
Introduction to Number Theory

George Voutsadakis1

1Mathematics and Computer Science

Lake Superior State University

LSSU Math 400

George Voutsadakis (LSSU) Number Theory January 2023 1 / 62



Outline

1 Diophantine Approximation
Dirichlet’s Theorem
Continued Fractions
Rational Approximations
Quadratic Irrationals
Liouville’s Theorem
Transcendental Numbers
Minkowski’s Theorem

George Voutsadakis (LSSU) Number Theory January 2023 2 / 62



Diophantine Approximation Dirichlet’s Theorem

Subsection 1

Dirichlet’s Theorem
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Diophantine Approximation Dirichlet’s Theorem

Dirichlet’s Theorem

Theorem (Dirichlet’s Theorem)

For any real θ and any integer Q > 1, there exist integers p,q with
0< q <Q, such that

|qθ−p| ≤
1

Q
.

Recall that {x} denotes the fractional part of x and consider:

the Q+1 numbers 0,1, {θ}, {2θ}, . . . , {(Q −1)θ} in [0,1];

the Q subintervals [0,
1
Q
), [ 1

Q
,
2
Q
), . . . , [Q−1

Q
,1].

Then two of the Q +1 numbers must lie in one of the Q sub-intervals.

The difference between the two numbers has the form

{mθ}−{nθ} =mθ−[mθ]−(nθ−[nθ]) = (m−n)θ−([mθ]−[nθ]) = qθ−p,

where p,q are integers with 0< q <Q. Moreover, |qθ−p| ≤ 1
Q

.
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Diophantine Approximation Dirichlet’s Theorem

Dirichlet’s Theorem (Real Q)

Corollary

For any real θ and any real Q > 1, there exist integers p,q with 0< q <Q,
such that |qθ−p| ≤ 1

Q .

Suppose Q > 1 is not an integer.

We apply Dirichlet’s Theorem with [Q]+1.

There exist integers p,q with 0< q < [Q]+1, such that |qθ−p| ≤ 1
[Q]+1

.

However, since q is an integer,

0< q ≤ [Q]<Q

and, moreover,

|qθ−p| ≤
1

[Q]+1
<

1

Q
.
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Diophantine Approximation Dirichlet’s Theorem

Dirichlet’s Theorem (Relatively Prime p,q)

Corollary

For any real θ and any real Q > 1, there exist relatively prime integers p,q

with 0< q <Q, such that |qθ−p| ≤ 1
Q .

Suppose that the p,q obtained a priori by Dirichlet’s Theorem are not
relatively prime.

Then k = (p,q)> 1 and p = kp′ and q = kq′, with (p′,q′)= 1.

Then, we have

|q′θ−p′| =
1

k
|kq′θ−kp′| =

1

k
|qθ−p| = ≤

1

k

1

Q
<

1

Q
.

So we could choose p′, q′ in place of p, q.
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Diophantine Approximation Dirichlet’s Theorem

Corollary of Dirichlet’s Theorem (Irrational θ)

Corollary

For any irrational θ, there exist infinitely many rationals p
q , q > 0, such that

|θ− p
q
| < 1

q2 .

For the existence, taking Q > 1, we apply Dirichlet’s Theorem to get
p,q,

|qθ−p| ≤
1

Q
, 0< q <Q .

Then, |θ− p
q
| = 1

q
|qθ−p| ≤ 1

q
1
Q

< 1
q2 .

For the cardinality, consider a Q ′ > 1
|qθ−p| . Then 1

Q ′ < |qθ−p|.
It follows that the p′,q′ associated with Q ′,

|q′θ−p′| ≤
1

Q ′ , 0< q′ <Q ′
,

are different.
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Diophantine Approximation Dirichlet’s Theorem

The Case of Rational θ

The preceding corollary does not remain valid for rational θ.

Suppose θ= a
b with a,b integers and b > 0.

Then, when θ 6= p
q , we have

∣

∣

∣

∣

θ−
p

q

∣

∣

∣

∣

≥
1

qb
.

So, there are only finitely many rationals p
q , such that |θ− p

q | <
1
q2 .
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Diophantine Approximation Continued Fractions

Subsection 2

Continued Fractions
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Diophantine Approximation Continued Fractions

The Continued Fraction Representation

The continued-fraction algorithm sets up one-one correspondences:

Between all irrational θ and all infinite sets of integers a0,a1,a2, . . .,
with a1,a2, . . . positive.

θ = a0+
1

a1+ 1

a2+ 1

...

.

Between all rational θ and all finite sets of integers a0,a1, . . . ,an, with
a1,a2, . . . ,an−1 positive and an ≥ 2.

θ = a0+
1

a1+ 1

a2+ 1

... 1
an

.
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Diophantine Approximation Continued Fractions

The Continued Fraction Algorithm

Let θ be any real number.

We put a0 = [θ].
If a0 6= θ, we write θ = a0+ 1

θ1
, so that θ1 > 1, and we put a1 = [θ1].

If a1 6= θ1, we write θ1 = a1+ 1
θ2

, so that θ2 > 1, and we put a2 = [θ2].
The process continues indefinitely unless an = θn, for some n.

If the latter occurs, then θ is rational.

In the “end”, we have

θ = a0+
1

a1+ 1

a2+ 1

... 1
an

.
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Diophantine Approximation Continued Fractions

The Continued Fraction Algorithm: Terminology

If θ is rational then the process terminates.

The expression above is called the continued fraction for θ.

We write θ = a0+ 1
a1+

1
a2+ · · · 1

an
or, more briefly, as θ = [a0,a1,a2, . . . ,an].

If an 6= θn, for all n, so that the process does not terminate, then θ is
irrational.

We show that θ = a0+ 1
a1+

1
a2+ · · · , or, briefly, θ= [a0,a1,a2, . . .].

The integers a0,a1,a2, . . . are the partial quotients of θ.

The numbers θ1,θ2, . . . are the complete quotients of θ.

We prove that the rationals pn
qn

= [a0,a1, . . . ,an], where pn,qn denote
relatively prime integers, tend to θ as n→∞.

They are the convergents to θ.
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Diophantine Approximation Continued Fractions

The Continued Fraction Algorithm (Recurrences)

Claim: The pn,qn are generated recursively by the equations

pn = anpn−1+pn−2, qn = anqn−1+qn−2,

where p0 = a0,q0 = 1 and p1 = a0a1+1, q1 = a1.

The recurrences can be checked easily for n= 2.

Assume they hold for n=m−1≥ 2. We verify them for n=m.

Define relatively prime p′
j
,q′

j
(j = 0,1, . . .) by

p′
j

q′
j

= [a1,a2, . . . ,aj+1].

Then
pj
qj

= a0+
q′
j−1

p′
j−1

. So pj = a0p
′
j−1

+q′
j−1

and qj = p′
j−1

.

Now we compute:

pm = a0p
′
m−1+q′

m−1 = a0(amp
′
m−2+p′

m−3)+amq
′
m−2+q′

m−3

= am(a0p
′
m−2+q′

m−2)+a0p
′
m−3+q′

m−3 = ampm−1+pm−2;

qm = p′
m−1 = a0p

′
m−2+p′

m−3 = a0qm−1+qm−2.

George Voutsadakis (LSSU) Number Theory January 2023 13 / 62



Diophantine Approximation Continued Fractions

The Continued Fraction Algorithm (Converse)

By the definition of θ1,θ2, . . ., we have θ= [a0,a1, . . . ,an,θn+1], where
0< 1

θn+1
≤ 1

an+1
. Hence, θ lies between pn

qn
and pn+1

qn+1
. It is readily seen by

induction that the above recurrences give

pnqn+1−pn+1qn = (−1)n+1
,

and, thus, we have |pnqn −
pn+1

qn+1
| = 1

qnqn+1
. It follows that the convergents

pn
qn

to θ, satisfy
∣

∣

∣

∣

θ−
pn

qn

∣

∣

∣

∣

≤
1

qnqn+1
,

and so certainly pn
qn

n→∞−→ θ.

In view of the latter inequality and preceding results, it is clear that,
when θ is rational the continued-fraction process terminates.
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Diophantine Approximation Continued Fractions

The Continued Fraction Algorithm and Euclid’s Algrithm

For rational θ, the process is closely related to Euclid’s algorithm.

Take θ = a
b .

a = bq1+ r1
a
b

= q1+ r1
b

q1 = r1q2+ r2
q1

r1
= q2+ r2

r1

...
...

qk−1 = rk−1qk + rk
qk−1

rk−1
= qk + rk

rk−1

qk = rkqk+1
qk
rk

= qk+1

The partial quotients a0,a1,a2, . . . of θ are just q1,q2,q3, . . . ,qk+1;

The complete quotients θ1,θ2, . . . are given by
b

r1
,
r1

r2
, . . . ,

rk−1

rk
.

In other words, on defining aj = qj+1, 0≤ j ≤ k , we have

θ = [a0,a1, . . . ,ak ].
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Diophantine Approximation Continued Fractions

Example

For θ = 187
35

, we have

187 = 35 ·5+12

35 = 12 ·2+11

12 = 11 ·1+1

11 = 1 ·11+0

So, we have 187
35

= [5,2,1,11],

i.e.,
187

35
= 5+

1

2+ 1

1+ 1
11

.
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Diophantine Approximation Rational Approximations

Subsection 3

Rational Approximations
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Diophantine Approximation Rational Approximations

An Inequality Involving Two Convergents

Theorem

For any real θ, of any two consecutive convergents, say pn
qn

and pn+1

qn+1
, at

least one satisfies |θ− p
q | <

1
2q2 .

The differences θ− pn
qn

and θ− pn+1

qn+1
have opposite signs.

So we get
∣

∣

∣

∣

θ−
pn

qn

∣

∣

∣

∣

+
∣

∣

∣

∣

θ−
pn+1

qn+1

∣

∣

∣

∣

=
∣

∣

∣

∣

pn

qn
−
pn+1

qn+1

∣

∣

∣

∣

=
1

qnqn+1

.

But, for any real α,β, with α 6=β, we have αβ< 1
2
(α2+β2).

It follows that
1

qnqn+1
<

1

2q2
n

+
1

2q2
n+1

.

This gives the result.
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Diophantine Approximation Rational Approximations

An Inequality Involving Three Convergents

Theorem

For any real θ, of any three consecutive convergents, say pn
qn

,
pn+1

qn+1
and pn+2

qn+2
,

one at least satisfies |θ− p
q | <

1p
5q2

.

Suppose the result fails. Then the equations above would give

1
p

5q2
n

+
1

p
5q2

n+1

≤
1

qnqn+1
.

Setting λ= qn+1

qn
, we get λ+ 1

λ
≤
p

5. Thus, λ2−
p

5λ+1≤ 0 or

(λ− 1
2
(1+

p
5))(λ+ 1

2
(1−

p
5))< 0. So λ< 1

2
(1+

p
5).

Similarly, setting µ= qn+2

qn+1
, we get µ< 1

2
(1+

p
5).

By the preceding section, we have qn+2 = an+2qn+1+qn.

So µ= qn+2

qn+1
= an+2+ qn

qn+1
≥ 1+ 1

λ .

This contradicts λ< 1
2
(1+

p
5) implies 1

λ > 1
2
(−1+

p
5).
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Diophantine Approximation Rational Approximations

Hurwitz’s Theorem

Theorem (Hurwitz’s Theorem)

For any irrational θ, there exist infinitely many rational p
q , such that

∣

∣

∣

∣

θ−
p

q

∣

∣

∣

∣

<
1

p
5q2

.

Follows by the preceding result.

The constant 1p
5

is best possible.

(We will prove this later in this set.)
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Diophantine Approximation Rational Approximations

Closedness of Approximations

Theorem

The convergents give successively closer approximations to θ. In fact
|qnθ−pn| decreases as n increases.

Recall the recurrences

pn = anpn−1+pn−2, qn = anqn−1+qn−2,

with p0 = a0, q0 = 1 and p1 = a0a1+1, q1 = a1.

Consider the fractions rn = pnθn+1+pn−1

qnθn+1+qn−1
, n≥ 1.

r1 = θ;

rn+1 = rn, for every n≥ 1.

We conclude that, for all n≥ 1,

θ =
pnθn+1+pn−1

qnθn+1+qn−1
.

George Voutsadakis (LSSU) Number Theory January 2023 21 / 62



Diophantine Approximation Rational Approximations

Closedness of Approximations (Cont’d)

We got θ= pnθn+1+pn−1

qnθn+1+qn−1
.

Now we compute

|qnθ−pn| =
∣

∣

∣qn
pnθn+1pn−1

qnθn+1+qn−1
−pn

∣

∣

∣

=
∣

∣

∣

pnqnθn+1+pn−1qn−pnqnθn+1−pnqn−1

qnθn+1+qn−1

∣

∣

∣

=
∣

∣

∣

pn−1qn−pnqn−1

qnθn+1+qn−1

∣

∣

∣= 1
qnθn+1+qn−1

< 1
qn+qn−1

=
{

1
a1+1

< 1
θ1

, if n= 1
1

(an+1)qn−1+qn−2
< 1

qn−1θn+qn−2
, if n> 1
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Diophantine Approximation Rational Approximations

Best Approximability of Convergents

Theorem

The convergents are indeed the best approximations to θ in the sense that,
if p,q are integers with 0< q < qn+1, then |qθ−p| ≥ |qnθ−pn|.

We may find integers u,v satisfying

p = upn+vpn+1, q = uqn+vqn+1.

It follows from 0< q < qn+1, that
u 6= 0;

If v 6= 0, then u,v have opposite signs.

Recalling that qnθ−pn and qn+1θ−pn+1 have opposite signs, we
obtain:

|qθ−p| = |(uqn+vqn+1)θ− (upn+vpn+1)|
= |u(qnθ−pn)+v(qn+1θ−pn+1)|
≥ |qnθ−pn|.
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Diophantine Approximation Rational Approximations

Sufficient Condition for a Convergent to θ

Theorem

If a rational p
q

satisfies |θ− p
q
| < 1

2q2 , then it is a convergent to θ.

We compute, for qn ≤ q ≤ qn+1,

|pq − pn
qn
| ≤ |θ− p

q |+ |θ− pn
qn
|

= 1
q |qθ−p|+ 1

qn
|qnθ−pn|

previous

≤ ( 1
q + 1

qn
)|qθ−p|

≤ ( 1
qn

+ 1
qn
) 1
2q = 1

qqn
.

It follows that |pqn−pnq| < 1.

Therefore, p
q
= pn

qn
.

George Voutsadakis (LSSU) Number Theory January 2023 24 / 62



Diophantine Approximation Quadratic Irrationals

Subsection 4

Quadratic Irrationals
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Diophantine Approximation Quadratic Irrationals

Quadratic Irrationals

By a quadratic irrational we mean a zero of a polynomial

ax2+bx +c ,

where

a,b,c are integers;

the discriminant d = b2−4ac is positive and not a perfect square.
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Diophantine Approximation Quadratic Irrationals

Examples of Quadratic Irrationals

p
2 is a zero of x2−2= 0;

1
3
(3+

p
3) is a zero of 3x2−6x +2= 0;

1
2
(3+

p
2) is a root of the equation 4x2−12x +7= 0;

p
20 is a zero of x2−20= 0;

p
22 is a root of x2−22= 0.
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Diophantine Approximation Quadratic Irrationals

Ultimately Periodic Continued Fractions

A continued fraction [a0,a1,a2, . . .] is ultimately periodic if there exist
k and m, such that the partial quotients a0,a1, . . . satisfy

am+n = an, for all n≥ k .

I.e., a continued fraction θ is ultimately periodic if and only if it has
the form

θ = [a0,a1, . . . ,ak−1,ak , . . . ,ak+m−1],

where the bar indicates that the block of partial quotients is repeated
indefinitely.
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Diophantine Approximation Quadratic Irrationals

Examples of Quadratic Irrationals

p
2= [1,2];

1
3
(3+

p
3)= [1,1,1,2];

1
2
(3+

p
2)= [2,4,1,4];

p
20= [4,2,8];

p
22= [4,1,2,4,2,1,8].
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Diophantine Approximation Quadratic Irrationals

Characterization of Quadratic Irrationals

Theorem

A continued fraction represents a quadratic irrational if and only if it is
ultimately periodic.

Suppose, first, that θ = [a0,a1, . . . ,ak−1,ak , . . . ,ak+m−1].

Set φ= θk = [ak , . . . ,ak+m−1].

By preceding work,

if
pn

qn
are convergents to θ, θ =

pk−1θk +pk−2

qk−1θk +qk−2
=
pk−1φ+pk−2

qk−1φ+qk−2
.

if
p′m
q′m

are convergents to φ, φ=
p′
m−1

φ+p′
m−2

q′
m−1

φ+q′
m−2

.

The latter shows that φ is quadratic.

The former, then, shows that θ is quadratic.

Finally, the non-termination shows that θ is irrational.
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Diophantine Approximation Quadratic Irrationals

Necessity (Transformation)

Suppose θ is a quadratic irrational, i.e., θ satisfies ax2+bx +c = 0,
where a,b,c are integers with d = b2−4ac > 0.

Let pn
qn

, n= 1,2, . . ., denote the convergents to θ.

Consider the binary form

f (x ,y)= ax2+bxy +cy2
.

Define the substitution

x = pnx
′+pn−1y

′
, y = qnx

′+qn−1y
′
.

It has determinant pnqn−1−pn−1qn = (−1)n−1.

It takes f into fn(x ,y)= anx
2+bnxy +cny

2, with discriminant d .

We have an = f (pn,qn) and cn = f (pn−1,qn−1)= an−1.

Note that f (θ,1)= 0.

This will be used twice below.
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Diophantine Approximation Quadratic Irrationals

Necessity (Boundedness of Parameters)

We noted that f (θ,1)= 0.

We now compute:

an
q2
n

= f (pn
qn

,1)− f (θ,1)= a((pn
qn
)2−θ2)+b((pn

qn
)−θ)

≤ |a|
∣

∣

∣

pn
qn

−θ
∣

∣

∣

∣

∣

∣

pn
qn

+θ
∣

∣

∣+|b|
∣

∣

∣

pn
qn

−θ
∣

∣

∣

≤ |a| 1
q2
n

∣

∣

∣

pn
qn

+θ
∣

∣

∣+|b| 1
q2
n
< |a|2|θ|+1

q2
n

+|b| 1
q2
n

= (2|θ|+1)|a|+|b|
q2
n

.

Thus, |an| < (2|θ|+1)|a|+ |b|, a bound independent of n.

But cn = an−1 and b2
n−4ancn = d .

So bn and cn are likewise bounded.
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Diophantine Approximation Quadratic Irrationals

Necessity (Ultimate Periodicity)

For n≥ 1, if θ1,θ2, . . . denote the complete quotients of θ,

θ =
pnθn+1+pn−1

qnθn+1+qn−1
.

Using the transformations, we get

fn(θn+1,1) = f (pnθn+1+pn−1,qnθn+1+qn−1)

= (qnθn+1+qn−1)
2f

(

pnθn+1+pn−1

qnθn+1+qn+1
,1

)

= (qnθn+1+qn−1)
2f (θ,1)= 0

Hence, there are only finitely many possibilities for θ1,θ2, . . ..

This shows that θℓ+m = θℓ, for some positive ℓ,m.

So, the continued fraction for θ is ultimately periodic.
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Diophantine Approximation Quadratic Irrationals

Purely Periodic Continued Fractions

The continued fraction of a quadratic irrational θ is said to be purely

periodic if
θ = [a0, . . . ,am−1].

If θ is a quadratic irrational, the conjugate θ′ of θ is the quadratic
irrational that is a root of the same quadratic equation as θ
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Diophantine Approximation Quadratic Irrationals

Characterization of Pure Periodicity

Theorem

Pure periodicity occurs if and only if θ > 1 and the conjugate θ′ of θ
satisfies −1< θ′ < 0.

Suppose θ> 1 and −1< θ′ < 0.

By induction the conjugates θ′n of the complete quotients θn,
n= 1,2, . . ., of θ also satisfy −1< θ′n < 0. The proof is based on

θ′n = an+ 1
θ′
n+1

, where θ = [a0,a1, . . .];

an ≥ 1, for all n including n= 0.

The inequality −1< θ′n < 0 shows that an = [ −1
θ′
n+1

].

Since θ is a quadratic irrational, we have θm = θn, for some n>m.

This gives 1
θ′
m
= 1

θ′
n

whence am−1 = an−1 and, hence, that θm−1 = θn−1.

Repetition of this conclusion yields θ = θn−m.

Hence, θ is purely periodic.
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Diophantine Approximation Quadratic Irrationals

Purely Periodic Continued Fractions (Converse)

If θ = [a0, . . . ,am−1] is purely periodic, then θ > a0 ≥ 1. Further, for
some n≥ 1, we have

θ =
pnθ+pn−1

qnθ+qn−1

,

where pn
qn

, n= 1,2, . . ., denote the convergents to θ.

So, θ satisfies the equation

qnx
2+ (qn−1−pn)x −pn−1 = 0.

Note that the quadratic on the left

has the value −pn−1 < 0 for x = 0;

has the value pn+qn− (pn−1+qn−1)> 0 for x =−1.

Hence, the conjugate θ′ of θ satisfies −1< θ′ < 0.
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Diophantine Approximation Quadratic Irrationals

A Consequence

Corollary

The continued fractions of
p
d + [

p
d ] and 1p

d−[
p
d ]

are purely periodic,

where d is any positive integer, not a perfect square.

Note that: p
d + [

p
d ] > 1;

−1 < −
p
d + [

p
d ] < 0.

Similarly,
1p

d−[
p
d ]

> 1;

−1 < 1

−
p
d−[

p
d ]

< 0.

By the criterion, the continued fractions of
p
d + [

p
d ] and 1p

d−[
p
d ]

are

purely periodic.
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Diophantine Approximation Quadratic Irrationals

Almost Purely Periodic Continuous Fractions

A continued fraction

[a0,a1, . . . ,ak−1,ak , . . . ,ak+m−1]

is almost purely periodic if k = 1.

I.e., only the initial partial quotient a0 precedes the repeated block.

Example: We saw that
p
d + [

p
d ] and 1p

d−[
p
d ]

are purely periodic.

But p
d = [

p
d ]+ (

p
d − [

p
d ])= [

p
d ]+

1
1p

d−[
p
d ]

.

So
p
d is almost purely periodic.
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Subsection 5

Liouville’s Theorem
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Algebraic Numbers and Minimal Polynomials

A real or complex number is said to be algebraic if it is a zero of a
polynomial

P(x)= a0x
n+a1x

n−1+·· ·+an,

where a0,a1, . . . ,an denote integers, not all 0.

For each algebraic number θ, there is a polynomial P as above, with
least degree, such that P(θ)= 0.

P is unique if one assumes that a0 > 0 and that a0,a1, . . . ,an are

relatively prime.

P is irreducible over the rationals.

P is called the minimal polynomial for θ.

The degree of θ is defined as the degree of P .
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Liouville’s Theorem

Theorem (Liouville’s Theorem)

For any algebraic number α with degree n> 1, there exists a number
c = c(α)> 0, such that |α− p

q | >
c
q2 , for all rationals p

q ,q > 0.

Let P be the minimal polynomial for α.

By the Mean Value Theorem, for any rational p
q ,q > 0, there exists ξ

between α and p
q
, such that P(α)−P(p

q
)= (α− p

q
)P ′(ξ).

By definition, P(α)= 0, and, by irreducibility, P(pq ) 6= 0.

But qnP(p
q
) is an integer and so |P(p

q
)| ≥ 1

qn .

Assume |α− p
q | < 1 (otherwise the conclusion is trivial).

Then |ξ| = |α+ (ξ−α)| ≤ |α|+ |α−ξ| ≤ |α|+ |α− p
q | < |α|+1.

So |P ′(ξ)| <C , for some C =C (α).

This gives |α− p
q | =

|P(α)−P( p
q
)|

|P ′(ξ)| > 1
Cq2 = 1/C

q2 .
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Hurwitz’s Theorem Revisited

Theorem (Hurwitz’s Theorem)

For any irrational θ, there exist infinitely many rational p
q
, such that

|θ− p
q
| < 1p

5q2
and, by taking θ =α= 1

2
(1+

p
5)= [1,1, . . .], we see that 1p

5
is

best possible.

If α= 1
2
(1+

p
5), then P(x)= x2−x −1 and P ′(x)= 2x −1.

Let p
q ,q > 0, be any rational and let δ= |α− p

q |.

|P(pq )| ≤δ|P ′(ξ)|, for some ξ between α and p
q .

So |ξ| ≤α+δ and |P ′(ξ)| ≤ 2(α+δ)−1 = 2δ+
p

5.

But |P(pq )| ≥
1
q2 , whence δ(2δ+

p
5)≥ 1

q2 .

So, for any c ′ < 1p
5

and for all sufficiently large q, we have δ> c ′

q2 .

Hence, Hurwitz’s theorem is best possible.
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Transcendental Numbers

A real or complex number that is not algebraic is said to be
transcendental.

Claim: The series

θ=
1

21!
+

1

22!
+

1

23!
+·· ·

represents a transcendental number.

Set

pj = 2j!
(

1

21!
+

1

22!
+·· ·+

1

2j!

)

, qj = 2j!, j = 1,2, . . . .

Then pj ,qj are integers, satisfying |θ− pj
qj
| = 1

2(j+1)! + 1

2(j+2)! +·· · .
The sum on the right is at most

1

2(j+1)!

(

1+
1

2
+

1

22
+·· ·

)

=
1

2(j+1)!−1
<

1

q
j

j

.

It follows from Liouville’s theorem that θ is transcendental.
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Remarks on Transcendental Numbers

Any real number θ for which there exists an infinite sequence of

distinct rationals
pj
qj

satisfying |θ− pj
qj
| < 1

q
ωj

j

, where ωj
j→∞−→ ∞, will be

transcendental.

Example: This condition will hold for:

any infinite decimal in which there occur sufficiently long blocks of

zeros;

any continued fraction in which the partial quotients increase

sufficiently rapidly.
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Subsection 6

Transcendental Numbers
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The Integral I (t)

Consider the integral

I (t)=
∫t

0
et−x f (x)dx , t ≥ 0,

where f is a real polynomial with degree m.

More generally, let, for all i ≥ 0,

Ii (t)=
∫t

0
et−x f (i)(x)dx , t ≥ 0,

where f (i)(x) denotes the i -th derivative of f (x).

With this notation, I (t)= I0(t).
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Computing I (t)

If Ii (t)=
∫t
0 e

t−x f (i)(x)dx , t ≥ 0, then

Ii (t)= et f (i)(0)− f (t)+ Ii+1(t).

This needs an integration by-parts:

Ii (t) =
∫t
0 e

t−x f (i)(x)dx =
∫t
0 (−et−x )′f (i)(x)dx

= (−et−x f (i)(x))
∣

∣

∣

t

0
−

∫t
0 (−e

t−x )f (i+1)(x)dx

= et f (i)(0)− f (i)(t)+ Ii+1(t).

If I (t)=
∫t
0 e

t−x f (x)dx , t ≥ 0, then

I (t)= et
m
∑

j=0

f (j)(0)−
m
∑

j=0

f (j)(t).

This follows by repeated application of the recursive formula above.
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Bounding I (t)

If f denotes the polynomial obtained from f by replacing each
coefficient with its absolute value, then

|I (t)| ≤
∫t

0
|et−x f (x)|dx ≤ tet f (t).

Note that |f (x)| ≤ f (x).

So we have

|I (t)| = |
∫t
0 e

t−x f (x)dx | ≤
∫t
0 e

t−x |f (x)|dx

≤
∫t
0 e

t−x f (x)dx ≤ et f (t)
∫t
0 dx

= tet f (t).
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Transcendence of e

Suppose that e is algebraic, so that

a0+a1e+ ·· ·+ane
n = 0,

for some integers a0,a1, . . . ,an, with a0 6= 0.

Set
f (x)= xp−1(x −1)p · · ·(x −n)p , p is a large prime.

The degree m of f is (n+1)p−1.

Define
J = a0I (0)+a1I (1)+ ·· ·+anI (n).

By the preceding equations,

J =
∑n

k=0
ak I (k)=

∑n
k=0

ak(e
k ∑m

j=0
f (i)(0)−

∑m
j=0

f (j)(k))

=
∑n

k=0
ak(−

∑m
j=0

f (j)(k))=
∑m

j=0

∑n
k=0

ak f
(j)(k).
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Transcendence of e (Cont’d)

For 1≤ k ≤ n, define

gk(x)=
f (x)

(x −k)p
.

Then

f (j)(k)=
{

0, if j < p
( j
p

)

p!g
(j−p)
k

(k), if j ≥ p
.

So, for all j , f (j)(k) is an integer divisible by p!.
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Transcendence of e (Cont’d)

Define

h(x)=
f (x)

xp−1
.

Then

f (j)(0)=
{

0, if j < p−1
( j
p−1

)

(p−1)!h(j−p+1)(0), if j ≥ p−1
.

Note that:

h(0)= (−1)np(n!)p ;

h(j)(0) is an integer divisible by p, for j > 0.

We conclude that:

For j 6= p−1, f (j)(0) is an integer divisible by p!;

f (p−1)(0) is an integer divisible by (p−1)!, but not by p for p > n.
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Transcendence of e (Conclusion)

Recall that J =
∑m

j=0

∑n
k=0

ak f
(j)(k).

It follows that J is a non-zero integer divisible by (p−1)!.

So |J | ≥ (p−1)!.
But, now, note that:

If k ≤ n, f (k)= kp−1(k +1)p · · ·(k +n)p ≤ (2n)m.

m= (n+1)p−1≤ 2np.

Hence,

|J | = |a0I (0)+·· ·+anI (n)| ≤ |a0||I (0)|+ · · · + |an||I (n)|

≤ |a1|1e1f (1)+·· ·+ |an|nenf (n)
≤ |a1|e(2n)2np +·· ·+ |an|nen(2n)2np

= (|a1|e+·· ·+ |an|nen)((2n)2n)p ≤ cp ,

for some c independent of p.

The inequalities are inconsistent for p sufficiently large.

George Voutsadakis (LSSU) Number Theory January 2023 52 / 62



Diophantine Approximation Minkowski’s Theorem
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Minkowski’s Theorem
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Blichfeldt’s Theorem

Theorem (Blichfeldt’s Theorem)

Any bounded region R with volume V exceeding 1 contains distinct points
x,y, such that x−y is an integer point, i.e., a point all of whose
coordinates are integers.

Let u= (u1, . . . ,un) be an integer point.

Set Ru = {(x1, . . . ,xn) ∈R : uj ≤ xj < uj +1,1≤ j ≤ n}.

Denote by Vu the volume of Ru.

R may be expressed as the disjoint union of Ru.

Consequently, V =
∑

Vu > 1.

This gives
∑

(Ru−u)> 1.

But, for all u, Ru−u lies in the unit square.

Thus, there exist u,v, such that (Ru−u)∩ (Rv −v) 6= ;.

So, there exist points x in Ru and y in Rv, such that x−u= y−v,
and so x−y is an integer point.
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Convex Bodies and Symmetry

By a convex body S we mean a bounded, open set of points in
Euclidean n-space, such that

x,y ∈S implies λx+ (1−λ)y ∈S , for all 0<λ< 1.

A set of points S is said to be symmetric about the origin if, for
every point x,

x ∈S implies −x ∈S .
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Minkowski’s Theorem

Theorem (Minkowski’s Theorem)

If a convex body S , symmetric about the origin, has volume exceeding 2n,
then it contains an integer point other than the origin.

Define R = 1
2
S := {

1
2
x : x ∈S }.

Then V (R)= 1
2n
V (S )> 1.

By Blichfeldt’s Theorem, there exist x,y ∈R, with x 6= y, such that
x−y is an integer point.

By definition, 2x,2y ∈S .

By symmetry, −2y ∈S .

By convexity, x−y= 1
2
(2x)+ 1

2
(−2y) ∈S .
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Linear Independence

Points a1, . . . ,an in Euclidean n-space are said to be linearly

independent if, for all real numbers t1, . . . ,tn,

t1a1+·· ·+ tnan = 0 implies t1 = ·· · = tn = 0.

If
aj = (a1j , . . . ,anj), 1≤ j ≤ n,

then a1, . . . ,an are linearly independent if and only if

d = det(aij) 6= 0.
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Lattices and Determinants

By a lattice Λ we mean a set of points of the form

x= u1a1+·· ·+unan,

where a1, . . . ,an are fixed linearly independent points and u1, . . . ,un run
through all the integers.

The points a1, . . . ,an are referred to as the generators or as a basis

for the lattice.

The determinant of Λ is defined as

d(Λ)= |d | = det(aij),

where, as before,

aj = (a1j , . . . ,anj), 1≤ j ≤ n.
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General Minkowski’s Theorem

Theorem (General Minkowski’s Theorem)

If, for any lattice Λ, a convex body S , symmetric about the origin, has
volume exceeding 2nd(Λ), then it contains a point of Λ other than the
origin.

Let A be the invertible linear transformation ei 7→ ai , i = 1, . . . ,n.

Define R = 1
2
A−1(S ).

Then V (R)= 1
2nd(Λ)V (S )> 1.

By Blichfeldt’s Theorem, there exist x,y ∈R, with x 6= y, such that
x−y is an integer point.

As before, A(x−y)= 2A(1
2
x+ 1

2
(−y)) ∈S .

Moreover, it is in Λ, since x−y is an integer point.
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Minkowski’s Linear Forms Theorem

Corollary

Let λ1, . . . ,λn > 0 and Λ be the lattice generated by a1, . . . ,an.
If λ1 · · ·λn > d(Λ), then there exist integers u1, . . . ,un, not all 0, such that

|u1aj1+ ·· ·+unajn| <λj , 1≤ j ≤ n.

Consider S = {x : |xj | <λj ,1≤ j ≤ n}.

Note that S is convex and symmetric and, moreover,

V (S )= 2nλ1 · · ·λn > 2nd(Λ).

Thus, by the General Minkowski’s Theorem, S contains a point in Λ
other than the origin.

This means that, there exist integers u1, . . . ,un, not all 0, such that

|u1aj1+ ·· ·+unajn| <λj , 1≤ j ≤ n.

George Voutsadakis (LSSU) Number Theory January 2023 60 / 62



Diophantine Approximation Minkowski’s Theorem

Generalizations of Dirichlet’s Theorem I

Corollary

If θ1, . . . ,θn are any real numbers and if Q > 0, then there exist integers
p,q1, . . . ,qn, not all 0, such that |qj | <Q, 1≤ j ≤ n, and

|q1θ1+ ·· ·+qnθn−p| ≤
1

Qn
.

In Minkowski’s Linear Forms Theorem, take:

λj =Q , 1≤ j ≤ n, λn+1 =
1

Qn

and
aj = ej , j = 1, . . . ,n, an+1 = (θ1, . . . ,θn,−1).
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Generalizations of Dirichlet’s Theorem II

Corollary

There exist integers p1, . . . ,pn,q, not all 0, such that |q| ≤Qn and
|qθj −pj | < 1

Q
, 1≤ j ≤ n.

In Minkowski’s Linear Forms Theorem, take:

λj =
1

Q
, 1≤ j ≤ n, λn+1 =Qn

and
a1 = (−1,0, . . . ,0,θ1)
a2 = (0,−1, . . . ,0,θ2)

...
an = (0,0, . . . ,−1,θn)
an+1 = (0,0, . . . ,0,(−1)n+1).
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