Introduction to Number Theory

George Voutsadakis¹

¹Mathematics and Computer Science Lake Superior State University

LSSU Math 400

Diophantine Approximation

- Oirichlet's Theorem
- Continued Fractions
- Rational Approximations
- Quadratic Irrationals
- Liouville's Theorem
- Transcendental Numbers
- Minkowski's Theorem

Subsection 1

Dirichlet's Theorem

Dirichlet's Theorem

Theorem (Dirichlet's Theorem)

For any real θ and any integer Q > 1, there exist integers p, q with 0 < q < Q, such that

$$|q\theta-p|\leq \frac{1}{Q}.$$

• Recall that $\{x\}$ denotes the fractional part of x and consider:

- the Q+1 numbers $0, 1, \{\theta\}, \{2\theta\}, \dots, \{(Q-1)\theta\}$ in [0, 1];
- the Q subintervals $[0, \frac{1}{Q}), [\frac{1}{Q}, \frac{2}{Q}), \dots, [\frac{Q-1}{Q}, 1].$

Then two of the Q + 1 numbers must lie in one of the Q sub-intervals. The difference between the two numbers has the form

$$\{m\theta\} - \{n\theta\} = m\theta - [m\theta] - (n\theta - [n\theta]) = (m - n)\theta - ([m\theta] - [n\theta]) = q\theta - p,$$

where p, q are integers with 0 < q < Q. Moreover, $|q\theta - p| \le \frac{1}{Q}$.

Dirichlet's Theorem (Real Q)

Corollary

For any real θ and any real Q > 1, there exist integers p, q with 0 < q < Q, such that $|q\theta - p| \le \frac{1}{Q}$.

 Suppose Q > 1 is not an integer. We apply Dirichlet's Theorem with [Q]+1. There exist integers p, q with 0 < q < [Q]+1, such that |qθ − p| ≤ 1/[Q]+1. However, since q is an integer,

$$0 < q \le [Q] < Q$$

and, moreover,

$$|q\theta - p| \le \frac{1}{[Q]+1} < \frac{1}{Q}.$$

Dirichlet's Theorem (Relatively Prime p, q)

Corollary

For any real θ and any real Q > 1, there exist relatively prime integers p, q with 0 < q < Q, such that $|q\theta - p| \le \frac{1}{Q}$.

• Suppose that the *p*, *q* obtained a priori by Dirichlet's Theorem are not relatively prime.

Then k = (p,q) > 1 and p = kp' and q = kq', with (p',q') = 1. Then, we have

$$|q'\theta-p'|=\frac{1}{k}|kq'\theta-kp'|=\frac{1}{k}|q\theta-p|=\leq \frac{1}{k}\frac{1}{Q}<\frac{1}{Q}.$$

So we could choose p', q' in place of p, q.

Corollary of Dirichlet's Theorem (Irrational θ)

Corollary

For any irrational θ , there exist infinitely many rationals $\frac{p}{q}$, q > 0, such that $|\theta - \frac{p}{q}| < \frac{1}{q^2}$.

• For the existence, taking Q > 1, we apply Dirichlet's Theorem to get p, q,

$$|q\theta - p| \leq \frac{1}{Q}, \quad 0 < q < Q.$$

Then, $|\theta - \frac{p}{q}| = \frac{1}{q}|q\theta - p| \leq \frac{1}{q}\frac{1}{Q} < \frac{1}{q^2}.$
For the cardinality, consider a $Q' > \frac{1}{|q\theta - p|}$. Then $\frac{1}{Q'} < |q\theta - p|$.
It follows that the p', q' associated with Q' ,

$$|q'\theta - p'| \le \frac{1}{Q'}, \quad 0 < q' < Q',$$

are different.

George Voutsadakis (LSSU)

The Case of Rational heta

- The preceding corollary does not remain valid for rational θ .
- Suppose $\theta = \frac{a}{b}$ with *a*, *b* integers and *b* > 0. Then, when $\theta \neq \frac{p}{q}$, we have

$$\left|\theta - \frac{p}{q}\right| \ge \frac{1}{qb}$$

So, there are only finitely many rationals $\frac{p}{q}$, such that $|\theta - \frac{p}{q}| < \frac{1}{q^2}$.

Subsection 2

Continued Fractions

The Continued Fraction Representation

- The continued-fraction algorithm sets up one-one correspondences:
- Between all irrational θ and all infinite sets of integers $a_0, a_1, a_2, ...,$ with $a_1, a_2, ...$ positive.

$$\theta = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_1 + \frac{1}{a_2 +$$

۰.

• Between all rational θ and all finite sets of integers $a_0, a_1, ..., a_n$, with $a_1, a_2, ..., a_{n-1}$ positive and $a_n \ge 2$.

$$\theta = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{\ddots \frac{1}{a_n}}}}$$

The Continued Fraction Algorithm

• Let θ be any real number.

- We put a₀ = [θ].
 If a₀ ≠ θ, we write θ = a₀ + ¹/_{θ1}, so that θ₁ > 1, and we put a₁ = [θ₁].
- If $a_1 \neq \theta_1$, we write $\theta_1 = a_1 + \frac{1}{\theta_2}$, so that $\theta_2 > 1$, and we put $a_2 = [\theta_2]$.
- The process continues indefinitely unless $a_n = \theta_n$, for some *n*.

If the latter occurs, then θ is rational.

In the "end", we have

$$\theta = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{\ddots \frac{1}{a_n}}}}$$

The Continued Fraction Algorithm: Terminology

• If θ is rational then the process terminates.

The expression above is called the **continued fraction** for θ .

We write $\theta = a_0 + \frac{1}{a_1 + a_2 + \cdots + a_n}$ or, more briefly, as $\theta = [a_0, a_1, a_2, \dots, a_n]$.

• If $a_n \neq \theta_n$, for all *n*, so that the process does not terminate, then θ is irrational.

We show that
$$\theta = a_0 + \frac{1}{a_1 + a_2 + \cdots}$$
, or, briefly, $\theta = [a_0, a_1, a_2, \ldots]$.

- The integers $a_0, a_1, a_2, ...$ are the **partial quotients** of θ .
- The numbers $\theta_1, \theta_2, \ldots$ are the **complete quotients** of θ .

We prove that the rationals $\frac{p_n}{q_n} = [a_0, a_1, \dots, a_n]$, where p_n, q_n denote relatively prime integers, tend to θ as $n \to \infty$.

They are the **convergents** to θ .

The Continued Fraction Algorithm (Recurrences)

Claim: The p_n , q_n are generated recursively by the equations

$$p_n = a_n p_{n-1} + p_{n-2}, \quad q_n = a_n q_{n-1} + q_{n-2},$$

where $p_0 = a_0, q_0 = 1$ and $p_1 = a_0a_1 + 1$, $q_1 = a_1$. The recurrences can be checked easily for n = 2. Assume they hold for $n = m - 1 \ge 2$. We verify them for n = m. Define relatively prime p'_j, q'_j (j = 0, 1, ...) by $\frac{p'_j}{q'_j} = [a_1, a_2, ..., a_{j+1}]$. Then $\frac{p_j}{q_j} = a_0 + \frac{q'_{j-1}}{p'_{j-1}}$. So $p_j = a_0p'_{j-1} + q'_{j-1}$ and $q_j = p'_{j-1}$. Now we compute:

$$p_{m} = a_{0}p'_{m-1} + q'_{m-1} = a_{0}(a_{m}p'_{m-2} + p'_{m-3}) + a_{m}q'_{m-2} + q'_{m-3}$$

= $a_{m}(a_{0}p'_{m-2} + q'_{m-2}) + a_{0}p'_{m-3} + q'_{m-3} = a_{m}p_{m-1} + p_{m-2};$
 $q_{m} = p'_{m-1} = a_{0}p'_{m-2} + p'_{m-3} = a_{0}q_{m-1} + q_{m-2}.$

The Continued Fraction Algorithm (Converse)

• By the definition of $\theta_1, \theta_2, ..., we$ have $\theta = [a_0, a_1, ..., a_n, \theta_{n+1}]$, where $0 < \frac{1}{\theta_{n+1}} \le \frac{1}{a_{n+1}}$. Hence, θ lies between $\frac{p_n}{q_n}$ and $\frac{p_{n+1}}{q_{n+1}}$. It is readily seen by induction that the above recurrences give

$$p_n q_{n+1} - p_{n+1} q_n = (-1)^{n+1},$$

and, thus, we have $\left|\frac{p_n}{q_n} - \frac{p_{n+1}}{q_{n+1}}\right| = \frac{1}{q_n q_{n+1}}$. It follows that the convergents $\left|\frac{p_n}{q_n} \text{ to } \theta\right|$, satisfy $\left|\theta - \frac{p_n}{q_n}\right| \le \frac{1}{q_n q_{n+1}}$,

and so certainly $\frac{p_n}{q_n} \xrightarrow{n \to \infty} \theta$. In view of the latter inequality and preceding results, it is clear that, when θ is rational the continued-fraction process terminates.

The Continued Fraction Algorithm and Euclid's Algrithm

• For rational θ , the process is closely related to Euclid's algorithm. Take $\theta = \frac{a}{b}$.

а	=	$bq_1 + r_1$	<u>a</u> b	=	$q_1 + \frac{r_1}{b}$
q_1	=	$r_1q_2 + r_2$	$\frac{q_1}{r_1}$	=	$q_2 + \frac{r_2}{r_1}$
	÷			÷	
\overline{q}_{k-1}	=	$r_{k-1}q_k + r_k$	$rac{q_{k-1}}{r_{k-1}}$	=	$q_k + \frac{r_k}{r_{k-1}}$
q_k	=	$r_k q_{k+1}$	$\frac{q_k}{r_k}$	=	q_{k+1}

The partial quotients a₀, a₁, a₂,... of θ are just q₁, q₂, q₃,..., q_{k+1};
The complete quotients θ₁, θ₂,... are given by b/(r₁)/(r₁)/(r₂),..., (r_{k-1})/(r_k).
In other words, on defining a_j = q_{j+1}, 0 ≤ j ≤ k, we have

$$\theta = [a_0, a_1, \dots, a_k].$$

Example

• For
$$\theta = \frac{187}{35}$$
, we have

So, we have
$$\frac{187}{35} = [5, 2, 1, 11]$$
,
i.e.,
 $\frac{187}{35} = 5 + \frac{1}{2 + \frac{1}{1 + \frac{1}{11}}}$.

Subsection 3

Rational Approximations

An Inequality Involving Two Convergents

Theorem

For any real θ , of any two consecutive convergents, say $\frac{p_n}{q_n}$ and $\frac{p_{n+1}}{q_{n+1}}$, at least one satisfies $|\theta - \frac{p}{q}| < \frac{1}{2q^2}$.

• The differences $\theta - \frac{p_n}{q_n}$ and $\theta - \frac{p_{n+1}}{q_{n+1}}$ have opposite signs. So we get

$$\left|\theta - \frac{p_n}{q_n}\right| + \left|\theta - \frac{p_{n+1}}{q_{n+1}}\right| = \left|\frac{p_n}{q_n} - \frac{p_{n+1}}{q_{n+1}}\right| = \frac{1}{q_n q_{n+1}}.$$

But, for any real α, β , with $\alpha \neq \beta$, we have $\alpha\beta < \frac{1}{2}(\alpha^2 + \beta^2)$. It follows that

$$\frac{1}{q_n q_{n+1}} < \frac{1}{2q_n^2} + \frac{1}{2q_{n+1}^2}.$$

This gives the result.

An Inequality Involving Three Convergents

Theorem

For any real θ , of any three consecutive convergents, say $\frac{p_n}{q_n}, \frac{p_{n+1}}{q_{n+1}}$ and $\frac{p_{n+2}}{q_{n+2}}$, one at least satisfies $|\theta - \frac{p}{q}| < \frac{1}{\sqrt{5q^2}}$.

Suppose the result fails. Then the equations above would give

$$\frac{1}{\sqrt{5}q_n^2} + \frac{1}{\sqrt{5}q_{n+1}^2} \le \frac{1}{q_n q_{n+1}}.$$

Setting $\lambda = \frac{q_{n+1}}{q_n}$, we get $\lambda + \frac{1}{\lambda} \le \sqrt{5}$. Thus, $\lambda^2 - \sqrt{5}\lambda + 1 \le 0$ or $(\lambda - \frac{1}{2}(1 + \sqrt{5}))(\lambda + \frac{1}{2}(1 - \sqrt{5})) < 0$. So $\lambda < \frac{1}{2}(1 + \sqrt{5})$. Similarly, setting $\mu = \frac{q_{n+2}}{q_{n+1}}$, we get $\mu < \frac{1}{2}(1 + \sqrt{5})$. By the preceding section, we have $q_{n+2} = a_{n+2}q_{n+1} + q_n$. So $\mu = \frac{q_{n+2}}{q_{n+1}} = a_{n+2} + \frac{q_n}{q_{n+1}} \ge 1 + \frac{1}{\lambda}$. This contradicts $\lambda < \frac{1}{2}(1 + \sqrt{5})$ implies $\frac{1}{\lambda} > \frac{1}{2}(-1 + \sqrt{5})$.

Hurwitz's Theorem

Theorem (Hurwitz's Theorem)

For any irrational θ , there exist infinitely many rational $\frac{p}{q}$, such that

$$\left|\theta - \frac{p}{q}\right| < \frac{1}{\sqrt{5}q^2}.$$

- Follows by the preceding result.
- The constant ¹/_{√5} is best possible.
 (We will prove this later in this set.)

Closedness of Approximations

Theorem

The convergents give successively closer approximations to θ . In fact $|q_n\theta - p_n|$ decreases as *n* increases.

Recall the recurrences

$$p_n = a_n p_{n-1} + p_{n-2}, \quad q_n = a_n q_{n-1} + q_{n-2},$$

with
$$p_0 = a_0$$
, $q_0 = 1$ and $p_1 = a_0a_1 + 1$, $q_1 = a_1$
Consider the fractions $r_n = \frac{p_n\theta_{n+1}+p_{n-1}}{q_n\theta_{n+1}+q_{n-1}}$, $n \ge 1$.
• $r_1 = \theta$;
• $r_{n+1} = r_n$, for every $n \ge 1$.
We conclude that, for all $n \ge 1$,

$$\theta = \frac{p_n \theta_{n+1} + p_{n-1}}{q_n \theta_{n+1} + q_{n-1}}.$$

Closedness of Approximations (Cont'd)

• We got
$$\theta = \frac{p_n \theta_{n+1} + p_{n-1}}{q_n \theta_{n+1} + q_{n-1}}$$
.
Now we compute

$$\begin{aligned} |q_n \theta - p_n| &= \left| q_n \frac{p_n \theta_{n+1} p_{n-1}}{q_n \theta_{n+1} + q_{n-1}} - p_n \right| \\ &= \left| \frac{p_n q_n \theta_{n+1} + p_{n-1} q_n - p_n q_n \theta_{n+1} - p_n q_{n-1}}{q_n \theta_{n+1} + q_{n-1}} \right| \\ &= \left| \frac{p_{n-1} q_n - p_n q_{n-1}}{q_n \theta_{n+1} + q_{n-1}} \right| = \frac{1}{q_n \theta_{n+1} + q_{n-1}} \\ &< \frac{1}{q_n + q_{n-1}} = \begin{cases} \frac{1}{a_{1+1}} < \frac{1}{b_1}, & \text{if } n = 1\\ \frac{1}{(a_n + 1)q_{n-1} + q_{n-2}} < \frac{1}{q_{n-1} \theta_n + q_{n-2}}, & \text{if } n > 1 \end{cases} \end{aligned}$$

Best Approximability of Convergents

Theorem

The convergents are indeed the best approximations to θ in the sense that, if p, q are integers with $0 < q < q_{n+1}$, then $|q\theta - p| \ge |q_n\theta - p_n|$.

• We may find integers *u*, *v* satisfying

$$p = up_n + vp_{n+1}, \quad q = uq_n + vq_{n+1}.$$

It follows from $0 < q < q_{n+1}$, that

- $u \neq 0$;
- If $v \neq 0$, then u, v have opposite signs.

Recalling that $q_n\theta - p_n$ and $q_{n+1}\theta - p_{n+1}$ have opposite signs, we obtain:

$$|q\theta - p| = |(uq_n + vq_{n+1})\theta - (up_n + vp_{n+1})|$$

= $|u(q_n\theta - p_n) + v(q_{n+1}\theta - p_{n+1})|$
\ge |q_n\theta - p_n|.

Sufficient Condition for a Convergent to θ

Theorem

If a rational $\frac{p}{q}$ satisfies $|\theta - \frac{p}{q}| < \frac{1}{2q^2}$, then it is a convergent to θ .

• We compute, for $q_n \le q \le q_{n+1}$,

ŀ

$$\frac{p}{q} - \frac{p_n}{q_n}| \leq |\theta - \frac{p}{q}| + |\theta - \frac{p_n}{q_n}|$$

$$= \frac{1}{q}|q\theta - p| + \frac{1}{q_n}|q_n\theta - p_n$$

$$\stackrel{\text{previous}}{\leq} (\frac{1}{q} + \frac{1}{q_n})|q\theta - p|$$

$$\leq (\frac{1}{q_n} + \frac{1}{q_n})\frac{1}{2q} = \frac{1}{qq_n}.$$

It follows that $|pq_n - p_nq| < 1$. Therefore, $\frac{p}{q} = \frac{p_n}{q_n}$.

Subsection 4

Quadratic Irrationals

Quadratic Irrationals

• By a quadratic irrational we mean a zero of a polynomial

 $ax^2 + bx + c$,

where

- *a*, *b*, *c* are integers;
- the discriminant $d = b^2 4ac$ is positive and not a perfect square.

Examples of Quadratic Irrationals

•
$$\sqrt{22}$$
 is a root of $x^2 - 22 = 0$.

Ultimately Periodic Continued Fractions

• A continued fraction [*a*₀, *a*₁, *a*₂,...] is **ultimately periodic** if there exist *k* and *m*, such that the partial quotients *a*₀, *a*₁,... satisfy

$$a_{m+n} = a_n$$
, for all $n \ge k$.

• I.e., a continued fraction θ is ultimately periodic if and only if it has the form

$$\theta = [a_0, a_1, \ldots, a_{k-1}, \overline{a_k, \ldots, a_{k+m-1}}],$$

where the bar indicates that the block of partial quotients is repeated indefinitely.

Examples of Quadratic Irrationals

•
$$\sqrt{2} = [1, \overline{2}];$$

• $\frac{1}{3}(3 + \sqrt{3}) = [1, 1, \overline{1, 2}];$
• $\frac{1}{2}(3 + \sqrt{2}) = [2, 4, \overline{1, 4}];$
• $\sqrt{20} = [4, \overline{2, 8}];$
• $\sqrt{22} = [4, \overline{1, 2, 4, 2, 1, 8}].$

Characterization of Quadratic Irrationals

Theorem

A continued fraction represents a quadratic irrational if and only if it is ultimately periodic.

Suppose, first, that θ = [a₀, a₁,..., a_{k-1}, ā_k,..., a_{k+m-1}].
Set φ = θ_k = [ā_k,..., a_{k+m-1}].
By preceding work,
if p_n/q_n are convergents to θ, θ = p_{k-1}θ_k + p_{k-2}/q_{k-1}θ_k + q_{k-2} = p_{k-1}φ + p_{k-2}/q_{k-1}φ + q_{k-2}.
if p'm/q_n are convergents to φ, φ = p'm-1φ + p'm-2/q'm-1φ + q'm-2.
The latter shows that φ is quadratic.

The former, then, shows that θ is quadratic.

Finally, the non-termination shows that θ is irrational.

Necessity (Transformation)

Suppose θ is a quadratic irrational, i.e., θ satisfies ax² + bx + c = 0, where a, b, c are integers with d = b² - 4ac > 0.
 Let ^{p_n}/_{q_n}, n = 1,2,..., denote the convergents to θ.

Consider the binary form

$$f(x,y) = ax^2 + bxy + cy^2.$$

Define the substitution

$$x = p_n x' + p_{n-1} y', \quad y = q_n x' + q_{n-1} y'.$$

- It has determinant $p_nq_{n-1} p_{n-1}q_n = (-1)^{n-1}$.
- It takes f into $f_n(x, y) = a_n x^2 + b_n xy + c_n y^2$, with discriminant d.
- We have $a_n = f(p_n, q_n)$ and $c_n = f(p_{n-1}, q_{n-1}) = a_{n-1}$.

Note that $f(\theta, 1) = 0$.

This will be used twice below.

Necessity (Boundedness of Parameters)

We noted that f(θ,1) = 0.
 We now compute:

$$\begin{aligned} \frac{a_n}{q_n^2} &= f\left(\frac{p_n}{q_n}, 1\right) - f\left(\theta, 1\right) = a\left(\left(\frac{p_n}{q_n}\right)^2 - \theta^2\right) + b\left(\left(\frac{p_n}{q_n}\right) - \theta\right) \\ &\leq |a| \left|\frac{p_n}{q_n} - \theta\right| \left|\frac{p_n}{q_n} + \theta\right| + |b| \left|\frac{p_n}{q_n} - \theta\right| \\ &\leq |a| \frac{1}{q_n^2} \left|\frac{p_n}{q_n} + \theta\right| + |b| \frac{1}{q_n^2} < |a| \frac{2|\theta| + 1}{q_n^2} + |b| \frac{1}{q_n^2} \\ &= \frac{(2|\theta| + 1)|a| + |b|}{q_n^2}. \end{aligned}$$

Thus, $|a_n| < (2|\theta| + 1)|a| + |b|$, a bound independent of *n*. But $c_n = a_{n-1}$ and $b_n^2 - 4a_nc_n = d$. So b_n and c_n are likewise bounded.

Necessity (Ultimate Periodicity)

• For $n \ge 1$, if $\theta_1, \theta_2, \ldots$ denote the complete quotients of θ ,

$$\theta = \frac{p_n \theta_{n+1} + p_{n-1}}{q_n \theta_{n+1} + q_{n-1}}.$$

Using the transformations, we get

$$f_n(\theta_{n+1}, 1) = f(p_n \theta_{n+1} + p_{n-1}, q_n \theta_{n+1} + q_{n-1})$$

= $(q_n \theta_{n+1} + q_{n-1})^2 f\left(\frac{p_n \theta_{n+1} + p_{n-1}}{q_n \theta_{n+1} + q_{n-1}}, 1\right)$
= $(q_n \theta_{n+1} + q_{n-1})^2 f(\theta, 1) = 0$

Hence, there are only finitely many possibilities for $\theta_1, \theta_2, \ldots$. This shows that $\theta_{\ell+m} = \theta_{\ell}$, for some positive ℓ, m . So, the continued fraction for θ is ultimately periodic.

Purely Periodic Continued Fractions

 The continued fraction of a quadratic irrational θ is said to be purely periodic if

$$\theta = [\overline{a_0, \ldots, a_{m-1}}].$$

If θ is a quadratic irrational, the conjugate θ' of θ is the quadratic irrational that is a root of the same quadratic equation as θ

Characterization of Pure Periodicity

Theorem

Pure periodicity occurs if and only if $\theta > 1$ and the conjugate θ' of θ satisfies $-1 < \theta' < 0$.

• Suppose $\theta > 1$ and $-1 < \theta' < 0$. By induction the conjugates θ'_n of the complete quotients θ_n , $n = 1, 2, ..., \text{ of } \theta$ also satisfy $-1 < \theta'_n < 0$. The proof is based on • $\theta'_n = a_n + \frac{1}{\theta'_{n-1}}$, where $\theta = [a_0, a_1, \ldots]$; • $a_n \ge 1$, for all *n* including n = 0. The inequality $-1 < \theta'_n < 0$ shows that $a_n = \begin{bmatrix} -1 \\ \theta'_n \end{bmatrix}$. Since θ is a quadratic irrational, we have $\theta_m = \theta_n$, for some n > m. This gives $\frac{1}{\theta'_{-}} = \frac{1}{\theta'_{-}}$ whence $a_{m-1} = a_{n-1}$ and, hence, that $\theta_{m-1} = \theta_{n-1}$. Repetition of this conclusion yields $\theta = \theta_{n-m}$. Hence, θ is purely periodic.

Purely Periodic Continued Fractions (Converse)

If θ = [a₀,..., a_{m-1}] is purely periodic, then θ > a₀ ≥ 1. Further, for some n ≥ 1, we have

$$\theta=\frac{p_n\theta+p_{n-1}}{q_n\theta+q_{n-1}},$$

where $\frac{p_n}{q_n}$, n = 1, 2, ..., denote the convergents to θ . So, θ satisfies the equation

$$q_n x^2 + (q_{n-1} - p_n) x - p_{n-1} = 0.$$

Note that the quadratic on the left

- has the value $-p_{n-1} < 0$ for x = 0;
- has the value $p_n + q_n (p_{n-1} + q_{n-1}) > 0$ for x = -1.

Hence, the conjugate θ' of θ satisfies $-1 < \theta' < 0$.

A Consequence

Corollary

The continued fractions of $\sqrt{d} + \lfloor \sqrt{d} \rfloor$ and $\frac{1}{\sqrt{d} - \lfloor \sqrt{d} \rfloor}$ are purely periodic, where *d* is any positive integer, not a perfect square.

• Note that: $\label{eq:constraint} \sqrt{d} + [\sqrt{d}] > 1;$ $-1 < -\sqrt{d} + [\sqrt{d}] < 0.$ Similarly,

$$-1 < \frac{\frac{1}{\sqrt{d} - [\sqrt{d}]}}{\frac{1}{-\sqrt{d} - [\sqrt{d}]}} < 0.$$

By the criterion, the continued fractions of $\sqrt{d} + \lfloor \sqrt{d} \rfloor$ and $\frac{1}{\sqrt{d} - \lfloor \sqrt{d} \rfloor}$ are purely periodic.

Almost Purely Periodic Continuous Fractions

A continued fraction

$$[a_0, a_1, \dots, a_{k-1}, \overline{a_k, \dots, a_{k+m-1}}]$$

is almost purely periodic if k = 1.

I.e., only the initial partial quotient a_0 precedes the repeated block. Example: We saw that $\sqrt{d} + \left[\sqrt{d}\right]$ and $\frac{1}{\sqrt{d} - \left[\sqrt{d}\right]}$ are purely periodic. But

$$\sqrt{d} = \left[\sqrt{d}\right] + \left(\sqrt{d} - \left[\sqrt{d}\right]\right) = \left[\sqrt{d}\right] + \frac{1}{\frac{1}{\sqrt{d} - \left[\sqrt{d}\right]}}$$

So \sqrt{d} is almost purely periodic.

Subsection 5

Liouville's Theorem

Algebraic Numbers and Minimal Polynomials

• A real or complex number is said to be **algebraic** if it is a zero of a polynomial

$$P(x) = a_0 x^n + a_1 x^{n-1} + \dots + a_n,$$

where a_0, a_1, \ldots, a_n denote integers, not all 0.

- For each algebraic number θ , there is a polynomial P as above, with least degree, such that $P(\theta) = 0$.
 - *P* is unique if one assumes that $a_0 > 0$ and that $a_0, a_1, ..., a_n$ are relatively prime.
 - *P* is irreducible over the rationals.
- *P* is called the **minimal polynomial** for θ .
- The **degree** of θ is defined as the degree of *P*.

Liouville's Theorem

Theorem (Liouville's Theorem)

For any algebraic number α with degree n > 1, there exists a number $c = c(\alpha) > 0$, such that $|\alpha - \frac{p}{q}| > \frac{c}{q^2}$, for all rationals $\frac{p}{q}, q > 0$.

• Let P be the minimal polynomial for α . By the Mean Value Theorem, for any rational $\frac{p}{q}$, q > 0, there exists ξ between α and $\frac{p}{q}$, such that $P(\alpha) - P(\frac{p}{q}) = (\alpha - \frac{p}{q})P'(\xi)$. By definition, $P(\alpha) = 0$, and, by irreducibility, $P(\frac{p}{\alpha}) \neq 0$. But $q^n P(\frac{p}{q})$ is an integer and so $|P(\frac{p}{q})| \ge \frac{1}{q^n}$. Assume $|\alpha - \frac{p}{a}| < 1$ (otherwise the conclusion is trivial). Then $|\xi| = |\alpha + (\xi - \alpha)| \le |\alpha| + |\alpha - \xi| \le |\alpha| + |\alpha - \frac{p}{\alpha}| < |\alpha| + 1$. So $|P'(\xi)| < C$, for some $C = C(\alpha)$. This gives $|\alpha - \frac{p}{a}| = \frac{|P(\alpha) - P(\frac{p}{a})|}{|P'(\xi)|} > \frac{1}{Ca^2} = \frac{1/C}{a^2}$.

Hurwitz's Theorem Revisited

Theorem (Hurwitz's Theorem)

For any irrational θ , there exist infinitely many rational $\frac{p}{q}$, such that $|\theta - \frac{p}{q}| < \frac{1}{\sqrt{5}q^2}$ and, by taking $\theta = \alpha = \frac{1}{2}(1 + \sqrt{5}) = [1, 1, ...]$, we see that $\frac{1}{\sqrt{5}}$ is best possible.

• If
$$\alpha = \frac{1}{2}(1 + \sqrt{5})$$
, then $P(x) = x^2 - x - 1$ and $P'(x) = 2x - 1$.
Let $\frac{p}{q}, q > 0$, be any rational and let $\delta = |\alpha - \frac{p}{q}|$.
 $|P(\frac{p}{q})| \le \delta |P'(\xi)|$, for some ξ between α and $\frac{p}{q}$.
So $|\xi| \le \alpha + \delta$ and $|P'(\xi)| \le 2(\alpha + \delta) - 1 = 2\delta + \sqrt{5}$.
But $|P(\frac{p}{q})| \ge \frac{1}{q^2}$, whence $\delta(2\delta + \sqrt{5}) \ge \frac{1}{q^2}$.
So, for any $c' < \frac{1}{\sqrt{5}}$ and for all sufficiently large q , we have $\delta > \frac{c'}{q^2}$.
Hence, Hurwitz's theorem is best possible.

George Voutsadakis (LSSU)

Franscendental Numbers

• A real or complex number that is not algebraic is said to be transcendental.

Claim: The series

$$\theta = \frac{1}{2^{1!}} + \frac{1}{2^{2!}} + \frac{1}{2^{3!}} + \cdots$$

represents a transcendental number.

Set

$$p_j = 2^{j!} \left(\frac{1}{2^{1!}} + \frac{1}{2^{2!}} + \dots + \frac{1}{2^{j!}} \right), \quad q_j = 2^{j!}, \quad j = 1, 2, \dots$$

Then p_j, q_j are integers, satisfying $|\theta - \frac{p_j}{q_j}| = \frac{1}{2^{(j+1)!}} + \frac{1}{2^{(j+2)!}} + \cdots$. The sum on the right is at most

$$\frac{1}{2^{(j+1)!}}\left(1+\frac{1}{2}+\frac{1}{2^2}+\cdots\right) = \frac{1}{2^{(j+1)!-1}} < \frac{1}{q_j^j}.$$

It follows from Liouville's theorem that θ is transcendental.

Remarks on Transcendental Numbers

- Any real number θ for which there exists an infinite sequence of distinct rationals $\frac{p_j}{q_j}$ satisfying $|\theta \frac{p_j}{q_j}| < \frac{1}{q_j^{\omega_j}}$, where $\omega_j \xrightarrow{j \to \infty} \infty$, will be transcendental.
 - Example: This condition will hold for:
 - any infinite decimal in which there occur sufficiently long blocks of zeros;
 - any continued fraction in which the partial quotients increase sufficiently rapidly.

Subsection 6

Transcendental Numbers

The Integral I(t)

Consider the integral

$$I(t) = \int_0^t e^{t-x} f(x) dx, \quad t \ge 0,$$

where f is a real polynomial with degree m.

• More generally, let, for all $i \ge 0$,

$$I_i(t) = \int_0^t e^{t-x} f^{(i)}(x) dx, \quad t \ge 0,$$

where $f^{(i)}(x)$ denotes the *i*-th derivative of f(x). • With this notation, $I(t) = I_0(t)$.

Computing I(t)

• If
$$I_i(t) = \int_0^t e^{t-x} f^{(i)}(x) dx$$
, $t \ge 0$, then
$$I_i(t) = e^t f^{(i)}(0) - f(t) + I_{i+1}(t).$$

This needs an integration by-parts:

$$\begin{aligned} I_{i}(t) &= \int_{0}^{t} e^{t-x} f^{(i)}(x) dx = \int_{0}^{t} (-e^{t-x})' f^{(i)}(x) dx \\ &= (-e^{t-x} f^{(i)}(x)) \Big|_{0}^{t} - \int_{0}^{t} (-e^{t-x}) f^{(i+1)}(x) dx \\ &= e^{t} f^{(i)}(0) - f^{(i)}(t) + I_{i+1}(t). \end{aligned}$$

• If $I(t) = \int_0^t e^{t-x} f(x) dx$, $t \ge 0$, then

$$I(t) = e^{t} \sum_{j=0}^{m} f^{(j)}(0) - \sum_{j=0}^{m} f^{(j)}(t).$$

This follows by repeated application of the recursive formula above.

Bounding I(t)

• If \overline{f} denotes the polynomial obtained from f by replacing each coefficient with its absolute value, then

$$|I(t)| \leq \int_0^t |e^{t-x}f(x)| dx \leq t e^t \overline{f}(t).$$

Note that $|f(x)| \leq \overline{f}(x)$. So we have

$$\begin{aligned} |I(t)| &= |\int_0^t e^{t-x} f(x) dx| \le \int_0^t e^{t-x} |f(x)| dx \\ &\le \int_0^t e^{t-x} \overline{f}(x) dx \le e^t \overline{f}(t) \int_0^t dx \\ &= t e^t \overline{f}(t). \end{aligned}$$

Transcendence of *e*

• Suppose that e is algebraic, so that

$$a_0 + a_1 e + \dots + a_n e^n = 0,$$

for some integers a_0, a_1, \ldots, a_n , with $a_0 \neq 0$. Set

$$f(x) = x^{p-1}(x-1)^p \cdots (x-n)^p$$
, p is a large prime.

The degree *m* of *f* is (n+1)p-1. Define

$$J = a_0 I(0) + a_1 I(1) + \dots + a_n I(n).$$

By the preceding equations,

$$J = \sum_{k=0}^{n} a_k I(k) = \sum_{k=0}^{n} a_k (e^k \sum_{j=0}^{m} f^{(j)}(0) - \sum_{j=0}^{m} f^{(j)}(k))$$

= $\sum_{k=0}^{n} a_k (-\sum_{j=0}^{m} f^{(j)}(k)) = \sum_{j=0}^{m} \sum_{k=0}^{n} a_k f^{(j)}(k).$

Transcendence of *e* (Cont'd)

$$g_k(x) = \frac{f(x)}{(x-k)^p}.$$

Then

$$f^{(j)}(k) = \begin{cases} 0, & \text{if } j$$

So, for all j, $f^{(j)}(k)$ is an integer divisible by p!.

Transcendence of *e* (Cont'd)

Oefine

$$h(x)=\frac{f(x)}{x^{p-1}}.$$

Then

$$f^{(j)}(0) = \begin{cases} 0, & \text{if } j < p-1 \\ \binom{j}{p-1}(p-1)! h^{(j-p+1)}(0), & \text{if } j \ge p-1 \end{cases}$$

Note that:

h(0) = (−1)^{np}(n!)^p;
 h^(j)(0) is an integer divisible by p, for j > 0.

We conclude that:

- For $j \neq p-1$, $f^{(j)}(0)$ is an integer divisible by p!;
- $f^{(p-1)}(0)$ is an integer divisible by (p-1)!, but not by p for p > n.

Franscendence of *e* (Conclusion)

Recall that J = ∑_{j=0}^m ∑_{k=0}ⁿ a_kf^(j)(k). It follows that J is a non-zero integer divisible by (p-1)!. So |J| ≥ (p-1)!. But, now, note that:
If k ≤ n, f(k) = k^{p-1}(k+1)^p ...(k+n)^p ≤ (2n)^m.
m = (n+1)p-1 ≤ 2np. Hence,

$$|J| = |a_0 I(0) + \dots + a_n I(n)| \le |a_0| |I(0)| + \dots + |a_n| |I(n)|$$

$$\le |a_1| 1e^1 \overline{f}(1) + \dots + |a_n| ne^n \overline{f}(n)$$

$$\le |a_1| e(2n)^{2np} + \dots + |a_n| ne^n (2n)^{2np}$$

$$= (|a_1| e + \dots + |a_n| ne^n) ((2n)^{2n})^p \le c^p,$$

for some c independent of p.

The inequalities are inconsistent for p sufficiently large.

Subsection 7

Minkowski's Theorem

Blichfeldt's Theorem

Theorem (Blichfeldt's Theorem)

Any bounded region \mathscr{R} with volume V exceeding 1 contains distinct points x, y, such that x - y is an integer point, i.e., a point all of whose coordinates are integers.

Let
$$\mathbf{u} = (u_1, ..., u_n)$$
 be an integer point.
Set $\mathscr{R}_{\mathbf{u}} = \{(x_1, ..., x_n) \in \mathscr{R} : u_j \le x_j < u_j + 1, 1 \le j \le n\}$.
Denote by $V_{\mathbf{u}}$ the volume of $\mathscr{R}_{\mathbf{u}}$.
 \mathscr{R} may be expressed as the disjoint union of $\mathscr{R}_{\mathbf{u}}$.
Consequently, $V = \sum V_{\mathbf{u}} > 1$.
This gives $\sum (\mathscr{R}_{\mathbf{u}} - \mathbf{u}) > 1$.
But, for all $\mathbf{u}, \mathscr{R}_{\mathbf{u}} - \mathbf{u}$ lies in the unit square.
Thus, there exist \mathbf{u}, \mathbf{v} , such that $(\mathscr{R}_{\mathbf{u}} - \mathbf{u}) \cap (\mathscr{R}_{\mathbf{v}} - \mathbf{v}) \ne \emptyset$.
So, there exist points \mathbf{x} in $\mathscr{R}_{\mathbf{u}}$ and \mathbf{y} in $\mathscr{R}_{\mathbf{v}}$, such that $\mathbf{x} - \mathbf{u} = \mathbf{y} - \mathbf{v}$,
and so $\mathbf{x} - \mathbf{y}$ is an integer point.

George Voutsadakis (LSSU)

Convex Bodies and Symmetry

• By a **convex body** \mathscr{S} we mean a bounded, open set of points in Euclidean *n*-space, such that

$$\mathbf{x}, \mathbf{y} \in \mathscr{S}$$
 implies $\lambda \mathbf{x} + (1 - \lambda)\mathbf{y} \in \mathscr{S}$, for all $0 < \lambda < 1$.

• A set of points \mathscr{S} is said to be **symmetric about the origin** if, for every point **x**,

 $\mathbf{x} \in \mathscr{S}$ implies $-\mathbf{x} \in \mathscr{S}$.

Minkowski's Theorem

Theorem (Minkowski's Theorem)

If a convex body \mathscr{S} , symmetric about the origin, has volume exceeding 2^n , then it contains an integer point other than the origin.

• Define
$$\mathscr{R} = \frac{1}{2}\mathscr{S} := \{\frac{1}{2}\mathbf{x} : \mathbf{x} \in \mathscr{S}\}.$$

Then $V(\mathscr{R}) = \frac{1}{2\pi}V(\mathscr{S}) > 1.$

By Blichfeldt's Theorem, there exist $x, y \in \mathcal{R}$, with $x \neq y$, such that x - y is an integer point.

By definition, $2\mathbf{x}, 2\mathbf{y} \in \mathscr{S}$.

By symmetry,
$$-2\mathbf{y} \in \mathscr{S}$$
.

By convexity, $\mathbf{x} - \mathbf{y} = \frac{1}{2}(2\mathbf{x}) + \frac{1}{2}(-2\mathbf{y}) \in \mathscr{S}$.

Linear Independence

 Points a₁,...,a_n in Euclidean n-space are said to be linearly independent if, for all real numbers t₁,...,t_n,

 $t_1\mathbf{a}_1 + \dots + t_n\mathbf{a}_n = \mathbf{0}$ implies $t_1 = \dots = t_n = 0$.

If

$$\mathbf{a}_j = (a_{1j}, \dots, a_{nj}), \quad 1 \le j \le n,$$

then a_1, \ldots, a_n are linearly independent if and only if

 $d = \det(a_{ij}) \neq 0.$

Lattices and Determinants

• By a lattice Λ we mean a set of points of the form

 $\mathbf{x} = u_1 \mathbf{a}_1 + \cdots + u_n \mathbf{a}_n,$

where $\mathbf{a}_1, \dots, \mathbf{a}_n$ are fixed linearly independent points and u_1, \dots, u_n run through all the integers.

- The points a_1, \dots, a_n are referred to as the **generators** or as a **basis** for the lattice.
- The determinant of Λ is defined as

$$d(\Lambda) = |d| = \det(a_{ij}),$$

where, as before,

$$\mathbf{a}_j = (a_{1j}, \dots, a_{nj}), \quad 1 \le j \le n.$$

General Minkowski's Theorem

Theorem (General Minkowski's Theorem)

If, for any lattice Λ , a convex body \mathscr{S} , symmetric about the origin, has volume exceeding $2^n d(\Lambda)$, then it contains a point of Λ other than the origin.

Let A be the invertible linear transformation e_i → a_i, i = 1,..., n. Define R = ½A⁻¹(S). Then V(R) = ½nd(A)V(S) > 1. By Blichfeldt's Theorem, there exist x, y ∈ R, with x ≠ y, such that x - y is an integer point. As before, A(x-y) = 2A(½x + ½(-y)) ∈ S.

Moreover, it is in Λ , since $\mathbf{x} - \mathbf{y}$ is an integer point.

Minkowski's Linear Forms Theorem

Corollary

Let $\lambda_1, \ldots, \lambda_n > 0$ and Λ be the lattice generated by $\mathbf{a}_1, \ldots, \mathbf{a}_n$. If $\lambda_1 \cdots \lambda_n > d(\Lambda)$, then there exist integers u_1, \ldots, u_n , not all 0, such that

$$|u_1a_{j1}+\cdots+u_na_{jn}|<\lambda_j,\quad 1\leq j\leq n.$$

$$V(\mathscr{S}) = 2^n \lambda_1 \cdots \lambda_n > 2^n d(\Lambda).$$

Thus, by the General Minkowski's Theorem, \mathscr{S} contains a point in Λ other than the origin.

This means that, there exist integers u_1, \ldots, u_n , not all 0, such that

$$|u_1a_{j1}+\cdots+u_na_{jn}|<\lambda_j,\quad 1\leq j\leq n.$$

Generalizations of Dirichlet's Theorem

Corollary

If $\theta_1, \ldots, \theta_n$ are any real numbers and if Q > 0, then there exist integers p, q_1, \ldots, q_n , not all 0, such that $|q_j| < Q$, $1 \le j \le n$, and

$$q_1\theta_1+\cdots+q_n\theta_n-p|\leq \frac{1}{Q^n}.$$

• In Minkowski's Linear Forms Theorem, take:

$$\lambda_j = Q, \ 1 \le j \le n, \quad \lambda_{n+1} = \frac{1}{Q^n}$$

and

$$\mathbf{a}_j = \mathbf{e}_j, \ j = 1, ..., n, \quad \mathbf{a}_{n+1} = (\theta_1, ..., \theta_n, -1).$$

Generalizations of Dirichlet's Theorem II

Corollary

There exist integers p_1, \ldots, p_n, q , not all 0, such that $|q| \le Q^n$ and $|q\theta_j - p_j| < \frac{1}{Q}, \ 1 \le j \le n$.

• In Minkowski's Linear Forms Theorem, take:

$$\lambda_j = \frac{1}{Q}, \ 1 \le j \le n, \quad \lambda_{n+1} = Q^n$$

and

$$\begin{array}{rcl}
\mathbf{a}_{1} &= & (-1, 0, \dots, 0, \theta_{1}) \\
\mathbf{a}_{2} &= & (0, -1, \dots, 0, \theta_{2}) \\
& & \vdots \\
\mathbf{a}_{n} &= & (0, 0, \dots, -1, \theta_{n}) \\
\mathbf{a}_{n+1} &= & (0, 0, \dots, 0, (-1)^{n+1}).
\end{array}$$