Introduction to Number Theory

George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science
Lake Superior State University

LSSU Math 400

(1) Quadratic Fields

- Algebraic Number Fields
- The Quadratic Field
- Units
- Primes and Factorization
- Euclidean Fields
- The Gaussian Field

Subsection 1

Algebraic Number Fields

Algebraic Number Fields

- Let α be an algebraic number with degree n.
- Let P be the minimal polynomial for α.
- By the conjugates of α we mean the zeros $\alpha_{1}, \ldots, \alpha_{n}$ of P.
- The algebraic number field k generated by α over the rationals \mathbb{Q} is defined as the set of numbers $Q(\alpha)$, where $Q(x)$ is any polynomial with rational coefficients.
- The set can be regarded as being embedded in the complex number field \mathbb{C} and, thus, its elements are subject to the usual operations of addition and multiplication.

Algebraic Number Fields (Cont'd)

Proposition

The algebraic number field k generated by α over the rationals \mathbb{Q} is indeed a field.

- We have to show that every non-zero element $Q(\alpha)$ has an inverse. If P is the minimal polynomial for α, then P, Q are relatively prime.
So, there exist polynomials R, S, such that $P S+Q R=1$, for all x.
On putting $x=\alpha$, this gives $R(\alpha)=\frac{1}{Q(\alpha)}$, as required.
- The field k is said to have degree n over Q, if α has degree n. The notation $[k: \mathbb{Q}]=n$ means that the degree of k over \mathbb{Q} is n.

Iteration of the Construction

- The construction can be continued to furnish, for every algebraic number field k and every algebraic number β, a field $K=k(\beta)$, with elements given by polynomials in β with coefficients in k.
- The degree $[K: k]$ of K over k is defined in the obvious way as the degree of β over k.
- In abstract algebra, one shows that K is also algebraic over \mathbb{Q} and

$$
[K: \mathbb{Q}]=[K: k][k: \mathbb{Q}]
$$

Algebraic Integers

- An algebraic number is said to be an algebraic integer if the coefficient of the highest power of x in the minimal polynomial P is 1 .
- The algebraic integers in an algebraic number field k form a ring R.
- The ring has an integral basis:

There exist elements $\omega_{1}, \ldots, \omega_{n}$ in R, such that every element in R can be expressed uniquely in the form

$$
u_{1} \omega_{1}+\cdots+u_{n} \omega_{n}
$$

for some rational integers u_{1}, \ldots, u_{n}.

- We write $\omega_{i}=p_{i}(\alpha)$, where p_{i} denotes a polynomial over \mathbb{Q}.
- The number $\left(\operatorname{det}\left(p_{i}\left(\alpha_{j}\right)\right)\right)^{2}$, where $\alpha_{1}, \ldots, \alpha_{n}$ are the conjugates of α, is a rational integer independent of the choice of basis. It is called the discriminant of k.

Divisibility, Units, Associates and Irreducibles

- An algebraic integer α is said to be divisible by an algebraic integer β if $\frac{\alpha}{\beta}$ is an algebraic integer.
- An algebraic integer ε is said to be a unit if $\frac{1}{\varepsilon}$ is an algebraic integer.
- Suppose that R is the ring of algebraic integers in a number field k. Two elements α, β of R are said to be associates if $\alpha=\varepsilon \beta$, for some unit ε.
This is an equivalence relation on R.
- An element α of R is said to be irreducible if every divisor of α in R is either an associate or a unit.

Unique Factorization Domains

- One calls R a unique factorization domain if every element of R can be expressed essentially uniquely as a product of irreducible elements.
- The fundamental theorem of arithmetic asserts that the ring of integers in $k=\mathbb{Q}$ has this property; but it does not hold for every k.
- It is known due to Kummer and Dedekind that a unique factorization property can be restored by the introduction of ideals, and this forms the central theme of algebraic number theory.

Subsection 2

The Quadratic Field

Quadratic Fields, Norms and Conjugates

- Let d be a square-free integer, positive or negative, but not 1 .
- The quadratic field $\mathbb{Q}(\sqrt{d})$ is the set of all numbers of the form

$$
u+v \sqrt{d}, u, v \in \mathbb{Q}
$$

subject to the usual operations of addition and multiplication.

- For any element $\alpha=u+v \sqrt{d}$ in $\mathbb{Q}(\sqrt{d})$, the norm of α is the rational number

$$
N(\alpha)=u^{2}-d v^{2}
$$

- For any element $\alpha=u+v \sqrt{d}$ in $\mathbb{Q}(\sqrt{d})$, the conjugate of α is

$$
\bar{\alpha}=u-v \sqrt{d} .
$$

Properties of Quadratic Fields

- If $\alpha \in \mathbb{Q}(\sqrt{d})$, then $N(\alpha)=\alpha \bar{\alpha}$.

Suppose $\alpha=u+v \sqrt{d}$.
Then

$$
\begin{aligned}
\alpha \bar{\alpha} & =(u+v \sqrt{d})(u-v \sqrt{d})=u^{2}-(v \sqrt{d})^{2} \\
& =u^{2}-d v^{2}=N(\alpha) .
\end{aligned}
$$

- If $\alpha, \beta \in \mathbb{Q}(\sqrt{d})$, then $\overline{\alpha \beta}=\bar{\alpha} \bar{\beta}$.

Suppose $\alpha=u+v \sqrt{d}$ and $\beta=w+z \sqrt{d}$.
Then

$$
\begin{aligned}
\bar{\alpha} \bar{\beta} & =\overline{(u w+v z d)+(u z+v w) \sqrt{d}}=(u w+v z d)-(u z+v w) \sqrt{d} \\
& =(u-v \sqrt{d})(w-z \sqrt{d})=\bar{\alpha} \bar{\beta} .
\end{aligned}
$$

- If $\alpha, \beta \in \mathbb{Q}(\sqrt{d})$, then $N(\alpha) N(\beta)=N(\alpha \beta)$.

$$
N(\alpha) N(\beta)=\alpha \bar{\alpha} \beta \bar{\beta}=\alpha \beta \overline{\alpha \beta}=N(\alpha \beta)
$$

Quadratic and Gaussian Fields

Proposition

$\mathrm{Q}(\sqrt{d})$ is a field.

- Let $\alpha=u+v \sqrt{d}$ be a non-zero element of $\mathbb{Q}(\sqrt{d})$.

We saw that $\alpha \bar{\alpha}=N(\alpha) \in \mathbb{Q}$.
So, the inverse of α is $\frac{\bar{\alpha}}{N(\alpha)}$.

- The special field $\mathbb{Q}(\sqrt{-1})$ is called the Gaussian field. It is customary to express its elements in the form $u+i v$. In this case we have $N(\alpha)=u^{2}+v^{2}$.

Algebraic Integers in $Q(\sqrt{d})$

- Suppose that $\alpha=u+v \sqrt{d}$ is an integer in $\mathbb{Q}(\sqrt{d})$.
- α and $\bar{\alpha}$ are zeros of

$$
\begin{aligned}
P(x) & =(x-\alpha)(x-\bar{\alpha})=(x-(u+v \sqrt{d}))(x-(u-v \sqrt{d})) \\
& =x^{2}-2 u x+\left(u^{2}-d v^{2}\right)=x^{2}-a x+c,
\end{aligned}
$$

where $a=2 u$ and $c=N(\alpha)$.

- This shows that the rational numbers a, c must in fact be integers.
- Letting $b=2 v$, we also have

$$
a^{2}-d b^{2}=(2 u)^{2}-d(2 v)^{2}=4\left(u^{2}-d v^{2}\right)=4 N(\alpha)=4 c .
$$

- Since d is square-free, it follows that also b is a rational integer.

Algebraic Integers in $\mathrm{Q}(\sqrt{\mathrm{d}})$ (First Case)

- We have $P(x)=x^{2}-a x+c$, with $a=2 u, b=2 v$ and $c=N(\alpha)$ integers.
- Suppose $d \equiv 2$ or $3(\bmod 4)$.

By $a^{2}-d b^{2}=4 c, a^{2} \equiv 2 b^{2}$ or $a^{2} \equiv 3 b^{2}(\bmod 4)$.
But a square is congruent to 0 or $1(\bmod 4)$.
So, a, b are even.
Thus, u, v are rational integers.
We can write any algebraic integer $u+v \sqrt{d}$ as

$$
u+v \sqrt{d}=u \cdot 1+v \cdot \sqrt{d} .
$$

Hence, an integral basis for $\mathbb{Q}(\sqrt{d})$ is $\omega_{1}=1, \omega_{2}=\sqrt{d}$.
Since $\alpha=\sqrt{d}$, we get $p_{1}(x)=1$ and $p_{2}(x)=x$.
Now we can compute the discriminant:

$$
D=\left|\begin{array}{ll}
p_{1}(\alpha) & p_{1}(\bar{\alpha}) \\
p_{2}(\alpha) & p_{2}(\bar{\alpha})
\end{array}\right|^{2}=\left|\begin{array}{cc}
1 & 1 \\
\sqrt{d} & -\sqrt{d}
\end{array}\right|^{2}=(-2 \sqrt{d})^{2}=4 d .
$$

Algebraic Integers in $\mathrm{Q}(\sqrt{d})$ (Second Case)

- We have $P(x)=x^{2}-a x+c$, with $a=2 u, b=2 v$ and $c=N(\alpha)$ integers.
- Suppose $d \equiv 1(\bmod 4)$, (the only other possibility).

Then $a \equiv b(\bmod 2)$.
Thus, $u-v$ is a rational integer.
We can write any algebraic integer $u+v \sqrt{d}$ as

$$
u+v \sqrt{d}=(u-v) \cdot 1+2 v \cdot \frac{1}{2}(1+\sqrt{d})
$$

Hence, an integral basis for $\mathbb{Q}(\sqrt{d})$ is $\omega_{1}=1, \omega_{2}=\frac{1}{2}(1+\sqrt{d})$.
Since $\alpha=\sqrt{d}$, we get $p_{1}(x)=1$ and $p_{2}(x)=\frac{1}{2} x+\frac{1}{2}$.
Now we can compute the discriminant:

$$
D=\left|\begin{array}{ll}
p_{1}(\alpha) & p_{1}(\bar{\alpha}) \\
p_{2}(\alpha) & p_{2}(\bar{\alpha})
\end{array}\right|^{2}=\left|\begin{array}{cc}
1 & 1 \\
\frac{1}{2} \sqrt{d}+\frac{1}{2} & -\frac{1}{2} \sqrt{d}+\frac{1}{2}
\end{array}\right|^{2}=(-\sqrt{d})^{2}=d .
$$

Quadratic Fields and Binary Quadratic Forms

- The discriminant D of $\mathbb{Q}(\sqrt{d})$ is congruent to 0 or $1(\bmod 4)$. So D is also the discriminant of a binary quadratic form. If α is any algebraic integer in $\mathbb{Q}(\sqrt{d})$, then, for some rational integers x, y, we have

$$
\alpha=\left\{\begin{array}{ll}
x+y \sqrt{d}, & \text { when } d \equiv 2 \text { or } 3(\bmod 4) \\
x+\frac{1}{2} y(1+\sqrt{d}), & \text { when } d \equiv 1 \quad(\bmod 4)
\end{array} .\right.
$$

Thus, we see that $N(\alpha)=F(x, y)$, where F denotes the principal form with discriminant D, that is,

$$
F(x, y)=\left\{\begin{array}{ll}
x^{2}-d y^{2}, & \text { when } D \equiv 0 \\
\left(x+\frac{1}{2} y\right)^{2}-\frac{1}{4} d y^{2}, & \text { when } D \equiv 1 \\
(\bmod 4)
\end{array} .\right.
$$

Subsection 3

Units

Characterization of the Units in $\mathrm{Q}(\sqrt{d})$

- By a unit in $\mathbb{Q}(\sqrt{d})$ we mean an algebraic integer ε in $\mathbb{Q}(\sqrt{d})$, such that $\frac{1}{\varepsilon}$ is an algebraic integer.

Proposition

An algebraic integer ε in $\mathbb{Q}(\sqrt{d})$ is a unit if and only if $N(\varepsilon)= \pm 1$.

- If ε is a unit, then $N(\varepsilon)$ and $N\left(\frac{1}{\varepsilon}\right)$ are rational integers, since they are the constant terms of the corresponding minimal polynomials.
By multiplicativity of $N, N(\varepsilon) N\left(\frac{1}{\varepsilon}\right)=1$.
Therefore, $N(\varepsilon)= \pm 1$.
Conversely, suppose $N(\varepsilon)= \pm 1$. Then $\varepsilon \bar{\varepsilon}= \pm 1$, whence, ε is a unit.
- Recalling that $N(\alpha)=F(x, y)$, we see that the units in $\mathbb{Q}(\sqrt{d})$ are determined by the integer solutions x, y of the equation $F(x, y)= \pm 1$.
- Suppose $d<0$.
- The quadratic field $\mathbb{Q}(\sqrt{d})$ is said to be imaginary.

Proposition

In an imaginary quadratic field there are only finitely many units.

- We distinguish cases:
- If $d<-3$, then, the equation $F(x, y)= \pm 1$ has only the solutions $x= \pm 1, y=0$. So the only units in $\mathbb{Q}(\sqrt{d})$ are ± 1.
- For $d=-1$, that is, for the Gaussian field, we have $F(x, y)=x^{2}+y^{2}$. The equation $F(x, y)= \pm 1$ has four solutions, namely $(\pm 1,0),(0, \pm 1)$. In this case $\alpha=x+y \sqrt{d}$. So there are four units $\pm 1, \pm i$.
- For $d=-3$, we have $F(x, y)=x^{2}+x y+y^{2}$. The equation $F(x, y)= \pm 1$ has six solutions, namely $(\pm 1,0),(0, \pm 1),(1,-1)$ and $(-1,1)$. In this case $\alpha=x+\frac{1}{2} y(1+\sqrt{d})$. Thus, the units of $\mathbb{Q}(\sqrt{-3})$ are ± 1 and $\frac{1}{2}(\pm 1 \pm \sqrt{-3})$.

Units in $\mathrm{Q}(\sqrt{d})$ (Imaginary Case Cont'd)

- The units in an imaginary quadratic field are all roots of unity.
- They are given by the zeros of:
- $x^{2}-1$, when $D<-4$;
- $x^{4}-1$, when $D=-4$;
- $x^{6}-1$, when $D=-3$.
- Note that the number of units is the same as the number w for forms with discriminant D.

Units in $\mathrm{Q}(\sqrt{d})$ (Real Case)

- Suppose $d>0$.
- The quadratic field $\mathbb{Q}(\sqrt{d})$ is said to be real.

Proposition

In a real quadratic field there are infinitely many units.

- It suffices to show that there is a unit $\eta \neq \pm 1$.
- Then, η^{m} is a unit for all integers m;
- Since the only roots of unity in $\mathbb{Q}(\sqrt{d})$ are ± 1, different m give distinct units.
- By Dirichlet's Theorem, for any integer $Q>1$, there exist rational integers p, q, with $0<q<Q$, such that $|\alpha| \leq \frac{1}{Q}$, where $\alpha=p-q \sqrt{d}$.
The conjugate $\bar{\alpha}=\alpha+2 q \sqrt{d}$ satisfies $|\bar{\alpha}| \leq|\alpha|+2 q \sqrt{d} \leq Q \sqrt{d}+2 Q \sqrt{d}$ $=3 Q \sqrt{d}$. So, $|N(\alpha)|=|\alpha||\bar{\alpha}| \leq 3 \sqrt{d}$.
Further, since \sqrt{d} is irrational, we obtain, as $Q \rightarrow \infty$, infinitely many α with this property.
- Now $N(\alpha)$ is a rational integer bounded independently of Q. Thus, for infinitely many α, it takes some fixed value, say N. We can select two distinct $\alpha=p-q \sqrt{d}$ and $\alpha^{\prime}=p^{\prime}-q^{\prime} \sqrt{d}$, such that $p \equiv p^{\prime}(\bmod N)$ and $q \equiv q^{\prime}(\bmod N)$.
We now put $\eta=\frac{\alpha}{\alpha^{\prime}}=\frac{p-q \sqrt{d}}{p^{\prime}-q^{\prime} \sqrt{d}}$.
- $N(\eta)=\frac{N(\alpha)}{N\left(\alpha^{\prime}\right)}=1$;
- $\eta \neq \pm 1$, since \sqrt{d} is irrational and q, q^{\prime} are positive.

We have $\eta=x+y \sqrt{d}$, where $x=\frac{p p^{\prime}-d q q^{\prime}}{N}$ and $y=\frac{p q^{\prime}-p^{\prime} q}{N}$.
Note that

$$
\begin{aligned}
& p p^{\prime}-d q q^{\prime}=p(p+k N)-d q(q+\ell N)=\left(p^{2}-d q^{2}\right)+(p k-d q \ell) N ; \\
& p q^{\prime}-p^{\prime} q=p(q+\ell N)-(p+k N) q=(p \ell-q k) N .
\end{aligned}
$$

Hence, x, y are rational integers.
It follows that η is a non-trivial unit in $\mathbb{Q}(\sqrt{d})$.

Smallest Unit Exceeding 1 in a Real Quadratic Field

- Consider the set of all units in the real field $\mathbb{Q}(\sqrt{d})$ exceeding 1 . The set is not empty, for if η is the unit obtained in the preceding slide, then one of the numbers $\pm \eta$ or $\pm \frac{1}{\eta}$ is a member.
Each element of the set has the form $u+v \sqrt{d}$, where u, v are integers, or, if $d \equiv 1(\bmod 4)$, possibly halves of odd integers.
u and v are positive, for $u+v \sqrt{d}$ is greater than its conjugate $u-v \sqrt{d}$, which lies between -1 and 1 .
It follows that there is a smallest element in the set, say ε.

Units in Relation to Smallest Unit Exceeding 1

- If ε^{\prime} is any positive unit in the field, then there is a unique integer m, such that $\varepsilon^{m} \leq \varepsilon^{\prime}<\varepsilon^{m+1}$.
Hence

$$
1 \leq \frac{\varepsilon^{\prime}}{\varepsilon^{m}}<\varepsilon .
$$

But $\frac{\varepsilon^{\prime}}{\varepsilon^{m}}$ is also a unit in the field.
It follows from the definition of ε, that $\varepsilon^{\prime}=\varepsilon^{m}$.
This shows that all the units in the field are given by

$$
\pm \varepsilon^{m}, \quad m=0, \pm 1, \pm 2, \ldots
$$

Subsection 4

Primes and Factorization

Primes in the Ring of Algebraic Integers

- Let R be the ring of algebraic integers in a quadratic field $\mathbb{Q}(\sqrt{d})$.
- A prime π in R is an element of R that is neither 0 nor a unit and which has the property that, if π divides $\alpha \beta$, where α, β are elements of R, then either π divides α or π divides β.

Proposition

A prime π is irreducible.

- Suppose π is prime and $\pi=\alpha \beta$.

By primality $\frac{\alpha}{\pi}$ or $\frac{\beta}{\pi}$ is an element of R.
But the first implies that β is a unit and the second that α is a unit. Therefore, π is irreducible.

Irreducibles Need Not Be Primes

Claim: An irreducible element need not be a prime.
Consider the number 2 in the quadratic field $\mathbb{Q}(\sqrt{-5})$.

- It is irreducible: Suppose $2=\alpha \beta$. Then $4=N(\alpha) N(\beta)$. But $N(\alpha)$ and $N(\beta)$ have the form $x^{2}+5 y^{2}$, for some integers x, y. Note that the equation $x^{2}+5 y^{2}= \pm 2$ has no integer solutions. So, either $N(\alpha)= \pm 1$ or $N(\beta)= \pm 1$. Thus, either α or β is a unit.
- On the other hand, 2 is not a prime in $\mathbb{Q}(\sqrt{-5})$:
- 2 divides $(1+\sqrt{-5})(1-\sqrt{-5})=6$;
- 2 does not divide either $1+\sqrt{-5}$ or $1-\sqrt{-5}$.

Taking norms to verify that each of the latter is irreducible.

Decomposition into a Product of Irreducibles

Proposition

Every element α of R that is neither 0 nor a unit can be factorized into a finite product of irreducible elements.

- If α is irreducible, there is nothing to prove.

Otherwise, $\alpha=\beta \gamma$, for some β, γ in R, neither of which is a unit.
If β were not irreducible, then it could be factorized likewise, and the same holds for γ.
The process must terminate, for if $\alpha=\beta_{1} \cdots \beta_{n}$, where none of the β 's is a unit, then, since $\left|N\left(\beta_{j}\right)\right| \geq 2$, we see that $|N(\alpha)| \geq 2^{n}$.

Unique Factorization Domains

- A finite product of irreducible elements is essentially unique if it is unique except for:
- the order of the factors;
- the possible replacement of irreducible elements by their associates.
- The ring R is said to be a unique factorization domain if the expression for α as a finite product of irreducible elements is essentially unique.

Theorem

R is a unique factorization domain if and only if every irreducible element of R is also a prime in R.

- Suppose factorization in R is unique.

Let π be an irreducible element such that π divides $\alpha \beta$, with α, β in R.
Then π is an associate of one of the irreducible factors of α or β.
So π divides α or β, as required.
Conversely, suppose that every irreducible element is also a prime.
We argue as in the proof of the fundamental theorem of arithmetic.
Suppose $\alpha=\pi_{1} \cdots \pi_{k}$ as a product of irreducible elements, and π^{\prime} is an irreducible element occurring in another factorization.
Then π^{\prime} must divide π_{j}, for some j. So, π^{\prime} and π_{j} are associates. Assuming by induction that the result holds for $\frac{\alpha}{\pi^{\prime}}$, the required uniqueness of factorization follows.

Subsection 5

Euclidean Fields

Euclidean Fields

- A quadratic field $\mathbb{Q}(\sqrt{d})$ is said to be Euclidean if its ring of integers R has the property that, for any elements α, β of R with $\beta \neq 0$, there exist elements γ, δ of R, such that $\alpha=\beta \gamma+\delta$ and $|N(\delta)|<|N(\beta)|$.
Claim: A Euclidean quadratic field has a Euclidean algorithm.
We can generate the sequence of equations

$$
\delta_{j-2}=\delta_{j-1} \gamma_{j}+\delta_{j}, \quad j=1,2, \ldots,
$$

where $\delta_{-1}=\alpha, \delta_{0}=\beta, \delta_{1}=\delta, \gamma_{1}=\gamma$ and $\left|N\left(\delta_{j}\right)\right|<\left|N\left(\delta_{j-1}\right)\right|$.
The sequence terminates when $\delta_{k+1}=0$, for some k.
Then δ_{k} has the properties of a greatest common divisor:

- δ_{k} divides α and β;
- every common divisor of α, β divides δ_{k}.

Moreover, we have $\delta_{k}=\alpha \lambda+\beta \mu$, for some λ, μ in R.

Euclidean Fields (Cont'd)

- This can be verified by successive substitution.
- Alternatively, consider the set of positive integers of the form $|N(\alpha \lambda+\beta \mu)|$, where $\lambda, \mu \in R$.
This set has a least member $\left|N\left(\delta^{\prime}\right)\right|$, say, $\delta^{\prime}=\alpha \lambda+\beta \mu, \lambda, \mu \in R$.
Thus, every common divisor of α, β divides δ^{\prime}.
Note that $\alpha=\delta^{\prime} \gamma+\delta^{\prime \prime}$, with $\left|N\left(\delta^{\prime \prime}\right)\right|<\left|N\left(\delta^{\prime}\right)\right|$.
Therefore, $\delta^{\prime \prime}=\alpha \lambda^{\prime}+\beta \mu^{\prime}$, for some $\lambda^{\prime}, \mu^{\prime}$ in R.
Hence, δ^{\prime} divides α. Thus, $N\left(\delta^{\prime \prime}\right)=0$ and, so, $\delta^{\prime \prime}=0$.
Similarly, δ^{\prime} divides β. Hence, we have $\delta^{\prime}=\delta_{k}$.
- If δ_{k} is a unit then, by division, we obtain elements λ, μ in R, with $\alpha \lambda+\beta \mu=1$.

Euclidean Fields have Unique Factorization

Theorem

A Euclidean field has unique factorization.

- It suffices to show that every irreducible element π in R is a prime. Suppose that π divides $\alpha \beta$ but that π does not divide α. By the Euclidean Algorithm, there exist integers λ, μ in R, such that

$$
\alpha \lambda+\pi \mu=1 .
$$

This gives $\alpha \beta \lambda+\pi \beta \mu=\beta$. Hence, π divides β.
Thus, π is a prime.

Euclidean Quadratic Fields: A Negative Result

Theorem

There can be no other Euclidean fields with $d<0$, apart from $d=-11,-7,-3,-2,-1$.

- We exclude two cases that cover all non-listed numbers.
- Suppose, first, that $d \equiv 2$ or $3(\bmod 4)$ and $d \leq-5$.

We cannot have $\sqrt{d}=2 \gamma+\delta$, with $|N(\delta)|<4$.
Let $\gamma=x+y \sqrt{d}, \delta=x^{\prime}+y^{\prime} \sqrt{d}$, with $x, y, x^{\prime}, y^{\prime}$ rational integers.
Note that $N(\delta) \geq x^{\prime 2}+5 y^{\prime 2}$. So, $y^{\prime}=0$.
But $\sqrt{d}=2 \gamma+\delta$ yields $2 y+y^{\prime}=1$, contradicting $y^{\prime}=0$.

- Suppose, next, that $d \equiv 1(\bmod 4)$ and $d \leq-15$.

We cannot have $\frac{1}{2}(1+\sqrt{d})=2 \gamma+\delta$, with $|N(\delta)|<4$.
Let $\gamma=x+y \frac{1}{2}(1+\sqrt{d}), \delta=x^{\prime}+y^{\prime} \frac{1}{2}(1+\sqrt{d})$, with $x, y, x^{\prime}, y^{\prime}$ integers.
Note that $N(\delta) \geq \frac{1}{4}\left(2 x^{\prime}+y^{\prime}\right)^{2}+\frac{15}{4} y^{\prime 2}$. So, $y^{\prime}=0$ or $y^{\prime}=-2 x^{\prime}$.
But $\frac{1}{2}(1+\sqrt{d})=2 \gamma+\delta$ yields $y+\frac{1}{2} y^{\prime}=\frac{1}{2}$.
This contradicts $y^{\prime}=0$ or $y^{\prime}=-2 x^{\prime}$.

Euclidean Quadratic Fields for $d=-2,-1,2,3$

Theorem

If $d=-2,-1,2$ or 3 then $\mathbb{Q}(\sqrt{d})$ is Euclidean.

- Let α, β be any algebraic integers in $\mathbb{Q}(\sqrt{d})$, with $\beta \neq 0$.

Then $\frac{\alpha}{\beta}=u+v \sqrt{d}$, for some rationals u, v.
Select integers x, y as close as possible to u, v and set

$$
r=u-x \quad \text { and } \quad s=v-y
$$

Then $|r| \leq \frac{1}{2}$ and $|s| \leq \frac{1}{2}$ and, moreover,

$$
\alpha=\beta(u+v \sqrt{d})=\beta((x+r)+(y+s) \sqrt{d})=\beta(x+y \sqrt{d})+\beta(r+s \sqrt{d}) .
$$

Now note that:

- For $|d| \leq 2$, we have $\left|r^{2}-d s^{2}\right| \leq r^{2}+2 s^{2} \leq \frac{3}{4}$;
- For $d=3$, we have $\left|r^{2}-d s^{2}\right| \leq \max \left(r^{2}, d s^{2}\right) \leq \frac{3}{4}$.

Therefore, $|N(\beta(r+s \sqrt{d}))|=N(\beta)\left(r^{2}-d s^{2}\right) \leq N(\beta)$.

Subsection 6

The Gaussian Field

- The Gaussian field is $\mathbb{Q}(\sqrt{-1})=\mathbb{Q}(i)$.
- The Gaussian integers are the integers in the field. They have the form $x+i y$, with x, y rational integers.
- The norm of a Gaussian integer has the form $x^{2}+y^{2}$. In particular, it is non-negative.
- It was noted that there are just four units ± 1 and $\pm i$.
- Moreover, the field is Euclidean and so has unique factorization.
- It follows that there is no need to distinguish between irreducible elements and primes.
These elements are called Gaussian primes.

Gaussian Integers and Primes

Proposition

If α is any Gaussian integer and if $N(\alpha)$ is a rational prime, then α is a Gaussian prime.

Assume α is any Gaussian integer and $N(\alpha)$ a rational prime.
Suppose $\alpha=\beta \gamma$, for some Gaussian integers β, γ.
Then $N(\alpha)=N(\beta) N(\gamma)$.
Hence, either $N(\beta)=1$ or $N(\gamma)=1$.
So, either β or γ is a unit.

Proposition

Every Gaussian prime π divides just one rational prime p.

- π certainly divides $N(\pi)$.

So there is a least positive rational integer p, such that π divides p. p is a rational prime: Suppose $p=m n$, where m, n are rational integers. Then, since π is a Gaussian prime, we have either π divides m or π divides n. By the minimal property of p, either m or n is 1 .
The prime p is unique: Suppose p^{\prime} is any other rational prime. Then there exist rational integers a, a^{\prime}, such that $a p+a^{\prime} p^{\prime}=1$. Thus, if π were to divide both p and p^{\prime}, then it would divide 1 . So π would be a unit contrary to definition.

Gaussian Primes

Theorem

A rational prime p is either itself a Gaussian prime or is the product $\pi \pi^{\prime}$ of two Gaussian primes, where π, π^{\prime} are conjugates.

- p is divisible by some Gaussian prime π.

Thus, we have $p=\pi \lambda$, for some Gaussian integer λ.
This gives $N(\pi) N(\lambda)=p^{2}$, whence one of the following holds:

- $N(\lambda)=1$. So λ is a unit and p is an associate of π;
- $N(\lambda)=p$. So $N(\pi)=p$.

In the first case $p \equiv 3(\bmod 4)$ and in the second $p \equiv 1(\bmod 4)$: $N(\pi)$ has the form $x^{2}+y^{2}$. A square is congruent to 0 or $1(\bmod 4)$. Suppose $p \equiv 1(\bmod 4)$. Then -1 is a quadratic residue $(\bmod p)$. So p divides $x^{2}+1=(x+i)(x-i)$, for some rational integer x. If p were a Gaussian prime, it would divide either $x+i$ or $x-i$. This contradicts the neither $\frac{x}{p}+\frac{i}{p}$ nor $\frac{x}{p}-\frac{i}{p}$ is a Gaussian integer.

Gaussian Primes (Cont'd)

- With regard to the prime 2 , we have $2=(1+i)(1-i)$.
- $1+i$ and $1-i$ are Gaussian primes;
- $1+i$ and $1-i$ are associates.
- In conclusion, we find that the totality of Gaussian primes are given by:
- the rational primes $p \equiv 3(\bmod 4)$;
- the factors π, π^{\prime} in the expression $p=\pi \pi^{\prime}$ for primes $p \equiv 1(\bmod 4)$;
- $1+i$;
together with all the associates of the elements in this list, formed by multiplying by ± 1 and $\pm i$.
- The argument provides another proof of the result that every prime $p \equiv 1(\bmod 4)$ can be expressed as a sum of two squares.

