{1}\right) .
$$

Similarly,

$$
a^{\frac{1}{2} \varphi(n)} \equiv 1 \quad\left(\bmod n_{2}\right) .
$$

Hence

$$
a^{\frac{1}{2} \varphi(n)} \equiv 1 \quad(\bmod n) .
$$

Existence of Primitive Roots Modulo n (Conclusion)

- We finally show that there are no primitive roots $\left(\bmod 2^{j}\right)$, for $j>2$. By induction, we have, for all odd numbers a,

$$
a^{2^{j-2}} \equiv 1 \quad\left(\bmod 2^{j}\right) .
$$

Check that this is true for $j=3$.
Suppose that $a^{2^{k-2}} \equiv 1\left(\bmod 2^{k}\right)$, for some $k>3$.
Then, we have $a^{2^{k-2}}-1=2^{k} m$, for some m.
Now we get

$$
\begin{aligned}
a^{2^{k-1}} & =a^{2^{k-2}+2^{k-2}}=a^{2^{k-2}} a^{2^{k-2}}=\left(2^{k} m+1\right)^{2} \\
& =2^{2 k} m^{2}+2 \cdot 2^{k} m+1=2^{k+1}\left(2^{k-1} m^{2}+m\right)+1
\end{aligned}
$$

Therefore, $a^{2^{k-1}} \equiv 1\left(\bmod 2^{k+1}\right)$.

Subsection 7

Indices

Indices

- Let g be a primitive root $(\bmod n)$.
- The numbers

$$
g^{\ell}, \quad \ell=0,1, \ldots, \varphi(n)-1
$$

form a reduced set of residues $(\bmod n)$.

- For every integer a, with $(a, n)=1$, there is a unique ℓ, such that

$$
g^{\ell} \equiv a \quad(\bmod n)
$$

The exponent ℓ is called the index of a with respect to g and it is denoted by indga.

Properties of Indices

Proposition

Let g be a primitive root $(\bmod n)$.
$-\operatorname{ind}_{g} a+\operatorname{ind}_{g} b \equiv \operatorname{ind}_{g}(a b)(\bmod \varphi(n))$;

- $\operatorname{ind}_{g} 1=0$;
- ind $g=1$.
- Suppose $\ell=\operatorname{ind}_{g} a$ and $m=\operatorname{ind}_{g} b$.

Then $g^{\ell} \equiv a(\bmod n)$ and $g^{m} \equiv b(\bmod n)$.
It follows that $g^{\ell+m} \equiv a b(\bmod n)$.
Thus, $\operatorname{ind}_{g}(a b)=\ell+m(\bmod \varphi(n))$.

- $g^{0} \equiv 1(\bmod n)$.
- $g^{1} \equiv g(\bmod n)$.

Power Rule for Indices

Proposition

Let g be a primitive root $(\bmod n)$. For every natural m, we have

$$
\operatorname{ind}_{g}\left(a^{m}\right) \equiv m \operatorname{ind}_{g} a \quad(\bmod \varphi(n))
$$

- Let $\ell=\operatorname{ind}_{g}$ a. So $g^{\ell} \equiv a(\bmod n)$.

Then $g^{m \ell}=\left(g^{\ell}\right)^{m} \equiv a^{m}(\bmod n)$. It follows that $m \operatorname{ing}_{g} a=m \ell \equiv \operatorname{ind}_{g}\left(a^{m}\right)(\bmod \varphi(n))$.

Index of -1

Proposition

If g is a primitive root $(\bmod n)$, then $\operatorname{ind}_{g}(-1)=\frac{1}{2} \varphi(n)$, for $n>2$.

- Suppose $\ell=\operatorname{ind}_{g}(-1)$.

Then $g^{\ell} \equiv-1(\bmod n)$ and $0 \leq \ell<\varphi(n)$.
Thus, $g^{2 \ell} \equiv 1(\bmod n)$ and $0 \leq 2 \ell<2 \varphi(n)$.
It follows that $2 \ell=\varphi(n)$.
Therefore, $\operatorname{ind}_{g}(-1)=\frac{\varphi(n)}{2}$.

Using Indices

Example: Consider $x^{n} \equiv a(\bmod p)$, where p is a prime.
We have $n \operatorname{ind}_{g} x \equiv \operatorname{ind}_{g}$ a $(\bmod p-1)$.
Thus, if $(n, p-1)=1$, then there is just one solution.

- Consider $x^{5} \equiv 2(\bmod 7)$.

Let $g=3$, a primitive root $(\bmod 7)$.
$5 \operatorname{ind}_{3} x \equiv \operatorname{ind}_{3} 2(\bmod 6)$
$5 \operatorname{ind}_{3} x \equiv 2(\bmod 6)$
$\operatorname{ind}_{3} x \equiv 4(\bmod 6)$
$x \equiv 3^{4} \equiv 4(\bmod 7)$

