Introduction to Number Theory

George Voutsadakis¹

¹Mathematics and Computer Science Lake Superior State University

LSSU Math 400

Quadratic Fields

- Algebraic Number Fields
- The Quadratic Field
- Onits
- Primes and Factorization
- Euclidean Fields
- The Gaussian Field

Subsection 1

Algebraic Number Fields

Algebraic Number Fields

- Let α be an algebraic number with degree n.
- Let *P* be the minimal polynomial for α .
- By the **conjugates** of α we mean the zeros $\alpha_1, \ldots, \alpha_n$ of *P*.
- The algebraic number field k generated by α over the rationals \mathbb{Q} is defined as the set of numbers $Q(\alpha)$, where Q(x) is any polynomial with rational coefficients.
- The set can be regarded as being embedded in the complex number field $\mathbb C$ and, thus, its elements are subject to the usual operations of addition and multiplication.

Algebraic Number Fields (Cont'd)

Proposition

The algebraic number field k generated by α over the rationals \mathbb{Q} is indeed a field.

- We have to show that every non-zero element Q(α) has an inverse.
 If P is the minimal polynomial for α, then P, Q are relatively prime.
 So, there exist polynomials R, S, such that PS + QR = 1, for all x.
 On putting x = α, this gives R(α) = 1/Q(α), as required.
- The field k is said to have degree n over Q, if α has degree n.
 The notation [k: Q] = n means that the degree of k over Q is n.

Iteration of the Construction

- The construction can be continued to furnish, for every algebraic number field k and every algebraic number β , a field $K = k(\beta)$, with elements given by polynomials in β with coefficients in k.
- The degree [K: k] of K over k is defined in the obvious way as the degree of β over k.
- ullet In abstract algebra, one shows that $m{K}$ is also algebraic over ${\mathbb Q}$ and

 $[K:\mathbb{Q}] = [K:k][k:\mathbb{Q}].$

Algebraic Integers

- An algebraic number is said to be an **algebraic integer** if the coefficient of the highest power of x in the minimal polynomial P is 1.
- The algebraic integers in an algebraic number field k form a ring R.
- The ring has an integral basis:

There exist elements $\omega_1, \ldots, \omega_n$ in R, such that every element in R can be expressed uniquely in the form

$$u_1\omega_1+\cdots+u_n\omega_n$$
,

for some rational integers u_1, \ldots, u_n .

- We write $\omega_i = p_i(\alpha)$, where p_i denotes a polynomial over \mathbb{Q} .
- The number (det(p_i(α_j)))², where α₁,..., α_n are the conjugates of α, is a rational integer independent of the choice of basis.
 - It is called the **discriminant** of k.

Divisibility, Units, Associates and Irreducibles

- An algebraic integer α is said to be **divisible** by an algebraic integer β if $\frac{\alpha}{\beta}$ is an algebraic integer.
- An algebraic integer ε is said to be a **unit** if $\frac{1}{\varepsilon}$ is an algebraic integer.
- Suppose that R is the ring of algebraic integers in a number field k.
 Two elements α, β of R are said to be associates if α = εβ, for some unit ε.

This is an equivalence relation on R.

An element α of R is said to be irreducible if every divisor of α in R is either an associate or a unit.

Unique Factorization Domains

- One calls *R* a **unique factorization domain** if every element of *R* can be expressed essentially uniquely as a product of irreducible elements.
- The fundamental theorem of arithmetic asserts that the ring of integers in k = Q has this property; but it does not hold for every k.
- It is known due to Kummer and Dedekind that a unique factorization property can be restored by the introduction of ideals, and this forms the central theme of algebraic number theory.

Subsection 2

The Quadratic Field

Quadratic Fields, Norms and Conjugates

- Let d be a square-free integer, positive or negative, but not 1.
- The quadratic field $\mathbb{Q}(\sqrt{d})$ is the set of all numbers of the form

$$u + v\sqrt{d}, u, v \in \mathbb{Q},$$

subject to the usual operations of addition and multiplication.

• For any element $\alpha = u + v\sqrt{d}$ in $\mathbb{Q}(\sqrt{d})$, the **norm** of α is the rational number

$$N(\alpha)=u^2-dv^2.$$

• For any element $\alpha = u + v\sqrt{d}$ in $\mathbb{Q}(\sqrt{d})$, the **conjugate** of α is

$$\overline{\alpha} = u - v\sqrt{d}.$$

Properties of Quadratic Fields

• If
$$\alpha \in \mathbb{Q}(\sqrt{d})$$
, then $N(\alpha) = \alpha \overline{\alpha}$.
Suppose $\alpha = u + v\sqrt{d}$.
Then
 $\alpha \overline{\alpha} = (u + v\sqrt{d})(u - v\sqrt{d}) = u^2 - (v\sqrt{d})^2$

$$= u^2 - dv^2 = N(\alpha).$$

• If
$$\alpha, \beta \in \mathbb{Q}(\sqrt{d})$$
, then $\overline{\alpha\beta} = \overline{\alpha}\overline{\beta}$.
Suppose $\alpha = u + v\sqrt{d}$ and $\beta = w + z\sqrt{d}$.
Then

$$\overline{\alpha}\overline{\beta} = (uw + vzd) + (uz + vw)\sqrt{d} = (uw + vzd) - (uz + vw)\sqrt{d}$$
$$= (u - v\sqrt{d})(w - z\sqrt{d}) = \overline{\alpha}\overline{\beta}.$$

• If $\alpha, \beta \in \mathbb{Q}(\sqrt{d})$, then $N(\alpha)N(\beta) = N(\alpha\beta)$.

$$N(\alpha)N(\beta) = \alpha \overline{\alpha} \beta \overline{\beta} = \alpha \beta \overline{\alpha \beta} = N(\alpha \beta).$$

Quadratic and Gaussian Fields

Proposition

 $\mathbb{Q}(\sqrt{d})$ is a field.

- Let α = u + v√d be a non-zero element of Q(√d).
 We saw that αα = N(α) ∈ Q.
 So, the inverse of α is α / N(α).
- The special field Q(√-1) is called the Gaussian field.
 It is customary to express its elements in the form u + iv.
 In this case we have N(α) = u² + v².

Algebraic Integers in $\mathbb{Q}(\sqrt{d})$

- Suppose that $\alpha = u + v\sqrt{d}$ is an integer in $\mathbb{Q}(\sqrt{d})$.
- α and $\overline{\alpha}$ are zeros of

$$P(x) = (x - \alpha)(x - \overline{\alpha}) = (x - (u + v\sqrt{d}))(x - (u - v\sqrt{d}))$$

= $x^2 - 2ux + (u^2 - dv^2) = x^2 - ax + c,$

where a = 2u and $c = N(\alpha)$.

- This shows that the rational numbers *a*, *c* must in fact be integers.
- Letting b = 2v, we also have

$$a^{2}-db^{2}=(2u)^{2}-d(2v)^{2}=4(u^{2}-dv^{2})=4N(\alpha)=4c.$$

• Since *d* is square-free, it follows that also *b* is a rational integer.

Algebraic Integers in $\mathbb{Q}(\sqrt{d})$ (First Case)

- We have $P(x) = x^2 ax + c$, with a = 2u, b = 2v and $c = N(\alpha)$ integers.
 - Suppose $d \equiv 2$ or 3 (mod 4). By $a^2 - db^2 = 4c$, $a^2 \equiv 2b^2$ or $a^2 \equiv 3b^2 \pmod{4}$. But a square is congruent to 0 or 1 (mod 4). So, *a*, *b* are even. Thus, *u*, *v* are rational integers.

We can write any algebraic integer $u + v\sqrt{d}$ as

$$u + v\sqrt{d} = u \cdot 1 + v \cdot \sqrt{d}.$$

Hence, an integral basis for $\mathbb{Q}(\sqrt{d})$ is $\omega_1 = 1$, $\omega_2 = \sqrt{d}$. Since $\alpha = \sqrt{d}$, we get $p_1(x) = 1$ and $p_2(x) = x$. Now we can compute the discriminant:

$$D = \left| \begin{array}{cc} p_1(\alpha) & p_1(\overline{\alpha}) \\ p_2(\alpha) & p_2(\overline{\alpha}) \end{array} \right|^2 = \left| \begin{array}{cc} 1 & 1 \\ \sqrt{d} & -\sqrt{d} \end{array} \right|^2 = (-2\sqrt{d})^2 = 4d.$$

Algebraic Integers in $\mathbb{Q}(\sqrt{d})$ (Second Case)

- We have $P(x) = x^2 ax + c$, with a = 2u, b = 2v and $c = N(\alpha)$ integers.
 - Suppose $d \equiv 1 \pmod{4}$, (the only other possibility). Then $a \equiv b \pmod{2}$. Thus, u - v is a rational integer. We can write any algebraic integer $u + v\sqrt{d}$ as

$$u + v\sqrt{d} = (u - v) \cdot 1 + 2v \cdot \frac{1}{2}(1 + \sqrt{d}).$$

Hence, an integral basis for $\mathbb{Q}(\sqrt{d})$ is $\omega_1 = 1$, $\omega_2 = \frac{1}{2}(1 + \sqrt{d})$. Since $\alpha = \sqrt{d}$, we get $p_1(x) = 1$ and $p_2(x) = \frac{1}{2}x + \frac{1}{2}$. Now we can compute the discriminant:

$$D = \left| \begin{array}{cc} p_1(\alpha) & p_1(\overline{\alpha}) \\ p_2(\alpha) & p_2(\overline{\alpha}) \end{array} \right|^2 = \left| \begin{array}{cc} 1 & 1 \\ \frac{1}{2}\sqrt{d} + \frac{1}{2} & -\frac{1}{2}\sqrt{d} + \frac{1}{2} \end{array} \right|^2 = (-\sqrt{d})^2 = d.$$

Quadratic Fields and Binary Quadratic Forms

The discriminant D of Q(√d) is congruent to 0 or 1 (mod 4).
 So D is also the discriminant of a binary quadratic form.
 If α is any algebraic integer in Q(√d), then, for some rational integers x, y, we have

$$\alpha = \begin{cases} x + y\sqrt{d}, & \text{when } d \equiv 2 \text{ or } 3 \pmod{4} \\ x + \frac{1}{2}y(1 + \sqrt{d}), & \text{when } d \equiv 1 \pmod{4} \end{cases}$$

Thus, we see that $N(\alpha) = F(x, y)$, where F denotes the principal form with discriminant D, that is,

$$F(x,y) = \begin{cases} x^2 - dy^2, & \text{when } D \equiv 0 \pmod{4} \\ (x + \frac{1}{2}y)^2 - \frac{1}{4}dy^2, & \text{when } D \equiv 1 \pmod{4} \end{cases}$$

Subsection 3

• By a **unit** in $\mathbb{Q}(\sqrt{d})$ we mean an algebraic integer ε in $\mathbb{Q}(\sqrt{d})$, such that $\frac{1}{c}$ is an algebraic integer.

Proposition

An algebraic integer ε in $\mathbb{Q}(\sqrt{d})$ is a unit if and only if $N(\varepsilon) = \pm 1$.

• If ε is a unit, then $N(\varepsilon)$ and $N(\frac{1}{\varepsilon})$ are rational integers, since they are the constant terms of the corresponding minimal polynomials. By multiplicativity of N, $N(\varepsilon)N(\frac{1}{\varepsilon}) = 1$. Therefore, $N(\varepsilon) = \pm 1$.

Conversely, suppose $N(\varepsilon) = \pm 1$. Then $\varepsilon \overline{\varepsilon} = \pm 1$, whence, ε is a unit.

• Recalling that $N(\alpha) = F(x, y)$, we see that the units in $\mathbb{Q}(\sqrt{d})$ are determined by the integer solutions x, y of the equation $F(x, y) = \pm 1$.

Units in $\mathbb{Q}(\sqrt{d})$ (Imaginary Case)

- Suppose d < 0.
- The quadratic field $\mathbb{Q}(\sqrt{d})$ is said to be **imaginary**.

Proposition

In an imaginary quadratic field there are only finitely many units.

- We distinguish cases:
 - If d < -3, then, the equation $F(x, y) = \pm 1$ has only the solutions $x = \pm 1$, y = 0. So the only units in $\mathbb{Q}(\sqrt{d})$ are ± 1 .
 - For d = -1, that is, for the Gaussian field, we have $F(x,y) = x^2 + y^2$. The equation $F(x,y) = \pm 1$ has four solutions, namely $(\pm 1,0)$, $(0, \pm 1)$. In this case $\alpha = x + y\sqrt{d}$. So there are four units $\pm 1, \pm i$.
 - For d = -3, we have $F(x,y) = x^2 + xy + y^2$. The equation $F(x,y) = \pm 1$ has six solutions, namely $(\pm 1,0)$, $(0,\pm 1)$, (1,-1) and (-1,1). In this case $\alpha = x + \frac{1}{2}y(1 + \sqrt{d})$. Thus, the units of $\mathbb{Q}(\sqrt{-3})$ are ± 1 and $\frac{1}{2}(\pm 1 \pm \sqrt{-3})$.

- The units in an imaginary quadratic field are all roots of unity. 0
- They are given by the zeros of:
 - $x^2 1$, when D < -4;
 - $x^4 1$, when D = -4:
 - $x^6 1$, when D = -3.
- Note that the number of units is the same as the number w for forms with discriminant D.

- Suppose d > 0.
- The quadratic field $\mathbb{Q}(\sqrt{d})$ is said to be real.

Proposition

In a real quadratic field there are infinitely many units.

- It suffices to show that there is a unit $\eta \neq \pm 1$.
 - Then, η^m is a unit for all integers m;
 - Since the only roots of unity in $\mathbb{Q}(\sqrt{d})$ are ± 1 , different *m* give distinct units

• By Dirichlet's Theorem, for any integer Q > 1, there exist rational integers p, q, with 0 < q < Q, such that $|\alpha| \le \frac{1}{Q}$, where $\alpha = p - q\sqrt{d}$. The conjugate $\overline{\alpha} = \alpha + 2q\sqrt{d}$ satisfies $|\overline{\alpha}| \le |\alpha| + 2q\sqrt{d} \le Q\sqrt{d} + 2Q\sqrt{d}$ $= 3Q\sqrt{d}$. So, $|N(\alpha)| = |\alpha||\overline{\alpha}| \le 3\sqrt{d}$.

Further, since \sqrt{d} is irrational, we obtain, as $Q \to \infty$, infinitely many α with this property.

Units in $\mathbb{Q}(\sqrt{d})$ (Real Case Cont'd)

• Now $N(\alpha)$ is a rational integer bounded independently of Q. Thus, for infinitely many α , it takes some fixed value, say N. We can select two distinct $\alpha = p - q\sqrt{d}$ and $\alpha' = p' - q'\sqrt{d}$, such that $p \equiv p' \pmod{N}$ and $q \equiv q' \pmod{N}$. We now put $\eta = \frac{\alpha}{\alpha'} = \frac{p - q\sqrt{d}}{p' - q'\sqrt{d}}$. • $N(\eta) = \frac{N(\alpha)}{N(\alpha')} = 1;$ • $\eta \neq \pm 1$, since \sqrt{d} is irrational and q, q' are positive. We have $\eta = x + y\sqrt{d}$, where $x = \frac{pp' - dqq'}{N}$ and $y = \frac{pq' - p'q}{N}$. Note that

$$pp' - dqq' = p(p + kN) - dq(q + \ell N) = (p^2 - dq^2) + (pk - dq\ell)N;$$

$$pq' - p'q = p(q + \ell N) - (p + kN)q = (p\ell - qk)N.$$

Hence, x, y are rational integers. It follows that η is a non-trivial unit in $\mathbb{Q}(\sqrt{d})$.

• Consider the set of all units in the real field $\mathbb{Q}(\sqrt{d})$ exceeding 1. The set is not empty, for if η is the unit obtained in the preceding slide, then one of the numbers $\pm \eta$ or $\pm \frac{1}{n}$ is a member.

Each element of the set has the form $u + v\sqrt{d}$, where u, v are integers, or, if $d \equiv 1 \pmod{4}$, possibly halves of odd integers.

- u and v are positive, for $u + v\sqrt{d}$ is greater than its conjugate $u - v\sqrt{d}$, which lies between -1 and 1.
- It follows that there is a smallest element in the set, say ε .

• If ε' is any positive unit in the field, then there is a unique integer m, such that $\varepsilon^m \leq \varepsilon' < \varepsilon^{m+1}$.

Hence

$$1 \le \frac{\varepsilon'}{\varepsilon^m} < \varepsilon.$$

But $\frac{\varepsilon'}{cm}$ is also a unit in the field. It follows from the definition of ε , that $\varepsilon' = \varepsilon^m$. This shows that all the units in the field are given by

$$\pm \varepsilon^m$$
, $m = 0, \pm 1, \pm 2, \ldots$

Subsection 4

Primes and Factorization

Primes in the Ring of Algebraic Integers

- Let R be the ring of algebraic integers in a quadratic field $\mathbb{Q}(\sqrt{d})$.
- A prime π in R is an element of R that is neither 0 nor a unit and which has the property that, if π divides $\alpha\beta$, where α, β are elements of R, then either π divides α or π divides β .

Proposition

A prime π is irreducible.

Suppose π is prime and π = αβ.
 By primality ^α/_π or ^β/_π is an element of R.
 But the first implies that β is a unit and the second that α is a unit.
 Therefore, π is irreducible.

Irreducibles Need Not Be Primes

Claim: An irreducible element need not be a prime.

Consider the number 2 in the quadratic field $\mathbb{Q}(\sqrt{-5})$.

- It is irreducible: Suppose $2 = \alpha\beta$. Then $4 = N(\alpha)N(\beta)$. But $N(\alpha)$ and $N(\beta)$ have the form $x^2 + 5y^2$, for some integers x, y. Note that the equation $x^2 + 5y^2 = \pm 2$ has no integer solutions. So, either $N(\alpha) = \pm 1$ or $N(\beta) = \pm 1$. Thus, either α or β is a unit.
- On the other hand, 2 is not a prime in $\mathbb{Q}(\sqrt{-5})$:
 - 2 divides $(1 + \sqrt{-5})(1 \sqrt{-5}) = 6;$
 - 2 does not divide either $1 + \sqrt{-5}$ or $1 \sqrt{-5}$.

Taking norms to verify that each of the latter is irreducible.

Decomposition into a Product of Irreducibles

Proposition

Every element α of R that is neither 0 nor a unit can be factorized into a finite product of irreducible elements.

• If α is irreducible, there is nothing to prove.

Otherwise, $\alpha = \beta \gamma$, for some β, γ in *R*, neither of which is a unit.

If β were not irreducible, then it could be factorized likewise, and the same holds for γ .

The process must terminate, for if $\alpha = \beta_1 \cdots \beta_n$, where none of the β 's is a unit, then, since $|N(\beta_i)| \ge 2$, we see that $|N(\alpha)| \ge 2^n$.

Unique Factorization Domains

- A finite product of irreducible elements is **essentially unique** if it is unique except for:
 - the order of the factors;
 - the possible replacement of irreducible elements by their associates.
- The ring *R* is said to be a **unique factorization domain** if the expression for α as a finite product of irreducible elements is essentially unique.

Characterization of Unique Factorization Domains

Theorem

R is a unique factorization domain if and only if every irreducible element of R is also a prime in R.

• Suppose factorization in *R* is unique.

Let π be an irreducible element such that π divides $\alpha\beta$, with α,β in R. Then π is an associate of one of the irreducible factors of α or β . So π divides α or β , as required.

Conversely, suppose that every irreducible element is also a prime. We argue as in the proof of the fundamental theorem of arithmetic. Suppose $\alpha = \pi_1 \cdots \pi_k$ as a product of irreducible elements, and π' is an irreducible element occurring in another factorization.

Then π' must divide π_j , for some *j*. So, π' and π_j are associates. Assuming by induction that the result holds for $\frac{\alpha}{\pi'}$, the required uniqueness of factorization follows.

Subsection 5

Euclidean Fields

Euclidean Fields

A quadratic field Q(√d) is said to be Euclidean if its ring of integers R has the property that, for any elements α, β of R with β≠0, there exist elements γ,δ of R, such that α = βγ+δ and |N(δ)| < |N(β)|.
 Claim: A Euclidean quadratic field has a Euclidean algorithm.
 We can generate the sequence of equations

$$\delta_{j-2} = \delta_{j-1}\gamma_j + \delta_j, \quad j = 1, 2, \dots,$$

where $\delta_{-1} = \alpha$, $\delta_0 = \beta$, $\delta_1 = \delta$, $\gamma_1 = \gamma$ and $|N(\delta_j)| < |N(\delta_{j-1})|$.

The sequence terminates when $\delta_{k+1} = 0$, for some k.

Then δ_k has the properties of a greatest common divisor:

- δ_k divides α and β ;
- every common divisor of α , β divides δ_k .

Moreover, we have $\delta_k = \alpha \lambda + \beta \mu$, for some λ, μ in *R*.

Euclidean Fields (Cont'd)

- This can be verified by successive substitution.
- Alternatively, consider the set of positive integers of the form $|N(\alpha\lambda + \beta\mu)|$, where $\lambda, \mu \in R$.

This set has a least member $|N(\delta')|$, say, $\delta' = \alpha \lambda + \beta \mu$, $\lambda, \mu \in R$.

Thus, every common divisor of α , β divides δ' .

Note that
$$\alpha = \delta' \gamma + \delta''$$
, with $|N(\delta'')| < |N(\delta')|$.

Therefore, $\delta'' = \alpha \lambda' + \beta \mu'$, for some λ', μ' in *R*.

Hence, δ' divides α . Thus, $N(\delta'') = 0$ and, so, $\delta'' = 0$.

Similarly, δ' divides β . Hence, we have $\delta' = \delta_k$.

• If δ_k is a unit then, by division, we obtain elements λ, μ in R, with $\alpha \lambda + \beta \mu = 1$.

Euclidean Fields have Unique Factorization

Theorem

A Euclidean field has unique factorization.

It suffices to show that every irreducible element π in R is a prime.
 Suppose that π divides αβ but that π does not divide α.
 By the Euclidean Algorithm, there exist integers λ, μ in R, such that

$$\alpha\lambda + \pi\mu = 1.$$

This gives $\alpha\beta\lambda + \pi\beta\mu = \beta$. Hence, π divides β . Thus, π is a prime.

Euclidean Quadratic Fields: A Negative Result

Theorem

There can be no other Euclidean fields with d < 0, apart from d = -11, -7, -3, -2, -1.

• We exclude two cases that cover all non-listed numbers.

• Suppose, first, that
$$d \equiv 2$$
 or 3 (mod 4) and $d \leq -5$.
We cannot have $\sqrt{d} = 2\gamma + \delta$, with $|N(\delta)| < 4$.
Let $\gamma = x + y\sqrt{d}$, $\delta = x' + y'\sqrt{d}$, with x, y, x', y' rational integers.
Note that $N(\delta) \geq x'^2 + 5y'^2$. So, $y' = 0$.
But $\sqrt{d} = 2\gamma + \delta$ yields $2y + y' = 1$, contradicting $y' = 0$.
• Suppose, next, that $d \equiv 1 \pmod{4}$ and $d \leq -15$.
We cannot have $\frac{1}{2}(1 + \sqrt{d}) = 2\gamma + \delta$, with $|N(\delta)| < 4$.
Let $\gamma = x + y\frac{1}{2}(1 + \sqrt{d})$, $\delta = x' + y'\frac{1}{2}(1 + \sqrt{d})$, with x, y, x', y' integers.
Note that $N(\delta) \geq \frac{1}{4}(2x' + y')^2 + \frac{15}{4}y'^2$. So, $y' = 0$ or $y' = -2x'$.
But $\frac{1}{2}(1 + \sqrt{d}) = 2\gamma + \delta$ yields $y + \frac{1}{2}y' = \frac{1}{2}$.
This contradicts $y' = 0$ or $y' = -2x'$.

Euclidean Quadratic Fields for d = -2, -1, 2, 3

Theorem

If d = -2, -1, 2 or 3 then $\mathbb{Q}(\sqrt{d})$ is Euclidean.

• Let α, β be any algebraic integers in $\mathbb{Q}(\sqrt{d})$, with $\beta \neq 0$. Then $\frac{\alpha}{\beta} = u + v\sqrt{d}$, for some rationals u, v. Select integers x, y as close as possible to u, v and set

$$r = u - x$$
 and $s = v - y$.

Then $|r| \le \frac{1}{2}$ and $|s| \le \frac{1}{2}$ and, moreover,

$$\alpha = \beta(u+v\sqrt{d}) = \beta((x+r)+(y+s)\sqrt{d}) = \beta(x+y\sqrt{d}) + \beta(r+s\sqrt{d}).$$

Now note that:

• For
$$|d| \le 2$$
, we have $|r^2 - ds^2| \le r^2 + 2s^2 \le \frac{3}{4}$;

• For d = 3, we have $|r^2 - ds^2| \le \max(r^2, ds^2) \le \frac{3}{4}$.

Therefore, $|N(\beta(r+s\sqrt{d}))| = N(\beta)(r^2 - ds^2) \le N(\beta)$.

Subsection 6

The Gaussian Field

The Gaussian Field and the Gaussian Integers

- The Gaussian field is $\mathbb{Q}(\sqrt{-1}) = \mathbb{Q}(i)$.
- The **Gaussian integers** are the integers in the field. They have the form *x* + *iy*, with *x*, *y* rational integers.
- The norm of a Gaussian integer has the form $x^2 + y^2$. In particular, it is non-negative.
- It was noted that there are just four units ± 1 and $\pm i$.
- Moreover, the field is Euclidean and so has unique factorization.
- It follows that there is no need to distinguish between irreducible elements and primes.

These elements are called Gaussian primes.

Gaussian Integers and Primes

Proposition

If α is any Gaussian integer and if $N(\alpha)$ is a rational prime, then α is a Gaussian prime.

Assume α is any Gaussian integer and $N(\alpha)$ a rational prime. Suppose $\alpha = \beta \gamma$, for some Gaussian integers β, γ . Then $N(\alpha) = N(\beta)N(\gamma)$. Hence, either $N(\beta) = 1$ or $N(\gamma) = 1$. So, either β or γ is a unit.

Gaussian and Rational Primes

Proposition

Every Gaussian prime π divides just one rational prime p.

• π certainly divides $N(\pi)$.

So there is a least positive rational integer p, such that π divides p.

p is a rational prime: Suppose p = mn, where *m*, *n* are rational integers. Then, since π is a Gaussian prime, we have either π divides *m* or π divides *n*. By the minimal property of *p*, either *m* or *n* is 1. The prime *p* is unique: Suppose *p'* is any other rational prime. Then there exist rational integers *a*, *a'*, such that ap + a'p' = 1. Thus, if π

were to divide both p and p', then it would divide 1. So π would be a unit contrary to definition.

Gaussian Primes

Theorem

A rational prime p is either itself a Gaussian prime or is the product $\pi\pi'$ of two Gaussian primes, where π, π' are conjugates.

• p is divisible by some Gaussian prime π .

Thus, we have $p = \pi \lambda$, for some Gaussian integer λ . This gives $N(\pi)N(\lambda) = p^2$, whence one of the following holds:

• $N(\lambda) = 1$. So λ is a unit and p is an associate of π ;

$$N(\lambda) = p$$
. So $N(\pi) = p$.

In the first case $p \equiv 3 \pmod{4}$ and in the second $p \equiv 1 \pmod{4}$: $N(\pi)$ has the form $x^2 + y^2$. A square is congruent to 0 or 1 (mod 4). Suppose $p \equiv 1 \pmod{4}$. Then -1 is a quadratic residue (mod p). So p divides $x^2 + 1 = (x + i)(x - i)$, for some rational integer x. If p were a Gaussian prime, it would divide either x + i or x - i. This contradicts the neither $\frac{x}{p} + \frac{i}{p}$ nor $\frac{x}{p} - \frac{i}{p}$ is a Gaussian integer.

Gaussian Primes (Cont'd)

• With regard to the prime 2, we have 2 = (1 + i)(1 - i).

- 1+i and 1-i are Gaussian primes;
- 1+i and 1-i are associates.
- In conclusion, we find that the totality of Gaussian primes are given by:
 - the rational primes $p \equiv 3 \pmod{4}$;
 - the factors π, π' in the expression $p = \pi \pi'$ for primes $p \equiv 1 \pmod{4}$;

together with all the associates of the elements in this list, formed by multiplying by ± 1 and $\pm i$.

• The argument provides another proof of the result that every prime $p \equiv 1 \pmod{4}$ can be expressed as a sum of two squares.