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Axioms of Probability Sample Space and Events

Sample Space

Consider an experiment whose outcome is not predictable with
certainty.

However, suppose that the set of all possible outcomes is known.

The set of all possible outcomes of an experiment is known as the
sample space of the experiment and is denoted by S .

Examples:
1. Suppose the outcome of an experiment consists in the determination of

the sex of a newborn child. Then S = {g , b}, where the outcome g

means that the child is a girl and b that it is a boy.
2. Suppose the outcome of an experiment is the order of finish in a race

among the 7 horses having post positions 1, 2, 3, 4, 5, 6 and 7. Then

S = {all 7! permutations of (1, 2, 3, 4, 5, 6, 7)}.

The outcome (2, 3, 1, 6, 5, 4, 7) means, for instance, that the number 2
horse comes in first, then the number 3 horse, then the number 1
horse, and so on.

George Voutsadakis (LSSU) Probability October 2020 4 / 71



Axioms of Probability Sample Space and Events

Examples (Cont’d)

3. Suppose the experiment consists of flipping two coins. Then the
sample space consists of the following four points:

S = {(H ,H), (H ,T ), (T ,H), (T ,T )}.

The outcome will be (H ,H) if both coins are heads, (H ,T ) if the first
coin is heads and the second tails, (T ,H) if the first is tails and the
second heads, and (T ,T ) if both coins are tails.

4. Suppose the experiment consists of tossing two dice. Then the sample
space consists of the 36 points

S = {(i , j) : i , j = 1, 2, 3, 4, 5, 6},

where the outcome (i , j) is said to occur if i appears on the leftmost
die and j on the other die.

5. Suppose the experiment consists of measuring (in hours) the lifetime of
a transistor. Then the sample space consists of all nonnegative real
numbers; that is, S = {x : 0 ≤ x < ∞} = [0,∞).
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Axioms of Probability Sample Space and Events

Events

Any subset E of the sample space is known as an event.

In other words, an event is a set consisting of possible outcomes of
the experiment.

If the outcome of the experiment is contained in E , then we say that
E has occurred.

Examples:

In Example 1, let E = {g}. Then E is the event that the child is a girl.
In Example 2, let E = {all outcomes in S starting with a 3}. Then E

is the event that horse 3 wins the race.
In Example 3, let E = {(H ,H), (H ,T )}. Then E is the event that a
head appears on the first coin.
In Example 4, let E = {(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)}. Then
E is the event that the sum of the dice equals 7.
In Example 5, let E = {x : 0 ≤ x ≤ 5}. Then E is the event that the
transistor lasts no longer than 5 hours.
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Axioms of Probability Sample Space and Events

Union of Two Events

For any two events E and F of a sample space S , we define the new
event E ∪ F to consist of all outcomes that are either in E or in F or
in both E and F .

That is, the event E ∪ F will occur if either E or F occurs.

Example: In Example 1, suppose event E = {g} and F = {b}. Then
E ∪ F = {g , b}. That is, E ∪ F is the whole sample space S .

In Example 3, suppose E = {(H,H), (H,T )} and F = {(T ,H)}.
Then

E ∪ F = {(H,H), (H,T ), (T ,H)}.

Thus, E ∪ F would occur if at least one head appeared.

The event E ∪ F is called the union of the event E and the event F .
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Axioms of Probability Sample Space and Events

Intersection of Two Events

For any two events E and F , we may also define the new event EF ,
called the intersection of E and F , to consist of all outcomes that
are both in E and in F .

That is, the event EF (sometimes written E ∩ F ) will occur only if
both E and F occur.

Example: In Example 3, suppose:

E = {(H ,H), (H ,T ), (T ,H)} is the event that at least 1 head occurs;
F = {(H ,T ), (T ,H), (T ,T )} is the event that at least 1 tail occurs.

Then EF = {(H,T ), (T ,H)}, i.e., it is the event that exactly 1 head
and 1 tail occur.

George Voutsadakis (LSSU) Probability October 2020 8 / 71



Axioms of Probability Sample Space and Events

The Null Event and Mutually Exclusive Events

Example: In example 4, suppose:

E = {(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)} is the event that the sum
of the dice is 7;
F = {(1, 5), (2, 4), (3, 3), (4, 2), (5, 1)} is the event that the sum is 6.

Then the event EF does not contain any outcomes.

Hence EF could never occur.

To give such an event a name, we shall refer to it as the null event

and denote it by ∅.

That is, ∅ refers to the event consisting of no outcomes.

If EF = ∅, then E and F are said to be mutually exclusive.
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Axioms of Probability Sample Space and Events

Union and Intersection of Multiple Events

We define unions and intersections of more than two events in a way
similar to those for two events.

If E1,E2, . . . are events, then the union of these events, denoted by
⋃

∞

n=1 En, is defined to be that event which consists of all outcomes
that are in En for at least one value of n = 1, 2, . . .:

∞
⋃

n=1

En = {x : (∃n)(x ∈ En)}.

The intersection of the events En, denoted by
⋂

∞

n=1 En, is defined to
be the event consisting of those outcomes which are in all of the
events En, n = 1, 2, . . .:

∞
⋂

n=1

En = {x : (∀n)(x ∈ En)}.
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Axioms of Probability Sample Space and Events

The Complement of an Event

For any event E , we define the new event E c , referred to as the
complement of E , to consist of all outcomes in the sample space S

that are not in E .

That is, E c will occur if and only if E does not occur.

Example: In Example 4, suppose event

E = {(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)}.

Then E c will occur when the sum of the dice does not equal 7.

Note that because the experiment must result in some outcome, it
follows that Sc = ∅.
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Axioms of Probability Sample Space and Events

Subsets

For any two events E and F , if all of the outcomes in E are also in F ,
then we say that

E is contained in F , or
E is a subset of F, or
F is a superset of E ,

and write
E ⊆ F or F ⊇ E .

Thus, if E ⊆ F , then the occurrence of E implies the occurrence of F .

If E ⊆ F and F ⊆ E , we say that E and F are equal and write

E = F .
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Axioms of Probability Sample Space and Events

Venn Diagrams

The sample space S is represented as consisting of all the outcomes
in a large rectangle.

The events E ,F ,G , . . . are represented as consisting of all the
outcomes in given circles within the rectangle.

Example: In the three Venn diagrams shown below, the shaded areas
represent, respectively, the events E ∪ F , EF , and E c .

The Venn diagram on the right indicates that E ⊆ F .
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Axioms of Probability Sample Space and Events

Set-Theoretic Identities

The operations of forming unions, intersections and complements of
events obey certain rules similar to the rules of algebra:

Commutative Laws:

E ∪ F = F ∪ E E ∩ F = F ∩ E ;
Associative Laws:

(E ∪ F ) ∪ G = E ∪ (F ∪ G ) (E ∩ F ) ∩ G = E ∩ (F ∩ G );
Distributive Laws:

(E ∪ F ) ∩ G = (E ∩ G ) ∪ (F ∩ G ) (E ∩ F ) ∪ G = (E ∪ G ) ∩ (F ∪ G ).

These relations are verified by showing that any outcome that is
contained in the event on the left side of the equality sign is also
contained in the event on the right side, and vice versa.
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Axioms of Probability Sample Space and Events

Demonstrations Using Venn Diagrams

One way of informally “proving” identities is by means of Venn
diagrams.

Example: The distributive law

(E ∪ F )G = EG ∪ FG

may be verified by the sequence of diagrams in the figure:
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Axioms of Probability Sample Space and Events

De Morgan’s Laws

De Morgan’s Laws:

(
n
⋃

i=1

Ei )
c =

n
⋂

i=1

E c
i , (

n
⋂

i=1

Ei )
c =

n
⋃

i=1

E c
i .

Suppose first that x is an outcome of (
⋃n

i=1 Ei )
c . Then x is not

contained in
⋃n

i=1 Ei . So x is not contained in any of the events Ei ,
i = 1, 2, . . . , n. Thus, x is contained in E c

i for all i = 1, 2, . . . , n. So x

is contained in
⋂n

i=1 E
c
i .

To go the other way, suppose that x is an outcome of
⋂n

i=1 E
c
i . Then

x is contained in E c
i for all i = 1, 2, . . . , n. This means that x is not

contained in Ei for any i = 1, 2, . . . , n. So x is not contained in
⋃n

i=1 Ei . This implies that x is contained in (
⋃n

i=1 Ei )
c .

This proves the first of De Morgan’s Laws.
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Axioms of Probability Sample Space and Events

De Morgan’s Laws (Cont’d)

To prove the second of De Morgan’s laws, we use the first law to
obtain

(

n
⋃

i=1

E c
i )

c =

n
⋂

i=1

(E c
i )

c
.

Since (E c )c = E , this is equivalent to

(

n
⋃

i=1

E c
i )

c =

n
⋂

i=1

Ei .

Taking complements of both sides of the preceding equation yields
the result we seek,

n
⋃

i=1

E c
i = (

n
⋂

i=1

Ei )
c
.
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Axioms of Probability Axioms of Probability

Subsection 2

Axioms of Probability
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Axioms of Probability Axioms of Probability

Axioms of Probability

Consider an experiment whose sample space is S .

For each event E of the sample space S , we assume that a number
P(E ) is defined and satisfies the following three axioms:

Axiom 1 0 ≤ P(E ) ≤ 1;
Axiom 2 P(S) = 1
Axiom 3 For any sequence of mutually exclusive events E1,E2, . . . (that is,

events for which EiEj = ∅ when i 6= j),

P(
∞
⋃

i=1

Ei) =
∞
∑

i=1

P(Ei).

We refer to P(E ) as the probability of the event E .
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Axioms of Probability Axioms of Probability

Probability of the Null Event

Consider a sequence of events E1,E2, . . ., where:

E1 = S ;
Ei = ∅ for i > 1.

These events are mutually exclusive.

Moreover, S =
⋃

∞

i=1 Ei .

Hence, from Axiom 3,

P(S) =
∞
∑

i=1

P(Ei ) = P(S) +
∞
∑

i=2

P(∅).

Taking into account Axiom 1, we get P(∅) = 0.

That is, the null event has probability 0 of occurring.
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Axioms of Probability Axioms of Probability

Finite Sample Spaces and Axiom 3

Note that it follows that, for any finite sequence of mutually exclusive
events E1,E2, . . . ,En,

P(

n
⋃

i=1

Ei ) =

n
∑

i=1

P(Ei ).

This equation follows from Axiom 3 by defining Ei as the null event
for all values of i greater than n.

This equation is equivalent to Axiom 3 when the sample space is
finite.

However, the added generality of Axiom 3 is necessary when the
sample space consists of an infinite number of points.
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Axioms of Probability Axioms of Probability

Example

Suppose our experiment consists of tossing a coin.

Assume that a head is as likely to appear as a tail.

Then we would have

P({H}) = P({T}) =
1

2
.

Suppose, now, the coin were biased.

Assume that a head were twice as likely to appear as a tail.

Then we would have

P({H}) =
2

3
, P({T}) =

1

3
.
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Axioms of Probability Axioms of Probability

Example

Suppose a die is rolled.

Assume that all six sides are equally likely to appear.

Then we would have

P({1}) = P({2}) = P({3}) = P({4}) = P({5}) = P({6}) =
1

6
.

From Axiom 3, it would thus follow that the probability of rolling an
even number would equal

P({2, 4, 6}) = P({2}) + P({4}) + P({6}) =
1

2
.
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Axioms of Probability Some Simple Propositions

Subsection 3

Some Simple Propositions
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Axioms of Probability Some Simple Propositions

Probability of Complement

Proposition

Suppose E is an event in a sample space S . We then have

P(E c) = 1− P(E ).

E and E c are always mutually exclusive.

Moreover, E ∪ E c = S .

Hence, by Axioms 2 and 3,

1 = P(S) = P(E ∪ E c) = P(E ) + P(E c).

Example: Consider tossing a coin. Suppose that P({H}) = 3
8 .

It then follows that P({T}) = 1− 3
8 = 5

8 .
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Axioms of Probability Some Simple Propositions

Probability of Subset

Proposition

Let E , F be events in a sample space S . If E ⊆ F , then P(E ) ≤ P(F ).

Since E ⊆ F , it follows that we can express F as

F = E ∪ E cF .

The events E and E cF are mutually exclusive. Hence, from Axiom 3,

P(F ) = P(E ) + P(E cF ).

This proves the result, since P(E cF ) ≥ 0.

Example: Consider tossing a die. We have {1} ⊆ {1, 3, 5}. Hence,
P({1}) ≤ P({1, 3, 5}). So the probability of rolling a 1 is less than or
equal to the probability of rolling an odd value.

George Voutsadakis (LSSU) Probability October 2020 26 / 71



Axioms of Probability Some Simple Propositions

Probability of Unions and Intersections

Proposition

Let E , F be events in a sample space S . Then,

P(E ∪ F ) = P(E ) + P(F )− P(EF ).

Note that E ∪ F can be written as the union of the two disjoint
events E and E cF . Thus, from Axiom 3, we obtain

P(E ∪ F ) = P(E ∪ E cF ) = P(E ) + P(E cF ).

Also F = EF ∪ E cF . Hence, from Axiom 3, we get P(F ) =
P(EF ) + P(E cF ) or, equivalently,

P(E cF ) = P(F )− P(EF ).

Now we get P(E ∪ F ) = P(E ) + P(E cF ) = P(E ) + P(F )− P(EF ).
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Axioms of Probability Some Simple Propositions

Example

Antonia is taking two books along on her holiday vacation.

With probability 0.5, she will like the first book;
With probability 0.4, she will like the second book;
With probability 0.3, she will like both books.

What is the probability that she likes neither book?

Let Bi denote the event that Antonia likes book i , i = 1, 2.

Then the probability that she likes at least one of the books is

P(B1 ∪ B2) = P(B1) + P(B2)− P(B1B2) = 0.5 + 0.4− 0.3 = 0.6.

The event that Antonia likes neither book is the complement of the
event that she likes at least one of them.

Hence, we obtain the result

P(Bc
1B

c
2 ) = P((B1 ∪ B2)

c) = 1− P(B1 ∪ B2) = 0.4.

George Voutsadakis (LSSU) Probability October 2020 28 / 71



Axioms of Probability Some Simple Propositions

Inclusion-Exclusion for Three Events

We calculate the probability that any one of the three events E ,F
and G occurs, namely,

P(E ∪ F ∪ G ) = P [(E ∪ F ) ∪ G ].

By the proposition, this equals

P(E ∪ F ) + P(G )− P [(E ∪ F )G ].

Now, it follows from the distributive law that the events (E ∪ F )G
and EG ∪ FG are equivalent.

Hence, from the preceding equations, we obtain

P(E ∪ F ∪ G ) = P(E ∪ F ) + P(G )− P [(E ∪ F )G ]
= P(E ) + P(F )− P(EF ) + P(G )− P(EG ∪ FG )
= P(E ) + P(F )− P(EF ) + P(G )− P(EG )− P(FG ) + P(EGFG )
= P(E ) + P(F ) + P(G )− P(EF )− P(EG )− P(FG ) + P(EFG ).
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Axioms of Probability Some Simple Propositions

The Inclusion-Exclusion Identity

The following proposition, can be proved by mathematical induction:

The Inclusion-Exclusion Identity

P(E1 ∪ E2 ∪ · · · ∪ En) =
∑n

i=1 P(Ei )−
∑

i1<i2
P(Ei1Ei2) + · · ·

+ (−1)r+1
∑

i1<i2<···<ir
P(Ei1Ei2 · · · Eir )

+ · · · + (−1)n+1P(E1E2 · · ·En).

The summation
∑

i1<i2<···<ir
P(Ei1Ei2 · · ·Eir ) is taken over all of the

(

n
r

)

possible subsets of size r of the set {1, 2, . . . , n}.

In words, the probability of the union of n events equals: the sum of
the probabilities of these events taken one at a time, minus the sum
of the probabilities of these events taken two at a time, plus the sum
of the probabilities of these events taken three at a time, and so on.
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Axioms of Probability Some Simple Propositions

Non-Inductive Proof of Inclusion-Exclusion

Note first that if an outcome of the sample space is not a member of
any of the sets Ei , then its probability does not contribute anything to
either side of the equality.

Now, suppose that an outcome is in exactly m of the Ei ’s, m > 0.

Then, it is in ∪iEi . So its probability is counted once in P(∪iEi ).
Moreover, it is contained in

(

m
k

)

subsets of the type Ei1Ei2 · · ·Eik . So,
its probability is counted

(

m
1

)

−
(

m
2

)

+
(

m
3

)

− · · · ±
(

m
m

)

times on the
right of the equality sign. Thus, for m > 0, we must show that

1 =

(

m

1

)

−

(

m

2

)

+

(

m

3

)

− · · · ±

(

m

m

)

.

But 1 =
(

m
0

)

. Hence, the preceding equation is equivalent to
∑m

i=0

(

m
i

)

(−1)i = 0. But, this equation follows from the binomial
theorem, since 0 = (−1 + 1)m =

∑m
i=0

(

m
i

)

(−1)i (1)m−i .
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Axioms of Probability Some Simple Propositions

Bounds on the Probability of a Union

In the inclusion-exclusion identity:

Going out one term results in an upper bound on the probability of the
union;

P(

n
⋃

i=1

Ei) ≤
P
∑

i=1

(E1);

Going out two terms results in a lower bound on the probability;

P(
n
⋃

i=1

Ei) ≥
n

∑

i=1

P(Ei )−
∑

j<i

P(E1Ej);

Going out three terms results in an upper bound on the probability;

P(

n
⋃

i=1

Ei) ≤
n

∑

i=1

P(Ei)−
∑

j<i

P(EiEj) +
∑

k<j<i

P(EiEjEk);

Going out four terms results in a lower bound, and so on.
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Axioms of Probability Some Simple Propositions

Proof of the Bounds

Note the identity
n
⋃

i=1

Ei = E1 ∪ E c
1 E2 ∪ E c

1 E
c
2 E3 ∪ · · · ∪ E c

1 · · ·E c
n−1En.

The right-hand side is the union of disjoint events. Thus, we obtain

P(
⋃n

i=1 Ei) = P(E1) + P(E c
1 E2) + P(E c

1 E
c
2 E3) + · · ·

+ P(E c
1 · · ·E c

n−1En)
= P(E1) +

∑n
i=2 P(E

c
1 · · · E c

i−1Ei).

Let Bi = E c
1 · · ·E c

i−1 = (
⋃

j<i Ej )
c . But P(Ei ) = P(BiEi ) + P(Bc

i Ei ).
So P(Ei ) = P(E c

1 · · ·E c
i−1Ei ) + P(Ei (E

c
1 · · ·E c

i−1)
c) =

P(E c
1 · · ·E c

i−1Ei ) + P(Ei

⋃

j<i Ej). Equivalently, P(E
c
1 · · · E c

i−1Ei) =
P(Ei )− P(

⋃

j<i EiEj). Substituting this into the previous one,

P(

n
⋃

i=1

Ei ) =
∑

i

P(Ei )−
∑

i

P(
⋃

j<i

EiEj).

Because probabilities are always nonnegative, the inequality follows.
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Axioms of Probability Some Simple Propositions

Proof of the Bounds (Cont’d)

Fix i . Apply the proven inequality to P(
⋃

j<i EiEj).

P(∪j<iEiEj) ≤
∑

j<i

P(EiEj ).

But P(E c
1 · · ·E c

i−1Ei ) = P(Ei )− P(
⋃

j<i EiEj). This yields the second
bound.

Fix i . Apply the second bound to P(
⋃

j<i EiEj).

P(
⋃

j<i EiEj) ≥
∑

j<i P(EiEj)−
∑

k<j<i P(EiEjEiEk)

=
∑

j<i P(EiEj)−
∑

k<j<i P(EiEjEk).

Use P(E c
1 · · ·E c

i−1Ei ) = P(Ei )− P(
⋃

j<i EiEj). This gives the third
bound.

The next inclusion-exclusion inequality is obtained by fixing i and
applying the third bound to P(

⋃

j<i EiEj), and so on.
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Axioms of Probability Sample Spaces With Equally Likely Outcomes

Subsection 4

Sample Spaces With Equally Likely Outcomes
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Axioms of Probability Sample Spaces With Equally Likely Outcomes

Sample Spaces With Equally Likely Outcomes

Consider an experiment whose sample space S is a finite set, say,
S = {1, 2, . . . ,N}.

It is often natural to assume that P({1}) = P({2}) = · · · = P({N}).

This implies, from Axioms 2 and 3, that

P({i}) =
1

N
, i = 1, 2, . . . ,N.

From this equation, it follows from Axiom 3 that, for any event E ,

P(E ) =
number of outcomes in E

number of outcomes in S
.

In words, if we assume that all outcomes of an experiment are equally
likely to occur, then:

the probability of any event E equals the proportion of
outcomes in the sample space that are contained in E .
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Axioms of Probability Sample Spaces With Equally Likely Outcomes

Example

If two dice are rolled, what is the probability that the sum of the
upturned faces will equal 7?

We solve this problem under the assumption that all of the 36
possible outcomes are equally likely.

There are 6 possible outcomes that result in the sum of the dice being
equal to 7:

(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1).

Hence, the desired probability is 6
36 = 1

6 .
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Axioms of Probability Sample Spaces With Equally Likely Outcomes

Example

If 3 balls are “randomly drawn” from a bowl containing 6 white and 5
black balls, what is the probability that one of the balls is white and
the other two black?

If we regard the order in which the balls are selected as being
relevant, then the sample space consists of 11 · 10 · 9 = 990 outcomes.

Furthermore, there are three possibilities:

The first ball selected is white and the other two are black:
6 · 5 · 4 = 120 outcomes;
The first ball is black, the second is white, and the third is black:
5 · 6 · 4 = 120 outcomes;
The first two balls are black and the third is white: 5 · 4 · 6 = 120
outcomes.

Assume that “randomly drawn” means that each outcome in the
sample space is equally likely to occur.

Then the desired probability is 120+120+120
990 = 4

11 .
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Axioms of Probability Sample Spaces With Equally Likely Outcomes

Example (Cont’d)

The same problem could also have been solved by regarding the
outcome of the experiment as the unordered set of drawn balls.

Then the number of outcomes in the sample space is
(11
3

)

= 11·10·9
1·2·3 = 165.

Each set of 3 balls corresponds to 3! outcomes when the order of
selection is noted. So, if all outcomes are assumed equally likely when
the order of selection is noted, then it follows that they remain
equally likely when the outcome is taken to be the unordered set of
selected balls.

Hence, using the latter representation of the experiment, we see that
the desired probability is

(6
1

)(5
2

)

(

11
3

) =
6 · 10

165
=

4

11
.
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Axioms of Probability Sample Spaces With Equally Likely Outcomes

Random Selection Experiments

When the experiment consists of a random selection of k items from
a set of n items, we have the flexibility of:

Either letting the outcome of the experiment be the ordered selection
of the k items;
Or letting it be the unordered set of items selected.

In the former case we would assume that each new selection is equally
likely to be any of the so far unselected items of the set.

In the latter case we would assume that all
(

n
k

)

possible subsets of k
items are equally likely to be the set selected.
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Axioms of Probability Sample Spaces With Equally Likely Outcomes

Example

Suppose 5 people are to be randomly selected from a group of 20
individuals consisting of 10 married couples.

We want to determine P(N), the probability that the 5 chosen are all
unrelated (i.e., no two are married to each other).

If we regard the sample space as the set of 5 people chosen, then
there are

(20
5

)

equally likely outcomes.
An outcome that does not contain a married couple can be thought
of as being the result of a six-stage experiment:

In the first stage, 5 of the 10 couples to have a member in the group
are chosen;
In the next 5 stages, 1 of the 2 members of each of these couples is
selected.

Thus, the number of possible outcomes in which the 5 members
selected are unrelated is

(

10
5

)

25.

The desired probability is P(N) =
(105 )2

5

(205 )
.
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Axioms of Probability Sample Spaces With Equally Likely Outcomes

Example (Cont’d)

In contrast, we could let the outcome of the experiment be the
ordered selection of the 5 individuals.

In this setting, the number of equally likely outcomes is
20 · 19 · 18 · 17 · 16.

Of these, the number of outcomes resulting in a group of 5 unrelated
individuals is 20 · 18 · 16 · 14 · 12.

This yields the result

P(N) =
20 · 18 · 16 · 14 · 12

20 · 19 · 18 · 17 · 16
.

We can verify that the two answers are identical.
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Axioms of Probability Sample Spaces With Equally Likely Outcomes

Example

A committee of 5 is to be selected from a group of 6 men and 9
women.

If the selection is made randomly, what is the probability that the
committee consists of 3 men and 2 women?

The sample space consists of
(15
5

)

equally likely outcomes.

The number of committees consisting of 3 men and 2 women is
(6
3

)(9
2

)

.

Hence, the desired probability is

(6
3

)(9
2

)

(15
5

) =
240

1001
.
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Axioms of Probability Sample Spaces With Equally Likely Outcomes

Example

An urn contains n balls, one of which is special.

k of these balls are withdrawn one at a time, with each selection
being equally likely to be any of the balls that remain at the time.

What is the probability that the special ball is chosen?

All of the balls are treated in an identical manner.

Thus, the number of equally likely outcomes is
(

n
k

)

.

The number of outcomes in which the special ball is included is
(1
1

)(

n−1
k−1

)

.

Therefore,

P{special ball is selected} =

(

1
1

)(

n−1
k−1

)

(

n
k

) =
1 · (n−1)!

(k−1)!(n−k)!

n!
k!(n−k)!

=
k

n
.
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Axioms of Probability Sample Spaces With Equally Likely Outcomes

Example (Cont’d)

We could also have obtained this result by letting Ai denote the event
that the special ball is the ith ball to be chosen, i = 1, . . . , k .

Each one of the n balls is equally likely to be the ith ball chosen.

Thus, P(Ai) =
1
n
.

The events Ai are mutually exclusive.

Hence, we have

P{special ball is selected} = P(

k
⋃

i=1

Ai) =

k
∑

i=1

P(Ai) =
k

n
.
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Axioms of Probability Sample Spaces With Equally Likely Outcomes

Example (Cont’d)

We argue that P(Ai) =
1
n
differently.

The total number of equally likely outcomes of the experiment is

n(n − 1) · · · (n − k + 1) =
n!

(n − k)!
.

The number of outcomes that result in the special ball being the ith
chosen is

(n − 1)(n − 2) · · · (n − i + 1)(1)(n − i) · · · (n − k + 1) =
(n − 1)!

(n − k)!
.

From this reasoning, it follows that

P(Ai) =

(n−1)!
(n−k)!

n!
(n−k)!

=
(n − 1)!

n!
=

1

n
.
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Axioms of Probability Sample Spaces With Equally Likely Outcomes

Example

Suppose that n +m balls, of which n are red and m are blue, are
arranged in a linear order in such a way that all (n +m)! possible
orderings are equally likely.

If we record the result of this experiment by listing only the colors of
the successive balls, show that all the possible results remain equally
likely.

Consider any one of the (n +m)! possible orderings.

Any permutation of the red balls among themselves and of the blue
balls among themselves does not change the sequence of colors.

As a result, every ordering of colorings corresponds to n!m! different
orderings of the n +m balls.

So every ordering of the colors has probability n!m!
(n+m)! of occurring.
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Axioms of Probability Sample Spaces With Equally Likely Outcomes

Example (Cont’d)

Suppose that there are 2 red balls, numbered r1, r2, and 2 blue balls,
numbered b1, b2.

Then, of the 4! possible orderings, there will be 2!2! orderings that
result in any specified color combination.

For instance, the following orderings result in the successive balls
alternating in color, with a red ball first:

r1, b1, r2, b2 r1, b2, r2, b1 r2, b1, r1, b2 r2, b2, r1, b1.

Therefore, each of the possible orderings of the colors has probability
4
24 = 1

6 of occurring.
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Axioms of Probability Sample Spaces With Equally Likely Outcomes

Example

A poker hand consists of 5 cards.

If the cards have distinct consecutive values and are not all of the
same suit, we say that the hand is a straight.

For instance, a hand consisting of the five of spades, six of spades,
seven of spades, eight of spades, and nine of hearts is a straight.

What is the probability that one is dealt a straight?

We assume that all
(

52
5

)

possible poker hands are equally likely.

We want to determine the number of outcomes that are straights.

We first determine the number of possible outcomes for which the
poker hand consists of an ace, two, three, four, and five (the suits
being irrelevant).
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Axioms of Probability Sample Spaces With Equally Likely Outcomes

Example (Cont’d)

The ace can be any 1 of the 4 possible aces.
Similarly for the two, three, four, and five.

Thus, the number of outcomes leading to exactly one ace, two, three,
four, and five is 45.

In 4 of these outcomes all the cards will be of the same suit (such a
hand is called a straight flush).

Thus, the number of hands that make up a straight of the form ace,
two, three, four, and five is 45 − 4.

Similarly, there are 45 − 4 hands that make up a straight of the form
ten, jack, queen, king, and ace.

Thus, there are 10(45 − 4) hands that are straights.

It follows that the desired probability is 10(45−4)

(525 )
≈ 0.0039.
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Axioms of Probability Sample Spaces With Equally Likely Outcomes

Example

A 5-card poker hand is said to be a full house if it consists of:
3 cards of the same denomination;
2 cards of the same denomination (necessarily different from the first).

Thus, one kind of full house is three of a kind plus a pair.

What is the probability that one is dealt a full house?

We assume that all
(

52
5

)

possible hands are equally likely.

We determine the number of possible full houses.

The number of different hands of, say, 2 tens and 3 jacks is
(4
2

)(4
3

)

.
For the pairs and the 3 cards:

There are 13 different choices for the kind of pair;
After a pair has been chosen, there are 12 other choices for the
denomination of the remaining 3 cards.

Thus, the probability of a full house is

13 · 12 ·
(4
2

)(4
3

)

(52
5

) ≈ 0.0014.
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Axioms of Probability Sample Spaces With Equally Likely Outcomes

Example

In the game of bridge, the entire deck of 52 cards is dealt out to 4
players. What is the probability that:

(a) One of the players receives all 13 spades?
(b) Each player receives 1 ace?

(a) Let Ei be the event that hand i has all 13 spades.

Then

P(Ei ) =
1

(52
13

) , i = 1, 2, 3, 4.

The events Ei , i = 1, 2, 3, 4, are mutually exclusive.

Hence, the probability that one of the hands is dealt all 13 spades is

P(

4
⋃

i=1

Ei ) =

4
∑

i=1

P(Ei ) =
4

(52
13

) ≈ 6.3 × 10−12
.
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Axioms of Probability Sample Spaces With Equally Likely Outcomes

Example (Part(b))

(b) We determine the number of outcomes in which each of the distinct
players receives exactly 1 ace.

Put aside the aces.

The number of divisions of the other 48 cards when each player is to
receive 12 is

( 48
12,12,12,12

)

.

The number of ways of dividing the 4 aces so that each player
receives 1 is 4!.

So the number of possible outcomes in which each player receives
exactly 1 ace is 4!

( 48
12,12,12,12

)

.

The number of possible hands is
( 52
13,13,13,13

)

.

So the desired probability is

4!
( 48
12,12,12,12

)

(

52
13,13,13,13

) ≈ 0.1055.
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Axioms of Probability Sample Spaces With Equally Likely Outcomes

Example

If n people are present in a room, what is the probability that no two
of them celebrate their birthday on the same day of the year?

How large need n be so that this probability is less than 1
2?

Each person can celebrate his or her birthday on any one of 365 days
(ignoring the possibility of a birthday on February 29).

So the number of possible outcomes is (365)n .

The number of outcomes in which no two share the same birthday is
(365)(364)(363) · · · (365 − n + 1).

Thus, the desired probability is (365)(364)(363)···(365−n+1)
365n .

This probability is less than 1
2 when n ≥ 23.

That is, if there are 23 or more people in a room, then the probability
that at least two of them have the same birthday exceeds 1

2 .
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Axioms of Probability Sample Spaces With Equally Likely Outcomes

Example

A deck of 52 playing cards is shuffled, and the cards are turned up
one at a time until the first ace appears.

Is the next card - that is, the card following the first ace - more likely
to be the ace of spades or the two of clubs?

We calculate how many of the 52! possible orderings of the cards
have the ace of spades immediately following the first ace.

Each ordering of the 52 cards can be obtained by:

First ordering the 51 cards different from the ace of spades;
Then inserting the ace of spades into that ordering.

Furthermore, for each of the 51! orderings of the other cards, there is
only one place where the ace of spades can be placed so that it
follows the first ace.

Therefore, there are 51! orderings that result in the ace of spades
following the first ace.
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Axioms of Probability Sample Spaces With Equally Likely Outcomes

Example (Cont’d)

It follows that

P{the ace of spades follows the first ace} =
51!

52!
=

1

52
.

By the same argument, the probability that the two of clubs (or any
other specified card) follows the first ace is also 1

52 .

In other words, each of the 52 cards of the deck is equally likely to be
the one that follows the first ace!
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Axioms of Probability Sample Spaces With Equally Likely Outcomes

Example

A football team consists of 20 offensive and 20 defensive players.

The players are to be paired in groups of 2 for the purpose of
determining roommates.

(a) If the pairing is done at random, what is the probability that there are
no offensive-defensive roommate pairs?

(b) What is the probability that there are 2i offensive-defensive roommate
pairs, i = 1, 2, . . . , 10?

The number of ways of dividing the 40 players into 20 ordered pairs
of two each is

( 40
2,2,...,2

)

= 40!
(2!)20

.

I.e., there are 40!
220

ways of dividing the players into a first pair, a
second pair, and so on.

Hence, the number of ways of dividing the players into (unordered)
pairs of 2 each is 40!

22020!
.
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Axioms of Probability Sample Spaces With Equally Likely Outcomes

Example (Part (a))

(a) A division will result in no offensive-defensive pairs if the offensive
(and defensive) players are paired among themselves.

The number of ways of pairing each group of 20 among themselves is
20!

21010!
.

Hence, the number of divisions resulting in no offensive-defensive

pairs is
(

20!
21010!

)2
.

The probability of no offensive-defensive roommate pairs, call it P0, is
given by

P0 =
( 20!
21010!

)2

40!
22020!

=
(20!)3

(10!)240!
.
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Axioms of Probability Sample Spaces With Equally Likely Outcomes

Example (Part (b))

(b) Now we determine P2i , the probability that there are 2i offensive -
defensive pairs.

The number of ways of selecting the 2i offensive (or defensive)
players out of the 20 is

(20
2i

)

.

Thus, the number of ways of selecting the 2i offensive and the 2i

defensive players who are to be in the pairs is
(20
2i

)2
.

After the selection, the pairing can be done by:

Pairing the first offensive player selected with any of the 2i defensive
players selected;
Pairing the second offensive player selected with any of the remaining
2i − 1 defensive players, selected;
...

Hence, the 4i selected players can be paired up into (2i)! possible
offensive-defensive pairs.
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Axioms of Probability Sample Spaces With Equally Likely Outcomes

Example (Part (b) Cont’d)

The remaining 20− 2i offensive (and defensive) players must be
paired among themselves.

This can be done, for each remaining group, in (20−2i)!
210−i (10−i)!

ways.

It follows that the number of divisions which lead to 2i
offensive-defensive pairs is

(

20

2i

)2

(2i)!

[

(20 − 2i)!

210−i (10 − i)!

]2

.

Hence,

P2i =

(20
2i

)2
(2i)!

[

(20−2i)!
210−i (10−i)!

]2

(40)!
220(20)!

, i = 0, 1, . . . , 10.
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Axioms of Probability Sample Spaces With Equally Likely Outcomes

Example

The registry of a club shows that:
36 members play tennis;
28 play squash;
18 play badminton;
22 play both tennis and squash;
12 play both tennis and badminton;
9 play both squash and badminton;
4 play all three sports.

How many members play at least one of three sports?

Let N denote the number of members of the club.

Introduce a probability by assuming that a member of the club is
randomly selected.

If, for any subset C of members, we let P(C ) denote the probability
that the selected member is contained in C , then

P(C ) =
number of members in C

N
.

George Voutsadakis (LSSU) Probability October 2020 61 / 71



Axioms of Probability Sample Spaces With Equally Likely Outcomes

Example (Cont’d)

Now let:

T be the set of members that plays tennis;
S be the set that plays squash;
B be the set that plays badminton.

We get, from Inclusion-Exclusion,

P(T ∪ S ∪ B) = P(T ) + P(S) + P(B)
− P(TS)− P(TB)− P(SB)
+ P(TSB)

=
36 + 28 + 18− 22− 12− 9 + 4

N

=
43

N
.

Hence, we can conclude that 43 members play at least one of the
sports.
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Axioms of Probability Sample Spaces With Equally Likely Outcomes

Example: The Matching Problem

Each of N men at a party throws his hat into the center of the room.

First, the hats are mixed up;
Then, each man randomly selects a hat.

What is the probability that none of the men selects his own hat?

We first calculate the complementary probability of at least one man’s
selecting his own hat.

Let Ei , i = 1, . . . ,N, be the event that the Man i selects his own hat.

Then, the probability that at least one of the men selects his own hat
is P(

⋃N
i=1 Ei ). By Inclusion-Exclusion,

P(
⋃N

i=1 Ei ) =
∑N

i=1 P(Ei )−
∑

i1<i2
P(Ei1Ei2) + · · ·

+ (−1)n+1
∑

i1<i2<···<in
P(Ei1Ei2 · · ·Ein)

+ · · · + (−1)N+1P(E1E2 · · ·EN).
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Axioms of Probability Sample Spaces With Equally Likely Outcomes

Example: The Matching Problem (Cont’d)

Suppose we represent the outcome as a vector of N numbers, where
the ith element is the number of the hat drawn by Man i .

E.g., (1, 2, 3, . . . ,N) means that each man selects his own hat.

Then the number of possible outcomes is N!.

The event that each of the n men i1, i2, . . . , in selects his own hat is
Ei1Ei2 . . .Ein . The number of ways this can occur is

(N − n)(N − n − 1) · · · 3 · 2 · 1 = (N − n)!.

Hence, assuming that all N! possible outcomes are equally likely, we
see that

P(Ei1Ei2 · · ·Ein) =
(N − n)!

N!
.
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Axioms of Probability Sample Spaces With Equally Likely Outcomes

Example: The Matching Problem (Conclusion)

The number of terms in
∑

i1<i2<···<in
P(Ei1Ei2 · · ·Ein) is

(

N
n

)

.

Hence

∑

i1<i2<···<in

P(Ei1Ei2 · · ·Ein) =
N!(N − n)!

(N − n)!n!N!
=

1

n!
.

Thus,

P(
N
⋃

i=1

Ei ) = 1−
1

2!
+

1

3!
− · · ·+ (−1)N+1 1

N!
.

So, the probability that none of the men selects his own hat is

1− 1 +
1

2!
−

1

3!
+ · · ·+

(−1)N

N!

n→∞

≈
1

e
.
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Axioms of Probability Sample Spaces With Equally Likely Outcomes

Example

Suppose 10 married couples are seated at random at a round table.

What is the probability that no wife sits next to her husband?

Let Ei , i = 1, 2, . . . , 10, be the event that the ith couple sit next to
each other.

Then the desired probability is 1− P(
⋃10

i=1 Ei ).

From Inclusion-Exclusion,

P(
⋃10

1 Ei ) =
∑10

1 P(Ei)
− · · · + (−1)n+1

∑

i1<i2<···<in
P(E11Ei2 · · ·Ein)

+ · · · − P(E1E2 · · ·E10).
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Axioms of Probability Sample Spaces With Equally Likely Outcomes

Example (Cont’d)

We compute P(Ei1Ei2 · · ·Ein).

The number of cyclic arrangements of 20 people is 19!.

The arrangements that result in a specified set of n men sitting next
to their wives can be accomplished by:

Sitting the n married couples as if they were single entities:
(20− n − 1)! ways;
Allowing that each of the n married couples can be sat next to each
other in one of two possible ways.

Thus, the number of arrangements that result in a specified set of n
men each sitting next to their wives is 2n(20− n − 1)!.

Therefore,

P(Ei1Ei2 · · ·Ein) =
2n(19 − n)!

19!
.
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Axioms of Probability Sample Spaces With Equally Likely Outcomes

Example (Cont’d)

Using Inclusion-Exclusion, we obtain the probability that at least one
married couple sits together:

(10
1

)

21 18!
19! −

(10
2

)

22 17!19! + · · · −
(10
10

)

210 9!
19!

≈ 0.6605.

So the desired probability is approximately

0.3395.
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Axioms of Probability Probability as a Measure of Belief

Subsection 5

Probability as a Measure of Belief
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Axioms of Probability Probability as a Measure of Belief

Personal or Subjective View of Probability

Thus far we have interpreted the probability of an event of a given
experiment as being a measure of how frequently the event will occur
when the experiment is continually repeated.
Consider the statements:

“It is 90 percent probable that Shakespeare actually wrote Hamlet”;
“The probability that Oswald acted alone in assassinating Kennedy is
0.8.”

The simplest and most natural interpretation of such statements is
that the probabilities referred to are measures of the individual’s
degree of belief in the statements that he or she is making.

This interpretation of probability as being a measure of the degree of
one’s belief is often referred to as the personal or subjective view of
probability.

Whether we interpret probability as a measure of belief or as a
long-run frequency of occurrence, its mathematical properties remain
unchanged.
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Axioms of Probability Probability as a Measure of Belief

Example

Consider a 7-horse race.

Suppose a bookie feels that:

Each of the first 2 horses has a 20 percent chance of winning;
Horses 3 and 4 each have a 15 percent chance;
The remaining 3 horses have a 10 percent chance each.

Which of the following two options is better for the bookie to wager
at even money?

1. The winner will be one of the first three horses.
2. The winner will be one of the horses 1, 5, 6, and 7?

On the basis of his personal probabilities concerning the outcome, his
probability of winning:

The first bet is 0.2 + 0.2 + 0.15 = 0.55;
The second bet is 0.2 + 0.1 + 0.1 + 0.1 = 0.5.

Hence, the first wager is more attractive.
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