Introduction to Number Theory

George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science
Lake Superior State University

LSSU Math 400

(1) Quadratic Forms

- Equivalence
- Reduction
- Proper Representations by Binary Forms
- Sums of Two Squares
- Sums of Four Squares

Subsection 1

Equivalence

Binary Quadratic Forms and the Discriminant

- A binary quadratic form is an expression

$$
f(x, y)=a x^{2}+b x y+c y^{2}
$$

where a, b, c are integers.

- By the discriminant of f we mean the number

$$
d=b^{2}-4 a c
$$

- Note that

$$
d \equiv\left\{\begin{array}{lll}
0 & (\bmod 4), & \text { if } b \text { is even } \\
1 & (\bmod 4), & \text { if } b \text { is odd }
\end{array}\right.
$$

Principal Forms

- We noted that

$$
d \equiv\left\{\begin{array}{lll}
0 & (\bmod 4), & \text { if } b \text { is even } \\
1 & (\bmod 4), & \text { if } b \text { is odd }
\end{array}\right.
$$

- The forms

$$
f(x, y)=\left\{\begin{array}{lll}
x^{2}-\frac{1}{4} d y^{2}, & \text { for } d \equiv 0 & (\bmod 4) \\
x^{2}+x y+\frac{1}{4}(1-d) y^{2}, & \text { for } d \equiv 1 & (\bmod 4)
\end{array}\right.
$$

are called the principal forms with discriminant d.

- Note that these have indeed:
- integer coefficients;
- discriminant d.

Definiteness

- Consider again $f(x, y)=a x^{2}+b x y+c y^{2}$.

We have

$$
\begin{aligned}
4 a f(x, y) & =4 a^{2} x^{2}+4 a b x y+4 a c y^{2} \\
& =(2 a x+b y)^{2}-b^{2} y^{2}+4 a c y^{2} \\
& =(2 a x+b y)^{2}-\left(b^{2}-4 a c\right) y^{2} \\
& =(2 a x+b y)^{2}-d y^{2} .
\end{aligned}
$$

- If $d<0$, the values taken by f are all of the same sign (or zero); f is called positive or negative definite accordingly.
- If $d>0$, then f takes values of both signs and it is called indefinite.

Unimodular Substitutions

- An integral unimodular substitution, is a substitution of the form

$$
x=p x^{\prime}+q y^{\prime}, \quad y=r x^{\prime}+s y^{\prime},
$$

where p, q, r, s are integers with $p s-q r=1$.

- Alternatively, an integral unimodular substitution is represented by the matrix

$$
U=\left(\begin{array}{ll}
p & q \\
r & s
\end{array}\right)
$$

with $\operatorname{det} U=p s-q r=1$.

- Note that

$$
\binom{x}{y}=\left(\begin{array}{ll}
p & q \\
r & s
\end{array}\right)\binom{x^{\prime}}{y^{\prime}}
$$

Equivalence of Quadratic Forms

- We say that two quadratic forms

$$
f(x, y)=a x^{2}+b x y+c y^{2} \quad \text { and } \quad f^{\prime}\left(x^{\prime}, y^{\prime}\right)=a^{\prime} x^{\prime 2}+b^{\prime} x^{\prime} y^{\prime}+c^{\prime} y^{\prime 2}
$$

are equivalent if one can be transformed into the other by an integral unimodular substitution, i.e., if $f^{\prime}\left(x^{\prime}, y^{\prime}\right)=f\left(p x^{\prime}+q y^{\prime}, r x^{\prime}+s y^{\prime}\right)$.

- Equivalence of quadratic forms is an equivalence relation.
- We have $f(x, y) \sim f(x, y)$ via the identity matrix.
- If $f(x, y) \sim f^{\prime}\left(x^{\prime}, y^{\prime}\right)$ via U, then $f^{\prime}\left(x^{\prime}, y^{\prime}\right) \sim f(x, y)$ via U^{-1}.
- If $f(x, y) \sim f^{\prime}\left(x^{\prime}, y^{\prime}\right)$ via U and $f^{\prime}\left(x^{\prime}, y^{\prime}\right) \sim f^{\prime \prime}\left(x^{\prime \prime}, y^{\prime \prime}\right)$ via V, then $f(x, y) \sim f^{\prime \prime}\left(x^{\prime \prime}, y^{\prime \prime}\right)$ via UV.

Values on Pairs of Relative Primes

- Let $f(x, y)=a x^{2}+b x y+c y^{2}$.
- The values of $f(x, y)$ are completely determined by its values of relatively prime pairs of integers.
- Let x and y be such that $x=(x, y) k$ and $y=(x, y) \ell$, where (x, y) is the greatest common divisor of x and y.
Then, we have:

$$
\begin{aligned}
f(x, y) & =a((x, y) k)^{2}+b(x, y) k(x, y) \ell+c((x, y) \ell)^{2} \\
& =a(x, y)^{2} k^{2}+b(x, y)^{2} k \ell+c(x, y)^{2} \ell^{2} \\
& =(x, y)^{2}\left(a k^{2}+b k \ell+c \ell^{2}\right) \\
& =(x, y)^{2} f(k, \ell) .
\end{aligned}
$$

Since $(k, \ell)=1$, the result follows.

Unimodular Substitution and Pairs of Relative Primes

- Suppose $x=p x^{\prime}+q y^{\prime}$ and $y=r x^{\prime}+s y^{\prime}$ is a unimodular substitution. Then $(x, y)=1$ iff $\left(x^{\prime}, y^{\prime}\right)=1$.
- It suffices, by symmetry, to show that if $\left(x^{\prime}, y^{\prime}\right)=1$, then $(x, y)=1$ Let $d=(x, y), x=d k$ and $y=d \ell$.
Then

$$
\left\{\begin{aligned}
p x^{\prime}+q y^{\prime} & =d k \\
r x^{\prime}+s y^{\prime} & =d \ell
\end{aligned}\right\} \Rightarrow\left\{\begin{aligned}
x^{\prime} & =d k s-d \ell q \\
y^{\prime} & =p d \ell-r d k
\end{aligned}\right\}
$$

It follows that $d \mid x^{\prime}$ and $d \mid y^{\prime}$.
Since $\left(x^{\prime}, y^{\prime}\right)=1, d=1$.
Therefore, $(x, y)=1$.

Values of Equivalent of Quadratic Forms

- The set of values assumed by equivalent forms as x, y run through the integers are the same.
- Note that, by a previous remark, it suffices to show that they assume the same set of values as the pair x, y runs through all relatively prime integers.
Suppose $f(x, y) \sim f^{\prime}\left(x^{\prime}, y^{\prime}\right)$ via $U=\left(\begin{array}{ll}p & q \\ r & s\end{array}\right)$.
Then, for $\left(x^{\prime}, y^{\prime}\right)=(k, \ell)$, with $(k, \ell)=1$, we have

$$
f^{\prime}(k, \ell)=f(p k+q \ell, r k+s \ell),
$$

where, by the preceding slide, $(p k+q \ell, r k+s \ell)=1$.

Parameters of Equivalent Quadratic Forms

- Suppose

$$
\begin{aligned}
f(x, y) & =a x^{2}+b x y+c y^{2} \\
f^{\prime}\left(x^{\prime}, y^{\prime}\right) & =f\left(p x^{\prime}+q y^{\prime}, r x^{\prime}+s y^{\prime}\right)
\end{aligned}
$$

Then, we get

$$
\begin{aligned}
f^{\prime}\left(x^{\prime}, y^{\prime}\right)= & a\left(p x^{\prime}+q y^{\prime}\right)^{2}+b\left(p x^{\prime}+q y^{\prime}\right)\left(r x^{\prime}+s y^{\prime}\right)+c\left(r x^{\prime}+s y^{\prime}\right)^{2} \\
= & a\left(p^{2} x^{\prime 2}+2 p q x^{\prime} y^{\prime}+q^{2} y^{\prime 2}\right) \\
& +b\left(p r x^{\prime 2}+(p s+q r) x^{\prime} y^{\prime}+q s y^{\prime 2}\right) \\
& +c\left(r^{2} x^{\prime 2}+2 r s x^{\prime} y^{\prime}+s^{2} y^{\prime 2}\right) \\
= & \left(a p^{2}+b p r+c r^{2}\right) x^{\prime 2} \\
& +(2 a p q+b(p s+q r)+2 c r s) x^{\prime} y^{\prime} \\
& +\left(a q+b q s+c s^{2}\right) y^{\prime 2} \\
= & f(p, r) x^{\prime 2}+(2 a p q+b(p s+q r)+2 c r s) x^{\prime} y^{\prime}+f(q, s) y^{\prime 2} .
\end{aligned}
$$

Thus $f^{\prime}\left(x^{\prime}, y^{\prime}\right)=a^{\prime} x^{\prime 2}+b^{\prime} x^{\prime} y^{\prime}+c^{\prime} y^{\prime 2}$, where $a^{\prime}=f(p, r)$, $b^{\prime}=2 a p q+b(p s+q r)+2 c r s, c^{\prime}=f(q, s)$.

Discriminant of Equivalent Quadratic Forms

- Equivalent forms have the same discriminant.
- We found that, if $f(x, y)=a x^{2}+b x y+c y^{2}$, then

$$
f^{\prime}\left(x^{\prime}, y^{\prime}\right)=a^{\prime} x^{\prime 2}+b^{\prime} x^{\prime} y^{\prime}+c^{\prime} y^{\prime 2}
$$

where $a^{\prime}=f(p, r), b^{\prime}=2 a p q+b(p s+q r)+2 c r s, c^{\prime}=f(q, s)$.

$$
\begin{aligned}
& b^{\prime 2}-4 a^{\prime} c^{\prime} \\
& =(2 a p q+b(p s+q r)+2 c r s)^{2}-4\left(a p^{2}+b p r+c r^{2}\right)\left(a q^{2}+b q s+c s^{2}\right) \\
& =4 a^{2} p^{2} q^{2}+b^{2} p^{2} s^{2}+2 b^{2} p s q r+b^{2} q^{2} r^{2}+4 c^{2} r^{2} s^{2} \\
& +4 a b p^{2} q s+4 a b p q^{2} r+4 b c p r s^{2}+4 b c q r^{2} s+8 a c p q r s \\
& -4 a^{2} p^{2} q^{2}-4 a b p^{2} q s-4 a c p^{2} s^{2}-4 a b p q^{2} r-4 b^{2} p q r s \\
& -4 b c p r s^{2}-4 a c q^{2} r^{2}-4 b c q r^{2} s-4 c^{2} r^{2} s^{2} \\
& =b^{2} p^{2} s^{2}-2 b^{2} p q r s+b^{2} q^{2} r^{2}+8 a c p q r s-4 a c p^{2} s^{2}-4 a c q^{2} r^{2} \\
& =b^{2}\left(p^{2} s^{2}-2 p q s r+q^{2} r^{2}\right)-4 a c\left(p^{2} s^{2}-2 p q r s+q^{2} r^{2}\right) \\
& =\left(b^{2}-4 a c\right)(p s-q r)^{2}=b^{2}-4 a c .
\end{aligned}
$$

Discriminant of Equivalent Quadratic Forms (Matrices)

- Alternatively (and much more succinctly and elegantly), in matrix notation, we can write

$$
f(x, y)=X^{T} F X \quad \text { and } \quad X=U X^{\prime}
$$

where

$$
X=\binom{x}{y}, X^{\prime}=\binom{x^{\prime}}{y^{\prime}}, F=\left(\begin{array}{cc}
a & \frac{1}{2} b \\
\frac{1}{2} b & c
\end{array}\right), U=\left(\begin{array}{cc}
p & q \\
r & s
\end{array}\right) .
$$

- Then f is transformed into $X^{\prime \top} F^{\prime} X^{\prime}$, where $F^{\prime}=U^{T} F U$.
- But the determinant of U is 1 .
- So the determinants of F and F^{\prime} are equal.

Subsection 2

Reduction

Reduced Binary Forms

- We consider positive definite quadratic forms, i.e., we assume that $d<0$ and that $a>0$, whence, also, $c>0$.
- By a finite sequence of unimodular substitutions of the form

$$
x=y^{\prime}, \quad y=-x^{\prime} \quad \text { and } \quad x=x^{\prime} \pm y^{\prime}, \quad y=y^{\prime},
$$

f can be transformed into another binary form for which $|b| \leq a \leq c$.

- The first of these substitutions interchanges a and c, whence it allows one to replace $a>c$ by $a<c$;
- The second changes b to $b \pm 2 a$, leaving a unchanged, whence, by finitely many applications it allows one to replace $|b|>a$ by $|b| \leq a$.
The process must terminate since whenever the first substitution is applied it results in a smaller value of a.

Example

- Suppose $f(x, y)=5 x^{2}+7 x y+3 y^{2}$.

We then proceed as follows:

$$
\left.f(x, y) \xrightarrow[\substack{ \\x^{\prime}=x^{\prime \prime}+y^{\prime \prime} \\ y^{\prime}=y^{\prime \prime}}]{\substack{x=y^{\prime} \\ y=x^{\prime}}} 3 x^{\prime \prime \prime 2}-x^{\prime \prime} y^{\prime \prime}+y^{\prime \prime 2}\right)
$$

We see that $\left|b^{\prime \prime \prime}\right| \leq a^{\prime \prime \prime} \leq c^{\prime \prime \prime}$.

Reduced Binary Forms (Cont'd)

- Suppose, now, we start with

$$
f(x, y)=a x^{2}+b x y+c y^{2}, \quad|b| \leq a \leq c
$$

- We can transform f into a binary form for which either

$$
-a<b \leq a<c \quad \text { or } 0 \leq b \leq a=c .
$$

- If $b=-a$, then the second of the above substitutions allows one to take $b=a$, leaving c unchanged;
- If $a=c$, then the first substitution allows one to take $0 \leq b$.

A binary form for which one of the above conditions on a, b, c holds is said to be reduced.

The Class Number

Proposition

There are only finitely many reduced forms with a given discriminant d.

- Suppose $f(x, y)=a x^{2}+b x y+c y^{2}$ is reduced.

Then, since $|b| \leq a \leq c$,

$$
-d=4 a c-b^{2} \geq 3 a c
$$

So a, c and $|b|$ cannot exceed $\frac{1}{3}|d|$.

- The number of reduced forms with discriminant d is called the class number and is denoted by $h(d)$.
Example: We calculate the class number when $d=-4$.
The inequality $3 a c \leq 4$ gives $a=c=1$.
Hence, $b=0$.
It follows that $h(-4)=1$.

Theorem

Any two reduced binary quadratic forms are inequivalent.

- Let $f(x, y)$ be a reduced form. If $x, y \neq 0$, with $|x| \geq|y|$,

$$
\begin{aligned}
f(x, y) & \geq|x|(a|x|-|b y|)+c|y|^{2} \\
& \geq|x|^{2}(a-|b|)+c|y|^{2} \geq a-|b|+c .
\end{aligned}
$$

Similarly, if $|y| \geq|x|$, we have $f(x, y) \geq a-|b|+c$. Hence, the smallest values assumed by f for relatively prime integers x, y are a, c and $a-|b|+c$ in that order.
These values are taken at $(1,0),(0,1)$ and either $(1,1)$ or $(1,-1)$.
The sequences of values assumed by equivalent forms for relatively prime x, y are the same, except for a rearrangement.
Thus, if f^{\prime} is a form equivalent to f, and f^{\prime} is reduced, then $a=a^{\prime}$, $c=c^{\prime}$ and $b= \pm b^{\prime}$. We must show that, if $b=-b^{\prime}$, then $b=0$.

Inequivalence of Reduced Forms (Cont'd)

Claim: If $b=-b^{\prime}$, then in fact $b=0$.
We can assume here that $-a<b<a<c$.
In fact, since f^{\prime} is reduced, we have

- $-a<-b$;
- if $a=c$, then $b \geq 0,-b \geq 0$, whence $b=0$.

So $f(x, y) \geq a-|b|+c>c>a$, for all integers $x, y \neq 0$.
For the substitution taking f to f^{\prime}, we have $a=f(p, r)$.
Thus, $p= \pm 1, r=0$. Since $p s-q r=1$, we obtain $s= \pm 1$.
Further, we have $c=f(q, s)$, whence $q=0$.
Hence, the only substitutions taking f to f^{\prime} are

$$
\left\{\begin{array}{l}
x=x^{\prime} \\
y=y^{\prime}
\end{array}\right\} \quad \text { and } \quad\left\{\begin{array}{lll}
x=-x^{\prime} \\
y= & =y^{\prime}
\end{array}\right\}
$$

These give $b=0$.

Subsection 3

Proper Representations by Binary Forms

Proper Representation by a Binary Form

- A number n is said to be properly represented by a binary form $f(x, y)=a x^{2}+b x y+c y^{2}$ if

$$
n=f(x, y)
$$

for some integers x, y, with $(x, y)=1$.

Characterization of Proper Representation

Theorem

A number n is properly represented by some binary form with discriminant d if and only if the congruence $x^{2} \equiv d(\bmod 4 n)$ is soluble.

- Suppose first that b is a solution.

Then, there exists a c, such that

$$
b^{2}-d=4 n c
$$

Consider the form

$$
f(x, y)=n x^{2}+b x y+c y^{2} .
$$

It has discriminant d.
It properly represents n, since $f(1,0)=n$.

Characterization of Proper Representation (Converse)

- Conversely, let $f(x, y)=a x^{2}+b x y+c y^{2}$ be such that
- f has discriminant d;
- $n=f(p, r)$, for some integers p, r with $(p, r)=1$.

Since $(p, r)=1$, there exist integers q and s, such that $p s-q r=1$.
We consider the form $f^{\prime}\left(x^{\prime}, y^{\prime}\right)=f\left(p x^{\prime}+q y^{\prime}, r x^{\prime}+s y^{\prime}\right)$.

- We know that $a^{\prime}=f(p, r)=n$.
- The discriminant is $d=b^{\prime 2}-4 a^{\prime} c^{\prime}=b^{\prime 2}-4 n c^{\prime}$.

This shows that b^{\prime} is a solution of

$$
x^{2} \equiv d \quad(\bmod 4 n)
$$

Subsection 4

Sums of Two Squares

Expression as a Sum of Two Squares

Theorem

A natural number n can be expressed in the form $x^{2}+y^{2}$, for some integers x, y if and only if every prime divisor p of n, with $p \equiv 3(\bmod 4)$ occurs to an even power in the standard factorization of n.

- Suppose that $n=x^{2}+y^{2}$ and that n is divisible by a prime $p \equiv 3$ $(\bmod 4)$.
Then $x^{2} \equiv-y^{2}(\bmod p)$.
But -1 is a quadratic non-residue $(\bmod p)$.
Therefore, p divides x and y.
Now, we obtain

$$
\left(\frac{x}{p}\right)^{2}+\left(\frac{y}{p}\right)^{2}=\frac{n}{p^{2}}
$$

It follows by induction that p divides n to an even power.

- Suppose that every prime divisor p of n, with $p \equiv 3(\bmod 4)$ occurs to an even power in the standard factorization of n.
It suffices to show that the square-free part of n can be represented as $x^{2}+y^{2}$.
So assume, to start with, that n is square-free and each odd prime divisor p of n satisfies $p \equiv 1(\bmod 4)$.
The quadratic form $x^{2}+y^{2}$ is reduced with discriminant -4 .
We have seen that $h(-4)=1$.
So it is the only such reduced form.
It follows by the preceding subsection, that n is properly represented by $x^{2}+y^{2}$ if and only if the congruence $x^{2} \equiv-4(\bmod 4 n)$ is soluble. By hypothesis, -1 is a quadratic residue $(\bmod p)$, for each prime divisor p of n.
Hence, -1 is a quadratic residue $(\bmod n)$ and the result follows.

Remarks on the Proof

- The argument involves the Chinese remainder theorem, but this can be avoided by appeal to the identity

$$
\left(x^{2}+y^{2}\right)\left(x^{\prime 2}+y^{\prime 2}\right)=\left(x x^{\prime}+y y^{\prime}\right)^{2}+\left(x y^{\prime}-y x^{\prime}\right)^{2}
$$

which enables one to consider only prime values of n.
There is a well known proof of the theorem based on this identity alone.

- The demonstration here can be refined to furnish the number of representations of n as $x^{2}+y^{2}$.
The number is given by $4 \sum_{m \text { odd }}^{m \mid n}\left(\frac{-1}{m}\right)$.
Example: Each prime $p \equiv 1(\bmod 4)$ can be expressed in precisely eight ways as the sum of two squares.

Subsection 5

Sums of Four Squares

Expression as a Sum of Four Squares

Theorem (Bachet-Lagrange)

Every natural number can be expressed as the sum of four integer squares.

- The proof is based on the identity

$$
\begin{aligned}
\left(x^{2}+\right. & \left.y^{2}+z^{2}+w^{2}\right)\left(x^{\prime 2}+y^{\prime 2}+z^{\prime 2}+w^{\prime 2}\right) \\
= & \left(x x^{\prime}+y y^{\prime}+z z^{\prime}+w w^{\prime}\right)^{2}+\left(x y^{\prime}-y x^{\prime}+w z^{\prime}-z w^{\prime}\right)^{2} \\
& +\left(x z^{\prime}-z x^{\prime}+y w^{\prime}-w y^{\prime}\right)^{2}+\left(x w^{\prime}-w x^{\prime}+z y^{\prime}-y z^{\prime}\right)^{2}
\end{aligned}
$$

which is related to the theory of quaternions.

- In view of the identity and the representation

$$
2=1^{2}+1^{2}+0^{2}+0^{2},
$$

it suffices to prove the theorem for odd primes p.

Expression as a Sum of Four Squares (Cont'd)

- Note that the numbers
- x^{2}, with $0 \leq x \leq \frac{1}{2}(p-1)$, are mutually incongruent $(\bmod p)$;
- $-1-y^{2}$, with $0 \leq y \leq \frac{1}{2}(p-1)$, are mutually incongruent $(\bmod p)$.

Thus, there exist x, y, such that

$$
x^{2} \equiv-1-y^{2} \quad(\bmod p)
$$

satisfying

$$
x^{2}+y^{2}+1<1+2\left(\frac{1}{2} p\right)^{2}<p^{2}
$$

So, for some integer m, with $0<m<p$,

$$
m p=x^{2}+y^{2}+1
$$

Sum of Four Squares (Fermat's Method of Infinite Descent)

- Let ℓ be the least positive integer such that

$$
\ell p=x^{2}+y^{2}+z^{2}+w^{2}
$$

for some integers x, y, z, w.
By the preceding slide, $\ell \leq m<p$.
We show that ℓ must be odd.
Suppose ℓ is even.
Then an even number of x, y, z, w would be odd.
So we could assume that $x+y, x-y, z+w, z-w$ are even.
Since

$$
\frac{1}{2} \ell p=\left(\frac{1}{2}(x+y)\right)^{2}+\left(\frac{1}{2}(x-y)\right)^{2}+\left(\frac{1}{2}(z+w)\right)^{2}+\left(\frac{1}{2}(z-w)\right)^{2},
$$

this is inconsistent with the minimal choice of ℓ.
To prove the theorem we have to show that $\ell=1$.

Sum of Four Squares (Conclusion)

- Suppose that $\ell>1$.

Let $x^{\prime}, y^{\prime}, z^{\prime}, w^{\prime}$ be the numerically least residues of $x, y, z, w(\bmod \ell)$. Set $n=x^{\prime 2}+y^{\prime 2}+z^{\prime 2}+w^{\prime 2}$.

- $n \equiv 0(\bmod \ell)$;
- $n>0$, since otherwise ℓ would divide p.
- Since ℓ is odd, $n<4\left(\frac{1}{2} \ell\right)^{2}=\ell^{2}$.

Thus, $n=k \ell$, for some integer k, with $0<k<\ell$.
By the identity, $(k \ell)(\ell p)$ is expressible as a sum of four integer squares.
Moreover, each of these squares is divisible by ℓ^{2}.
Thus $k p$ is expressible as a sum of four integer squares contradicting the definition of ℓ.

