Introduction to Number Theory

George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science
Lake Superior State University

LSSU Math 400

(1) Diophantine Approximation

- Dirichlet's Theorem
- Continued Fractions
- Rational Approximations
- Quadratic Irrationals
- Liouville's Theorem
- Transcendental Numbers
- Minkowski's Theorem

Subsection 1

Dirichlet's Theorem

Dirichlet's Theorem

Theorem (Dirichlet's Theorem)

For any real θ and any integer $Q>1$, there exist integers p, q with $0<q<Q$, such that

$$
|q \theta-p| \leq \frac{1}{Q} .
$$

- Recall that $\{x\}$ denotes the fractional part of x and consider:
- the $Q+1$ numbers $0,1,\{\theta\},\{2 \theta\}, \ldots,\{(Q-1) \theta\}$ in $[0,1]$;
- the Q subintervals $\left[0, \frac{1}{Q}\right),\left[\frac{1}{Q}, \frac{2}{Q}\right), \ldots,\left[\frac{Q-1}{Q}, 1\right]$.

Then two of the $Q+1$ numbers must lie in one of the Q sub-intervals. The difference between the two numbers has the form

$$
\{m \theta\}-\{n \theta\}=m \theta-[m \theta]-(n \theta-[n \theta])=(m-n) \theta-([m \theta]-[n \theta])=q \theta-p
$$

where p, q are integers with $0<q<Q$. Moreover, $|q \theta-p| \leq \frac{1}{Q}$.

Dirichlet's Theorem (Real Q)

Corollary

For any real θ and any real $Q>1$, there exist integers p, q with $0<q<Q$, such that $|q \theta-p| \leq \frac{1}{Q}$.

- Suppose $Q>1$ is not an integer.

We apply Dirichlet's Theorem with $[Q]+1$.
There exist integers p, q with $0<q<[Q]+1$, such that $|q \theta-p| \leq \frac{1}{[Q]+1}$. However, since q is an integer,

$$
0<q \leq[Q]<Q
$$

and, moreover,

$$
|q \theta-p| \leq \frac{1}{[Q]+1}<\frac{1}{Q} .
$$

Dirichlet's Theorem (Relatively Prime p, q)

Corollary

For any real θ and any real $Q>1$, there exist relatively prime integers p, q with $0<q<Q$, such that $|q \theta-p| \leq \frac{1}{Q}$.

- Suppose that the p, q obtained a priori by Dirichlet's Theorem are not relatively prime.
Then $k=(p, q)>1$ and $p=k p^{\prime}$ and $q=k q^{\prime}$, with $\left(p^{\prime}, q^{\prime}\right)=1$.
Then, we have

$$
\left|q^{\prime} \theta-p^{\prime}\right|=\frac{1}{k}\left|k q^{\prime} \theta-k p^{\prime}\right|=\frac{1}{k}|q \theta-p|=\leq \frac{1}{k} \frac{1}{Q}<\frac{1}{Q} .
$$

So we could choose p^{\prime}, q^{\prime} in place of p, q.

Corollary of Dirichlet's Theorem (Irrational θ)

Corollary

For any irrational θ, there exist infinitely many rationals $\frac{p}{q}, q>0$, such that $\left|\theta-\frac{p}{q}\right|<\frac{1}{q^{2}}$.

- For the existence, taking $Q>1$, we apply Dirichlet's Theorem to get p, q,

$$
|q \theta-p| \leq \frac{1}{Q}, \quad 0<q<Q .
$$

Then, $\left|\theta-\frac{p}{q}\right|=\frac{1}{q}|q \theta-p| \leq \frac{1}{q} \frac{1}{Q}<\frac{1}{q^{2}}$.
For the cardinality, consider a $Q^{\prime}>\frac{1}{|q \theta-p|}$. Then $\frac{1}{Q^{\prime}}<|q \theta-p|$. It follows that the p^{\prime}, q^{\prime} associated with Q^{\prime},

$$
\left|q^{\prime} \theta-p^{\prime}\right| \leq \frac{1}{Q^{\prime}}, \quad 0<q^{\prime}<Q^{\prime}
$$

are different.

The Case of Rational θ

- The preceding corollary does not remain valid for rational θ.
- Suppose $\theta=\frac{a}{b}$ with a, b integers and $b>0$.

Then, when $\theta \neq \frac{p}{q}$, we have

$$
\left|\theta-\frac{p}{q}\right| \geq \frac{1}{q b}
$$

So, there are only finitely many rationals $\frac{p}{q}$, such that $\left|\theta-\frac{p}{q}\right|<\frac{1}{q^{2}}$.

Subsection 2

Continued Fractions

The Continued Fraction Representation

- The continued-fraction algorithm sets up one-one correspondences:
- Between all irrational θ and all infinite sets of integers $a_{0}, a_{1}, a_{2}, \ldots$, with a_{1}, a_{2}, \ldots positive.

$$
\theta=a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+1}} .
$$

- Between all rational θ and all finite sets of integers $a_{0}, a_{1}, \ldots, a_{n}$, with $a_{1}, a_{2}, \ldots, a_{n-1}$ positive and $a_{n} \geq 2$.

$$
\theta=a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{\ddots \cdot \frac{1}{a_{n}}}}} .
$$

The Continued Fraction Algorithm

- Let θ be any real number.
- We put $a_{0}=[\theta]$.
- If $a_{0} \neq \theta$, we write $\theta=a_{0}+\frac{1}{\theta_{1}}$, so that $\theta_{1}>1$, and we put $a_{1}=\left[\theta_{1}\right]$.
- If $a_{1} \neq \theta_{1}$, we write $\theta_{1}=a_{1}+\frac{1}{\theta_{2}}$, so that $\theta_{2}>1$, and we put $a_{2}=\left[\theta_{2}\right]$.
- The process continues indefinitely unless $a_{n}=\theta_{n}$, for some n.

If the latter occurs, then θ is rational.

- In the "end", we have

$$
\theta=a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{\ddots \cdot \frac{1}{a_{n}}}}} .
$$

The Continued Fraction Algorithm: Terminology

- If θ is rational then the process terminates.

The expression above is called the continued fraction for θ.
We write $\theta=a_{0}+\frac{1}{a_{1}+} \frac{1}{a_{2}+} \cdots \frac{1}{a_{n}}$ or, more briefly, as $\theta=\left[a_{0}, a_{1}, a_{2}, \ldots, a_{n}\right]$.

- If $a_{n} \neq \theta_{n}$, for all n, so that the process does not terminate, then θ is irrational.
We show that $\theta=a_{0}+\frac{1}{a_{1}+} \frac{1}{a_{2}+} \cdots$, or, briefly, $\theta=\left[a_{0}, a_{1}, a_{2}, \ldots\right]$.
- The integers $a_{0}, a_{1}, a_{2}, \ldots$ are the partial quotients of θ.
- The numbers $\theta_{1}, \theta_{2}, \ldots$ are the complete quotients of θ.

We prove that the rationals $\frac{p_{n}}{q_{n}}=\left[a_{0}, a_{1}, \ldots, a_{n}\right]$, where p_{n}, q_{n} denote relatively prime integers, tend to θ as $n \rightarrow \infty$.
They are the convergents to θ.

The Continued Fraction Algorithm (Recurrences)

Claim: The p_{n}, q_{n} are generated recursively by the equations

$$
p_{n}=a_{n} p_{n-1}+p_{n-2}, \quad q_{n}=a_{n} q_{n-1}+q_{n-2}
$$

where $p_{0}=a_{0}, q_{0}=1$ and $p_{1}=a_{0} a_{1}+1, q_{1}=a_{1}$.
The recurrences can be checked easily for $n=2$.
Assume they hold for $n=m-1 \geq 2$. We verify them for $n=m$.
Define relatively prime $p_{j}^{\prime}, q_{j}^{\prime}(j=0,1, \ldots)$ by $\frac{p_{j}^{\prime}}{q_{j}^{\prime}}=\left[a_{1}, a_{2}, \ldots, a_{j+1}\right]$.
Then $\frac{p_{j}}{q_{j}}=a_{0}+\frac{q_{j-1}^{\prime}}{p_{j-1}^{\prime}}$. So $p_{j}=a_{0} p_{j-1}^{\prime}+q_{j-1}^{\prime}$ and $q_{j}=p_{j-1}^{\prime}$.
Now we compute:

$$
\begin{aligned}
p_{m} & =a_{0} p_{m-1}^{\prime}+q_{m-1}^{\prime}=a_{0}\left(a_{m} p_{m-2}^{\prime}+p_{m-3}^{\prime}\right)+a_{m} q_{m-2}^{\prime}+q_{m-3}^{\prime} \\
& =a_{m}\left(a_{0} p_{m-2}^{\prime}+q_{m-2}^{\prime}\right)+a_{0} p_{m-3}^{\prime}+q_{m-3}^{\prime}=a_{m} p_{m-1}+p_{m-2} \\
q_{m} & =p_{m-1}^{\prime}=a_{0} p_{m-2}^{\prime}+p_{m-3}^{\prime}=a_{0} q_{m-1}+q_{m-2}
\end{aligned}
$$

The Continued Fraction Algorithm (Converse)

- By the definition of $\theta_{1}, \theta_{2}, \ldots$, we have $\theta=\left[a_{0}, a_{1}, \ldots, a_{n}, \theta_{n+1}\right]$, where $0<\frac{1}{\theta_{n+1}} \leq \frac{1}{a_{n+1}}$. Hence, θ lies between $\frac{p_{n}}{q_{n}}$ and $\frac{p_{n+1}}{q_{n+1}}$. It is readily seen by induction that the above recurrences give

$$
p_{n} q_{n+1}-p_{n+1} q_{n}=(-1)^{n+1}
$$

and, thus, we have $\left|\frac{p_{n}}{q_{n}}-\frac{p_{n+1}}{q_{n+1}}\right|=\frac{1}{q_{n} q_{n+1}}$. It follows that the convergents $\frac{p_{n}}{q_{n}}$ to θ, satisfy

$$
\left|\theta-\frac{p_{n}}{q_{n}}\right| \leq \frac{1}{q_{n} q_{n+1}},
$$

and so certainly $\frac{p_{n}}{q_{n}} \xrightarrow{n \rightarrow \infty} \theta$.
In view of the latter inequality and preceding results, it is clear that, when θ is rational the continued-fraction process terminates.

The Continued Fraction Algorithm and Euclid's Algrithm

- For rational θ, the process is closely related to Euclid's algorithm. Take $\theta=\frac{a}{b}$.

$$
\begin{aligned}
a & =b q_{1}+r_{1} & \frac{a}{b} & =q_{1}+\frac{r_{1}}{b} \\
q_{1} & =r_{1} q_{2}+r_{2} & \frac{q_{1}}{r_{1}} & =q_{2}+\frac{r_{2}}{r_{1}} \\
& \vdots & & \vdots \\
q_{k-1} & =r_{k-1} q_{k}+r_{k} & \frac{q_{k-1}}{r_{k-1}} & =q_{k}+\frac{r_{k}}{r_{k-1}} \\
q_{k} & =r_{k} q_{k+1} & \frac{q_{k}}{r_{k}} & =q_{k+1}
\end{aligned}
$$

- The partial quotients $a_{0}, a_{1}, a_{2}, \ldots$ of θ are just $q_{1}, q_{2}, q_{3}, \ldots, q_{k+1}$;
- The complete quotients $\theta_{1}, \theta_{2}, \ldots$ are given by $\frac{b}{r_{1}}, \frac{r_{1}}{r_{2}}, \ldots, \frac{r_{k-1}}{r_{k}}$. In other words, on defining $a_{j}=q_{j+1}, 0 \leq j \leq k$, we have

$$
\theta=\left[a_{0}, a_{1}, \ldots, a_{k}\right] .
$$

Example

- For $\theta=\frac{187}{35}$, we have

$$
\begin{aligned}
187 & =35 \cdot 5+12 \\
35 & =12 \cdot 2+11 \\
12 & =11 \cdot 1+1 \\
11 & =1 \cdot 11+0
\end{aligned}
$$

So, we have $\frac{187}{35}=[5,2,1,11]$,
i.e.,

$$
\frac{187}{35}=5+\frac{1}{2+\frac{1}{1+\frac{1}{11}}} .
$$

Subsection 3

Rational Approximations

An Inequality Involving Two Convergents

Theorem

For any real θ, of any two consecutive convergents, say $\frac{p_{n}}{q_{n}}$ and $\frac{p_{n+1}}{q_{n+1}}$, at least one satisfies $\left|\theta-\frac{p}{q}\right|<\frac{1}{2 q^{2}}$.

- The differences $\theta-\frac{p_{n}}{q_{n}}$ and $\theta-\frac{p_{n+1}}{q_{n+1}}$ have opposite signs.

So we get

$$
\left|\theta-\frac{p_{n}}{q_{n}}\right|+\left|\theta-\frac{p_{n+1}}{q_{n+1}}\right|=\left|\frac{p_{n}}{q_{n}}-\frac{p_{n+1}}{q_{n+1}}\right|=\frac{1}{q_{n} q_{n+1}} .
$$

But, for any real α, β, with $\alpha \neq \beta$, we have $\alpha \beta<\frac{1}{2}\left(\alpha^{2}+\beta^{2}\right)$. It follows that

$$
\frac{1}{q_{n} q_{n+1}}<\frac{1}{2 q_{n}^{2}}+\frac{1}{2 q_{n+1}^{2}}
$$

This gives the result.

An Inequality Involving Three Convergents

Theorem

For any real θ, of any three consecutive convergents, say $\frac{p_{n}}{q_{n}} \frac{p_{n+1}}{q_{n+1}}$ and $\frac{p_{n+2}}{q_{n+2}}$, one at least satisfies $\left|\theta-\frac{p}{q}\right|<\frac{1}{\sqrt{5} q^{2}}$.

- Suppose the result fails. Then the equations above would give

$$
\frac{1}{\sqrt{5} q_{n}^{2}}+\frac{1}{\sqrt{5} q_{n+1}^{2}} \leq \frac{1}{q_{n} q_{n+1}}
$$

Setting $\lambda=\frac{q_{n+1}}{q_{n}}$, we get $\lambda+\frac{1}{\lambda} \leq \sqrt{5}$. Thus, $\lambda^{2}-\sqrt{5} \lambda+1 \leq 0$ or $\left(\lambda-\frac{1}{2}(1+\sqrt{5})\right)\left(\lambda+\frac{1}{2}(1-\sqrt{5})\right)<0$. So $\lambda<\frac{1}{2}(1+\sqrt{5})$.
Similarly, setting $\mu=\frac{q_{n+2}}{q_{n+1}}$, we get $\mu<\frac{1}{2}(1+\sqrt{5})$.
By the preceding section, we have $q_{n+2}=a_{n+2} q_{n+1}+q_{n}$.
So $\mu=\frac{q_{n+2}}{q_{n+1}}=a_{n+2}+\frac{q_{n}}{q_{n+1}} \geq 1+\frac{1}{\lambda}$.
This contradicts $\lambda<\frac{1}{2}(1+\sqrt{5})$ implies $\frac{1}{\lambda}>\frac{1}{2}(-1+\sqrt{5})$.

Hurwitz's Theorem

Theorem (Hurwitz's Theorem)

For any irrational θ, there exist infinitely many rational $\frac{p}{q}$, such that

$$
\left|\theta-\frac{p}{q}\right|<\frac{1}{\sqrt{5} q^{2}}
$$

- Follows by the preceding result.
- The constant $\frac{1}{\sqrt{5}}$ is best possible.
(We will prove this later in this set.)

Closedness of Approximations

Theorem

The convergents give successively closer approximations to θ. In fact $\left|q_{n} \theta-p_{n}\right|$ decreases as n increases.

- Recall the recurrences

$$
p_{n}=a_{n} p_{n-1}+p_{n-2}, \quad q_{n}=a_{n} q_{n-1}+q_{n-2},
$$

with $p_{0}=a_{0}, q_{0}=1$ and $p_{1}=a_{0} a_{1}+1, q_{1}=a_{1}$.
Consider the fractions $r_{n}=\frac{p_{n} \theta_{n+1}+p_{n-1}}{q_{n} \theta_{n+1}+q_{n-1}}, n \geq 1$.

- $r_{1}=\theta$;
- $r_{n+1}=r_{n}$, for every $n \geq 1$.

We conclude that, for all $n \geq 1$,

$$
\theta=\frac{p_{n} \theta_{n+1}+p_{n-1}}{q_{n} \theta_{n+1}+q_{n-1}} .
$$

Closedness of Approximations (Cont'd)

- We got $\theta=\frac{p_{n} \theta_{n+1}+p_{n-1}}{q_{n} \theta_{n+1}+q_{n-1}}$.

Now we compute

$$
\begin{aligned}
& \left|q_{n} \theta-p_{n}\right|=\left|q_{n} \frac{p_{n} \theta_{n+1} p_{n-1}}{q_{n} \theta_{n+1}+q_{n-1}}-p_{n}\right| \\
& =\left|\frac{p_{n} q_{n} \theta_{n+1}+p_{n-1} q_{n}-p_{n} q_{n} \theta_{n+1}-p_{n} q_{n-1}}{q_{n} \theta_{n+1}+q_{n-1}}\right| \\
& =\left|\frac{p_{n-1} q_{n}-p_{n} q_{n-1}}{q_{n} \theta_{n+1}+q_{n-1}}\right|=\frac{1}{q_{n} \theta_{n+1}+q_{n-1}} \\
& <\frac{1}{q_{n}+q_{n-1}}=\left\{\begin{array}{ll}
\frac{1}{a_{1}+1}<\frac{1}{\theta_{1}}, & \text { if } n=1 \\
\left(a_{n}+1\right) q_{n-1}+q_{n-2}
\end{array} \frac{1}{q_{n-1} \theta_{n}+q_{n-2}}, \quad \text { if } n>1 ~ \$\right.
\end{aligned}
$$

Best Approximability of Convergents

Theorem

The convergents are indeed the best approximations to θ in the sense that, if p, q are integers with $0<q<q_{n+1}$, then $|q \theta-p| \geq\left|q_{n} \theta-p_{n}\right|$.

- We may find integers u, v satisfying

$$
p=u p_{n}+v p_{n+1}, \quad q=u q_{n}+v q_{n+1} .
$$

It follows from $0<q<q_{n+1}$, that

- $u \neq 0$;
- If $v \neq 0$, then u, v have opposite signs.

Recalling that $q_{n} \theta-p_{n}$ and $q_{n+1} \theta-p_{n+1}$ have opposite signs, we obtain:

$$
\begin{aligned}
|q \theta-p| & =\left|\left(u q_{n}+v q_{n+1}\right) \theta-\left(u p_{n}+v p_{n+1}\right)\right| \\
& =\left|u\left(q_{n} \theta-p_{n}\right)+v\left(q_{n+1} \theta-p_{n+1}\right)\right| \\
& \geq\left|q_{n} \theta-p_{n}\right| .
\end{aligned}
$$

Sufficient Condition for a Convergent to θ

Theorem

If a rational $\frac{p}{q}$ satisfies $\left|\theta-\frac{p}{q}\right|<\frac{1}{2 q^{2}}$, then it is a convergent to θ.

- We compute, for $q_{n} \leq q \leq q_{n+1}$,

$$
\begin{aligned}
\left|\frac{p}{q}-\frac{p_{n}}{q_{n}}\right| & \leq\left|\theta-\frac{p}{q}\right|+\left|\theta-\frac{p_{n}}{q_{n}}\right| \\
& =\frac{1}{q}|q \theta-p|+\frac{1}{q_{n}}\left|q_{n} \theta-p_{n}\right| \\
& \stackrel{\text { previous }}{\leq}\left(\frac{1}{q}+\frac{1}{q_{n}}\right)|q \theta-p| \\
& \leq\left(\frac{1}{q_{n}}+\frac{1}{q_{n}}\right) \frac{1}{2 q}=\frac{1}{q q_{n}} .
\end{aligned}
$$

It follows that $\left|p q_{n}-p_{n} q\right|<1$.
Therefore, $\frac{p}{q}=\frac{p_{n}}{q_{n}}$.

Subsection 4

Quadratic Irrationals

Quadratic Irrationals

- By a quadratic irrational we mean a zero of a polynomial

$$
a x^{2}+b x+c
$$

where

- a, b, c are integers;
- the discriminant $d=b^{2}-4 a c$ is positive and not a perfect square.

Examples of Quadratic Irrationals

- $\sqrt{2}$ is a zero of $x^{2}-2=0$;
- $\frac{1}{3}(3+\sqrt{3})$ is a zero of $3 x^{2}-6 x+2=0$;
- $\frac{1}{2}(3+\sqrt{2})$ is a root of the equation $4 x^{2}-12 x+7=0$;
- $\sqrt{20}$ is a zero of $x^{2}-20=0$;
- $\sqrt{22}$ is a root of $x^{2}-22=0$.

Ultimately Periodic Continued Fractions

- A continued fraction $\left[a_{0}, a_{1}, a_{2}, \ldots\right]$ is ultimately periodic if there exist k and m, such that the partial quotients a_{0}, a_{1}, \ldots satisfy

$$
a_{m+n}=a_{n}, \text { for all } n \geq k .
$$

- I.e., a continued fraction θ is ultimately periodic if and only if it has the form

$$
\theta=\left[a_{0}, a_{1}, \ldots, a_{k-1}, \overline{a_{k}, \ldots, a_{k+m-1}}\right],
$$

where the bar indicates that the block of partial quotients is repeated indefinitely.

Examples of Quadratic Irrationals

- $\sqrt{2}=[1, \overline{2}]$;
- $\frac{1}{3}(3+\sqrt{3})=[1,1, \overline{1,2}]$;
- $\frac{1}{2}(3+\sqrt{2})=[2,4, \overline{1,4}]$;
- $\sqrt{20}=[4, \overline{2,8}]$;
- $\sqrt{22}=[4, \overline{1,2,4,2,1,8}]$.

Characterization of Quadratic Irrationals

Theorem

A continued fraction represents a quadratic irrational if and only if it is ultimately periodic.

- Suppose, first, that $\theta=\left[a_{0}, a_{1}, \ldots, a_{k-1}, \overline{a_{k}, \ldots, a_{k+m-1}}\right]$.

Set $\phi=\theta_{k}=\left[\overline{a_{k}, \ldots, a_{k+m-1}}\right]$.
By preceding work,

- if $\frac{p_{n}}{q_{n}}$ are convergents to $\theta, \theta=\frac{p_{k-1} \theta_{k}+p_{k-2}}{q_{k-1} \theta_{k}+q_{k-2}}=\frac{p_{k-1} \phi+p_{k-2}}{q_{k-1} \phi+q_{k-2}}$.
- if $\frac{p_{m}^{\prime}}{q_{m}^{\prime}}$ are convergents to $\phi, \phi=\frac{p_{m-1}^{\prime} \phi+p_{m-2}^{\prime}}{q_{m-1}^{\prime} \phi+q_{m-2}^{\prime}}$.

The latter shows that ϕ is quadratic.
The former, then, shows that θ is quadratic.
Finally, the non-termination shows that θ is irrational.

Necessity (Transformation)

- Suppose θ is a quadratic irrational, i.e., θ satisfies $a x^{2}+b x+c=0$, where a, b, c are integers with $d=b^{2}-4 a c>0$.
Let $\frac{p_{n}}{q_{n}}, n=1,2, \ldots$, denote the convergents to θ.
Consider the binary form

$$
f(x, y)=a x^{2}+b x y+c y^{2} .
$$

Define the substitution

$$
x=p_{n} x^{\prime}+p_{n-1} y^{\prime}, \quad y=q_{n} x^{\prime}+q_{n-1} y^{\prime} .
$$

- It has determinant $p_{n} q_{n-1}-p_{n-1} q_{n}=(-1)^{n-1}$.
- It takes f into $f_{n}(x, y)=a_{n} x^{2}+b_{n} x y+c_{n} y^{2}$, with discriminant d.
- We have $a_{n}=f\left(p_{n}, q_{n}\right)$ and $c_{n}=f\left(p_{n-1}, q_{n-1}\right)=a_{n-1}$.

Note that $f(\theta, 1)=0$.
This will be used twice below.

Necessity (Boundedness of Parameters)

- We noted that $f(\theta, 1)=0$.

We now compute:

$$
\begin{aligned}
\frac{a_{n}}{q_{n}^{2}} & =f\left(\frac{p_{n}}{q_{n}}, 1\right)-f(\theta, 1)=a\left(\left(\frac{p_{n}}{q_{n}}\right)^{2}-\theta^{2}\right)+b\left(\left(\frac{p_{n}}{q_{n}}\right)-\theta\right) \\
& \left.\leq|a| \frac{p_{n}}{q_{n}}-\theta| | \frac{p_{n}}{q_{n}}+\theta|+|b|| \frac{p_{n}}{q_{n}}-\theta \right\rvert\, \\
& \leq|a| \frac{1}{q_{n}^{2}}\left|\frac{p_{n}}{q_{n}}+\theta\right|+|b| \frac{1}{q_{n}^{2}}<|a| \frac{2|\theta|+1}{q_{n}^{2}}+|b| \frac{1}{q_{n}^{2}} \\
& =\frac{(2|\theta|+1)|a|+|b|}{q_{n}^{2}} .
\end{aligned}
$$

Thus, $\left|a_{n}\right|<(2|\theta|+1)|a|+|b|$, a bound independent of n.
But $c_{n}=a_{n-1}$ and $b_{n}^{2}-4 a_{n} c_{n}=d$.
So b_{n} and c_{n} are likewise bounded.

Necessity (Ultimate Periodicity)

- For $n \geq 1$, if $\theta_{1}, \theta_{2}, \ldots$ denote the complete quotients of θ,

$$
\theta=\frac{p_{n} \theta_{n+1}+p_{n-1}}{q_{n} \theta_{n+1}+q_{n-1}} .
$$

Using the transformations, we get

$$
\begin{aligned}
f_{n}\left(\theta_{n+1}, 1\right) & =f\left(p_{n} \theta_{n+1}+p_{n-1}, q_{n} \theta_{n+1}+q_{n-1}\right) \\
& =\left(q_{n} \theta_{n+1}+q_{n-1}\right)^{2} f\left(\frac{p_{n} \theta_{n+1}+p_{n-1}}{q_{n} \theta_{n+1}+q_{n+1}}, 1\right) \\
& =\left(q_{n} \theta_{n+1}+q_{n-1}\right)^{2} f(\theta, 1)=0
\end{aligned}
$$

Hence, there are only finitely many possibilities for $\theta_{1}, \theta_{2}, \ldots$.
This shows that $\theta_{\ell+m}=\theta_{\ell}$, for some positive ℓ, m.
So, the continued fraction for θ is ultimately periodic.

Purely Periodic Continued Fractions

- The continued fraction of a quadratic irrational θ is said to be purely periodic if

$$
\theta=\left[\overline{a_{0}, \ldots, a_{m-1}}\right] .
$$

- If θ is a quadratic irrational, the conjugate θ^{\prime} of θ is the quadratic irrational that is a root of the same quadratic equation as θ

Theorem

Pure periodicity occurs if and only if $\theta>1$ and the conjugate θ^{\prime} of θ satisfies $-1<\theta^{\prime}<0$.

- Suppose $\theta>1$ and $-1<\theta^{\prime}<0$.

By induction the conjugates θ_{n}^{\prime} of the complete quotients θ_{n}, $n=1,2, \ldots$, of θ also satisfy $-1<\theta_{n}^{\prime}<0$. The proof is based on

- $\theta_{n}^{\prime}=a_{n}+\frac{1}{\theta_{n+1}^{\prime}}$, where $\theta=\left[a_{0}, a_{1}, \ldots\right]$;
- $a_{n} \geq 1$, for all n including $n=0$.

The inequality $-1<\theta_{n}^{\prime}<0$ shows that $a_{n}=\left[\frac{-1}{\theta_{n+1}^{\prime}}\right]$.
Since θ is a quadratic irrational, we have $\theta_{m}=\theta_{n}$, for some $n>m$.
This gives $\frac{1}{\theta_{m}^{\prime}}=\frac{1}{\theta_{n}^{\prime}}$ whence $a_{m-1}=a_{n-1}$ and, hence, that $\theta_{m-1}=\theta_{n-1}$.
Repetition of this conclusion yields $\theta=\theta_{n-m}$.
Hence, θ is purely periodic.

Purely Periodic Continued Fractions (Converse)

- If $\theta=\left[\overline{a_{0}, \ldots, a_{m-1}}\right]$ is purely periodic, then $\theta>a_{0} \geq 1$. Further, for some $n \geq 1$, we have

$$
\theta=\frac{p_{n} \theta+p_{n-1}}{q_{n} \theta+q_{n-1}}
$$

where $\frac{p_{n}}{q_{n}}, n=1,2, \ldots$, denote the convergents to θ.
So, θ satisfies the equation

$$
q_{n} x^{2}+\left(q_{n-1}-p_{n}\right) x-p_{n-1}=0 .
$$

Note that the quadratic on the left

- has the value $-p_{n-1}<0$ for $x=0$;
- has the value $p_{n}+q_{n}-\left(p_{n-1}+q_{n-1}\right)>0$ for $x=-1$.

Hence, the conjugate θ^{\prime} of θ satisfies $-1<\theta^{\prime}<0$.

A Consequence

Corollary

The continued fractions of $\sqrt{d}+[\sqrt{d}]$ and $\frac{1}{\sqrt{d}-[\sqrt{d}]}$ are purely periodic, where d is any positive integer, not a perfect square.

- Note that:

$$
\begin{aligned}
\sqrt{d}+[\sqrt{d}] & >1 ; \\
-1<-\sqrt{d}+[\sqrt{d}] & <0 .
\end{aligned}
$$

Similarly,

By the criterion, the continued fractions of $\sqrt{d}+[\sqrt{d}]$ and $\frac{1}{\sqrt{d}-[\sqrt{d}]}$ are purely periodic.

Almost Purely Periodic Continuous Fractions

- A continued fraction

$$
\left[a_{0}, a_{1}, \ldots, a_{k-1}, \overline{a_{k}, \ldots, a_{k+m-1}}\right]
$$

is almost purely periodic if $k=1$.
I.e., only the initial partial quotient a_{0} precedes the repeated block.

Example: We saw that $\sqrt{d}+[\sqrt{d}]$ and $\frac{1}{\sqrt{d}-[\sqrt{d}]}$ are purely periodic.
But

$$
\sqrt{d}=[\sqrt{d}]+(\sqrt{d}-[\sqrt{d}])=[\sqrt{d}]+\frac{1}{\frac{1}{\sqrt{d}-[\sqrt{d}]}}
$$

So \sqrt{d} is almost purely periodic.

Subsection 5

Liouville's Theorem

Algebraic Numbers and Minimal Polynomials

- A real or complex number is said to be algebraic if it is a zero of a polynomial

$$
P(x)=a_{0} x^{n}+a_{1} x^{n-1}+\cdots+a_{n}
$$

where $a_{0}, a_{1}, \ldots, a_{n}$ denote integers, not all 0 .

- For each algebraic number θ, there is a polynomial P as above, with least degree, such that $P(\theta)=0$.
- P is unique if one assumes that $a_{0}>0$ and that $a_{0}, a_{1}, \ldots, a_{n}$ are relatively prime.
- P is irreducible over the rationals.
- P is called the minimal polynomial for θ.
- The degree of θ is defined as the degree of P.

Liouville's Theorem

Theorem (Liouville's Theorem)

For any algebraic number α with degree $n>1$, there exists a number $c=c(\alpha)>0$, such that $\left|\alpha-\frac{p}{q}\right|>\frac{c}{q^{2}}$, for all rationals $\frac{p}{q}, q>0$.

- Let P be the minimal polynomial for α.

By the Mean Value Theorem, for any rational $\frac{p}{q}, q>0$, there exists ξ between α and $\frac{p}{q}$, such that $P(\alpha)-P\left(\frac{p}{q}\right)=\left(\alpha-\frac{p}{q}\right) P^{\prime}(\xi)$.
By definition, $P(\alpha)=0$, and, by irreducibility, $P\left(\frac{p}{q}\right) \neq 0$.
But $q^{n} P\left(\frac{p}{q}\right)$ is an integer and so $\left|P\left(\frac{p}{q}\right)\right| \geq \frac{1}{q^{n}}$.
Assume $\left|\alpha-\frac{p}{q}\right|<1$ (otherwise the conclusion is trivial).
Then $|\xi|=|\alpha+(\xi-\alpha)| \leq|\alpha|+|\alpha-\xi| \leq|\alpha|+\left|\alpha-\frac{p}{q}\right|<|\alpha|+1$.
So $\left|P^{\prime}(\xi)\right|<C$, for some $C=C(\alpha)$.
This gives $\left|\alpha-\frac{p}{q}\right|=\frac{\left|P(\alpha)-P\left(\frac{p}{q}\right)\right|}{\left|P^{\prime}(\xi)\right|}>\frac{1}{C q^{2}}=\frac{1 / C}{q^{2}}$.

Hurwitz's Theorem Revisited

Theorem (Hurwitz's Theorem)

For any irrational θ, there exist infinitely many rational $\frac{p}{q}$, such that $\left|\theta-\frac{p}{q}\right|<\frac{1}{\sqrt{5} q^{2}}$ and, by taking $\theta=\alpha=\frac{1}{2}(1+\sqrt{5})=[1,1, \ldots]$, we see that $\frac{1}{\sqrt{5}}$ is best possible.

- If $\alpha=\frac{1}{2}(1+\sqrt{5})$, then $P(x)=x^{2}-x-1$ and $P^{\prime}(x)=2 x-1$.

Let $\frac{p}{q}, q>0$, be any rational and let $\delta=\left|\alpha-\frac{p}{q}\right|$.
$\left|P\left(\frac{p}{q}\right)\right| \leq \delta\left|P^{\prime}(\xi)\right|$, for some ξ between α and $\frac{p}{q}$.
So $|\xi| \leq \alpha+\delta$ and $\left|P^{\prime}(\xi)\right| \leq 2(\alpha+\delta)-1=2 \delta+\sqrt{5}$.
But $\left|P\left(\frac{p}{q}\right)\right| \geq \frac{1}{q^{2}}$, whence $\delta(2 \delta+\sqrt{5}) \geq \frac{1}{q^{2}}$.
So, for any $c^{\prime}<\frac{1}{\sqrt{5}}$ and for all sufficiently large q, we have $\delta>\frac{c^{\prime}}{q^{2}}$. Hence, Hurwitz's theorem is best possible.

Transcendental Numbers

- A real or complex number that is not algebraic is said to be transcendental.
Claim: The series

$$
\theta=\frac{1}{2^{1!}}+\frac{1}{2^{2!}}+\frac{1}{2^{3!}}+\cdots
$$

represents a transcendental number.
Set

$$
p_{j}=2^{j!}\left(\frac{1}{2^{1!}}+\frac{1}{2^{2!}}+\cdots+\frac{1}{2^{j!}}\right), \quad q_{j}=2^{j!}, \quad j=1,2, \ldots
$$

Then p_{j}, q_{j} are integers, satisfying $\left|\theta-\frac{p_{j}}{q_{j}}\right|=\frac{1}{2^{(j+1)!}}+\frac{1}{2^{(j+2)!}}+\cdots$. The sum on the right is at most

$$
\frac{1}{2^{(j+1)!}}\left(1+\frac{1}{2}+\frac{1}{2^{2}}+\cdots\right)=\frac{1}{2^{(j+1)!-1}}<\frac{1}{q_{j}^{j}} .
$$

It follows from Liouville's theorem that θ is transcendental.

Remarks on Transcendental Numbers

- Any real number θ for which there exists an infinite sequence of distinct rationals $\frac{p_{j}}{q_{j}}$ satisfying $\left|\theta-\frac{p_{j}}{q_{j}}\right|<\frac{1}{q_{j}^{\omega_{j}}}$, where $\omega_{j} \xrightarrow{j \rightarrow \infty} \infty$, will be transcendental.
Example: This condition will hold for:
- any infinite decimal in which there occur sufficiently long blocks of zeros;
- any continued fraction in which the partial quotients increase sufficiently rapidly.

Subsection 6

Transcendental Numbers

The Integral I(t)

- Consider the integral

$$
I(t)=\int_{0}^{t} e^{t-x} f(x) d x, \quad t \geq 0
$$

where f is a real polynomial with degree m.

- More generally, let, for all $i \geq 0$,

$$
I_{i}(t)=\int_{0}^{t} e^{t-x} f^{(i)}(x) d x, \quad t \geq 0
$$

where $f^{(i)}(x)$ denotes the i-th derivative of $f(x)$.

- With this notation, $I(t)=I_{0}(t)$.

Computing $/(t)$

- If $I_{i}(t)=\int_{0}^{t} e^{t-x} f^{(i)}(x) d x, t \geq 0$, then

$$
I_{i}(t)=e^{t} f^{(i)}(0)-f(t)+I_{i+1}(t)
$$

This needs an integration by-parts:

$$
\begin{aligned}
I_{i}(t) & =\int_{0}^{t} e^{t-x} f^{(i)}(x) d x=\int_{0}^{t}\left(-e^{t-x}\right)^{\prime} f^{(i)}(x) d x \\
& =\left.\left(-e^{t-x} f^{(i)}(x)\right)\right|_{0} ^{t}-\int_{0}^{t}\left(-e^{t-x}\right) f^{(i+1)}(x) d x \\
& =e^{t} f^{(i)}(0)-f^{(i)}(t)+I_{i+1}(t)
\end{aligned}
$$

- If $I(t)=\int_{0}^{t} e^{t-x} f(x) d x, t \geq 0$, then

$$
I(t)=e^{t} \sum_{j=0}^{m} f^{(j)}(0)-\sum_{j=0}^{m} f^{(j)}(t)
$$

This follows by repeated application of the recursive formula above.

Bounding I (t)

- If \bar{f} denotes the polynomial obtained from f by replacing each coefficient with its absolute value, then

$$
|I(t)| \leq \int_{0}^{t}\left|e^{t-x} f(x)\right| d x \leq t e^{t} \bar{f}(t)
$$

Note that $|f(x)| \leq \bar{f}(x)$.
So we have

$$
\begin{aligned}
|I(t)| & =\left|\int_{0}^{t} e^{t-x} f(x) d x\right| \leq \int_{0}^{t} e^{t-x}|f(x)| d x \\
& \leq \int_{0}^{t} e^{t-x} \bar{f}(x) d x \leq e^{t} \bar{f}(t) \int_{0}^{t} d x \\
& =t e^{t} \bar{f}(t)
\end{aligned}
$$

Transcendence of e

- Suppose that e is algebraic, so that

$$
a_{0}+a_{1} e+\cdots+a_{n} e^{n}=0
$$

for some integers $a_{0}, a_{1}, \ldots, a_{n}$, with $a_{0} \neq 0$.
Set

$$
f(x)=x^{p-1}(x-1)^{p} \cdots(x-n)^{p}, \quad p \text { is a large prime. }
$$

The degree m of f is $(n+1) p-1$.
Define

$$
J=a_{0} I(0)+a_{1} I(1)+\cdots+a_{n} I(n)
$$

By the preceding equations,

$$
\begin{aligned}
J & =\sum_{k=0}^{n} a_{k} I(k)=\sum_{k=0}^{n} a_{k}\left(e^{k} \sum_{j=0}^{m} f^{(i)}(0)-\sum_{j=0}^{m} f^{(j)}(k)\right) \\
& =\sum_{k=0}^{n} a_{k}\left(-\sum_{j=0}^{m} f^{(j)}(k)\right)=\sum_{j=0}^{m} \sum_{k=0}^{n} a_{k} f(j)(k) .
\end{aligned}
$$

Transcendence of e (Cont'd)

- For $1 \leq k \leq n$, define

$$
g_{k}(x)=\frac{f(x)}{(x-k)^{p}}
$$

Then

$$
f^{(j)}(k)=\left\{\begin{array}{ll}
0, & \text { if } j<p \\
\binom{j}{p} p!g_{k}^{(j-p)}(k), & \text { if } j \geq p
\end{array} .\right.
$$

So, for all $j, f^{(j)}(k)$ is an integer divisible by $p!$.

Transcendence of e (Cont'd)

- Define

$$
h(x)=\frac{f(x)}{x^{p-1}} .
$$

Then

$$
f^{(j)}(0)=\left\{\begin{array}{ll}
0, & \text { if } j<p-1 \\
\binom{j}{p-1}(p-1)!h^{(j-p+1)}(0), & \text { if } j \geq p-1
\end{array} .\right.
$$

Note that:

- $h(0)=(-1)^{n p}(n!)^{p}$;
- $h^{(j)}(0)$ is an integer divisible by p, for $j>0$.

We conclude that:

- For $j \neq p-1, f^{(j)}(0)$ is an integer divisible by $p!$;
- $f^{(p-1)}(0)$ is an integer divisible by $(p-1)$!, but not by p for $p>n$.

Transcendence of e (Conclusion)

- Recall that $J=\sum_{j=0}^{m} \sum_{k=0}^{n} a_{k} f^{(j)}(k)$.

It follows that J is a non-zero integer divisible by $(p-1)$!.
So $|J| \geq(p-1)$!.
But, now, note that:

- If $k \leq n, \bar{f}(k)=k^{p-1}(k+1)^{p} \cdots(k+n)^{p} \leq(2 n)^{m}$.
- $m=(n+1) p-1 \leq 2 n p$.

Hence,

$$
\begin{aligned}
|J| & =\left|a_{0}\right|(0)+\cdots+a_{n}|(n)| \leq\left|a_{0}\right||I(0)|+\cdots+\left|a_{n}\right||/(n)| \\
& \leq\left|a_{1}\right| 1 e^{1} \bar{f}(1)+\cdots+\left|a_{n}\right| n e^{n} \bar{f}(n) \\
& \leq\left|a_{1}\right| e(2 n)^{2 n p}+\cdots+\left|a_{n}\right| n e^{n}(2 n)^{2 n p} \\
& =\left(\left|a_{1}\right| e+\cdots+\left|a_{n}\right| n e^{n}\right)\left((2 n)^{2 n}\right)^{p} \leq c^{p},
\end{aligned}
$$

for some c independent of p.
The inequalities are inconsistent for p sufficiently large.

Subsection 7

Minkowski's Theorem

Blichfeldt's Theorem

Theorem (Blichfeldt's Theorem)

Any bounded region \mathscr{R} with volume V exceeding 1 contains distinct points \mathbf{x}, \mathbf{y}, such that $\mathbf{x}-\mathbf{y}$ is an integer point, i.e., a point all of whose coordinates are integers.

- Let $\mathbf{u}=\left(u_{1}, \ldots, u_{n}\right)$ be an integer point.

Set $\mathscr{R}_{\mathbf{u}}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathscr{R}: u_{j} \leq x_{j}<u_{j}+1,1 \leq j \leq n\right\}$.
Denote by $V_{\mathbf{u}}$ the volume of $\mathscr{R}_{\mathbf{u}}$.
\mathscr{R} may be expressed as the disjoint union of $\mathscr{R}_{\mathbf{u}}$.
Consequently, $V=\sum V_{\mathbf{u}}>1$.
This gives $\sum\left(\mathscr{R}_{\mathbf{u}}-\mathbf{u}\right)>1$.
But, for all $\mathbf{u}, \mathscr{R}_{\mathbf{u}}-\mathbf{u}$ lies in the unit square.
Thus, there exist \mathbf{u}, \mathbf{v}, such that $\left(\mathscr{R}_{\mathbf{u}}-\mathbf{u}\right) \cap\left(\mathscr{R}_{\mathbf{v}}-\mathbf{v}\right) \neq \varnothing$.
So, there exist points \mathbf{x} in $\mathscr{R}_{\mathbf{u}}$ and \mathbf{y} in $\mathscr{R}_{\mathbf{v}}$, such that $\mathbf{x}-\mathbf{u}=\mathbf{y}-\mathbf{v}$, and so $x-y$ is an integer point.

Convex Bodies and Symmetry

- By a convex body \mathscr{S} we mean a bounded, open set of points in Euclidean n-space, such that

$$
\mathbf{x}, \mathbf{y} \in \mathscr{S} \text { implies } \lambda \mathrm{x}+(1-\lambda) \mathbf{y} \in \mathscr{S}, \text { for all } 0<\lambda<1
$$

- A set of points \mathscr{S} is said to be symmetric about the origin if, for every point \mathbf{x},

$$
\mathrm{x} \in \mathscr{S} \text { implies }-\mathrm{x} \in \mathscr{S} \text {. }
$$

Minkowski's Theorem

Theorem (Minkowski's Theorem)

If a convex body \mathscr{S}, symmetric about the origin, has volume exceeding 2^{n}, then it contains an integer point other than the origin.

- Define $\mathscr{R}=\frac{1}{2} \mathscr{S}:=\left\{\frac{1}{2} \mathrm{x}: \mathrm{x} \in \mathscr{S}\right\}$.

Then $V(\mathscr{R})=\frac{1}{2^{n}} V(\mathscr{S})>1$.
By Blichfeldt's Theorem, there exist $\mathbf{x}, \mathbf{y} \in \mathscr{R}$, with $\mathbf{x} \neq \mathbf{y}$, such that $x-y$ is an integer point.
By definition, $2 \mathrm{x}, 2 \mathrm{y} \in \mathscr{S}$.
By symmetry, $-2 \mathrm{y} \in \mathscr{S}$.
By convexity, $\mathbf{x}-\mathbf{y}=\frac{1}{2}(2 \mathbf{x})+\frac{1}{2}(-2 \mathbf{y}) \in \mathscr{S}$.

Linear Independence

- Points $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}$ in Euclidean n-space are said to be linearly independent if, for all real numbers t_{1}, \ldots, t_{n},

$$
t_{1} \mathbf{a}_{1}+\cdots+t_{n} \mathbf{a}_{n}=\mathbf{0} \quad \text { implies } \quad t_{1}=\cdots=t_{n}=0
$$

- If

$$
\mathbf{a}_{j}=\left(a_{1 j}, \ldots, a_{n j}\right), \quad 1 \leq j \leq n,
$$

then a_{1}, \ldots, a_{n} are linearly independent if and only if

$$
d=\operatorname{det}\left(a_{i j}\right) \neq 0 .
$$

Lattices and Determinants

- By a lattice Λ we mean a set of points of the form

$$
\mathbf{x}=u_{1} \mathbf{a}_{1}+\cdots+u_{n} \mathbf{a}_{n}
$$

where $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}$ are fixed linearly independent points and u_{1}, \ldots, u_{n} run through all the integers.

- The points $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}$ are referred to as the generators or as a basis for the lattice.
- The determinant of Λ is defined as

$$
d(\Lambda)=|d|=\operatorname{det}\left(a_{i j}\right)
$$

where, as before,

$$
\mathbf{a}_{j}=\left(a_{1 j}, \ldots, a_{n j}\right), \quad 1 \leq j \leq n .
$$

General Minkowski's Theorem

Theorem (General Minkowski's Theorem)

If, for any lattice Λ, a convex body \mathscr{S}, symmetric about the origin, has volume exceeding $2^{n} d(\Lambda)$, then it contains a point of Λ other than the origin.

- Let A be the invertible linear transformation $\mathbf{e}_{i} \mapsto \mathbf{a}_{i}, i=1, \ldots, n$.

Define $\mathscr{R}=\frac{1}{2} A^{-1}(\mathscr{S})$.
Then $V(\mathscr{R})=\frac{1}{2^{n} d(\Lambda)} V(\mathscr{S})>1$.
By Blichfeldt's Theorem, there exist $\mathbf{x}, \mathbf{y} \in \mathscr{R}$, with $\mathbf{x} \neq \mathbf{y}$, such that $x-y$ is an integer point.
As before, $A(\mathbf{x}-\mathbf{y})=2 A\left(\frac{1}{2} \mathbf{x}+\frac{1}{2}(-\mathbf{y})\right) \in \mathscr{S}$.
Moreover, it is in Λ, since $\mathbf{x}-\mathbf{y}$ is an integer point.

Minkowski's Linear Forms Theorem

Corollary

Let $\lambda_{1}, \ldots, \lambda_{n}>0$ and Λ be the lattice generated by a_{1}, \ldots, a_{n}. If $\lambda_{1} \cdots \lambda_{n}>d(\Lambda)$, then there exist integers u_{1}, \ldots, u_{n}, not all 0 , such that

$$
\left|u_{1} a_{j 1}+\cdots+u_{n} a_{j n}\right|<\lambda_{j}, \quad 1 \leq j \leq n .
$$

- Consider $\mathscr{S}=\left\{\mathrm{x}:\left|x_{j}\right|<\lambda_{j}, 1 \leq j \leq n\right\}$.

Note that \mathscr{S} is convex and symmetric and, moreover,

$$
V(\mathscr{S})=2^{n} \lambda_{1} \cdots \lambda_{n}>2^{n} d(\Lambda)
$$

Thus, by the General Minkowski's Theorem, \mathscr{S} contains a point in Λ other than the origin.
This means that, there exist integers u_{1}, \ldots, u_{n}, not all 0 , such that

$$
\left|u_{1} a_{j 1}+\cdots+u_{n} a_{j n}\right|<\lambda_{j}, \quad 1 \leq j \leq n .
$$

Generalizations of Dirichlet's Theorem I

Corollary

If $\theta_{1}, \ldots, \theta_{n}$ are any real numbers and if $Q>0$, then there exist integers p, q_{1}, \ldots, q_{n}, not all 0 , such that $\left|q_{j}\right|<Q, 1 \leq j \leq n$, and

$$
\left|q_{1} \theta_{1}+\cdots+q_{n} \theta_{n}-p\right| \leq \frac{1}{Q^{n}}
$$

- In Minkowski's Linear Forms Theorem, take:

$$
\lambda_{j}=Q, 1 \leq j \leq n, \quad \lambda_{n+1}=\frac{1}{Q^{n}}
$$

and

$$
\mathbf{a}_{j}=\mathbf{e}_{j}, j=1, \ldots, n, \quad \mathbf{a}_{n+1}=\left(\theta_{1}, \ldots, \theta_{n},-1\right)
$$

Generalizations of Dirichlet's Theorem II

Corollary

There exist integers p_{1}, \ldots, p_{n}, q, not all 0 , such that $|q| \leq Q^{n}$ and $\left|q \theta_{j}-p_{j}\right|<\frac{1}{Q}, 1 \leq j \leq n$.

- In Minkowski's Linear Forms Theorem, take:

$$
\lambda_{j}=\frac{1}{Q}, 1 \leq j \leq n, \quad \lambda_{n+1}=Q^{n}
$$

and

$$
\begin{aligned}
\mathbf{a}_{1} & =\left(-1,0, \ldots, 0, \theta_{1}\right) \\
\mathbf{a}_{2} & =\left(0,-1, \ldots, 0, \theta_{2}\right) \\
& \vdots \\
\mathbf{a}_{n} & =\left(0,0, \ldots,-1, \theta_{n}\right) \\
\mathbf{a}_{n+1} & =\left(0,0, \ldots, 0,(-1)^{n+1}\right) .
\end{aligned}
$$

