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Quadratic Forms

Subsection 1
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Quadratic Forms

o A binary quadratic form is an expression
f(x,y) =ax?+bxy + cy?,

where a, b, ¢ are integers.

o By the discriminant of f we mean the number
d = b*—4ac.
o Note that

d= 0 (mod4), if biseven
" | 1 (mod4), ifbisodd
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Quadratic Forms

o We noted that

d= 0 (mod4), ifbiseven
" | 1 (mod4), if bisodd

o The forms

[ x ——dy, for d=0 (mod 4)
f(x,y)—{x +xy+3(1-d)y? ford=1 (mod4)

are called the principal forms with discriminant d.
o Note that these have indeed:

o integer coefficients;
o discriminant d.
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Quadratic Forms

o Consider again f(x,y) = ax?+ bxy + cy?.
We have

4af (x,y) = 4a°x?+4abxy +4acy?
= (2ax+by)? - b%y? +4acy?
= (2ax+by)?—(b>—4ac)y?
= (2ax+by)?—dy>.

o If d <0, the values taken by f are all of the same sign (or zero);

f is called positive or negative definite accordingly.
o If d>0, then f takes values of both signs and it is called indefinite.
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Quadratic Forms

o An integral unimodular substitution, is a substitution of the form
! ! ! !
x=px' +qy', y=r+sy,

where p,q,r,s are integers with ps—qr=1.

o Alternatively, an integral unimodular substitution is represented by the

matrix
U— ( ),
r s

with detU = ps—qr =1.

y L S y
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Quadratic Forms

o We say that two quadratic forms
f(x,y)=ax®+bxy+cy®> and f'(xX,y")=ax?+b'x'y +c'y"?

are equivalent if one can be transformed into the other by an integral
unimodular substitution, i.e., if f'(x,y")=f(px'+qy’,rx'+sy’).
o Equivalence of quadratic forms is an equivalence relation.

o We have f(x,y) ~ f(x,y) via the identity matrix.

o If f(x,y) ~f'(x',y") via U, then f'(x',y") ~ f(x,y) via UL,

o If f(x,y)~f'(x',y") via U and f'(x',y") ~ f"(x",y") via V, then
f(x,y)~f"(x",y") via UV.
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Quadratic Forms

o Let f(x,y)=ax?+ bxy +cy?.
o The values of f(x,y) are completely determined by its values of
relatively prime pairs of integers.

o Let x and y be such that x =(x,y)k and y = (x,y)¢, where (x,y) is
the greatest common divisor of x and y.

Then, we have:

f(xy) a((xy)k)? + b(x,y )k(x,y)€ +c((x,y)¢)?
a(x,y)? k% + b(x,y )2kl + c(x,y)?£?
(x,y)?(ak?+ bkl + c?)

(6 y)?f (k. 0).

Since (k,¢) =1, the result follows.
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Quadratic Forms

o Suppose x =px’+qy’ and y = rx' + sy’ is a unimodular substitution.
Then (x,y)=1iff (x,y') =1.

o It suffices, by symmetry, to show that if (x’,y') =1, then (x,y) =1
Let d =(x,y), x=dk and y =d¢.
Then

px'+qy’ = dk - x' = dks—dlq
rx' + sy’ de y' = pdl-rdk

It follows that d|x’ and d|y’.
Since (x',y")=1, d=1.
Therefore, (x,y) =1.
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Quadratic Forms

o The set of values assumed by equivalent forms as x, y run through the
integers are the same.

o Note that, by a previous remark, it suffices to show that they assume
the same set of values as the pair x,y runs through all relatively prime
integers.

Suppose f(x,y) ~f'(x',y’) via U:( I: Z )
Then, for (x',y") = (k,¢), with (k,¢) =1, we have
f'(k,0)=f(pk+ql,rk+s?t),

where, by the preceding slide, (pk +q¢,rk+s¢)=1.
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Quadratic Forms

o Suppose
f(x,y) = ax?+bxy+cy?
f'(x",y") = f(px'+qy’,rx'+sy’).
Then, we get
f'(x",y") = a(pxX'+qy")?+b(px' +qy')(r<" +sy')+c(rx' +sy’)?

— a(pzx'2+2pqx'y’+q2y’2)
+b(prx"? + (ps + qr)x"y’' + gsy'?)
+c(r’x? +2rsx'y’ + s%y'?)
= (ap?+ bpr +cr?)x"
+(2apg+ b(ps + qr) +2crs)x"y’
+(ag + bgs + cs?)y"?
= f(p,r)x"?+(2apqg+ b(ps +qr) +2crs)x'y' +f(q,s)y".
Thus f'(x',y") = a'x? + b'x'y' + c'y"?, where a' = f(p,r),
b'=2apq+ b(ps+qr)+2crs, c'=1(q,s).
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Quadratic Forms

o Equivalent forms have the same discriminant.
o We found that, if f(x,y) = ax? + bxy + cy2, then
f,(X,,y,) — a,Xl2+le,yl+C,yl2,
where a' =f(p,r), b’ =2apqg+ b(ps+qr) +2crs, ¢’ =f(q,s).

52 sl
= (2apq + b(ps + qr) +2crs)? — 4(ap? + bpr + cr?)(aq? + bgs + cs?)
=4a°p?q? + b p?s® + 2b%psqr + b*q?r? + 4c?r?s?
+4abp?qs +4abpg®r + 4bcprs? + 4bcqr?s + 8acpqrs
—4a%p?q® —4abp®qs — 4acp®s® — 4abpq®r — 4b%pqrs
—4bcprs® —4acq?r? —4bcqr?s —4c?r?s?
= b%p?s? —2b%pqrs + b>q°r? + 8acpqrs — 4acp?s® — bacq®r?
= b?(p?s® —2pqsr + g°r?) —4ac(p?s® — 2pqrs + g°r?)
= (b?—4ac)(ps — qr)? = b> —4ac.
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Quadratic Forms

o Alternatively (and much more succinctly and elegantly), in matrix
notation, we can write

f(x,y)=XTFX and X=UX,

x=(5 =)= 5 2 )v=(2 1)
y ) y' ) %b c ) r s

o Then f is transformed into X'T F’X’, where F/ = UT FU.
o But the determinant of U is 1.

where

o So the determinants of F and F' are equal.
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Quadratic Forms

Subsection 2
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Quadratic Forms

o We consider positive definite quadratic forms, i.e., we assume that
d <0 and that a> 0, whence, also, ¢ > 0.

o By a finite sequence of unimodular substitutions of the form
x=y', y=-x' and x=x'zy, y=y,

f can be transformed into another binary form for which |b|<a<c.

o The first of these substitutions interchanges a and ¢, whence it allows
one to replace a>c by a<c;

o The second changes b to b+2a, leaving a unchanged, whence, by
finitely many applications it allows one to replace |b| > a by |b| < a.

The process must terminate since whenever the first substitution is
applied it results in a smaller value of a.
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Quadratic Forms

o Suppose f(x,y)=5x%+7xy +3y2.

We then proceed as follows:

x=y'l
=—x
f(x,y) == 3x"2 - 7x'y' +5y"?
XI=XII+yH
)
y=y 3x/"2 —X"y" +yr/2
y'=-x

" "2

X//l2 +X'"y + 3y

We see that || <a"" <.
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Quadratic Forms

o Suppose, now, we start with
f(x,y)=ax?+bxy +cy?, |bl<as<c.
o We can transform f into a binary form for which either
—a<b=sa<c or Osb=a=c.
o If b=-a, then the second of the above substitutions allows one to take

b= a, leaving ¢ unchanged,;
o If a=c, then the first substitution allows one to take 0 < b.

A binary form for which one of the above conditions on a, b, ¢ holds is
said to be reduced.
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Quadratic Forms

There are only finitely many reduced forms with a given discriminant d.

o Suppose f(x,y) = ax?+ bxy + cy? is reduced.
Then, since |b|<a<c,

—d=4ac-b*>=>3ac.

So a,c and |b| cannot exceed %Idl.

o The number of reduced forms with discriminant d is called the class
number and is denoted by h(d).

: We calculate the class number when d = —4.
The inequality 3ac <4 gives a=c=1.
Hence, b=0.
It follows that h(—4)=1.
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Quadratic Forms

Any two reduced binary quadratic forms are inequivalent.

o Let f(x,y) be a reduced form. If x,y #0, with [x| =|yl,

f(x,y) Ix|(alx| - byl) +clyl?

IxI?(a—1|bl)+clyl® = a—|b| +c.

IV v

Similarly, if [y| = |x|, we have f(x,y)=a—|bl+c.

Hence, the smallest values assumed by f for relatively prime integers
x,y are a,c and a—|b|+c in that order.

These values are taken at (1,0), (0,1) and either (1,1) or (1,-1).
The sequences of values assumed by equivalent forms for relatively
prime X,y are the same, except for a rearrangement.

Thus, if f' is a form equivalent to f, and f’ is reduced, then a=4a’,
c=c" and b=+b". We must show that, if b=—b', then b=0.
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Quadratic Forms

: If b=—b, then in fact b=0.

We can assume here that —a<b<a<c.
In fact, since ' is reduced, we have

o —a<-—b;

o ifa=c, then b=0, —b=0, whence b=0.
So f(x,y)=a—|bl+c>c> a, for all integers x,y #0.
For the substitution taking f to f’, we have a=f(p,r).
Thus, p= +1, r=0. Since ps—qr=1, we obtain s= +1.
Further, we have ¢ =f(q,s), whence g =0.

Hence, the only substitutions taking f to f’ are

, and L
y =Yy y = -y

These give b=0.
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Quadratic Forms

Subsection 3
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Quadratic Forms

o A number n is said to be properly represented by a binary form
f(x,y) = ax?+ bxy + cy? if

n="f(x,y),

for some integers x,y, with (x,y)=1.
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Quadratic Forms

A number n is properly represented by some binary form with discriminant
d if and only if the congruence x?> = d (mod 4n) is soluble.

o Suppose first that b is a solution.

Then, there exists a ¢, such that
b?>—d =4nc.

Consider the form
f(x,y) = nx>+ bxy + cy.
It has discriminant d.

It properly represents n, since £(1,0) = n.
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Quadratic Forms

o Conversely, let f(x,y) = ax?+ bxy + cy? be such that

o f has discriminant d;
o n=f(p,r), for some integers p,r with (p,r)=1.

Since (p,r) =1, there exist integers g and s, such that ps—qr=1.
We consider the form '(x',y") = f(px'+qy’, rx’ +sy’).

o We know that a'=f(p,r) =n.
o The discriminant is d = b2 —44'c’ = b2 —4nc’.

This shows that b’ is a solution of

x*=d (mod 4n).
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Quadratic Forms

Subsection 4
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Quadratic Forms

Theorem

A natural number n can be expressed in the form x?+ y?, for some integers
x,y if and only if every prime divisor p of n, with p=3 (mod 4) occurs to
an even power in the standard factorization of n.

o Suppose that n=x?+y? and that n is divisible by a prime p=3
(mod 4).

Then x? = -y? (mod p).
But —1 is a quadratic non-residue (mod p).
Therefore, p divides x and y.

(53

It follows by induction that p divides n to an even power.

Now, we obtain
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Quadratic Forms

o Suppose that every prime divisor p of n, with p=3 (mod 4) occurs to
an even power in the standard factorization of n.

It suffices to show that the square-free part of n can be represented as
2.2

X+ y*°.

So assume, to start with, that n is square-free and each odd prime

divisor p of n satisfies p=1 (mod 4).

The quadratic form x? + y? is reduced with discriminant —4.

We have seen that h(—4) =1.

So it is the only such reduced form.

It follows by the preceding subsection, that n is properly represented

by x?+y? if and only if the congruence x> =—4 (mod 4n) is soluble.

By hypothesis, —1 is a quadratic residue (mod p), for each prime
divisor p of n.

Hence, —1 is a quadratic residue (mod n) and the result follows.
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Quadratic Forms

o The argument involves the Chinese remainder theorem, but this can
be avoided by appeal to the identity

(P +y?) (2 +y%) = (o +yy')2 + (0 =),

which enables one to consider only prime values of n.

There is a well known proof of the theorem based on this identity
alone.

o The demonstration here can be refined to furnish the number of
representations of n as x2 + y2.

The number is given by 4Y n (‘Fl)
m odd
: Each prime p=1 (mod 4) can be expressed in precisely

eight ways as the sum of two squares.
g y q
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Quadratic Forms

Subsection 5
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Quadratic Forms

Theorem (Bachet-Lagrange)

Every natural number can be expressed as the sum of four integer squares.

o The proof is based on the identity
(P +y?+ 22+ w?) (X2 +y? + 2% + w'?)
= (X' +yy' +zz' + ww')? + (xy' — yx' + wz' — zw')?

+(x2' — 2"+ yw' —wy')? + (xw —wx' +zy' - yz')?,

which is related to the theory of quaternions.

o In view of the identity and the representation
2=12+12+0%2+0?
it suffices to prove the theorem for odd primes p.
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Quadratic Forms

o Note that the numbers
o x2, with 0<x < %(p—l), are mutually incongruent (mod p);
o —1-y% withO<ys< %(p—l), are mutually incongruent (mod p).

Thus, there exist x, y, such that
2=-1-y% (mod p),
satisfying
1 2
x2+y2+1<1+2(§p) < p2.
So, for some integer m, with 0 <m< p,

mp=x%+y?+1.
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Quadratic Forms

o Let ¢ be the least positive integer such that
lp=x>+y?+ 22+ w?

for some integers x,y,z,w.

By the preceding slide, £ < m < p.

We show that ¢ must be odd.

Suppose ¢ is even.

Then an even number of x,y,z, w would be odd.

So we could assume that x+y, x—y, z+w, z—w are even.

Since
1 1 2 1 2 (1 2 (1 Z
Eip = (E(X+y)) + (E(X—y)) + (E(z+ W)) + (E(Z_ W)) ,
this is inconsistent with the minimal choice of ¢.

To prove the theorem we have to show that ¢ =1.

George Voutsadakis (LSSU) Number Theory



Quadratic Forms

o Suppose that ¢>1.

Let x',y’,z',w’ be the numerically least residues of x,y,z,w (mod ¢).
Set n=x"2+y"”?+2%+w'".

2 n=0 (mod ¢);

o n>0, since otherwise ¢ would divide p.

o Since ¢ is odd, n <4(%€)2 =02

Thus, n= k¢, for some integer k, with 0<k<¢.

By the identity, (k¢)(¢p) is expressible as a sum of four integer
squares.

Moreover, each of these squares is divisible by £2.

Thus kp is expressible as a sum of four integer squares contradicting
the definition of ¢.
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