Introduction to Number Theory

George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science
Lake Superior State University

LSSU Math 400

(1) Quadratic Residues

- Legendre's Symbol
- Euler's Criterion
- Gauss' Lemma
- Law of Quadratic Reciprocity
- Jacobi's Symbol

Subsection 1

Legendre's Symbol

Quadratic Congruences

- We studied the linear congruence

$$
a x \equiv b \quad(\bmod n)
$$

- We now study the quadratic congruence

$$
x^{2} \equiv a \quad(\bmod n)
$$

- This amounts to the study of the general quadratic congruence

$$
a x^{2}+b x+c \equiv 0 \quad(\bmod n)
$$

Reduction of the General to the Special Case

- Suppose we would like to solve

$$
a x^{2}+b x+c \equiv 0 \quad(\bmod n) .
$$

- Set
- $d=b^{2}-4 a c$;
- $y=2 a x+b$.

Then, we get

$$
\begin{gathered}
n \mid a x^{2}+b x+c \\
4 a n \mid 4 a\left(a x^{2}+b x+c\right) \\
4 a n \mid 4 a^{2} x^{2}+4 a b x+4 a c \\
4 a n \mid\left(4 a^{2} x^{2}+4 a b x+b^{2}\right)-\left(b^{2}-4 a c\right) \\
4 a n \mid y^{2}-d .
\end{gathered}
$$

Thus, $a x^{2}+b x+c \equiv 0(\bmod n)$ reduces to

$$
y^{2} \equiv d \quad(\bmod 4 a n)
$$

Quadratic Residues

- Let n be a natural number and a any integer, such that $(a, n)=1$.
- Then a is called a quadratic residue $(\bmod n)$ if the congruence

$$
x^{2} \equiv a \quad(\bmod n)
$$

is soluble.

- Otherwise, it is called a quadratic non-residue $(\bmod n)$.

The Legendre Symbol

- The Legendre symbol $\left(\frac{a}{p}\right)$, where p is a prime and $(a, p)=1$, is defined by

$$
\left(\frac{a}{p}\right)= \begin{cases}1, & \text { if } a \text { is a quadratic residue }(\bmod p) \\ -1, & \text { if } a \text { is a quadratic non-residue }(\bmod p)\end{cases}
$$

- The symbol is customarily extended to the case when p divides a by defining it as 0 in this instance.
- Clearly, if $a \equiv a^{\prime}(\bmod p)$, we have $\left(\frac{a}{p}\right)=\left(\frac{a^{\prime}}{p}\right)$.

Subsection 2

Euler's Criterion

Necessary Condition for Quadratic Non-Residues

Lemma

Let p be an odd prime and $r=\frac{1}{2}(p-1)$. If a is a quadratic non-residue $(\bmod p)$, then $a^{r} \not \equiv 1(\bmod p)$.

- Note that, in any reduced set of residues $(\bmod p)$, there are:
- r quadratic residues $(\bmod p)$;
- r quadratic non-residues $(\bmod p)$.

The numbers $1^{2}, 2^{2}, \ldots, r^{2}$ are mutually incongruent $(\bmod p)$. (If $p \mid i^{2}-j^{2}=(i+j)(i-j)$, then $p \mid i+j$ or $p \mid i-j$.) For any integer $k,(p-k)^{2} \equiv k^{2}(\bmod p)$.
Thus, the listed numbers are all the quadratic residues $(\bmod p)$. Each of the numbers satisfies $x^{r} \equiv 1(\bmod p)$.
By Lagrange's theorem, this congruence has $\leq r$ solutions $(\bmod p)$. Hence, if a is a quadratic non-residue $(\bmod p)$, then a is not a solution of the congruence.

Euler's Criterion

Theorem (Euler's Criterion)

If p is an odd prime, then

$$
\left(\frac{a}{p}\right) \equiv a^{\frac{1}{2}(p-1)} \quad(\bmod p)
$$

Set $r=\frac{1}{2}(p-1)$.
Note that, if a is a quadratic residue $(\bmod p)$, then for some x in \mathbb{N}, we have $x^{2} \equiv a(\bmod p)$.
By Fermat's theorem,

$$
a^{r} \equiv x^{p-1} \equiv 1 \quad(\bmod p) .
$$

I.e., $a^{r} \equiv \pm 1(\bmod p)$.

The conclusion now follows from the Lemma.

Euler's Criterion in \mathbb{F}_{p}

- Observe that, from Fermat's theorem, every element of \mathbb{F}_{p} other than 0 is a zero of one of the polynomials

$$
x^{\frac{1}{2}(p-1)} \pm 1
$$

- From Lagrange's theorem,

$$
x^{\frac{1}{2}(p-1)}-1
$$

has precisely the zeros $1^{2}, 2^{2}, \ldots,\left(\frac{1}{2}(p-1)\right)^{2}$, which is a complete set of quadratic residues.

- Alternatively, in terms of a primitive root $(\bmod p)$, say g, it is clear that the quadratic residues $(\bmod p)$ are given by $1, g^{2}, \ldots, g^{2(r-1)}$.

Multiplicative Property of the Legendre Symbol

Corollary

For all integers a, b, not divisible by p,

$$
\left(\frac{a}{p}\right)\left(\frac{b}{p}\right)=\left(\frac{a b}{p}\right)
$$

- Noting that all values are ± 1, we have $(\bmod p)$:

$$
\left(\frac{a b}{p}\right) \equiv(a b)^{\frac{1}{2}(p-1)}=a^{\frac{1}{2}(p-1)} b^{\frac{1}{2}(p-1)} \equiv\left(\frac{a}{p}\right)\left(\frac{b}{p}\right) .
$$

The Status of -1

Corollary

-1 is a quadratic residue of all primes $\equiv 1(\bmod 4)$ and a quadratic non-residue of all primes $\equiv 3(\bmod 4)$.

- We have

$$
\left(\frac{-1}{p}\right)=(-1)^{\frac{1}{2}(p-1)} .
$$

From this, the conclusion follows.

- Recall that when $p \equiv 1(\bmod 4)$, the solutions of $x^{2} \equiv-1(\bmod p)$ are given by $x= \pm\left(\frac{p-1}{2}!\right)$.

Subsection 3

Gauss' Lemma

Numerically Least Residues

- Let n be a natural number and let a be any integer.
- The numerically least residue of $a(\bmod n)$ is the integer a^{\prime} for which

$$
a \equiv a^{\prime} \quad(\bmod n) \quad \text { and } \quad-\frac{1}{2} n<a^{\prime} \leq \frac{1}{2} n .
$$

Gauss' Lemma

Theorem (Gauss' Lemma)

Let p be an odd prime and a an integer, such that $(a, p)=1$. Let a_{j} be the numerically least residue of $a j(\bmod p)$, for $j=1,2, \ldots$. If ℓ is the number of $j \leq \frac{1}{2}(p-1)$, for which $a_{j}<0$, then $\left(\frac{a}{p}\right)=(-1)^{\ell}$.

- Observe that $\left|a_{j}\right|$, with $1 \leq j \leq r$, where $r=\frac{1}{2}(p-1)$, are simply the numbers $1,2, \ldots, r$ in some order:
- $1 \leq\left|a_{j}\right| \leq r$;
- If $a_{j}=-a_{k}$, with $k \leq r$, then $a(j+k) \equiv 0(\bmod p)$, with $0<j+k<p$, which is impossible;
- If $a_{j}=a_{k}$, then $a_{j} \equiv a_{k}(\bmod p)$, whence $j=k$.

Hence, we have $a_{1} \cdots a_{r}=(-1)^{\ell} r!$.
But $a_{j} \equiv \operatorname{aj}(\bmod p)$, and, so, $a_{1} \cdots a_{r} \equiv a^{r} r!(\bmod p)$.
Thus, $a^{r} \equiv(-1)^{\ell}(\bmod p)$.
The result now follows from Euler's Criterion.

2 as a Quadratic Residue

Corollary

For p an odd prime,

$$
\left(\frac{2}{p}\right)=(-1)^{\frac{1}{8}\left(p^{2}-1\right)}
$$

i.e., 2 is

- a quadratic residue of all primes $\equiv \pm 1(\bmod 8)$;
- a quadratic non-residue of all primes $\equiv \pm 3(\bmod 8)$.
- Note that, when $a=2$, we have

$$
a_{j}= \begin{cases}2 j, & \text { if } 1 \leq j \leq\left[\frac{1}{4} p\right] \\ 2 j-p, & \text { if }\left[\frac{1}{4} p\right]<j \leq \frac{1}{2}(p-1)\end{cases}
$$

Hence, in this case, $\ell=\frac{1}{2}(p-1)-\left[\frac{1}{4} p\right]$.
Now check that $\ell \equiv \frac{1}{8}\left(p^{2}-1\right)(\bmod 2)$.

Subsection 4

Law of Quadratic Reciprocity

The Euler-Gauss Law of Quadratic Reciprocity

Theorem (Euler-Gauss Law of Quadratic Reciprocity)

If p, q are distinct odd primes, then

$$
\left(\frac{p}{q}\right)\left(\frac{q}{p}\right)=(-1)^{\frac{1}{4}(p-1)(q-1)} .
$$

- By Gauss' lemma, $\left(\frac{p}{q}\right)=(-1)^{\ell}$, where ℓ is the number of lattice points (pairs of integers) (x, y) satisfying $0<x<\frac{1}{2} q$ and $-\frac{1}{2} q<p x-q y<0$.
These give $y<\frac{p x}{q}+\frac{1}{2}<\frac{1}{2}(p+1)$. Hence, since y is an integer, we see that ℓ is the number of lattice points in the rectangle R, defined by $0<$ $x<\frac{1}{2} q, 0<y<\frac{1}{2} p$, satisfying $-\frac{1}{2} q<$ $p x-q y<0$.

- We showed ℓ is the number of lattice points in the rectangle R, defined by $0<x<\frac{1}{2} q, 0<y<\frac{1}{2} p$, satisfying $-\frac{1}{2} q<p x-q y<0$.
Similarly, $\left(\frac{q}{p}\right)=(-1)^{m}$, where m is the number of lattice points in R, satisfying $-\frac{1}{2} p<q y-p x<0$.
Claim: $\frac{1}{4}(p-1)(q-1)-(\ell+m)$ is even.
But $\frac{1}{4}(p-1)(q-1)$ is just the number of lattice points in R, and, thus, the latter expression is the number of lattice points in R, satisfying either $p x-q y \leq-\frac{1}{2} q$ or $q y-p x \leq-\frac{1}{2} p$. The regions R^{\prime} and $R^{\prime \prime}$ in R defined by these inequalities are disjoint and they contain the same number of lattice points: The substitution $x=\frac{1}{2}(q+1)-x^{\prime}$, $y=\frac{1}{2}(p+1)-y^{\prime}$ furnishes a one-one correspondence between them.
The theorem follows.

Applications of Quadratic Reciprocity

- Since $\left(\frac{p}{q}\right)\left(\frac{q}{p}\right)=(-1)^{\frac{1}{4}(p-1)(q-1)}$,
- if p, q are not both congruent to $3(\bmod 4)$, then $\left(\frac{p}{q}\right)=\left(\frac{q}{p}\right)$;
- in the exceptional case $\left(\frac{p}{q}\right)=-\left(\frac{q}{p}\right)$.
- The law of quadratic reciprocity is useful in the calculation of Legendre symbols.
Example:

$$
\left(\frac{15}{71}\right)=\left(\frac{3}{71}\right)\left(\frac{5}{71}\right)=-\left(\frac{71}{3}\right)\left(\frac{71}{5}\right)=-\left(\frac{2}{3}\right)\left(\frac{1}{5}\right)=-(-1) \cdot 1=1 .
$$

Example: Further, for instance, we obtain

$$
\left(\frac{-3}{p}\right)=\left(\frac{-1}{p}\right)\left(\frac{3}{p}\right)=(-1)^{\frac{1}{2}(p-1)}\left(\frac{3}{p}\right)=\left(\frac{p}{3}\right)=p \quad(\bmod 3),
$$

whence -3 is a quadratic residue of all primes $\equiv 1(\bmod 6)$ and a quadratic non-residue of all primes $\equiv-1(\bmod 6)$.

Another Example

- We evaluate

$$
\left(\frac{-5}{p}\right)=\left(\frac{-1}{p}\right)\left(\frac{5}{p}\right)=(-1)^{\frac{1}{2}(p-1)}(-1)^{\frac{1}{4}(5-1)(p-1)}\left(\frac{p}{5}\right)=(-1)^{\frac{1}{2}(p-1)}\left(\frac{p}{5}\right)
$$

Note that

$$
\left(\frac{p}{5}\right)= \begin{cases}1, & \text { if } p \equiv \pm 1 \quad(\bmod 5) \\ -1, & \text { if } p \equiv \pm 2(\bmod 5)\end{cases}
$$

Thus, -5 is a:

- quadratic residue of all primes $\equiv 1,3,7,9(\bmod 20)$;
- a quadratic non-residue of primes $\equiv-1,-3,-7,-9(\bmod 20)$.

Subsection 5

Jacobi's Symbol

Jacobi's Symbol

- This is a generalization of the Legendre symbol.
- Let n be a positive odd integer and suppose that $n=p_{1} p_{2} \cdots p_{k}$ as a product of primes, not necessarily distinct.
- For any integer a, with $(a, n)=1$, the Jacobi symbol is defined by

$$
\left(\frac{a}{n}\right)=\left(\frac{a}{p_{1}}\right) \cdots\left(\frac{a}{p_{k}}\right),
$$

where the factors on the right are Legendre symbols.

- When $n=1$, the Jacobi symbol is defined as 1 .
- When $(a, n)>1$, it is defined as 0 .
- Clearly, if $a \equiv a^{\prime}(\bmod n)$, then $\left(\frac{a}{n}\right)=\left(\frac{a^{\prime}}{n}\right)$.

Jacobi's Symbol and Quadratic Residues

- $\left(\frac{a}{n}\right)=1$ does not imply that a is a quadratic residue $(\bmod n)$. Indeed a is a quadratic residue $(\bmod n)$ if and only if a is a quadratic residue $(\bmod p)$, for each prime divisor p of n.
- But $\left(\frac{a}{n}\right)=-1$ does imply that a is a quadratic non-residue $(\bmod n)$. Example: Note that

$$
\left(\frac{6}{35}\right)=\left(\frac{6}{5}\right)\left(\frac{6}{7}\right)=\left(\frac{1}{5}\right)\left(\frac{-1}{7}\right)=-1 .
$$

Therefore, 6 is a quadratic non-residue $(\bmod 35)$.

Multiplicativity of Jacobi's Symbol

- The Jacobi symbol is multiplicative, i.e.,

$$
\left(\frac{a b}{n}\right)=\left(\frac{a}{n}\right)\left(\frac{b}{n}\right),
$$

for all integers a, b relatively prime to n.

- Further, if m, n are odd and $(a, m n)=1$ then

$$
\left(\frac{a}{m n}\right)=\left(\frac{a}{m}\right)\left(\frac{a}{n}\right)
$$

The Jacobi's Symbol for $-1,2$ and Reciprocity

- We have

$$
\left(\frac{-1}{n}\right)=(-1)^{\frac{1}{2}(n-1)}, \quad\left(\frac{2}{n}\right)=(-1)^{\frac{1}{8}\left(n^{2}-1\right)} .
$$

- The analogue of the law of quadratic reciprocity holds, namely if m, n are odd and $(m, n)=1$, then

$$
\left(\frac{m}{n}\right)\left(\frac{n}{m}\right)=(-1)^{\frac{1}{4}(m-1)(n-1)}
$$

- For the proofs, note that

$$
\begin{aligned}
\frac{1}{2}\left(n_{1} n_{2}-1\right)-\frac{1}{2}\left(n_{1}-1\right)-\frac{1}{2}\left(n_{2}-1\right) & =\frac{1}{2}\left(n_{1} n_{2}-n_{1}-n_{2}+1\right) \\
& =\frac{1}{2}\left(n_{1}-1\right)\left(n_{2}-1\right) \\
& \equiv 0(\bmod 2) .
\end{aligned}
$$

Thus,

$$
\frac{1}{2}(n-1) \equiv \frac{1}{2}\left(n_{1}-1\right)+\frac{1}{2}\left(n_{2}-1\right) \quad(\bmod 2) .
$$

A similar congruence holds for $\frac{1}{8}\left(n^{2}-1\right)$.

Applications of Jacobi's Symbol

- Jacobi symbols can be used to facilitate the calculation of Legendre symbols.
Example:

$$
\begin{aligned}
\left(\frac{335}{2999}\right) & =(-1)^{\frac{1}{4}(335-1)(2999-1)}\left(\frac{2999}{335}\right)=(-1)^{250333}\left(\frac{2999}{335}\right) \\
& =-\left(\frac{2999}{335}\right)=-\left(\frac{9 \cdot 335-16}{335}\right)=-\left(\frac{-16}{335}\right)=-\left(\frac{-1}{335}\right)\left(\frac{2}{335}\right)^{4} \\
& =-(-1)^{\frac{1}{2}(335-1)}(-1)^{4 \cdot \frac{1}{8}\left(335^{2}-1\right)}=-(-1)^{167}(-1)^{56112}=1 .
\end{aligned}
$$

Since 2999 is a prime, 335 is a quadratic residue ($\bmod 2999$).

Applications of Jacobi's Symbol (Cont'd)

- Example:

$$
\begin{aligned}
\left(\frac{21}{275}\right) & =(-1)^{\frac{1}{4}(21-1)(275-1)}\left(\frac{275}{21}\right)=(-1)^{1370}\left(\frac{21 \cdot 13+2}{21}\right) \\
& =\left(\frac{2}{21}\right)=(-1)^{\frac{1}{8}\left(21^{2}-1\right)}=(-1)^{55}=-1 .
\end{aligned}
$$

If $\left(\frac{a}{n}\right)=-1$, then $\left(\frac{a}{p}\right)=-1$, for some prime factor p of n.
Moreover, $x^{2} \equiv a(\bmod n)$ implies $x^{2} \equiv a(\bmod p)$.
So a is a quadratic non-residue of n.
We conclude that 21 is a quadratic non-residue of 275 .

Applications of Jacobi's Symbol (Cont'd)

- The converse is not true.

Example:

$$
\begin{aligned}
\left(\frac{3}{275}\right) & =(-1)^{\frac{1}{4}(3-1)(275-1)}\left(\frac{275}{3}\right) \\
& =(-1)^{137}\left(\frac{2}{3}\right)=(-1)(-1)^{\frac{1}{8}\left(3^{2}-1\right)}=1 .
\end{aligned}
$$

But we cannot conclude that 3 is a quadratic residue of 275 . Indeed

$$
\left(\frac{3}{5}\right)=(-1)^{\frac{1}{4}(3-1)(5-1)}\left(\frac{5}{3}\right)=(-1)^{2}\left(\frac{2}{3}\right)=-1 .
$$

So 3 is a quadratic non-residue of 275 .

