George Voutsadakis!

IMathematics and Computer Science
Lake Superior State University

LSSU Math 400

George Voutsadakis (LSSU) Number Theory



o Algebraic Number Fields
o The Quadratic Field

o Units

o Primes and Factorization
o Euclidean Fields

o The Gaussian Field

George Voutsadakis (LSSU) Number Theory



Quadratic Fields

Subsection 1

George Voutsadakis (LSSU) Number Theory



Quadratic Fields

Let a be an algebraic number with degree n.
Let P be the minimal polynomial for a.

By the conjugates of @ we mean the zeros a;,...,a, of P.

¢ © © ¢

The algebraic number field k generated by a over the rationals Q
is defined as the set of numbers Q(a), where Q(x) is any polynomial
with rational coefficients.

o The set can be regarded as being embedded in the complex number
field C and, thus, its elements are subject to the usual operations of
addition and multiplication.
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Quadratic Fields

The algebraic number field k generated by a over the rationals @ is indeed
a field.

o We have to show that every non-zero element Q(a) has an inverse.
If P is the minimal polynomial for a, then P, @ are relatively prime.
So, there exist polynomials R, S, such that PS+ QR =1, for all x.
On putting x = a, this gives R(a) = ﬁ, as required.

o The field k is said to have degree n over Q, if @ has degree n.

The notation [k : Q] = n means that the degree of k over Q is n.
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Quadratic Fields

o The construction can be continued to furnish, for every algebraic
number field k and every algebraic number g, a field K = k(B), with
elements given by polynomials in B with coefficients in k.

o The degree [K : k] of K over k is defined in the obvious way as the
degree of B over k.

o In abstract algebra, one shows that K is also algebraic over Q and

[K: Q)= [K : K][k: Q.
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Quadratic Fields

o An algebraic number is said to be an algebraic integer if the
coefficient of the highest power of x in the minimal polynomial P is 1.

o The algebraic integers in an algebraic number field k form a ring R.
o The ring has an integral basis:

There exist elements wy,...,w, in R, such that every element in R can
be expressed uniquely in the form

uiwy+---+upwp,

for some rational integers uy,..., up.
o We write w; = pj(a), where p; denotes a polynomial over Q.

o The number (det(p;(a;)))?, where a,...,a, are the conjugates of a,
is a rational integer independent of the choice of basis.

It is called the discriminant of k.
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Quadratic Fields

o An algebraic integer «a is said to be divisible by an algebraic integer §
if % is an algebraic integer.

o An algebraic integer ¢ is said to be a unit if % is an algebraic integer.

o Suppose that R is the ring of algebraic integers in a number field k.

Two elements a, B of R are said to be associates if a = ¢f, for some
unit €.

This is an equivalence relation on R.

o An element a of R is said to be irreducible if every divisor of a in R
is either an associate or a unit.
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Quadratic Fields

o One calls R a unique factorization domain if every element of R can
be expressed essentially uniquely as a product of irreducible elements.

o The fundamental theorem of arithmetic asserts that the ring of
integers in k= Q has this property; but it does not hold for every k.

o It is known due to Kummer and Dedekind that a unique factorization

property can be restored by the introduction of , and this forms
the central theme of
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Quadratic Fields

o Let d be a square-free integer, positive or negative, but not 1.
o The quadratic field Q(V/d) is the set of all numbers of the form

u+vvd, uveQ,

subject to the usual operations of addition and multiplication.

o For any element a = u+vVd in Q(Vd), the norm of a is the rational

number
N(a) = u? - dv?.

o For any element @ = u+vvd in Q(Vd), the conjugate of a is
a=u—-vVd.
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Quadratic Fields

o If e Q(Vd), then N(a) = aa.
Suppose a = u+ vVd.

Then
aa (u+vVd)(u—-vVd)=u?-(vVd)?
= v?*-dv?=N(a).
o If a,feQ(Vd), then af =apB.
Suppose a = u+vvd and f=w+zVd.
Then

ap

(uw + vzd) + (uz + vw)Vd = (uw + vzd) — (uz + vw)V'd
(u—vVd)(w-zVd)=ap.

o If @, Be Q(Vd), then N(a)N(B) = N(ap).

N(a)N(B) = a@pp = apap = N(ap).
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Quadratic Fields

Q(Vd) is a field.

o Let @=u+vVd be a non-zero element of Q(Vd).
We saw that aa = N(a) € Q.
So, the inverse of a is ﬁ.

o The special field Q(v—1) is called the Gaussian field.
It is customary to express its elements in the form u+ iv.

In this case we have N(a) = u?+v2.
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Quadratic Fields

Suppose that a = u+vv/d is an integer in Q(Vd).
a and @ are zeros of
(x—a)(x—a) = (x-(u+vVd))(x-(u-vVd))

= x2-2ux+(v?-dv?)=x*-ax+c,

©

©

P(x)

where a=2u and ¢ = N(a).

©

This shows that the rational numbers a,c must in fact be integers.

©

Letting b=2v, we also have
a? - db® = (2u)? - d(2v)? = 4(u? - dv?) = 4N(a) = 4c.

o Since d is square-free, it follows that also b is a rational integer.
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Quadratic Fields

o We have P(x) =x?-ax+c, with a=2u, b=2v and c = N(a)
integers.
o Suppose d =2 or 3 (mod 4).
By a? —db® =4c, a®> =2b? or a®=3b° (mod 4).
But a square is congruent to 0 or 1 (mod 4).
So, a, b are even.
Thus, u,v are rational integers.
We can write any algebraic integer u+ vv/d as

u+vWd=u-1+v-Vd.

Hence, an integral basis for Q(\/a) isw1=1, wpr=Vd.
Since a = Vd, we get p1(x) =1 and pp(x) = x.
Now we can compute the discriminant:

Jpe) m@ P | L1 P i
o= e @ | =l va —va| ~2/@r s
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Quadratic Fields

o We have P(x) =x?-ax+c, with a=2u, b=2v and c = N(a)
integers.

o Suppose d =1 (mod 4), (the only other possibility).
Then a=b (mod 2).
Thus, u—v is a rational integer.
We can write any algebraic integer u+vv/d as

u+vﬁ=(u—v)-1+2vé(1+\/g).

Hence, an integral basis for Q(v/d) is w1 =1, wp = %(1 +Vd).
Since a = vd, we get p1(x)=1 and p2(X)=% %
Now we can compute the discriminant:
o | pla) A(@) '2 _ ' 1 L P var—d
p2(a) p2(a) iVd+s -Avd+} :
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Quadratic Fields

o The discriminant D of Q(v/d) is congruent to 0 or 1 (mod 4).
So D is also the discriminant of a binary quadratic form.

If a is any algebraic integer in Q(v/d), then, for some rational integers
x,y, we have

o= x+yVd, when d=2or 3 (mod 4)
| x+3y(1+Vd), whend=1 (mod4) '

Thus, we see that N(a) = F(x,y), where F denotes the principal form
with discriminant D, that is,

x2 —dy?, when D=0 (mod 4)
Fn)={ (erirp- 1, when D21 (mod )
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Quadratic Fields

o By a unit in Q(V'd) we mean an algebraic integer £ in Q(Vd), such
that % is an algebraic integer.

An algebraic integer € in Q(v/d) is a unit if and only if N(¢) = +1.

o If € is a unit, then N(e) and N(L) are rational integers, since they are
the constant terms of the corresponding minimal polynomials.

By multiplicativity of N, N(e)N(%) =1
Therefore, N(e) = +1.
Conversely, suppose N(e) = £1. Then €€ = +1, whence, ¢ is a unit.

o Recalling that N(a) = F(x,y), we see that the units in Q(V/d) are
determined by the integer solutions x,y of the equation F(x,y)= +1.
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Quadratic Fields

o Suppose d <0.
o The quadratic field Q(v/d) is said to be imaginary.

In an imaginary quadratic field there are only finitely many units.

o We distinguish cases:

o If d <=3, then, the equation F(x,y) = £1 has only the solutions
x=+1, y=0. So the only units in Q(v/d) are +1.

o For d=-1, that is, for the Gaussian field, we have F(x,y) =x2 +y2.
The equation F(x,y) = +1 has four solutions, namely (+1,0), (0, +1).
In this case @ = x +yVd. So there are four units +1, +.

o For d = -3, we have F(x,y)=x?+xy +y?. The equation F(x,y) = +1
has six solutions, namely (+1,0), (0, +1), (1,—1) and (-1,1). In this
case @ =x+ %y(1+\/a). Thus, the units of Q(v-3) are +1 and
1(+1+£V=3).
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Quadratic Fields

o The units in an imaginary quadratic field are all roots of unity.

o They are given by the zeros of:

? x 2_1, when D < —4;
ax 4_1, when D =—4;
o x9-1, when D=-3.

o Note that the number of units is the same as the number w for forms
with discriminant D.
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Quadratic Fields

o Suppose d >0.
o The quadratic field Q(V/d) is said to be real.

In a real quadratic field there are infinitely many units.

o It suffices to show that there is a unit 1 # +1.
o Then, n™ is a unit for all integers m;
o Since the only roots of unity in Q(v/d) are +1, different m give distinct

units.

o By Dirichlet's Theorem, for any integer @ > 1, there exist rational
integers p,q, with 0 < g < @, such that |a| < é where a = p—q\/a.
The conjugate @ = a +2qV/d satisfies [@| < |a| +2¢gVd < QVd +2QVd
=3QVd. So, IN(a)| = |alla| <3Vd.

Further, since V/d is irrational, we obtain, as @ — oo, infinitely many a
with this property.
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Quadratic Fields

o Now N(a) is a rational integer bounded independently of Q.
Thus, for infinitely many a, it takes some fixed value, say N.
We can select two distinct @ = p—gv/d and &’ = p’'— ¢'Vd, such that
p=p’ (mod N) and g=g' (mod N).

We now put =% :;:3—,‘/\%.
N
o N(m) =7k =1,

o n#=+1, since V/d is irrational and q,q’ are positive.

We have 1 =x+yVd, where x = pp’_quq’ and y = pq/,:,p/q.

Note that
pp’ —dqq' = p(p+kN) - dq(q+¢N) = (p? - dg?) + (pk — dg?) N;
pq'—p'q=p(q+{N)—(p+kN)q =(pl—qk)N.

Hence, x,y are rational integers.

It follows that 7 is a non-trivial unit in Q(Vd).
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Quadratic Fields

o Consider the set of all units in the real field Q(vd) exceeding 1.

The set is not empty, for if 1 is the unit obtained in the preceding

slide, then one of the numbers +n or i% is a member.

Each element of the set has the form u+vv/d, where u,v are integers,
or, if d =1 (mod 4), possibly halves of odd integers.

u and v are positive, for u+vv/d is greater than its conjugate
u—vVd, which lies between —1 and 1.

It follows that there is a smallest element in the set, say &.
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Quadratic Fields

o If € is any positive unit in the field, then there is a unique integer m,
such that e™ <¢’ <M1,

Hence

But :—,; is also a unit in the field.
It follows from the definition of €, that & =¢&™.
This shows that all the units in the field are given by

+eM, m=0,+1,+2,....

)
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Quadratic Fields

o Let R be the ring of algebraic integers in a quadratic field Q(v/d).

o A prime 7 in R is an element of R that is neither 0 nor a unit and
which has the property that, if 7 divides af, where a, 8 are elements
of R, then either 7 divides a or 7 divides B.

A prime 7 is irreducible.

o Suppose 7 is prime and 7 = apf.

e a B
By primality 2 or _ is an element of R.
But the first implies that § is a unit and the second that a is a unit.

Therefore, 7 is irreducible.

George Voutsadakis (LSSU) Number Theory



Quadratic Fields

: An irreducible element need not be a prime.

Consider the number 2 in the quadratic field Q(v/-5).

o It is irreducible: Suppose 2=apf. Then 4= N(a)N(B). But N(a) and
N(B) have the form x?+5y2, for some integers x,y. Note that the
equation x% +5y? = +2 has no integer solutions. So, either N(a)= +1
or N(B)= +1. Thus, either a or f is a unit.

o On the other hand, 2 is not a prime in Q(v/=5):

o 2 divides (1+V=5)(1-v-5)=6;
s 2 does not divide either 1++v/=5 or 1—+v/—5.
Taking norms to verify that each of the latter is irreducible.
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Quadratic Fields

Every element a of R that is neither 0 nor a unit can be factorized into a
finite product of irreducible elements.

o If a is irreducible, there is nothing to prove.
Otherwise, a = By, for some B,y in R, neither of which is a unit.
If B were not irreducible, then it could be factorized likewise, and the
same holds for y.

The process must terminate, for if @ = f1--- B, where none of the f's
is a unit, then, since [N(B;) =2, we see that [N(a)| =2".
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Quadratic Fields

o A finite product of irreducible elements is essentially unique if it is
unique except for:

o the order of the factors;
o the possible replacement of irreducible elements by their associates.
o The ring R is said to be a unique factorization domain if the
expression for a as a finite product of irreducible elements is
essentially unique.
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Quadratic Fields

R is a unique factorization domain if and only if every irreducible element
of R is also a prime in R.

o Suppose factorization in R is unique.
Let 7 be an irreducible element such that 7 divides af, with a, in R.
Then 7 is an associate of one of the irreducible factors of a or .
So 7 divides a or B, as required.
Conversely, suppose that every irreducible element is also a prime.
We argue as in the proof of the fundamental theorem of arithmetic.
Suppose @ =7y --- 7 as a product of irreducible elements, and 7’ is an
irreducible element occurring in another factorization.
Then 7" must divide 7;, for some j. So, 7" and 7; are associates.
Assuming by induction that the result holds for =, the required
uniqueness of factorization follows.
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Quadratic Fields

o A quadratic field Q(v/d) is said to be Euclidean if its ring of integers
R has the property that, for any elements a, 8 of R with 8 #0, there
exist elements y,d of R, such that a =By +3d and IN(5)| < IN(B)I.

: A Euclidean quadratic field has a Euclidean algorithm.

We can generate the sequence of equations
6j—2:6j—17/j+6j» j=1,2,...,

where 6_1 =a, 6o=p, 61=0, y1 =7 and [N(5;)I <IN(d;-1)I.
The sequence terminates when 8,1 =0, for some k.

Then 64 has the properties of a greatest common divisor:

o 6 divides a and B;
o every common divisor of @, divides 6.

Moreover, we have §, = ad+ Bu, for some A, u in R.
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Quadratic Fields

o This can be verified by successive substitution.

o Alternatively, consider the set of positive integers of the form
IN(aA+ Bu)l, where A, ue R.

This set has a least member |N(8')|, say, 6’ = ad+Bu, A, peR.
Thus, every common divisor of @, 8 divides §'.

Note that a = 8"y + 6", with [N(8")I <|N(5")I.

Therefore, §" = al’ + By, for some A,y in R.

Hence, 8’ divides @. Thus, N(6")=0 and, so, §" =0.

Similarly, 6’ divides 8. Hence, we have 6’ = 6.

o If &) is a unit then, by division, we obtain elements A, in R, with
al+Bu=1.
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Quadratic Fields

A Euclidean field has unique factorization.

o It suffices to show that every irreducible element 7 in R is a prime.
Suppose that 7 divides af but that 7 does not divide a.
By the Euclidean Algorithm, there exist integers A, u in R, such that

al+mp=1.

This gives afA+rxpu = p.
Hence, 7 divides p.

Thus, 7 is a prime.
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Quadratic Fields

There can be no other Euclidean fields with d <0, apart from
d=-11,-7,-3,-2,-1.

o We exclude two cases that cover all non-listed numbers.

o Suppose, first, that d =2 or 3 (mod 4) and d < -5.
We cannot have vd =2y +8, with |N(8)| < 4.
Let y=x+y\/3, 5 =x"+y'Vd, with x,y, X',y rational integers.
Note that N(6)=x"2+5y"2. So, y'=0.
But v/d =2y +6 yields 2y +y' =1, contradicting y’ = 0.

o Suppose, next, that d =1 (mod 4) and d < -15.
We cannot have %(1+ Vd) =2y +8, with |N(6)| < 4.
Let y=x+y%(1 + \/3) 6=x’+y’%(1+ \/3) with x,y, x',y’ integers.
Note that N(&) = %(2x’+y’)2 + %}/2_ So, y'=0or y'=-2x".
But %(1+\/3) =2y +6 yields y + %y’ = %
This contradicts y' =0 or y' = —2x’.
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Quadratic Fields

If d =-2,~1,2 or 3 then Q(V/d) is Euclidean.

o Let a,B be any algebraic integers in Q(v/d), with B #0.

Then % = u+vVd, for some rationals u,v.

Select integers x,y as close as possible to u,v and set
r=u—-x and s=v-y.
Then |r| 5% and |s| s% and, moreover,
a=p(u+vVd)=p((x+r)+(y+s)Vd) = B(x+yVd)+p(r+sVd).

Now note that:
o For |d| <2, we have |r2 —ds?| < r? +2s2 < %;
o For d =3, we have |r? —ds?| < max(r2,ds2) < %
Therefore, IN(B(r +sVd))| = N(B)(r? - ds?) < N(B).
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Quadratic Fields

o The Gaussian field is Q(v-1) = Q(i).
o The Gaussian integers are the integers in the field.
They have the form x+ iy, with x,y rational integers.
o The norm of a Gaussian integer has the form x? + y?.
In particular, it is non-negative.
o It was noted that there are just four units +1 and +i.
o Moreover, the field is Euclidean and so has unique factorization.

o It follows that there is no need to distinguish between irreducible
elements and primes.

These elements are called Gaussian primes.
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Quadratic Fields

If & is any Gaussian integer and if N(a) is a rational prime, then « is a
Gaussian prime.

Assume a is any Gaussian integer and N(a) a rational prime.
Suppose @ = By, for some Gaussian integers f,y.

Then N(a) = N(B)N(y).

Hence, either N(B8) =1 or N(y) =1.

So, either B or v is a unit.
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Quadratic Fields

Every Gaussian prime 7 divides just one rational prime p.

o 7 certainly divides N(7).
So there is a least positive rational integer p, such that & divides p.
p is a rational prime: Suppose p = mn, where m, n are rational

integers. Then, since 7 is a Gaussian prime, we have either 7w divides
m or 7 divides n. By the minimal property of p, either m or n is 1.

The prime p is unique: Suppose p’ is any other rational prime. Then
there exist rational integers a,a’, such that ap+a’p’=1. Thus, if #
were to divide both p and p’, then it would divide 1. So 7w would be a
unit contrary to definition.
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Quadratic Fields

A rational prime p is either itself a Gaussian prime or is the product 7z’ of
two Gaussian primes, where 7,7" are conjugates.

o p is divisible by some Gaussian prime 7.
Thus, we have p=mA, for some Gaussian integer A.
This gives N(m)N(A) = p?, whence one of the following holds:

2 N(A)=1. So A is a unit and p is an associate of 7;

o N(A)=p. So N(m)=p.
In the first case p=3 (mod 4) and in the second p=1 (mod 4):
N(r) has the form x2+y?. A square is congruent to 0 or 1 (mod 4).
Suppose p=1 (mod 4). Then —1 is a quadratic residue (mod p).
So p divides x?+1 = (x+i)(x 1), for some rational integer x.
If p were a Gaussian prime, it would divide either x+ i or x —1i.

1 1

This contradicts the neither %+ 5 nor %— r is a Gaussian integer.
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Quadratic Fields

o With regard to the prime 2, we have 2= (1+/)(1-1).

o 1+/and 1-/ are Gaussian primes;
o 147 and 1—/ are associates.

o In conclusion, we find that the totality of Gaussian primes are given
by:
o the rational primes p=3 (mod 4);
o the factors 7,7’ in the expression p=nn’ for primes p=1 (mod 4);
o 1+1;
together with all the associates of the elements in this list, formed by
multiplying by +1 and +/.
o The argument provides another proof of the result that every prime
p=1 (mod 4) can be expressed as a sum of two squares.
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