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Theorem (Dirichlet's Theorem)

For any real 6 and any integer Q > 1, there exist integers p,q with
0<g<Q, such that 1
g0 —pl = —.
90-pl= 5

o Recall that {x} denotes the fractional part of x and consider:
o the @+1 numbers 0,1,{6},{26},...,{(Q@—1)6} in [0,1];
o the Q@ subintervals [O,%),[%,%),...,[%,l].
Then two of the @ +1 numbers must lie in one of the Q sub-intervals.

The difference between the two numbers has the form
{mO} —{nB} = mO —[mO] —(nb—[n0]) = (m—n)0 —([mO] —[nb]) = g0 — p,
where p, g are integers with 0 < g < Q. Moreover, |0 —p| < %
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Corollary

For any real 0 and any real @ > 1, there exist integers p,q with 0< g < Q,
such that |gf — p| < %

o Suppose @ >1 is not an integer.

We apply Dirichlet's Theorem with [Q] + 1.

There exist integers p,q with 0 < g < [Q]+1, such that |gf—p| < [Q]+1
However, since g is an integer,

0<q=[Q]<@

and, moreover,

1
Iqﬁ—pIS[Q]+1<
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Corollary

For any real 0 and any real @ > 1, there exist relatively prime integers p,q
with 0 < g < @, such that |gf —p| < %

o Suppose that the p, g obtained a priori by Dirichlet's Theorem are not
relatively prime.

Then k=(p,q)>1 and p=kp' and q=kq', with (p’,q') =1.

Then, we have

Lol
Q @

x| =

1 1
FCEIE ;qu’e—kp'l = laf—pl= <

So we could choose p’, ¢’ in place of p, g.
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Corollary

For any irrational 8, there exist infinitely many rationals £ g 9> 0, such that

= = <_
0-2<

o For the existence, taking @ > 1, we apply Dirichlet’'s Theorem to get

p.q, .
lgf—pl<s—, 0<qg<Q.
90-pl=5 q
_p_1 _ 11 _ 1
Then, |0 qI = quH pl< 30 <
For the cardinality, consider a Q' > qu o Then Q, <|q0 —pl.

It follows that the p’,q’ associated with Q’,
lg0-p ==, 0<q'<Q,

are different.
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o The preceding corollary does not remain valid for rational 6.
o Suppose 6 =7 with a,b integers and b> 0.

Then, when 6 # g, we have

1
bt

So, there are only finitely many rationals 5, such that |0 — §| < %
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o The continued-fraction algorithm sets up one-one correspondences:

o Between all irrational 8 and all infinite sets of integers ag, a1,ao,...,
with ai,a,... positive.

0=30+

a+ 1

32+L

o Between all rational 6 and all finite sets of integers ag, a1,...,an, with
ai,ar,...,an_1 positive and a, = 2.

9=ao+ o
at_—v—
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o Let 0 be any real number.
o We put ag =[0].
o If ag #6, we write 8 = ag + %, so that 61 > 1, and we put a3 =[61].
o If a1 #6071, we write 01 = a1 + %, so that 62 > 1, and we put as =[02].
o The process continues indefinitely unless a, =6, for some n.
If the latter occurs, then @ is rational.

o In the “end”, we have
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o If 6 is rational then the process terminates.

The expression above is called the continued fraction for 6.

11 1 - _
S5 5,7 3 or, more briefly, as 6 = [ag, a1, a2, ...,an].

We write 0 = ag +
o If a,#86,, for all n, so that the process does not terminate, then 6 is
irrational.
11

We show that 8 = ag + ST 5T on briefly, 6 = [ag, a1, a2, ...].

o The integers ag, a1, ay,... are the partial quotients of 6.
o The numbers 61,05,... are the complete quotients of 6.

We prove that the rationals 22 = [ag, a1,...,a,], where pp, g, denote
relatively prime integers, teng to 6 as n— oco.

They are the convergents to 0.

George Voutsadakis (LSSU) Number Theory



Diophantine Approximation

: The pp,q, are generated recursively by the equations
Pn=anPn-1+tPn-2, Gqn=anqn-1+qn-2,

where pg=ag,go=1 and py =aga1 +1, g1 =a1.

The recurrences can be checked easily for n=2.

Assume they hold for n=m-1=2. We verlfy them for n=m.
Define relatively prime pj,qj (j=0,1,...) by —’, [a1,a2,...,a)41]-

!
P _ q L i / R
Then g Tt . So pj = aop;_1+9;4 and gj = Pi_1-
J 1
Now we compute:
— / ! — / ! ! !
Pm = 0Py F A1 = 30(amPry o Pin_3) ¥ amGpn_p + Gy
am(aopﬁ,,_g + q;n_g) + a0[3;,,_3 + q;n_g =amPm-1+Pm-2;

I / r_
Pm—1=230Pym_5tPp_3=309dm-1t dm-2-

dm
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o By the definition of 0;,05,..., we have 0 = [ag, a1, ...,3n,0n+1], where

0< - < -1 Hence, 0 lies between 22 and 221 |t is readily seen by
Ont1 an+1 qn dn+1

induction that the above recurrences give

PnGn+1—Pnr1dn = (=1)™1,

1
dnQn+1”

and, thus, we have |22 — Pntl| —
An +1

o It follows that the convergents

% to 0, satisfy
1
<

‘_& o
_C/nqn+1,

dn

. n—oo
and so certainly £2°—"0.
n

In view of the latter inequality and preceding results, it is clear that,
when 6 is rational the continued-fraction process terminates.
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o For rational 6, the process is closely related to Euclid's algorithm.

Take 0 = 2.
s
a = bqit+n 2 = qtyp
r;
g = ng+n T o= @+
— k- _ I}
Q-1 = rk-19k+re T = Gt
_ kK
Gk = rkQk+1 = Gk
o The partial quotients ag, a1, ap,... of 8 are just g1,92,93,...,Gk+1;
: . r k-
o The complete quotients 01,65,... are given by —,—1,...,k—1.
rn rn rk

In other words, on defining a; = gj+1, 0 <j < k, we have

0 =[ag, a1, ..., ak]-

George Voutsadakis (LSSU) Number Theory



Diophantine Approximation

o For 6 =187 we have

35 '
187 = 35-5+12
3 = 12:2+11
12 = 11-1+1
11 = 1-11+40
So, we have & =[5,2,1,11],
e 187 1
— =5+
35 2+ L
1+4
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For any real 0, of any two consecutlve convergents, say - and Z"*i at
least one satisfies |0 — ql < ==

o The differences 6 — p" and 6-

p"“ have opposite signs.
So we get

0 — Pn+1 — 1 )
dndn+1

But, for any real a, B, with a # 8, we have aff < %(a2+,62).
It follows that

& _ Pn+1 —
dn dn+1

‘6—& +
qn

dn+1

1 1 1
<=+
qnqn+1 2qn 2qn+1

This gives the result.
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For any real 6, of any three consecut|ve convergents, say q" Z”*i %,
n

one at least satisfies |6 — 2 \/ng.

o Suppose the result fails. Then the equations above would give
1 1 1

\/gqn \/_qu_l qnqn+1

Setting A:%, we get A+l<\/_ Thus, 12 -v5A+1<0 or
(A-1(1+v5))(A+3(1-V5)) <0. So A< 1(1+v5).
Similarly, setting p=g q,,+2 , We get u<; (1+\/_)

By the preceding sectlon we have gnio = ani2Gni1 + qn.

So pu =32 —a,,+2+qq" =1+7%.

This contradlcts A<3 (1+\/_) |mp||es %(—1+\/§).

George Voutsadakis (LSSU) Number Theory




Diophantine Approximation

Theorem (Hurwitz's Theorem)

For any irrational 6, there exist infinitely many rational ’—;, such that

p 1
6——‘< .
‘ ql  Vbq?

o Follows by the preceding result.

L . .
o The constant 7 is best possible.

(We will prove this later in this set.)
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The convergents give successively closer approximations to 6. In fact
|gn0 — pn| decreases as n increases.

o Recall the recurrences

Pn=3anPn-1+Pn-2, Gn=3anqn-1+qn-2,

with pg=ag, gg=1 and p; = aga1 +1, g1 = a1.
. 2 _ PnBnt1+Pp-1 =

Consider the fractions r, = gy N= 1.

o n=0;

9 Ipy1 = rn, for every n=1.

We conclude that, for all n>1,

— pn6n+1 + Pn-1

6 .
qn6n+1 +qn-1
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_ Pnbns1+pn-1
o £ = S
We got 0 = PR e

Now we compute

pn9n+1pn 1 _
An qnOn+1+dn-1 Pn

[qn6 — pnl

PnGnBn+1+Pn-1Gn=PnGnbn+1=PnGn-1
qn9n+1 +qn—1

= Pn-1Gn=PnGn-1| _ 1
qnOn+1+qn-1 gnOn+1+gn-1
1 1 . _
1 _ a1+1 < Er |f n=1
= 1 1

gn+qn-1 if n>1

<
(an+1)qn—1+qn—2 gn-10n+qn_2’
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The convergents are indeed the best approximations to 6 in the sense that,
if p,qg are integers with 0 < g < g1, then |g0 — p| = 1g,0 — pyl.

o We may find integers u, v satisfying

P =UPn+VPn+1, Qq=Uqn+VQqni1.
It follows from 0< g < gny1, that
o u#0;
o If v#0, then u,v have opposite signs.
Recalling that g,0 — p,, and g,.16 — pn+1 have opposite signs, we
obtain:

I(ugn + vqn+1)0 = (upn + vpp+1)
Iu(qne - pn) + V(qn+19 - pn+1)|
|gn0 — pnl.

1g6 — pl

v
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If a rational £ satlsfles |6 — pl <3 2, then it is a convergent to 6.

o We compute, for g, < g < qgpns1,

P_P < P gk
|q in - |6 q|+|0 qnl

= %lg6-pl+ L1gn0-pyl
previous 1 1
= (g+g)leb—pl
1, 1y1 _ 1
= n _)ﬁ T qqn°

It follows that |pg,—pngl <1.

P _Pn

Therefore, e
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o By a quadratic irrational we mean a zero of a polynomial

ax® + bx + c,

where
@ a,b,c are integers;
o the discriminant d = b% —4ac is positive and not a perfect square.
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o V2 is a zero of x2—-2=0;

o %(3+\/§) is a zero of 3x% —6x +2=0;

o £(3+V?2) is a root of the equation 4x?—12x+7=0;
o V20 is a zero of x2-20=0:

o V22 is a root of x2—-22=0.
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o A continued fraction [ag, a1, ay,...] is ultimately periodic if there exist
k and m, such that the partial quotients ag, a1, ... satisfy

Am+n = an, for all n= k.

o l.e., a continued fraction 0 is ultimately periodic if and only if it has
the form

6= [ao,al,...,ak_l,ak,...,ak+m_1],

where the bar indicates that the block of partial quotients is repeated
indefinitely.
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\/52[1,5];
o %(3+\/§):[1,1,1,_2];
o %(3+\/_)—[2 4,1,4];
o V20 =1[4,2,8];
o V22=1[4,1,2,4,2,1,8].
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A continued fraction represents a quadratic irrational if and only if it is

ultimately periodic.

o Suppose, first, that 6 = [ag, a1,...,3k-1,3k,---» Ak+m—1]-
Set =0k =[aK,---, akrm-1)-
By preceding work,
10k + pi— 10+ pr_
o if 2 are convergents to 0, 6 = S = 1P+ P 2
n qk-10k +qk—2  Gr-19+ qk—2

/

/ /
. Pm-1P+ P
o if P_/m are convergents to ¢, = ——t_—m=2

gin q, 19+a, ,
The latter shows that ¢ is quadratic.
The former, then, shows that 6 is quadratic.

Finally, the non-termination shows that 6 is irrational.
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o Suppose 6 is a quadratic irrational, i.e., 6 satisfies ax? + bx +c =0,
where a, b, ¢ are integers with d = b®>—4ac > 0.

Let %, n=1,2,..., denote the convergents to 6.
Consider the binary form

f(x,y) =ax?+ bxy + cy?.
Define the substitution

x=ppX'+pp-1y’, ¥ =qox'+qn-1y’.

o It has determinant ppgn,-1—pn-1gn=(-1)""1.
o It takes f into fu(x,y) = apx? +b,,xy+c,,y2, with discriminant d.
o We have a, =f(pn,qn) and ¢, =f(pp-1,9n-1) = an-1-

Note that f(6,1) =0.
This will be used twice below.
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o We noted that £(0,1) =0.

We now compute:

§ = B IO AEE ()
< lal|22-0||22+0] -0
< |a|1 P"+9|+|b| <|a|2""'+1+|b|1
M

q;

Thus, |apl < (2161+1)lal +|bl, a bound independent of n.
But ¢, =ap_1 and b2 —4anc,=d.

So b, and ¢, are likewise bounded.
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o For n=1, if 61,0,,... denote the complete quotients of 0,

_ PnOn+1+ Pn-1
qn9n+1 +qn-1

Using the transformations, we get

fn(0n+1r 1) = f( n0n+1 + Pn-1, qn9n+1 + qn—l)
= (qn9n+1+qn 1?7‘(% 1)

(qn9n+1 + qn—l) f(@, 1) =0

Hence, there are only finitely many possibilities for 81,65, ....
This shows that 6, , =6, for some positive ¢, m.

So, the continued fraction for 6 is ultimately periodic.
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o The continued fraction of a quadratic irrational 0 is said to be purely
periodic if
0= [ao,...,am_l].

o If 6 is a quadratic irrational, the conjugate 0’ of 6 is the quadratic
irrational that is a root of the same quadratic equation as 6
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Pure periodicity occurs if and only if 6 > 1 and the conjugate 6’ of 6
satisfies -1 <6’ <0.

o Suppose >1 and —-1<6'<0.
By induction the conjugates 0], of the complete quotients 6,,
n=1,2,..., of 0 also satisfy —1 <6/, <0. The proof is based on
o O =ap+ ﬁ, where 6 =[ag, a1,...];
o ap=1, for all nincluding n=0.
The inequality —1 <0/, <0 shows that a, = [ﬁ]

Since 0 is a quadratic irrational, we have 0,,=0,, for some n> m.

This gives ai = el' whence ap,—1 = a,—1 and, hence, that 6,1 =0,_1.

Repetition of this conclusion yields 6 = 0,,_,.

Hence, 0 is purely periodic.
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o If 6=Jag,-.-,am-1] is purely periodic, then 8 > ag = 1. Further, for

some n=1, we have
0= PnO + pp-1

qnb +qn-1 ,
where %, n=1,2,..., denote the convergents to 6.

So, 0 satisfies the equation

an2 + (qn—l - Pn)X_ pn-1=0.

Note that the quadratic on the left

o has the value —p,_1 <0 for x=0;
o has the value p,+qn—(pn-1+gn-1) >0 for x=-1.

Hence, the conjugate 0’ of 6 satisfies -1 <6’ <0.
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Corollary

The continued fractions of V'd +[V/d] and m are purely periodic,

where d is any positive integer, not a perfect square.

o Note that:
Vd+[vVd] > 1,
-1 < —-Vd+[Vd] < o.
Similarly,
1 :
vava >
-1 < 1
~Vd-[Vd]

By the criterion, the continued fractions of v/d +[v/d] and are

1
Vd-[Vd]
purely periodic.
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o A continued fraction

[aO’al’“"ak—l’ ak’-~-’ak+m—1]

is almost purely periodic if k=1.

l.e., only the initial partial quotient ag precedes the repeated block.

: We saw that vd +[v/d] and \/3_1[\/3] are purely periodic.

But

Vd = [Vd]+(Vd-[Vd]) = [Vd] + } :
Va-[Vel

So V/d is almost purely periodic.
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o A real or complex number is said to be algebraic if it is a zero of a
polynomial

1

P(x)=aox"+aix"" " +---+ap,,

where ag, a1, ...,a, denote integers, not all 0.

o For each algebraic number 6, there is a polynomial P as above, with
least degree, such that P(6) =0.

o P is unique if one assumes that ag >0 and that ag, a1,...,a, are
relatively prime.
o P is irreducible over the rationals.

o P is called the minimal polynomial for 6.
o The degree of 0 is defined as the degree of P.
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Theorem (Liouville’s Theorem)

For any algebraic number @ with degree n> 1, there exists a number
c=c(a)>0, such that @ - £|> 2 for all rationals £,q>0.

o Let P be the minimal polynomial for a.
By the Mean Value Theorem, for any rational g,q>0, there exists &
between a and g, such that P(a)—P(g) =(a- g)Pl(f).
By definition, P(a) =0, and, by irreducibility, P(g) #0.
But ¢"P(Z) is an integer and so |P(£)l 2 %.
Assume |a — §| <1 (otherwise the conclusion is trivial).
Then [é|=]a+(E—a)l <lal+|la—¢| <|al+|a— §| <|a|+1.

So |P'(¢)l < C, for some C = C(a).
. o P@-PB)_ 1 1/C
This gives o — al = Tf)lq > C_c]2 = ?
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Theorem (Hurwitz's Theorem)

For any irrational 0, there exist infinitely many rational p, such that

6-21< 7 Vi
best p055|b|e
o If a=1(1+V5), then P(x)=x?-x-1 and P'(x)=2x-1.

Let ,q>0 be any rational and let § = Ia—al.

IP(E)I <681P'(¢)l, for some ¢ between a and £

So lél<a+6 and [P'(&)|<2(a+8)-1=26+V5.

But |P(2)= 2, whence §(26+v5) = &

So, for any ¢’ < == \/g and for all suff|C|ent|y large g, we have § > < q—

Hence, Hurwitz's theorem is best possible.

George Voutsadakis (LSSU) Number Theory
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o A real or complex number that is not algebraic is said to be

transcendental.
: The series
g 1,1 1
= F b ﬁ b F dh 000
represents a transcendental number.
Set
1 1 1

jl
pj=2J (ﬁ+§++§

), qi=2", j=12,...

Then pj,q; are integers, satisfying |6 — %I = ﬁ + ﬁ 4o
The sum on the right is at most

1 (1.1 1 1

0\ T2 T T g <

qJ/.

It follows from Liouville's theorem that 8 is transcendental.
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o Any real number 6 for which there exists an infinite sequence of

distinct rationals & satlsfylng 16— p’l < —, where wf—» oo, will be

transcendental.
: This condition will hold for:

o any infinite decimal in which there occur sufficiently long blocks of
zeros;

o any continued fraction in which the partial quotients increase
sufficiently rapidly.

George Voutsadakis (LSSU) Number Theory



Diophantine Approximation

Subsection 6

George Voutsadakis (LSSU) Number Theory



Diophantine Approximation

o Consider the integral
t
I(t) = f et *f(x)dx, =0,
0

where f is a real polynomial with degree m.

o More generally, let, for all /=0,
t :
I,-(t)=f et*f)(x)dx, t=0,
0

where f()(x) denotes the i-th derivative of f(x).
o With this notation, /(t) = lo(t).
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o If Ii(t) = [y et>F()(x)dx, =0, then
i(t) = e FD(0) = £ () + li1a(t).
This needs an integration by-parts:
li(t) Jo e FO(x)dx = [ (- F(x)dx
(—et_xf(')(x))|0—fo (et )f<'+1)<x)dx
et FD(0) = FD(£) + I1(2).

o If I(t) = fy e F(x)dx, t=0, then

I(£)=et Y- £0(0) - 3 O (0
j=0

J=0

This follows by repeated application of the recursive formula above.
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o If f denotes the polynomial obtained from f by replacing each
coefficient with its absolute value, then

()l sfotlet‘xf(x)ldx < te!F(1).

Note that |f(x)| < f(x).

So we have

[(t)l

| fot et ™f(x)dx| < fot et ™|f (x)|dx
Js et F(x)dx < etf(t) [y dx
tetf(t).

IA
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o Suppose that e is algebraic, so that
ap+aie+---+ape” =0,

for some integers ag, ai,...,an, with ag #0.
Set

f(x)=xP L (x=1)P---(x=n)P, pis a large prime.
The degree m of f is (n+1)p—1.

Define
J=apl(0)+a1l(1)+ ---+anl(n).

By the preceding equations,
J ookl (K) = Zj_gak(e T2 F(0) - X2, £ (K))
roodk(=Z fO(K)) = 2, Th_g akf V) (k).
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o For 1<k <n, define

gk(X): (X_k)p'

Then :
. 0, if j<p

FD(k)y=4 .’ " .

(k) { C)plel P (k), ifjzp

So, for all j, fU)(k) is an integer divisible by p!.
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o Define

_f(x)
h(X) = F
Then
- 0, if j<p-1
(o) = ) )
) ‘{ (/) (p-1)1H0-PD(0), i j=p-1
Note that:

o h(0)=(-1)"(n!);
9 h(j)(O) is an integer divisible by p, for j > 0.
We conclude that:
o Forj#p-1, fU)(O) is an integer divisible by p!;
9 f(P‘l)(O) is an integer divisible by (p—1)!, but not by p for p>n.
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o Recall that J=E"0 k-0 arfU) (k).
It follows that J is a non-zero integer divisible by (p—1)!.

So |J|=(p-1).

But, now, note that:
o If ksn, f(k)=kPL(k+1)P---(k+n)P < (2n)™.
s m=(n+1)p-1<2np.

Hence,

1J]

IA

=

lag/(0) +---+apl(n)l < laoll(0)| +--- +lanll/(n)l
Ialllelf(l) 4ot Ianlne”?(n)
|alle(2n)2"p +oeet |an|ne”(2n)2”P

(latle+---+laplne™)((2n)?")P < cP,

for some ¢ independent of p.

The inequalities are inconsistent for p sufficiently large.
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Theorem (Blichfeldt's Theorem)
Any bounded region % with volume V exceeding 1 contains distinct points
X,Y, such that x—y is an integer point, i.e., a point all of whose
coordinates are integers.

o Let u=(uy,...,u,) be an integer point.
Set By =1{(x1,....,xn) EZ:uj<x;<uj+1,1<j<n}.
Denote by V, the volume of %,,.
Z may be expressed as the disjoint union of %,,.
Consequently, V=YV, > 1.
This gives ¥.(Zy—u) > 1.
But, for all u, 2, —u lies in the unit square.
Thus, there exist u,v, such that (Z,-u)n (%, —v) # @.
So, there exist points x in Z, and y in %,, such that x—u=y-v,
and so x—y is an integer point.
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o By a convex body . we mean a bounded, open set of points in
Euclidean n-space, such that

x,y€&# implies Ax+(l-A)ye, forall 0<A<1.

o A set of points . is said to be symmetric about the origin if, for

every point x,
xe implies —-xe.
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Theorem (Minkowski's Theorem)

If a convex body .%, symmetric about the origin, has volume exceeding 2",
then it contains an integer point other than the origin.

o Define Z = %y = {%x (X € LY.
Then V(%) =2 V(#)>1.
By Blichfeldt's Theorem, there exist x,y € #, with x #y, such that
X—Yy is an integer point.
By definition, 2x,2y € &.
By symmetry, —2y € &.
By convexity, x—y = 1(2x) + 1(-2y) e 7.
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o Points ay,...,a, in Euclidean n-space are said to be linearly
independent if, for all real numbers ty,...,t,,

t131+"'+tnan=0 |mp||es t1="'=tn:0'

o If
aj:(alj,...,a,,j), ].San,

then ay,...,a, are linearly independent if and only if

d =det(a;;) #0.
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o By a lattice A we mean a set of points of the form
X=ujad; +---+Upap,

where as,...,a, are fixed linearly independent points and uy,...,u, run
through all the integers.

o The points ay,...,a, are referred to as the generators or as a basis
for the lattice.

o The determinant of A is defined as

d(A) =|d| = det(aj;),
where, as before,

aj=(alj,...,anj), 1Sj5n.
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Theorem (General Minkowski's Theorem)

If, for any lattice A, a convex body ., symmetric about the origin, has
volume exceeding 2"d(A), then it contains a point of A other than the
origin.

o Let A be the invertible linear transformation e;—a;, i=1,...,n.
Define # = %A‘l(y).
Then V(%) = zrgry V() > 1.
By Blichfeldt's Theorem, there exist x,y € #, with x #y, such that
X —Yy is an integer point.
As before, A(x—y) =2A(5x+3(-y)) €7
Moreover, it is in A, since x—Yy is an integer point.
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Corollary

Let A1,...,A,>0 and A be the lattice generated by as,...,a,.
If A1---Ap > d(A), then there exist integers vy, ..., u,, not all 0, such that

luraji+ -+ + Upajnl <Aj, l=<j=n.

o Consider .# = {x:|xj|<Aj,1<j=<n}.
Note that .# is convex and symmetric and, moreover,

V(F) =221+ Ay >2"d(A).

Thus, by the General Minkowski's Theorem, # contains a point in A
other than the origin.
This means that, there exist integers uy,..., up, not all 0, such that

lupaji+ -+ upajpl <Aj, 1=<j<n.
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Corollary

If B1,...,0, are any real numbers and if @ >0, then there exist integers
P,q1,-.-,qn, not all 0, such that |gj| < Q, 1=<j=<n, and

1
19101+ -+ +Gnbn = pl < 7.

o In Minkowski's Linear Forms Theorem, take:

1

AJ':Q, 1San, ﬂ,n+1=a

and

ajzej, j=1,...,n, dp+1 =(91,...,9n,—1).
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Corollary

There exist integers ps,...,pPn, g, not all 0, such that |g| < Q" and
|qaj—pj|<%, l<j<n.

o In Minkowski's Linear Forms Theorem, take:

1
Ajza,lsjsm Ane1=Q"
and
a; = (-1,0,...,0,67)
a» = (0,-1,...,0,6,)
a, = (0,0,...,-1,60,)

am1 = (0,0,...,0,(=1)"1).
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