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Continuous Random Variables Introduction

Probability Density Function

Some random variables have an uncountable set of possible values.

Two examples are:

The time that a train arrives at a specified stop;
The lifetime of a transistor.

Let X be such a random variable.

We say that X is a continuous ran-

dom variable if there exists a nonneg-
ative function f , defined for all real x ∈
(−∞,∞), having the property that, for
any set B of real numbers,

P{X ∈ B} =

∫

B

f (x)dx .

The function f is called the probability density function of the
random variable X .
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Continuous Random Variables Introduction

Properties

Since X must assume some value, f must satisfy

1 = P{X ∈ (−∞,∞)} =

∫ ∞

−∞
f (x)dx .

All probability statements about X can be answered in terms of f .

For instance, from, letting B = [a, b], we obtain

P{a ≤ X ≤ b} =

∫ b

a

f (x)dx .

If we let a = b, we get P{X = a} =
∫ a

a
f (x)dx = 0.

Thus, the probability that a continuous random variable will assume
any fixed value is zero.

Hence, for a continuous random variable,

P{X < a} = P{X ≤ a} = F (a) =

∫ a

−∞
f (x)dx .
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Continuous Random Variables Introduction

Example

Suppose that X is a continuous random variable whose probability
density function is given by

f (x) =

{

C (4x − 2x2), 0 < x < 2
0, otherwise

(a) What is the value of C?
(b) Find P{X > 1}.

(a) Since f is a probability density, we must have
∫∞
−∞ f (x)dx = 1. This

gives

C

∫ 2

0
(4x − 2x2)dx = 1 ⇒ C

[

2x2 − 2x3

3

]x=2

x=0

= 1 ⇒ C =
3

8
.

(b) P{X > 1} =
∫∞
1 f (x)dx = 3

8

∫ 2
1 (4x − 2x2)dx = 3

8(
8
3 − 4

3) =
1
2 .
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Continuous Random Variables Introduction

Example

The amount of time in hours that a computer functions before
breaking down is a continuous random variable with probability
density function given by

f (x) =

{

λe−x/100, x ≥ 0
0, x < 0

Find the probability that:

(a) A computer will function between 50 and 150 hours before breaking
down;

(b) It will function for fewer than 100 hours.

(a) Note that 1 =
∫∞
−∞ f (x)dx = λ

∫∞
0 e−x/100dx .

Hence, we get 1 = − λ(100)e−x/100|∞0 = 100λ or λ = 1
100 .
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Continuous Random Variables Introduction

Example (Cont’d)

Thus, the probability that a computer will function between 50 and
150 hours before breaking down is given by

P{50 < X < 150} =
∫ 150
50

1
100e

−x/100dx = − e−x/100|15050

= e−1/2 − e−3/2 ≈ 0.384.

(b) Similarly,

P{X < 100} =
∫ 100
0

1
100e

−x/100dx

= − e−x/100|1000

= 1− e−1 ≈ 0.633.

In other words, approximately 63.3 percent of the time, a computer
will fail before registering 100 hours of use.
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Continuous Random Variables Introduction

Example

The lifetime in hours of a certain kind of radio tube is a random
variable having a probability density function given by

f (x) =

{

0, x ≤ 100
100
x2

, x > 100

What is the probability that exactly 2 of 5 such tubes in a radio set
will have to be replaced within the first 150 hours of operation?

Assume that the events Ei , i = 1, 2, 3, 4, 5, that the ith such tube will
have to be replaced within this time are independent.

From the statement of the problem, we have

P(Ei ) =

∫ 150

0
f (x)dx = 100

∫ 150

100
x−2dx = 100

[

−1

x

]x=150

x=100

=
1

3
.

Hence, from the independence of the events Ei , it follows that the
desired probability is

(5
2

)

(13 )
2(23)

3 = 80
243 .
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Continuous Random Variables Introduction

Probability Density and Cumulative Distribution

The relationship between the cumulative distribution F and the
probability density f is expressed by

F (a) = P{X ∈ (−∞, a]} =

∫ a

−∞
f (x)dx .

Differentiating both sides yields d
da
F (a) = f (a).

The density is the derivative of the cumulative distribution function.

A more intuitive interpretation of the density function may be
obtained as follows:

P{a − ε

2
≤ X ≤ a +

ε

2
} =

∫ a+ε/2

a−ε/2
f (x)dx ≈ εf (a),

when ε is small and when f (·) is continuous at x = a.
The probability that X will be contained in an interval of length ε
around the point a is approximately εf (a).
So f (a) is a measure of how likely it is that X will be near a.
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Continuous Random Variables Introduction

Example

If X is continuous with distribution function FX and density function
fX , find the density function of Y = 2X .

We will determine fY in two ways.

The first way is to derive, and then differentiate, the distribution
function of Y :

FY (a) = P{Y ≤ a} = P{2X ≤ a}
= P{X ≤ a

2} = FX (
a
2).

Differentiation gives

fY (a) =
1

2
fX

(a

2

)

.
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Continuous Random Variables Introduction

Example (Cont’d)

Another way to determine fY is to note that

ǫfY (a) ≈ P{a − ǫ
2 ≤ Y ≤ a + ǫ

2}
= P{a − ǫ

2 ≤ 2X ≤ a + ǫ
2}

= P{a
2 − ǫ

4 ≤ X ≤ a
2 +

ǫ
4}

≈ ǫ
2 fX (

a
2 ).

Dividing through by ǫ gives the same result as before.
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Continuous Random Variables Expectation and Variance

Subsection 2

Expectation and Variance of Continuous Random Variables
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Continuous Random Variables Expectation and Variance

Expectation of Continuous Random Variables

We defined the expected value of a discrete random variable X by

E [X ] =
∑

x

xP{X = x}.

If X is a continuous random variable having probability density
function f (x), then

f (x)dx ≈ P{x ≤ X ≤ x + dx} for dx small.

Hence, the analogous definition is to define the expected value of X
by

E [X ] =

∫ ∞

−∞
xf (x)dx .
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Continuous Random Variables Expectation and Variance

Example

Find E [X ] when the density function of X is

f (x) =

{

2x , if 0 ≤ x ≤ 1
0, otherwise

E [X ] =

∫

xf (x)dx =

∫ 1

0
2x2dx =

[

2

3
x3
]x=1

x=0

=
2

3
.
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Continuous Random Variables Expectation and Variance

Example

The density function of X is given by

f (x) =

{

1, if 0 ≤ x ≤ 1
0, otherwise

Find E [eX ].

Let Y = eX . We first determine FY , the probability distribution
function of Y . For 1 ≤ x ≤ e,

FY (x) = P{Y ≤ x} = P{eX ≤ x} = P{X ≤ log (x)}
=

∫ log (x)
0 f (y)dy = [y ]y=log x

y=0 = log (x).

By differentiating FY (x), we can conclude that the probability density
function of Y is given by fY (x) =

1
x
, 1 ≤ x ≤ e.

Hence,

E [eX ] = E [Y ] =

∫ ∞

−∞
xfY (x)dx =

∫ e

1
dx = e − 1.
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Continuous Random Variables Expectation and Variance

Computing the Expectation of a Function of X

Proposition

If X is a continuous random variable with probability density function
f (x), then, for any real-valued function g ,

E [g(X )] =

∫ ∞

−∞
g(x)f (x)dx .

Revisiting the preceding example, we obtain

E [eX ] =

∫ 1

0
exdx = e − 1.
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Continuous Random Variables Expectation and Variance

Proof for the Nonnegative Case

Lemma

For a nonnegative random variable Y ,

E [Y ] =

∫ ∞

0
P{Y > y}dy .

We present a proof when Y is a continuous random variable with
probability density function fY .

We have
∫ ∞

0
P{Y > y}dy =

∫ ∞

0

∫ ∞

y

fY (x)dxdy ,

where we have used the fact that P{Y > y} =
∫∞
y

fY (x)dx .

Interchanging the order of integration in the preceding equation yields
∫∞
0 P{Y > y}dy =

∫∞
0 (

∫ x

0 dy)fY (x)dx

=
∫∞
0 xfY (x)dx = E [Y ].
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Continuous Random Variables Expectation and Variance

Proof for the Nonnegative Case (Cont’d)

From the lemma, for any function g for which g(x) ≥ 0,

E [g(X )] =

∫ ∞

0
P{g(X ) > y}dy

=

∫ ∞

0

∫

x :g(x)>y

f (x)dxdy

=

∫

x :g(x)>0

∫ g(x)

0
dyf (x)dx

=

∫

x :g(x)>0
g(x)f (x)dx .
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Continuous Random Variables Expectation and Variance

Example

A stick of length 1 is split at a point U that is uniformly distributed
over (0, 1).

Determine the expected length of the piece that contains the point p,
0 ≤ p ≤ 1.

Let Lp(U) denote the length of the substick that contains the point
p, and note that

Lp(U) =

{

1− U, if U < p

U, if U > p
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Continuous Random Variables Expectation and Variance

Example (Cont’d)

Hence, from the proposition,

E [Lp(U)] =
∫ 1
0 Lp(u)du

=
∫ p

0 (1− u)du +
∫ 1
p
udu

=
[

− (1−u)2

2

]u=p

u=0
+

[

u2

2

]u=1

u=p

= 1
2 − (1−p)2

2 + 1
2 − p2

2

= 1
2 + p(1− p).

Note that p(1− p) = − p2 + p is maximized when p = 1
2 .

Thus, the expected length of the substick containing the point p is
maximized when p is the midpoint of the original stick.
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Continuous Random Variables Expectation and Variance

Example

Suppose that:

being s minutes early for an appointment, incurs the cost cs;
being s minutes late, incurs the cost ks.

Suppose also that the travel time from origin to destination is a
continuous random variable having probability density function f .

Determine the time at which one should depart to minimize the
expected cost.

Let X denote the travel time.

If departure occurs t minutes before the appointment, then the cost
Ct(X ) is given by

Ct(X ) =

{

c(t − X ), if X ≤ t

k(X − t), if X ≥ t
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Continuous Random Variables Expectation and Variance

Example (Cont’d)

Therefore,

E [Ct(X )] =
∫∞
0 Ct(x)f (x)dx

=
∫ t

0 c(t − x)f (x)dx +
∫∞
t

k(x − t)f (x)dx

= ct
∫ t

0 f (x)dx − c
∫ t

0 xf (x)dx
+ k

∫∞
t

xf (x)dx − kt
∫∞
t

f (x)dx .

The value of t that minimizes E [Ct(X )] can now be obtained by
calculus. Differentiate and set the derivative equal to zero.

d
dt
E [Ct(X )] = ctf (t) + cF (t)− ctf (t)− ktf (t)

+ ktf (t)− k[1− F (t)]

= (k + c)F (t)− k .

Thus, the minimal expected cost is obtained when one leaves t∗

minutes before the appointment, where t∗ satisfies F (t∗) = k
k+c

.

George Voutsadakis (LSSU) Probability October 2020 23 / 79



Continuous Random Variables Expectation and Variance

Linearity of Expectation

Corollary

If a and b are constants, then

E [aX + b] = aE [X ] + b.

We obtain, using the formula for E [aX + b],

E [aX + b] =
∫ +∞
−∞ (ax + b)f (x)dx

= a
∫ +∞
−∞ xf (x)dx + b

∫ +∞
−∞ f (x)dx

= a · E [X ] + b · 1
= aE [X ] + b.
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Continuous Random Variables Expectation and Variance

Variance of a Continuous Random Variable

If X is a random variable with expected value µ, then the variance of
X is defined (for any type of random variable) by

Var(X ) = E [(X − µ)2].

The alternative formula,

Var(X ) = E [X 2]− (E [X ])2

is established in a manner similar to its counterpart in the discrete
case.
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Continuous Random Variables Expectation and Variance

Example

Find Var(X ) for X with density

f (x) =

{

2x , if 0 ≤ x ≤ 1
0, otherwise

We first compute E [X 2].

E [X 2] =

∫ ∞

−∞
x2f (x)dx =

∫ 1

0
2x3dx =

[

x4

2

]x=1

x=0

=
1

2
.

We have seen previously that E [X ] = 2
3 .

Thus, we obtain

Var(X ) =
1

2
−

(

2

3

)2

=
1

18
.
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Continuous Random Variables Expectation and Variance

Property of Variance

For constants a and b,

Var(aX + b) = a2Var(X ).

In fact, using the linearity of the expected value, we get

Var(aX + b) = E [(aX + b)2]− E [aX + b]2

= E [a2X 2 + 2abX + b2]− (aE [X ] + b)2

= a2E [X 2] + 2abE [X ] + b2

− a2E [X ]2 − 2abE [X ]− b2

= a2(E [X 2]− E [X ]2)

= a2Var(X ).
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Continuous Random Variables The Uniform Random Variable

Subsection 3

The Uniform Random Variable
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Continuous Random Variables The Uniform Random Variable

Uniformly Distributed Random Variables

A random variable is said to be uniformly distributed over the
interval (0, 1) if its probability density function is given by

f (x) =

{

1, 0 < x < 1
0, otherwise

This is a density function:

For all x , f (x) ≥ 0;
We have

∫

∞

−∞

f (x)dx =

∫ 1

0

dx = [x ]
x=1
x=0 = 1.
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Continuous Random Variables The Uniform Random Variable

Definability and Uniformity

Note that f (x) > 0 only when x ∈ (0, 1).

This implies that X must assume a value in the interval (0, 1).

Also, f (x) is constant for x ∈ (0, 1).

Hence, X is just as likely to be near any value in (0, 1) as it is to be
near any other value.

To verify this, note that, for any 0 < a < b < 1,

P{a ≤ X ≤ b} =

∫ b

a

f (x)dx = b − a.

In other words, the probability that X is in any particular subinterval
of (0, 1) equals the length of that subinterval.
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Continuous Random Variables The Uniform Random Variable

Uniform Random Variable on (α, β)

We say that X is a uniform random variable on the interval (α, β)
if the probability density function of X is given by

f (x) =

{ 1
β−α , if α < x < β

0, otherwise

Recall that F (a) =
∫ a

−∞ f (x)dx .

Thus, the distribution function of a uniform random variable on the
interval (α, β) is given by

F (a) =







0, if a ≤ α
a−α
β−α , if α < a < β

1, if a ≥ β
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Continuous Random Variables The Uniform Random Variable

Expectation of Uniform Random Variables

Let X be uniformly distributed over (α, β).

Then
E [X ] =

∫∞
−∞ xf (x)dx

=
∫ β
α

x
β−αdx

= 1
β−α

[

x2

2

]x=β

x=α

= β2−α2

2(β−α)

= β+α
2 .

In words, the expected value of a random variable that is uniformly
distributed over some interval is equal to the midpoint of that interval.
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Continuous Random Variables The Uniform Random Variable

Variance of Uniform Random Variables

Let X be uniformly distributed over (α, β).

To find Var(X ), we first calculate E [X 2].

E [X 2] =
∫ β
α

1
β−αx

2dx

= α3−β3

3(β−α)

= β2+αβ+α2

3 .

Hence,

Var(X ) = β2+αβ+α2

3 − (α+β)2

4

= 4β2+4αβ+4α2−3α2−6αβ−3β2

12 = (β−α)2

12 .

So the variance of a random variable that is uniformly distributed over
(α, β) is the square of the length β − α divided by 12.
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Continuous Random Variables The Uniform Random Variable

Example

If X is uniformly distributed over (0, 10), calculate the probability
that:

(a) X < 3;
(b) X > 6;
(c) 3 < X < 8.

(a) P{X < 3} =

∫ 3

0

1

10
dx =

3

10
.

(b) P{X > 6} =

∫ 10

6

1

10
dx =

4

10
.

(c) P{3 < X < 8} =

∫ 8

3

1

10
dx =

1

2
.
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Continuous Random Variables The Uniform Random Variable

Example

Buses arrive at a specified stop at 15 minute intervals starting at 7
A.M. That is, they arrive at 7, 7:15, 7:30, 7:45, and so on.

If a passenger arrives at the stop at a time that is uniformly
distributed between 7 and 7:30, find the probability that he waits:
(a) less than 5 minutes for a bus;
(b) more than 10 minutes for a bus.

Let X denote the number of minutes past 7 A.M. that the passenger
arrives at the stop.

X is a uniform random variable over the interval (0, 30).

Thus, the passenger will have to wait less than 5 minutes if (and only
if) he arrives between 7:10 and 7:15 or between 7:25 and 7:30.

Hence, the desired probability for part (a) is

P{10 < X < 15} + P{25 < X < 30} =

∫ 15

10

1

30
dx +

∫ 30

25

1

30
dx =

1

3
.
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Continuous Random Variables The Uniform Random Variable

Example (Cont’d)

Similarly, he would have to wait more than 10 minutes if he arrives
between 7 and 7:05 or between 7:15 and 7:20.

So the probability for part (b) is

P{0 < X < 5}+ P{15 < X < 20} =

∫ 5

0

1

30
dx +

∫ 20

15

1

30
dx =

1

3
.
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Continuous Random Variables The Uniform Random Variable

Bertrand’s Paradox (Geometrical Probability)

Consider a random chord of a circle.

What is the probability that the length of the chord will be greater
than the side of the equilateral triangle inscribed in that circle?

As stated, the problem is incapable of solution because it is not clear
what is meant by a random chord.

To give meaning to this phrase, we reformulate the problem in two
distinct ways.
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Continuous Random Variables The Uniform Random Variable

Bertrand’s Paradox: First Formulation

The position of the chord can be determined by its distance from the
center of the circle.

This distance can vary between 0 and r , the radius of the circle.

The length of the chord will be greater than the side of the equilateral
triangle inscribed in the circle if the distance from the chord to the
center of the circle is less than r

2 .

Assume that a random chord is a chord whose distance D from the
center of the circle is uniformly distributed between 0 and r .

Then the probability that the length of the chord is greater than the
side of an inscribed equilateral triangle is

P
{

D <
r

2

}

=
r/2

r
=

1

2
.
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Continuous Random Variables The Uniform Random Variable

Bertrand’s Paradox: Second Formulation

Consider an arbitrary chord of the circle.
Through one end of the chord, draw a tan-
gent. The angle θ between the chord and
the tangent can vary from 0◦ to 180◦ and
determines the position of the chord.

The length of the chord will be greater than the side of the inscribed
equilateral triangle if the angle θ is between 60◦ and 120◦.

Assume that a random chord is a chord whose angle θ is uniformly
distributed between 0◦ and 180◦.

Then the desired answer in this formulation is

P{60 < θ < 120} =
120− 60

180
=

1

3
.
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Continuous Random Variables The Uniform Random Variable

Bertrand’s Paradox: Comments

Note that random experiments could be performed in such a way that
1
2 or 1

3 would be the correct probability.

Assume a circular disk of radius r is thrown on a table ruled with
parallel lines a distance 2r apart.
Then one and only one of these lines would form a chord.
All distances from this chord to the center would be equally likely.
So the desired probability that the chord’s length will be greater than
the side of an inscribed equilateral triangle is 1

2 .
Assume the experiment consisted of rotating a needle freely about a
point A on the edge of the circle.
In this case, the desired answer would be 1

3 .
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Continuous Random Variables Normal Random Variables

Subsection 4

Normal Random Variables
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Continuous Random Variables Normal Random Variables

Normal Random Variables

We say that X is a normal random variable, or simply that X is
normally distributed, with parameters µ and σ2 if the density of X
is given by

f (x) =
1√
2πσ

e−(x−µ)2/2σ2
, −∞ < x < ∞.

This density function is a bell-shaped curve that is symmetric about µ.
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Continuous Random Variables Normal Random Variables

The Normal is a Probability Density Function

We show that f (x) is indeed a probability density function, i.e., that

1√
2πσ

∫ ∞

−∞
e−(x−µ)2/2σ2

dx = 1.

Making the substitution y = x−µ
σ , we see that

1√
2πσ

∫ ∞

−∞
e−(x−µ)2/2σ2

dx =
1√
2π

∫ ∞

−∞
e−y2/2dy .

Hence, we must show that
∫∞
−∞ e−y2/2dy =

√
2π.

Toward this end, let I =
∫∞
−∞ e−y2/2dy .

Then

I 2 =

∫ ∞

−∞
e−y2/2dy

∫ ∞

−∞
e−x2/2dx =

∫ ∞

−∞

∫ ∞

−∞
e−(y2+x2)/2dydx .
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Continuous Random Variables Normal Random Variables

The Normal is a Probability Density Function (Cont’d)

We now evaluate the double integral by means of a change of
variables to polar coordinates (x = r cos θ, y = r sin θ and
dydx = rdθdr).

Thus,

I 2 =

∫ ∞

0

∫ 2π

0
e−r2/2rdθdr

= 2π

∫ ∞

0
re−r2/2dr

= − 2πe−r2/2|∞0 = 2π.

Hence, I =
√
2π, and the result is proved.
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Continuous Random Variables Normal Random Variables

Mean and Variance Transformations

If X is normally distributed with parameters µ and σ2, then
Y = aX + b is normally distributed with parameters aµ+ b and a2σ2.

To prove this statement, suppose that a > 0.

Let FY denote the cumulative distribution function of Y .

Then
FY (x) = P{Y ≤ x} = P{aX + b ≤ x}

= P{X ≤ x−b
a

} = FX (
x−b
a

),

where FX is the cumulative distribution function of X .

By differentiation, the density function of Y is then

fY (x) = 1
a
fX (

x−b
a

)

= 1√
2πaσ

exp {−(x−b
a

− µ)2/2σ2}
= 1√

2πaσ
exp {−(x − b − aµ)2/2(aσ)2}.

This shows that Y is normal with parameters aµ+ b and a2σ2.
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Standard Normal Random Variables

An important implication of the preceding result is that if X is
normally distributed with parameters µ and σ2, then Z = X−µ

σ is
normally distributed with parameters 0 and 1.

Such a random variable is said to be a standard, or a unit, normal

random variable.
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Expectation and Variance of a Normal Random Variable

Find E [X ] and Var(X ) when X is a normal random variable with
parameters µ and σ2.

We start by finding the mean and variance of the standard normal
random variable Z = X−µ

σ .

We get

E [Z ] =
∫∞
−∞ xfZ (x)dx = 1√

2π

∫∞
−∞ xe−x2/2dx

= − 1√
2π
e−x2/2|∞−∞ = 0.

Thus,
Var(Z ) = E [Z 2] = 1√

2π

∫∞
−∞ x2e−x2/2dx

= 1√
2π
(−xe−x2/2|∞−∞ +

∫∞
−∞ e−x2/2dx)

= 1√
2π

∫∞
−∞ e−x2/2dx = 1.

But X = µ+ σZ . Hence E [X ] = µ+ σE [Z ] = µ and
Var(X ) = σ2Var(Z ) = σ2.
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Cumulative Distribution Function

It is customary to denote the cumulative distribution function of a
standard normal random variable by Φ(x):

Φ(x) =
1√
2π

∫ x

−∞
e−y2/2dy .

The values of Φ(x) for nonnegative x are given in a table.

For negative values of x , Φ(x) can be obtained from the relationship

Φ(−x) = 1− Φ(x), −∞ < x < ∞.

This equation states that if Z is a standard normal random variable,
then P{Z ≤ −x} = P{Z > x}, −∞ < x < ∞.

Since Z = X−µ
σ is a standard normal random variable whenever X is

normally distributed with parameters µ and σ2, it follows that the
distribution function of X can be expressed as

FX (a) = P{X ≤ a} = P

(

X − µ

σ
≤ a − µ

σ

)

= Φ

(

a − µ

σ

)

.
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Example

If X is a normal random variable with parameters µ = 3 and σ2 = 9,
find (a) P{2 < X < 5}; (b) P{X > 0}; (c) P{|X − 3| > 6}.

(a)
P{2 < X < 5} = P{2−3

3 < X−3
3 < 5−3

3 }
= P{−1

3 < Z < 2
3} = Φ(23)− Φ(−1

3)

= Φ(23 )− [1− Φ(13)] ≈ 0.3779.
(b)

P{X > 0} = P{X−3
3 > 0−3

3 } = P{Z > −1}
= 1− Φ(−1) = Φ(1) ≈ 0.8413.

(c)

P{|X − 3| > 6} = P{X > 9}+ P{X < −3}
= P{X−3

3 > 9−3
3 }+ P{X−3

3 < −3−3
3 }

= P{Z > 2}+ P{Z < −2}
= 1− Φ(2) + Φ(−2) = 2[1− Φ(2)] ≈ 0.0456.
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Example: Grading “On the Curve”

An examination is frequently regarded as being good (in the sense of
determining a valid grade spread for those taking it) if the test scores
of those taking the examination can be approximated by a normal
density function.

In other words, a graph of the frequency of grade scores should have
approximately the bell-shaped form of the normal density.

The instructor often uses the test scores to estimate the normal
parameters µ and σ2.

(S)he then assigns the letter grades as follows:

A to those whose test score is greater than µ+ σ;
B to those whose score is between µ and µ+ σ;
C to those whose score is between µ− σ and µ;
D to those whose score is between µ− 2σ and µ− σ;
F to those getting a score below µ− 2σ.

This strategy is sometimes referred to as grading “on the curve.”
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Example (Cont’d)

Note that

P{X > µ+ σ} = P{X−µ
σ > 1} = 1− Φ(1) ≈ 0.1587;

P{µ < X < µ+ σ} = P{0 < X−µ
σ < 1}

= Φ(1)− Φ(0) ≈ 0.3413;

P{µ− σ < X < µ} = P{−1 < X−µ
σ < 0}

= Φ(0)− Φ(−1) ≈ 0.3413;

P{µ− 2σ < X < µ− σ} = P{−2 < X−µ
σ < −1}

= Φ(2)− Φ(1) ≈ 0.1359;

P{X < µ− 2σ} = P{X−µ
σ < −2} = Φ(−2) ≈ 0.0228.

Thus, approximately:
16 percent of the class will receive an A grade;
34 percent will receive a B grade;
34 percent will receive a C grade;
14 percent will receive a D grade;
2 percent will fail.

George Voutsadakis (LSSU) Probability October 2020 51 / 79



Continuous Random Variables Normal Random Variables

Example

An expert witness in a paternity suit testifies that the length (in days)
of human gestation is approximately normally distributed with
parameters µ = 270 and σ2 = 100.

The defendant proves that he was out of the country between 290
days before the birth to 240 days after the birth.

If the defendant was, in fact, the father, what is the probability that
the mother could have had the very long or very short gestation
indicated by the testimony?

Let X denote the length of the gestation.

Assume that the defendant is the father.

The probability that the birth could occur within the indicated period
is

P{X > 290 or X < 240} = P{X > 290} + P{X < 240}
= P{X−270

10 > 2} + P{X−270
10 < −3}

= 1− Φ(2) + 1− Φ(3) ≈ 0.0241.

George Voutsadakis (LSSU) Probability October 2020 52 / 79



Continuous Random Variables Normal Random Variables

Example

Suppose that a binary message is transmitted by wire from location A
to B over a wire subject to a channel noise disturbance.

To reduce the possibility of error, the value 2 is sent when the
message is 1 and the value −2 is sent when the message is 0.

If x , x = ±2, is the value sent at A, then R , the value received at B,
is given by R = x + N, where N is the channel noise.

When the message is received at location B, the receiver decodes it
according to the following rule:

If R ≥ 0.5, then 1 is concluded.
If R < 0.5, then 0 is concluded.

Assume the channel noise N is normally distributed.

Determine the error probabilities (assuming N is a standard normal
random variable).
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Example (Cont’d)

Two types of errors can occur:

The message 1 is incorrectly determined to be 0;
The message 0 is incorrectly determined to be 1.

The first type of error will occur if the message is 1 and 2 + N < 0.5.

The second will occur if the message is 0 and −2 + N ≥ 0.5.

Hence,

P{error|message is 1} = P{N < −1.5}
= 1− Φ(1.5) ≈ 0.0668;

P{error|message is 0} = P{N ≥ 2.5}
= 1− Φ(2.5) ≈ 0.0062.
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Subsection 5

Exponential Random Variables
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Exponential Random Variables

A continuous random variable whose probability density function is
given, for some λ > 0, by

f (x) =

{

λe−λx , if x ≥ 0
0, if x < 0

is said to be an exponential random variable (or, more simply, is
said to be exponentially distributed) with parameter λ.

We compute the cumulative distribution function F (a) of an
exponential random variable:

F (a) = P{X ≤ a} =
∫ a

0 λe−λxdx

= − e−λx |a0 = 1− e−λa, a ≥ 0.

This also verifies that F (∞) =
∫∞
0 λe−λxdx = 1.
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Expectation and Variance of an Exponential Variable

Let X be an exponential random variable with parameter λ.

The density function is given by f (x) =

{

λe−λx , x ≥ 0
0, x < 0

Thus, for n > 0, E [X n] =

∫ ∞

0
xnλe−λxdx .

Integrating by parts (with λe−λx = dv and u = xn) yields

E [X n] = − xne−λx |∞0 +
∫∞
0 e−λxnxn−1dx

= 0 + n
λ

∫∞
0 λe−λxxn−1dx

= n
λE [X

n−1].

Letting n = 1, 2 gives E [X ] = 1
λ and E [X 2] = 2

λE [X ] = 2
λ2 .

Hence,

Var(X ) =
2

λ2
− (

1

λ
)2 =

1

λ2
.
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Example

Suppose that the length of a phone call in minutes is an exponential
random variable with parameter λ = 1

10 .

Mr. Jack arrives just ahead of Mr. Jim at a pub’s public phone.

Find the probability that Mr. Jim will have to wait:

(a) More than 10 minutes;
(b) Between 10 and 20 minutes.

Let X denote the length of the call made by Mr. Jack.

Then the desired probabilities are

(a) P{X > 10} = 1− F (10) = 1− (1− e−
1
10 10) = e−1 ≈ 0.368.

(b) P{10 < X < 20} = F (20)− F (10) = (1− e−
1
10 20)− (1− e−

1
10 10) =

e−1 − e−2 ≈ 0.233.
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Memoryless Random Variables

We say that a nonnegative random variable X is memoryless if

P{X > s + t|X > t} = P{X > s}, for all s, t ≥ 0.

Thinking of X as being the lifetime of some instrument, the equation
states:

The probability that the instrument survives for at least s + t

hours, given that it has survived t hours, is the same as the
initial probability that it survives for at least s hours.

The equation is equivalent to

P{X>s+t,X>t}
P{X>t} = P{X > s}

or P{X > s + t} = P{X > s}P{X > t}.

Exponentially distributed random variables are memoryless, since
e−λ(s+t) = e−λse−λt .
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Example

Consider a post office that is staffed by two clerks.

Suppose that when Mr. Smith arrives, he discovers that Ms. Jones is
being served by one of the clerks and Mr. Brown by the other.

Suppose also that Mr. Smith is told that his service will begin as soon
as either Ms. Jones or Mr. Brown leaves.

If the amount of time that a clerk spends with a customer is
exponentially distributed with parameter λ, what is the probability
that, of the three customers, Mr. Smith is the last to leave?
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Example (Cont’d)

Consider the time at which Mr. Smith first finds a free clerk.

At this point, either Ms. Jones or Mr. Brown would have just left,
and the other one would still be in service.

However, because the exponential is memoryless, it follows that the
additional amount of time that this other person (either Ms. Jones or
Mr. Brown) would still have to spend in the post office is
exponentially distributed with parameter λ.

That is, it is the same as if service for that person were just starting
at this point.

Hence, by symmetry, the probability that the remaining person
finishes before Smith leaves must equal 1

2 .
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Exponential as Only Memoryless Distribution

It turns out that not only is the exponential distribution memoryless,
but it is also the unique distribution possessing this property.

To see this, suppose that X is memoryless and let F (x) = P{X > x}.
Then, by the preceding equation,

F (s + t) = F (s)F (t).

That is, F (·) satisfies the functional equation

g(s + t) = g(s)g(t).

It turns out that the only right continuous solution of this functional
equation is g(x) = e−λx .

Since a distribution function is always right continuous, we must have

F (x) = e−λx or F (x) = P{X ≤ x} = 1− e−λx .
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Example

Suppose that the number of miles that a car can run before its
battery wears out is exponentially distributed with an average value of
10,000 miles.

If a person desires to take a 5000 mile trip, what is the probability
that he or she will be able to complete the trip without having to
replace the car battery?

What can be said when the distribution is not exponential?

It follows by the memoryless property of the exponential distribution
that the remaining lifetime (in thousands of miles) of the battery is
exponential with parameter λ = 1

10 .

Hence, the desired probability is

P{remaining lifetime > 5} = 1− F (5) = e−5λ = e−1/2 ≈ 0.604.
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Example (Cont’d)

Suppose that the lifetime distribution F is not exponential.

Let t be the number of miles that the battery had been in use prior to
the start of the trip.

Then the relevant probability is

P{lifetime > t + 5|lifetime > t} =
1− F (t + 5)

1− F (t)
.

Therefore, if the distribution is not exponential, additional
information is needed (namely, the value of t) before the desired
probability can be calculated.
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Laplace Distribution

A variant of the exponential is the distribution of a random variable
that is equally likely to be either positive or negative and whose
absolute value is exponentially distributed with parameter λ, λ ≥ 0.

Such a random variable is said to have a Laplace distribution, and
its density is given by

f (x) =
1

2
λe−λ|x |, −∞ < x < ∞.

Its distribution function is given by

F (x) =

{

1
2

∫ x

−∞ λeλxdx , x < 0
1
2

∫ 0
−∞ λeλxdx + 1

2

∫ x

0 λe−λxdx , x > 0

=

{

1
2e

λx , x < 0

1− 1
2e

−λx , x > 0
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Example

Suppose that a binary message is to be transmitted from A to B, with
the value 2 being sent when the message is 1 and −2 when it is 0.

However, suppose now that, rather than being a standard normal
random variable, the channel noise N is a Laplacian random variable
with parameter λ = 1.

Suppose again that if R is the value received at location B, then the
message is decoded as follows:

If R ≥ 0.5, then 1 is concluded.
If R < 0.5, then 0 is concluded.

In this case, where the noise is Laplacian with parameter λ = 1, the
two types of errors will have probabilities given by:

P{error|message 1 is sent} = P{N < −1.5} = 1
2e

−1.5 ≈ 0.1116;

P{error|message 0 is sent} = P{N ≥ 2.5} = 1
2e

−2.5 ≈ 0.041.
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Hazard Rate Functions

Consider a positive continuous random variable X that we interpret as
being the lifetime of some item.

Let X have distribution function F and density f .

The hazard rate (sometimes called the failure rate) function λ(t)
of F is defined by

λ(t) =
f (t)

F (t)
, where F = 1− F .

To interpret λ(t), suppose that the item has survived for a time t and
we desire the probability that it will not survive for an additional time
dt. That is, consider P{X ∈ (t, t + dt)|X > t}.

P{X ∈ (t, t + dt)|X > t} = P{X∈(t,t+dt),X>t}
P{X>t}

= P{X∈(t,t+dt)}
P{X>t} ≈ f (t)

F (t)
dt.

Thus, λ(t) represents the conditional probability intensity that a
t-unit-old item will fail.
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Rate of the Distribution

Suppose now that the lifetime distribution is exponential.

By the memoryless property, the distribution of remaining life for a
t-year-old item is the same as that for a new item.

Hence, λ(t) should be constant.

In fact, we get

λ(t) =
f (t)

F (t)
=

λe−λt

e−λt
= λ.

Thus, the failure rate function for the exponential distribution is
constant.

The parameter λ is often referred to as the rate of the distribution.
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Distribution from Failure Rate

It turns out that the failure rate function λ(t) uniquely determines
the distribution F .

To prove this, note that, by definition, λ(t) = f (t)

F (t)
=

d
dt
F (t)

1−F (t) .

Integrating both sides yields

log (1− F (t)) = −
∫ t

0 λ(t)dt + k

1− F (t) = ek exp {−
∫ t

0 λ(t)dt}.

Letting t = 0 shows that k = 0.

Thus,

F (t) = 1− exp {−
∫ t

0
λ(t)dt}.
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Linear Hazard Rate Function

Suppose a random variable has a linear hazard rate function, i.e.,

λ(t) = a + bt.

Then its distribution function is given by

F (t) = 1− exp {−
∫ t

0
λ(t)dt} = 1− e−at−bt2/2.

Differentiation yields its density, namely,

f (t) = (a + bt)e−(at+bt2/2), t ≥ 0.

When a = 0, the preceding equation is known as the Rayleigh

density function.
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Example

One often hears that the death rate of a person who smokes is, at
each age, twice that of a nonsmoker.

Does that mean that a nonsmoker has twice the probability of
surviving a given number of years as does a smoker of the same age?
Suppose that:

λs(t) denotes the hazard rate of a smoker of age t;
λn(t) the hazard rate of a nonsmoker of age t.

The statement is equivalent to the statement λs(t) = 2λn(t).

The probability that an A-year-old nonsmoker will survive until age B ,
A < B , is

P{A-year-old nonsmoker reaches age B}
= P{nonsmoker’s lifetime > B |nonsmoker’s lifetime > A}

= 1−Fnon(B)
1−Fnon(A)

=
exp {−

∫ B

0 λn(t)dt}
exp {−

∫ A

0 λn(t)dt}
= exp {−

∫ B

A
λn(t)dt}.
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Example (Cont’d)

The corresponding probability for a smoker is, by the same reasoning,

P{A-year-old smoker reaches age B}
= exp {−

∫ B

A
λs(t)dt} = exp {−2

∫ B

A
λn(t)dt}

= [exp {−
∫ B

A
λn(t)dt}]2.

In other words, for two people of the same age, one of whom is a
smoker and the other a nonsmoker, the probability that the smoker
survives to any given age is the square (not one-half) of the
corresponding probability for a nonsmoker.
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Subsection 6

The Distribution of a Function of a Random Variable
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Example

Let X be uniformly distributed over (0, 1).

We obtain the distribution of the random variable Y , defined by
Y = X n, as follows:

For 0 ≤ y ≤ 1,

FY (y) = P{Y ≤ y} = P{X n ≤ y}
= P{X ≤ y1/n} = FX (y

1/n) = y1/n.

For instance, the density function of Y is given by

fY (y) =

{

1
n
y1/n−1, 0 ≤ y ≤ 1

0, otherwise
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Example

Let X be a continuous random variable with probability density fX .

The distribution of Y = X 2 is obtained as follows:

For y ≥ 0,
FY (y) = P{Y ≤ y}

= P{X 2 ≤ y}
= P{−√

y ≤ X ≤ √
y}

= FX (
√
y)− FX (−

√
y).

Differentiation yields

fY (y) =
1

2
√
y
[fX (

√
y) + fX (−

√
y)].
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Example

Let X have a probability density fX .

Then Y = |X | has a density function that is obtained as follows:

For y ≥ 0,
FY (y) = P{Y ≤ y}

= P{|X | ≤ y}
= P{−y ≤ X ≤ y}
= FX (y)− FX (−y).

Hence, on differentiation, we obtain

fY (y) = fX (y) + fX (−y), y ≥ 0.
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Probability Density of a Function of a Variable

Theorem

Let X be a continuous random variable having probability density function
fX . Suppose that g(x) is a strictly monotonic (increasing or decreasing),
differentiable (and thus continuous) function of x . Then the random
variable Y defined by Y = g(X ) has a probability density function:

fY (y) =

{

fX [g
−1(y)]| d

dy
g−1(y)|, if y = g(x) for some x

0, if y 6= g(x) for all x

where g−1(y) is defined to equal that value of x such that g(x) = y .

We prove the theorem when g(x) is an increasing function.

Suppose that y = g(x) for some x .

Then, with Y = g(X ),

FY (y) = P{g(X ) ≤ y} = P{X ≤ g−1(y)} = FX (g
−1(y)).
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Probability Density of a Function of a Variable (Cont’d)

We found FY (y) = FX (g
−1(y)).

Differentiation gives

fY (y) = fX (g
−1(y))

d

dy
g−1(y).

Under the hypothesis that g−1(y) is nondecreasing, d
dy
g−1(y) ≥ 0.

Hence, the formula agrees with the one in the statement.

When y 6= g(x) for any x , then FY (y) is either 0 or 1.

In either case fY (y) = 0.
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Example

Suppose
X is a continuous nonnegative random variable with density f ;
Y = X n.

Find fY , the probability density function of Y .

If g(x) = xn, then
g−1(y) = y1/n

and
d

dy
g−1(y) =

1

n
y1/n−1.

Hence, from the theorem, we obtain fY (y) =
1
n
y1/n−1f (y1/n).

For n = 2, this gives

fY (y) =
1

2
√
y
f (
√
y).

Since X ≥ 0, this agrees with a previous example.
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