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Quadratic Fields Algebraic Number Fields

Algebraic Number Fields

Let α be an algebraic number with degree n.

Let P be the minimal polynomial for α.

By the conjugates of α we mean the zeros α1, . . . ,αn of P .

The algebraic number field k generated by α over the rationals Q

is defined as the set of numbers Q(α), where Q(x) is any polynomial

with rational coefficients.

The set can be regarded as being embedded in the complex number

field C and, thus, its elements are subject to the usual operations of

addition and multiplication.
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Algebraic Number Fields (Cont’d)

Proposition

The algebraic number field k generated by α over the rationals Q is indeed

a field.

We have to show that every non-zero element Q(α) has an inverse.

If P is the minimal polynomial for α, then P ,Q are relatively prime.

So, there exist polynomials R ,S , such that PS +QR = 1, for all x .

On putting x =α, this gives R(α)= 1
Q(α) , as required.

The field k is said to have degree n over Q, if α has degree n.

The notation [k :Q]= n means that the degree of k over Q is n.
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Iteration of the Construction

The construction can be continued to furnish, for every algebraic

number field k and every algebraic number β, a field K = k(β), with

elements given by polynomials in β with coefficients in k .

The degree [K : k] of K over k is defined in the obvious way as the

degree of β over k .

In abstract algebra, one shows that K is also algebraic over Q and

[K :Q]= [K : k][k :Q].
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Algebraic Integers

An algebraic number is said to be an algebraic integer if the

coefficient of the highest power of x in the minimal polynomial P is 1.

The algebraic integers in an algebraic number field k form a ring R .

The ring has an integral basis:

There exist elements ω1, . . . ,ωn in R , such that every element in R can

be expressed uniquely in the form

u1ω1+·· ·+unωn,

for some rational integers u1, . . . ,un.

We write ωi = pi(α), where pi denotes a polynomial over Q.

The number (det(pi (αj)))
2, where α1, . . . ,αn are the conjugates of α,

is a rational integer independent of the choice of basis.

It is called the discriminant of k .
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Divisibility, Units, Associates and Irreducibles

An algebraic integer α is said to be divisible by an algebraic integer β

if α
β is an algebraic integer.

An algebraic integer ε is said to be a unit if 1
ε

is an algebraic integer.

Suppose that R is the ring of algebraic integers in a number field k .

Two elements α,β of R are said to be associates if α= εβ, for some

unit ε.

This is an equivalence relation on R .

An element α of R is said to be irreducible if every divisor of α in R

is either an associate or a unit.
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Unique Factorization Domains

One calls R a unique factorization domain if every element of R can

be expressed essentially uniquely as a product of irreducible elements.

The fundamental theorem of arithmetic asserts that the ring of

integers in k =Q has this property; but it does not hold for every k .

It is known due to Kummer and Dedekind that a unique factorization

property can be restored by the introduction of ideals, and this forms

the central theme of algebraic number theory.
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Quadratic Fields, Norms and Conjugates

Let d be a square-free integer, positive or negative, but not 1.

The quadratic field Q(
p
d) is the set of all numbers of the form

u+v
p
d , u,v ∈Q,

subject to the usual operations of addition and multiplication.

For any element α= u+v
p
d in Q(

p
d), the norm of α is the rational

number

N(α)= u2−dv2
.

For any element α= u+v
p
d in Q(

p
d), the conjugate of α is

α= u−v
p
d .
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Properties of Quadratic Fields

If α ∈Q(
p
d), then N(α)=αα.

Suppose α= u+v
p
d .

Then
αα = (u+v

p
d)(u−v

p
d)= u2− (v

p
d)2

= u2−dv2 =N(α).

If α,β ∈Q(
p
d), then αβ=αβ.

Suppose α= u+v
p
d and β=w +z

p
d .

Then

αβ = (uw +vzd)+ (uz +vw)
p
d = (uw +vzd)− (uz +vw)

p
d

= (u−v
p
d)(w −z

p
d)=αβ.

If α,β ∈Q(
p
d), then N(α)N(β) =N(αβ).

N(α)N(β) =ααββ=αβαβ=N(αβ).
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Quadratic and Gaussian Fields

Proposition

Q(
p
d) is a field.

Let α= u+v
p
d be a non-zero element of Q(

p
d).

We saw that αα=N(α) ∈Q.

So, the inverse of α is α
N(α) .

The special field Q(
p
−1) is called the Gaussian field.

It is customary to express its elements in the form u+ iv .

In this case we have N(α)= u2+v2.
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Algebraic Integers in Q(
p
d)

Suppose that α= u+v
p
d is an integer in Q(

p
d).

α and α are zeros of

P(x) = (x −α)(x −α)= (x − (u+v
p
d))(x − (u−v

p
d))

= x2−2ux + (u2−dv2)= x2−ax +c ,

where a= 2u and c =N(α).

This shows that the rational numbers a,c must in fact be integers.

Letting b = 2v , we also have

a2−db2 = (2u)2−d(2v)2 = 4(u2−dv2)= 4N(α)= 4c .

Since d is square-free, it follows that also b is a rational integer.
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Algebraic Integers in Q(
p
d) (First Case)

We have P(x)= x2−ax +c , with a= 2u, b = 2v and c =N(α)
integers.

Suppose d ≡ 2 or 3 (mod 4).
By a2−db2 = 4c , a2 ≡ 2b2 or a2 ≡ 3b2 (mod 4).
But a square is congruent to 0 or 1 (mod 4).
So, a,b are even.
Thus, u,v are rational integers.
We can write any algebraic integer u+v

p
d as

u+v
p
d = u ·1+v ·

p
d .

Hence, an integral basis for Q(
p
d) is ω1 = 1, ω2 =

p
d .

Since α=
p
d , we get p1(x)= 1 and p2(x)= x .

Now we can compute the discriminant:

D =
∣

∣

∣

∣

p1(α) p1(α)
p2(α) p2(α)

∣

∣

∣

∣

2

=
∣

∣

∣

∣

1 1p
d −

p
d

∣

∣

∣

∣

2

= (−2
p
d)2 = 4d .

George Voutsadakis (LSSU) Number Theory January 2023 15 / 43



Quadratic Fields The Quadratic Field

Algebraic Integers in Q(
p
d) (Second Case)

We have P(x)= x2−ax +c , with a= 2u, b = 2v and c =N(α)
integers.

Suppose d ≡ 1 (mod 4), (the only other possibility).
Then a≡ b (mod 2).
Thus, u−v is a rational integer.
We can write any algebraic integer u+v

p
d as

u+v
p
d = (u−v) ·1+2v ·

1

2
(1+

p
d).

Hence, an integral basis for Q(
p
d) is ω1 = 1, ω2 = 1

2 (1+
p
d).

Since α=
p
d , we get p1(x)= 1 and p2(x)= 1

2x +
1
2 .

Now we can compute the discriminant:

D =
∣

∣

∣

∣

p1(α) p1(α)
p2(α) p2(α)

∣

∣

∣

∣

2

=
∣

∣

∣

∣

1 1
1
2

p
d + 1

2 −1
2

p
d + 1

2

∣

∣

∣

∣

2

= (−
p
d)2 = d .
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Quadratic Fields and Binary Quadratic Forms

The discriminant D of Q(
p
d) is congruent to 0 or 1 (mod 4).

So D is also the discriminant of a binary quadratic form.

If α is any algebraic integer in Q(
p
d), then, for some rational integers

x ,y , we have

α=
{

x +y
p
d , when d ≡ 2 or 3 (mod 4)

x + 1
2
y(1+

p
d), when d ≡ 1 (mod 4)

.

Thus, we see that N(α)= F (x ,y), where F denotes the principal form

with discriminant D, that is,

F (x ,y)=
{

x2−dy2
, when D ≡ 0 (mod 4)

(x + 1
2
y)2− 1

4
dy2

, when D ≡ 1 (mod 4)
.
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Quadratic Fields Units

Characterization of the Units in Q(
p
d)

By a unit in Q(
p
d) we mean an algebraic integer ε in Q(

p
d), such

that 1
ε is an algebraic integer.

Proposition

An algebraic integer ε in Q(
p
d) is a unit if and only if N(ε)= ±1.

If ε is a unit, then N(ε) and N(1
ε ) are rational integers, since they are

the constant terms of the corresponding minimal polynomials.

By multiplicativity of N, N(ε)N(1
ε )= 1.

Therefore, N(ε)= ±1.

Conversely, suppose N(ε)= ±1. Then εε=±1, whence, ε is a unit.

Recalling that N(α)=F (x ,y), we see that the units in Q(
p
d) are

determined by the integer solutions x ,y of the equation F (x ,y)= ±1.
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Units in Q(
p
d) (Imaginary Case)

Suppose d < 0.

The quadratic field Q(
p
d) is said to be imaginary.

Proposition

In an imaginary quadratic field there are only finitely many units.

We distinguish cases:

If d <−3, then, the equation F (x ,y)= ±1 has only the solutions
x = ±1, y = 0. So the only units in Q(

p
d) are ±1.

For d =−1, that is, for the Gaussian field, we have F (x ,y)= x2+y2.
The equation F (x ,y)= ±1 has four solutions, namely (±1,0), (0, ±1).
In this case α= x +y

p
d . So there are four units ±1, ± i .

For d =−3, we have F (x ,y)= x2+xy +y2. The equation F (x ,y)= ±1
has six solutions, namely (±1,0), (0, ±1), (1,−1) and (−1,1). In this
case α= x + 1

2y(1+
p
d). Thus, the units of Q(

p
−3) are ±1 and

1
2 (±1±

p
−3).
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Units in Q(
p
d) (Imaginary Case Cont’d)

The units in an imaginary quadratic field are all roots of unity.

They are given by the zeros of:

x2−1, when D <−4;
x4−1, when D =−4;
x6−1, when D =−3.

Note that the number of units is the same as the number w for forms

with discriminant D.
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Units in Q(
p
d) (Real Case)

Suppose d > 0.

The quadratic field Q(
p
d) is said to be real.

Proposition

In a real quadratic field there are infinitely many units.

It suffices to show that there is a unit η 6= ±1.
Then, ηm is a unit for all integers m;
Since the only roots of unity in Q(

p
d) are ±1, different m give distinct

units.

By Dirichlet’s Theorem, for any integer Q > 1, there exist rational

integers p,q, with 0< q <Q, such that |α| ≤ 1
Q

, where α= p−q
p
d .

The conjugate α=α+2q
p
d satisfies |α| ≤ |α|+2q

p
d ≤Q

p
d +2Q

p
d

= 3Q
p
d . So, |N(α)| = |α||α| ≤ 3

p
d .

Further, since
p
d is irrational, we obtain, as Q →∞, infinitely many α

with this property.

George Voutsadakis (LSSU) Number Theory January 2023 22 / 43



Quadratic Fields Units

Units in Q(
p
d) (Real Case Cont’d)

Now N(α) is a rational integer bounded independently of Q.

Thus, for infinitely many α, it takes some fixed value, say N.

We can select two distinct α= p−q
p
d and α′ = p′−q′pd , such that

p ≡ p′ (mod N) and q ≡ q′ (mod N).

We now put η= α
α′ = p−q

p
d

p′−q′
p
d
.

N(η)= N(α)
N(α′)

= 1;

η 6= ±1, since
p
d is irrational and q,q′ are positive.

We have η= x +y
p
d , where x = pp′−dqq′

N
and y = pq′−p′q

N
.

Note that

pp′−dqq′ = p(p+kN)−dq(q+ℓN)= (p2−dq2)+ (pk −dqℓ)N;
pq′−p′q = p(q+ℓN)− (p+kN)q = (pℓ−qk)N.

Hence, x ,y are rational integers.

It follows that η is a non-trivial unit in Q(
p
d).
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Smallest Unit Exceeding 1 in a Real Quadratic Field

Consider the set of all units in the real field Q(
p
d) exceeding 1.

The set is not empty, for if η is the unit obtained in the preceding

slide, then one of the numbers ±η or ± 1
η is a member.

Each element of the set has the form u+v
p
d , where u,v are integers,

or, if d ≡ 1 (mod 4), possibly halves of odd integers.

u and v are positive, for u+v
p
d is greater than its conjugate

u−v
p
d , which lies between −1 and 1.

It follows that there is a smallest element in the set, say ε.
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Units in Relation to Smallest Unit Exceeding 1

If ε′ is any positive unit in the field, then there is a unique integer m,

such that εm ≤ ε′ < εm+1.

Hence

1≤
ε′

εm
< ε.

But ε′

εm is also a unit in the field.

It follows from the definition of ε, that ε′ = εm.

This shows that all the units in the field are given by

±εm, m= 0, ±1, ±2, . . . .
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Primes in the Ring of Algebraic Integers

Let R be the ring of algebraic integers in a quadratic field Q(
p
d).

A prime π in R is an element of R that is neither 0 nor a unit and

which has the property that, if π divides αβ, where α,β are elements

of R , then either π divides α or π divides β.

Proposition

A prime π is irreducible.

Suppose π is prime and π=αβ.

By primality α
π

or
β
π

is an element of R .

But the first implies that β is a unit and the second that α is a unit.

Therefore, π is irreducible.
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Irreducibles Need Not Be Primes

Claim: An irreducible element need not be a prime.

Consider the number 2 in the quadratic field Q(
p
−5).

It is irreducible: Suppose 2=αβ. Then 4=N(α)N(β). But N(α) and
N(β) have the form x2+5y2, for some integers x ,y . Note that the
equation x2+5y2 = ±2 has no integer solutions. So, either N(α)= ±1
or N(β)= ±1. Thus, either α or β is a unit.

On the other hand, 2 is not a prime in Q(
p
−5):

2 divides (1+
p
−5)(1−

p
−5)= 6;

2 does not divide either 1+
p
−5 or 1−

p
−5.

Taking norms to verify that each of the latter is irreducible.
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Decomposition into a Product of Irreducibles

Proposition

Every element α of R that is neither 0 nor a unit can be factorized into a

finite product of irreducible elements.

If α is irreducible, there is nothing to prove.

Otherwise, α=βγ, for some β,γ in R , neither of which is a unit.

If β were not irreducible, then it could be factorized likewise, and the

same holds for γ.

The process must terminate, for if α=β1 · · ·βn, where none of the β’s

is a unit, then, since |N(βj )| ≥ 2, we see that |N(α)| ≥ 2n.
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Unique Factorization Domains

A finite product of irreducible elements is essentially unique if it is
unique except for:

the order of the factors;
the possible replacement of irreducible elements by their associates.

The ring R is said to be a unique factorization domain if the

expression for α as a finite product of irreducible elements is

essentially unique.
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Characterization of Unique Factorization Domains

Theorem

R is a unique factorization domain if and only if every irreducible element

of R is also a prime in R .

Suppose factorization in R is unique.

Let π be an irreducible element such that π divides αβ, with α,β in R .

Then π is an associate of one of the irreducible factors of α or β.

So π divides α or β, as required.

Conversely, suppose that every irreducible element is also a prime.

We argue as in the proof of the fundamental theorem of arithmetic.

Suppose α=π1 · · ·πk as a product of irreducible elements, and π′ is an

irreducible element occurring in another factorization.

Then π′ must divide πj , for some j . So, π′ and πj are associates.

Assuming by induction that the result holds for α
π′ , the required

uniqueness of factorization follows.
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Euclidean Fields

A quadratic field Q(
p
d) is said to be Euclidean if its ring of integers

R has the property that, for any elements α,β of R with β 6= 0, there

exist elements γ,δ of R , such that α=βγ+δ and |N(δ)| < |N(β)|.
Claim: A Euclidean quadratic field has a Euclidean algorithm.

We can generate the sequence of equations

δj−2 = δj−1γj +δj , j = 1,2, . . . ,

where δ−1 =α, δ0 =β, δ1 = δ, γ1 = γ and |N(δj )| < |N(δj−1)|.
The sequence terminates when δk+1 = 0, for some k .

Then δk has the properties of a greatest common divisor:

δk divides α and β;
every common divisor of α,β divides δk .

Moreover, we have δk =αλ+βµ, for some λ,µ in R .
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Euclidean Fields (Cont’d)

This can be verified by successive substitution.

Alternatively, consider the set of positive integers of the form

|N(αλ+βµ)|, where λ,µ ∈R .

This set has a least member |N(δ′)|, say, δ′ =αλ+βµ, λ,µ ∈R .

Thus, every common divisor of α,β divides δ′.

Note that α= δ′γ+δ′′, with |N(δ′′)| < |N(δ′)|.
Therefore, δ′′ =αλ′+βµ′, for some λ′

,µ′ in R .

Hence, δ′ divides α. Thus, N(δ′′)= 0 and, so, δ′′ = 0.

Similarly, δ′ divides β. Hence, we have δ′ =δk .

If δk is a unit then, by division, we obtain elements λ,µ in R , with

αλ+βµ= 1.
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Euclidean Fields have Unique Factorization

Theorem

A Euclidean field has unique factorization.

It suffices to show that every irreducible element π in R is a prime.

Suppose that π divides αβ but that π does not divide α.

By the Euclidean Algorithm, there exist integers λ,µ in R , such that

αλ+πµ= 1.

This gives αβλ+πβµ=β.

Hence, π divides β.

Thus, π is a prime.
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Euclidean Quadratic Fields: A Negative Result

Theorem

There can be no other Euclidean fields with d < 0, apart from

d =−11,−7,−3,−2,−1.

We exclude two cases that cover all non-listed numbers.

Suppose, first, that d ≡ 2 or 3 (mod 4) and d ≤−5.
We cannot have

p
d = 2γ+δ, with |N(δ)| < 4.

Let γ= x +y
p
d , δ= x ′+y ′pd , with x ,y , x ′,y ′ rational integers.

Note that N(δ)≥ x ′2+5y ′2. So, y ′ = 0.
But

p
d = 2γ+δ yields 2y +y ′ = 1, contradicting y ′ = 0.

Suppose, next, that d ≡ 1 (mod 4) and d ≤−15.
We cannot have 1

2 (1+
p
d)= 2γ+δ, with |N(δ)| < 4.

Let γ= x +y 1
2 (1+

p
d), δ= x ′+y ′ 1

2 (1+
p
d), with x ,y , x ′,y ′ integers.

Note that N(δ)≥ 1
4 (2x

′+y ′)2+ 15
4 y ′2. So, y ′ = 0 or y ′ =−2x ′.

But 1
2 (1+

p
d)= 2γ+δ yields y + 1

2y
′ = 1

2 .
This contradicts y ′ = 0 or y ′ =−2x ′.
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Euclidean Quadratic Fields for d =−2,−1,2,3

Theorem

If d =−2,−1,2 or 3 then Q(
p
d) is Euclidean.

Let α,β be any algebraic integers in Q(
p
d), with β 6= 0.

Then α
β
= u+v

p
d , for some rationals u,v .

Select integers x ,y as close as possible to u,v and set

r = u−x and s = v −y .

Then |r | ≤ 1
2

and |s | ≤ 1
2

and, moreover,

α=β(u+v
p
d)=β((x + r)+ (y + s)

p
d)=β(x +y

p
d)+β(r + s

p
d).

Now note that:
For |d | ≤ 2, we have |r2−ds2| ≤ r2+2s2 ≤ 3

4 ;

For d = 3, we have |r2−ds2| ≤max(r2,ds2)≤ 3
4 .

Therefore, |N(β(r + s
p
d))| =N(β)(r2 −ds2)≤N(β).
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The Gaussian Field and the Gaussian Integers

The Gaussian field is Q(
p
−1)=Q(i).

The Gaussian integers are the integers in the field.

They have the form x + iy , with x ,y rational integers.

The norm of a Gaussian integer has the form x2+y2.

In particular, it is non-negative.

It was noted that there are just four units ±1 and ±i .
Moreover, the field is Euclidean and so has unique factorization.

It follows that there is no need to distinguish between irreducible

elements and primes.

These elements are called Gaussian primes.
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Gaussian Integers and Primes

Proposition

If α is any Gaussian integer and if N(α) is a rational prime, then α is a

Gaussian prime.

Assume α is any Gaussian integer and N(α) a rational prime.

Suppose α=βγ, for some Gaussian integers β,γ.

Then N(α)=N(β)N(γ).

Hence, either N(β)= 1 or N(γ)= 1.

So, either β or γ is a unit.
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Gaussian and Rational Primes

Proposition

Every Gaussian prime π divides just one rational prime p.

π certainly divides N(π).

So there is a least positive rational integer p, such that π divides p.

p is a rational prime: Suppose p =mn, where m,n are rational

integers. Then, since π is a Gaussian prime, we have either π divides

m or π divides n. By the minimal property of p, either m or n is 1.

The prime p is unique: Suppose p′ is any other rational prime. Then

there exist rational integers a,a′, such that ap+a′p′ = 1. Thus, if π

were to divide both p and p′, then it would divide 1. So π would be a

unit contrary to definition.
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Gaussian Primes

Theorem

A rational prime p is either itself a Gaussian prime or is the product ππ′ of

two Gaussian primes, where π,π′ are conjugates.

p is divisible by some Gaussian prime π.

Thus, we have p =πλ, for some Gaussian integer λ.
This gives N(π)N(λ)= p2, whence one of the following holds:

N(λ)= 1. So λ is a unit and p is an associate of π;
N(λ)= p. So N(π)= p.

In the first case p ≡ 3 (mod 4) and in the second p ≡ 1 (mod 4):

N(π) has the form x2+y2. A square is congruent to 0 or 1 (mod 4).
Suppose p ≡ 1 (mod 4). Then −1 is a quadratic residue (mod p).

So p divides x2+1= (x + i)(x − i), for some rational integer x .

If p were a Gaussian prime, it would divide either x + i or x − i .

This contradicts the neither x
p
+ i

p
nor x

p
− i

p
is a Gaussian integer.
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Gaussian Primes (Cont’d)

With regard to the prime 2, we have 2= (1+ i)(1− i).

1+ i and 1− i are Gaussian primes;
1+ i and 1− i are associates.

In conclusion, we find that the totality of Gaussian primes are given
by:

the rational primes p ≡ 3 (mod 4);
the factors π,π′ in the expression p =ππ′ for primes p ≡ 1 (mod 4);
1+ i ;

together with all the associates of the elements in this list, formed by

multiplying by ±1 and ±i .
The argument provides another proof of the result that every prime

p ≡ 1 (mod 4) can be expressed as a sum of two squares.
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