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Subsection 1
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Properties of Expectation Introduction

Expected Value Revisited

Recall the definition of the expected value of a random variable X :

If X is a discrete random variable with probability mass function p(x),
it is defined by

E [X ] =
∑

x

xp(x).

If X is a continuous random variable with probability density function
f (x), it is defined by

E [X ] =

∫

∞

−∞

xf (x)dx .
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Properties of Expectation Introduction

Bounds for Expected Value

E [X ] is a weighted average of the possible values of X .

Thus, if X must lie between a and b, then so must its expected value:

If P{a ≤ X ≤ b} = 1, then a ≤ E [X ] ≤ b.

To verify this, suppose that X is a discrete random variable for which
P{a ≤ X ≤ b} = 1.

This implies that p(x) = 0 for all x outside of the interval [a, b].

Therefore,

E [X ] =
∑

x :p(x)>0 xp(x) ≥
∑

x :p(x)>0 ap(x)

= a
∑

x :p(x)>0 p(x) = a.

In the same manner, it can be shown that E [X ] ≤ b.

The proof in the continuous case is similar.
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Properties of Expectation Expectation of Sums of Random Variables

Subsection 2
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Properties of Expectation Expectation of Sums of Random Variables

Expectation of a Function of Random Variables

Proposition

Suppose that X and Y are random variables and g is a function of two
variables. If X and Y have a joint probability mass function p(x , y), then

E [g(X ,Y )] =
∑

y

∑

x

g(x , y)p(x , y).

If X and Y have a joint probability density function f (x , y), then

E [g(X ,Y )] =

∫ ∞

−∞

∫ ∞

−∞
g(x , y)f (x , y)dxdy .

We give a proof under the hypotheses that:
The random variables X and Y are jointly continuous with joint
density function f (x , y);
g(X ,Y ) is a nonnegative random variable.
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Properties of Expectation Expectation of Sums of Random Variables

Expectation of a Function of Random Variables (Cont’d)

Because g(X ,Y ) ≥ 0, we have, by a previous lemma, that

E [g(X ,Y )] =

∫ ∞

0
P{g(X ,Y ) > t}dt.

Write P{g(X ,Y ) > t} =
∫∫

(x ,y):g(x ,y)>t
f (x , y)dydx :

E [g(X ,Y )] =

∫ ∞

0

∫∫

(x ,y):g(x ,y)>t

f (x , y)dydxdt.

Interchange the order of integration:

E [g(X ,Y )] =
∫

x

∫

y

∫ g(x ,y)
t=0 f (x , y)dtdydx

=
∫

x

∫

y
g(x , y)f (x , y)dydx .

The result is proven for g(X ,Y ) a nonnegative random variable.

The general case then follows as in the one-dimensional case.
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Properties of Expectation Expectation of Sums of Random Variables

Example

An accident occurs at a point X that is uniformly distributed on a
road of length L.

At the time of the accident, an ambulance is at a location Y that is
also uniformly distributed on the road.

Assuming that X and Y are independent, find the expected distance
between the ambulance and the point of the accident.

We need to compute E [|X − Y |].
The joint density function of X and Y is

f (x , y) =
1

L2
, 0 < x < L, 0 < y < L.

Thus, we get

E [|X − Y |] = 1

L2

∫ L

0

∫ L

0
|x − y |dydx .
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Properties of Expectation Expectation of Sums of Random Variables

Example (Cont’d)

Now,
∫ L

0
|x − y |dy =

∫ x

0
(x − y)dy +

∫ L

x

(y − x)dy

=

(

xy − 1

2
y2
)
∣

∣

∣

∣

y=x

y=0

+

(

1

2
y2 − xy

)
∣

∣

∣

∣

y=L

y=x

= x2 − x2

2
+

L2

2
− xL− x2

2
+ x2

=
L2

2
+ x2 − xL.

Therefore,

E [|X − Y |] = 1

L2

∫ L

0

(
L2

2
+ x2 − xL)dx =

1

L2

(

L2x

2
+

x3

3
− Lx2

2

)∣

∣

∣

∣

L

0

=
L

3
.
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Properties of Expectation Expectation of Sums of Random Variables

Expectation of a Sum of Random Variables

Suppose that E [X ] and E [Y ] are both finite.

Let g(X ,Y ) = X + Y .

Then, in the continuous case,

E [X + Y ] =
∫∞
−∞

∫∞
−∞ (x + y)f (x , y)dxdy

=
∫∞
−∞

∫∞
−∞ xf (x , y)dydx +

∫∞
−∞

∫∞
−∞ yf (x , y)dxdy

=
∫∞
−∞ xfX (x)dx +

∫∞
−∞ yfY (y)dy

= E [X ] + E [Y ].

The same result holds in general.

Thus, whenever E [X ] and E [Y ] are finite,

E [X + Y ] = E [X ] + E [Y ].

George Voutsadakis (LSSU) Probability October 2020 11 / 164



Properties of Expectation Expectation of Sums of Random Variables

Example

Suppose that, for random variables X and Y , X ≥ Y .

That is, for any outcome of the probability experiment, the value of
the random variable X is greater than or equal to the value of the
random variable Y .

But x ≥ y is equivalent to the inequality X − Y ≥ 0.

Therefore, E [X − Y ] ≥ 0, i.e., E [X ]− E [Y ] ≥ 0.

Equivalently,
E [X ] ≥ E [Y ].
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Properties of Expectation Expectation of Sums of Random Variables

Expectation of a Sum of Random Variables

Using the equation for the expectation of the sum of two random
variables, we may show by a simple induction proof that if E [Xi ] is
finite for all i = 1, . . . , n, then

E [X1 + · · ·+ Xn] = E [X1] + · · ·+ E [Xn].

This is an extremely useful formula whose utility will now be
illustrated by a series of examples.
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Properties of Expectation Expectation of Sums of Random Variables

Example: The Sample Mean

Let X1, . . . ,Xn be independent and identically distributed random
variables having distribution function F and expected value µ.

Such a sequence of random variables is said to constitute a sample

from the distribution F .

The quantity X =
∑n

i=1
Xi

n
is called the sample mean.

Compute E [X ].

E [X ] = E
[

∑n
i=1

Xi

n

]

= 1
n
E [
∑n

i=1 Xi ]

= 1
n

∑n
i=1 E [Xi ] =

1
n
nµ (since E [Xi ] ≡ µ)

= µ

That is, the expected value of the sample mean is µ, the mean of the
distribution.

When the distribution mean µ is unknown, the sample mean is often
used in statistics to estimate it.
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Properties of Expectation Expectation of Sums of Random Variables

Example: Boole’s Inequality

Let A1, . . . ,An denote events.

Define the indicator variables Xi , i = 1, . . . , n, by

Xi =

{

1, if Ai occurs
0, otherwise

Let X =
∑n

i=1 Xi .

So X denotes the number of the events Ai that occur.

Finally, let Y =

{

1, if X ≥ 1
0, otherwise

.

So Y is equal to 1 if at least one of the Ai occurs and is 0 otherwise.

It is immediate that X ≥ Y . So E [X ] ≥ E [Y ].

We have

E [X ] =
∑n

i=1 E [Xi ] =
∑n

i=1 P(Ai),

E [Y ] = P{at least one of the Ai occur} = P(
⋃n

i=1 Ai).

So we obtain P(
⋃n

i=1 Ai) ≤
∑n

i=1 P(Ai ).
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Properties of Expectation Expectation of Sums of Random Variables

Example: Expectation of a Binomial Random Variable

Let X be a binomial random variable with parameters n and p.

Recall that such a random variable represents the number of
successes in n independent trials when each trial has probability p of
being a success.

Let

Xi =

{

1, if the ith trial is a success
0, if the ith trial is a failure

Then
X = X1 + X2 + · · · + Xn.

Xi is Bernoulli with expectation E [Xi ] = 1(p) + 0(1 − p).

Thus,
E [X ] = E [X1] + E [X2] + · · ·+ E [Xn] = np.
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Properties of Expectation Expectation of Sums of Random Variables

Example: Expected Number of Matches

Suppose that N people throw their hats into the center of a room.

The hats are mixed up, and each person randomly selects one.

Find the expected number of people that select their own hat.

Let X denote the number of matches.

Then X = X1 + X2 + · · ·+ XN , where

Xi =

{

1, if the ith person selects his own hat
0, otherwise

Since, for each i , the ith person is equally likely to select any of the N

hats,

E [Xi ] = P{Xi = 1} =
1

N
.

Thus,

E [X ] = E [X1] + · · ·+ E [XN ] =
1

N
· N = 1.
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Properties of Expectation Expectation of Sums of Random Variables

Example: Coupon-Collecting Problems

Suppose that there are N different types of coupons, and each time
one obtains a coupon, it is equally likely to be any one of the N types.

Find the expected number of coupons one need amass before
obtaining a complete set of at least one of each type.

Let X denote the number of coupons collected before a complete set
is attained.

Let Xi , i = 0, 1, . . . ,N − 1 be the number of additional coupons that
need be obtained after i distinct types have been collected in order to
obtain another distinct type.

Then
X = X0 + X1 + · · ·+ XN−1.
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Properties of Expectation Expectation of Sums of Random Variables

Example: Coupon-Collecting Problems (Cont’d)

When i distinct types of coupons have already been collected, a new
coupon obtained will be of a distinct type with probability N−i

N
.

Therefore, for k ≥ 1, P{Xi = k} = N−i
N

(

i
N

)k−1
.

Recall from infinite series that for |x | < 1:

1 + 2x + 3x2 + · · · = (x + x2 + · · · )′ =
(

x

1− x

)′
=

1

(1− x)2
.

So we have

E [Xi ] =
N − i

n

[

1 + 2
i

N
+ 3

(

i

N

)2

+ · · ·
]

=
N − i

N

1

(1− i
N
)2

=
N

N − i
.

This implies that

E [X ] = 1 + N
N−1 + N

N−2 + · · ·+ N
1

= N
[

1 + · · · + 1
N−1 + 1

N

]

.
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Properties of Expectation Expectation of Sums of Random Variables

Example

Ten hunters are waiting for ducks to fly by.

When a flock of ducks flies by, the hunters fire at the same time, but
each chooses his target at random, independently of the others.

Suppose each hunter independently hits his target with probability p.

Compute the expected number of ducks that escape unhurt when a
flock of size 10 flies overhead.

Let Xi equal 1 if the ith duck escapes unhurt and 0 otherwise.

The expected number of ducks to escape can be expressed as

E [X1 + · · ·+ X10] = E [X1] + · · ·+ E [X10].

Each of the hunters will, independently, hit the ith duck with
probability p

10 . Thus E [Xi ] = P{Xi = 1} = (1− p
10)

10.

Hence,

E [X ] = 10
(

1− p

10

)10
.
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Properties of Expectation Expectation of Sums of Random Variables

Example: Expected Number of Runs

Suppose that a sequence of n 1’s and m 0’s is randomly permuted so
that each of the (n+m)!

n!m! possible arrangements is equally likely.

Any consecutive string of 1’s is said to constitute a run of 1’s.

E.g., suppose n = 6, m = 4, and the ordering is 1, 1, 1, 0, 1, 1, 0, 0, 1, 0.
There are 3 runs of 1’s.

We are interested in computing the mean number of such runs.

To compute this quantity, let

Ii =

{

1, if a run of 1’s starts at the ith position
0, otherwise

Then, R(1), the number of runs of 1, is given by R(1) =
∑n+m

i=1 Ii .

Thus, E [R(1)] =
∑n+m

i=1 E [Ii ].
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Properties of Expectation Expectation of Sums of Random Variables

Example: Expected Number of Runs (Cont’d)

We have E [I1] = P{“1” in position 1} =

(n+m−1)!
(n−1)!m!

(n+m)!
n!m!

= n
n+m

.

Moreover, for 1 < i ≤ n+m,

E [Ii ] = P{“0” in position i − 1, “1” in position i}
= m

n+m
n

n+m−1 .

Hence,

E [R(1)] =
n

n+m
+ (n +m − 1)

nm

(n +m)(n +m − 1)
.

Similarly, E [R(0)], the expected number of runs of 0’s, is

E [R(0)] =
m

n+m
+

nm

n +m
.

The expected number of runs of either type is

E [R(1) + R(0)] = 1 +
2nm

n +m
.
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Properties of Expectation Expectation of Sums of Random Variables

Example: A Random Walk in the Plane

Consider a particle initially located at a given point in the plane, and
suppose that it undergoes a sequence of steps of fixed length, but in a
completely random direction.

Specifically, suppose that the new position after each step is one unit
of distance from the previous position and at an angle of orientation
from the previous position that is uniformly distributed over (0, 2π).

Compute the expected square of the distance from the origin after n
steps.

Let (Xi ,Yi ) denote the change in position at the ith step,
i = 1, . . . , n, in rectangular coordinates.

Then
Xi = cos θi , Yi = sin θi ,

where θi , i = 1, . . . , n, are, by assumption, independent uniform
(0, 2π) random variables.
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Properties of Expectation Expectation of Sums of Random Variables

Example: A Random Walk in the Plane (Cont’d)

The position after n steps has coordinates (
∑n

i=1 Xi ,
∑n

i=1 Yi).

Thus, D2, the square of the distance from the origin, is given by

D2 = (
∑n

i=1Xi )
2 + (

∑n
i=1 Yi)

2

=
∑n

i=1(X
2
i + Y 2

i ) +
∑∑

i 6=j

(XiXj + YiYj)

= n +
∑∑

i 6=j

(cos θi cos θj + sin θi sin θj).

Note that

2πE [cos θi ] =
∫ 2π
0 cos udu = sin 2π − sin 0 = 0;

2πE [sin θi ] =
∫ 2π
0 sin udu = cos 0− cos 2π = 0.

Thus, using the independence of θi and θj when i 6= j , we get

E [D2] = n.
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Properties of Expectation Expectation of Sums of Random Variables

The Probability of a Union of Events

Let A1, . . . ,An be events.

Define the indicator variables Xi , i = 1, . . . , n, by

Xi =

{

1, if Ai occurs
0, otherwise

Note that

1−
n
∏

i=1

(1− Xi) =

{

1, if
⋃

Ai occurs
0, otherwise

Hence, E [1−∏n
i=1(1− Xi )] = P(

⋃n
i=1 Ai).

Expanding the left side of the preceding formula yields

P(
⋃n

i=1 Ai) = E [
∑n

i=1 Xi +
∑∑

i<j

XiXj +
∑∑∑

i<j<k

XiXjXk

− · · · (−1)n+1X1 · · ·Xn].
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Properties of Expectation Expectation of Sums of Random Variables

The Probability of a Union of Events (Cont’d)

However,

Xi1Xi2 · · ·Xik =

{

1, if Ai1Ai2 · · ·Aik occurs
0, otherwise

So E [Xi1 · · ·Xik ] = P(Ai1 · · ·Aik ).

Thus, the preceding equation is just a statement of the well-known
formula for the union of events:

P(
⋃

Ai) =
∑

i P(Ai)−
∑∑

i<j

P(AiAj) +
∑∑∑

i<j<k

P(AiAjAk)

− · · ·+ (−1)n+1P(A1 · · ·An).
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Properties of Expectation Expectation of Sums of Random Variables

Sum of Infinitely Many Variables

Consider an infinite collection of random variables Xi , i ≥ 1, each
having a finite expectation.

It is not necessarily true that E [
∑∞

i=1 Xi ] =
∑∞

i=1 E [Xi ].

Note that
∑∞

i=1 Xi = lim
n→∞

∑n
i=1Xi .

Thus,

E [
∑∞

i=1 Xi ] = E [ lim
n→∞

∑n
i=1 Xi ]

?
= lim

n→∞
E [
∑n

i=1 Xi ]

= lim
n→∞

∑n
i=1 E [Xi ] =

∑∞
i=1 E [Xi ].

Hence, the equation valid whenever we are justified in interchanging
the expectation and limit operations.
In general, this interchange is not justified, but it is valid in two
important special cases:
1. The Xi are all nonnegative random variables.
2.
∑

∞

i=1 E [|Xi |] < ∞.
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Properties of Expectation Expectation of Sums of Random Variables

Example

Consider any nonnegative, integer-valued random variable X .

For i ≥ 1, we define Xi =

{

1, if X ≥ i

0, if X < i

Then
∑∞

i=1 Xi =
∑X

i=1Xi +
∑∞

i=X+1Xi

=
∑X

i=1 1 +
∑∞

i=X+1 0 = X .

Hence, since the Xi are all nonnegative, we obtain

E [X ] =

∞
∑

i=1

E (Xi) =

∞
∑

i=1

P{X ≥ i}.
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Properties of Expectation Expectation of Sums of Random Variables

Example

Suppose that n elements, call them 1, 2, . . . , n, must be stored in a
computer in the form of an ordered list.

Each unit of time, a request will be made for one of these elements.

Each i is requested, independently of the past, with probability P(i),
i ≥ 1,

∑

i P(i) = 1.

Assuming that these probabilities are known, what ordering minimizes
the average position in the line of the element requested?

Suppose that the elements are numbered so that

P(1) ≥ P(2) ≥ · · · ≥ P(n).

To show that 1, 2, . . . , n is the optimal ordering, let X denote the
position of the requested element.
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Properties of Expectation Expectation of Sums of Random Variables

Example (Cont’d)

Consider any ordering, say,

O = i1, i2, . . . , in.

PO{X ≥ k} =
n
∑

j=k

P(ij) ≥
n
∑

j=k

P(j) = P1,2,...,n{X ≥ k}.

Sum over k , using the equation of the preceding example:

EO [X ] ≥ E1,2,...,n[X ].

Therefore, ordering the elements in decreasing order of the probability
that they are requested minimizes the expected position of the
element requested.
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Properties of Expectation Moments of the Number of Events that Occur

Subsection 3

Moments of the Number of Events that Occur
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Properties of Expectation Moments of the Number of Events that Occur

Number of Events that Occur

In the previous section we studied several problems of the form:
For given events A1, . . . ,An, find E [X ], where X is the number of these
events that occur.

The solution involved defining an indicator variable Ii for event Ai

such that

Ii =

{

1, if Ai occurs
0, otherwise

We observed that, then, we get

X =

n
∑

i=1

Ii .

Thus, we obtained the result

E [X ] = E

[

n
∑

i=1

Ii

]

=
n
∑

i=1

E [Ii ] =
n
∑

i=1

P(Ai).
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Properties of Expectation Moments of the Number of Events that Occur

Number of Pairs of Events that Occur

Suppose we are interested in the number of pairs of events that occur.

Ii Ij equals 1 if both Ai and Aj occur, and 0 otherwise.

Thus, the number of pairs is equal to
∑

i<j Ii Ij .

X is the number of events that occur.

So the number of pairs of events that occur is
(

X
2

)

.

Consequently,
(

X
2

)

=
∑

i<j Ii Ij , where there are
(

n
2

)

terms in the
summation.

Taking expectations yields

E

[(

X

2

)]

=
∑

i<j

E [Ii Ij ] =
∑

i<j

P(AiAj).

Equivalently, E
[

X (X−1)
2

]

=
∑

i<j P(AiAj).
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Properties of Expectation Moments of the Number of Events that Occur

Number of Pairs of Events that Occur (Cont’d)

The equality E
[

X (X−1)
2

]

=
∑

i<j P(AiAj) gives that

E [X 2]− E [X ] = 2
∑

i<j

P(AiAj).

We can then compute E [X 2], and thus Var(X ) = E [X 2]− (E [X ])2.

Moreover, by considering the number of distinct subsets of k events
that all occur, we see that

(

X

k

)

=
∑

i1<i2<···<ik

Ii1Ii2 · · · Iik .

Taking expectations gives the identity

E

[(

X

k

)]

=
∑

i1<i2<···<ik

E [Ii1 Ii2 · · · Iik ] =
∑

i1<i2<···<ik

P(Ai1Ai2 · · ·Aik ).
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Properties of Expectation Moments of the Number of Events that Occur

Moments of Binomial Random Variables

Consider n independent trials, with each trial being a success with
probability p.

Let Ai be the event that trial i is a success.

When i 6= j , P(AiAj) = p2.

Consequently, we obtain

E
[

(

X
2

)

]

=
∑

i<j p
2 =

(

n
2

)

p2;

E [X (X − 1)] = n(n − 1)p2;

E [X 2]− E [X ] = n(n − 1)p2.

Now, E [X ] =
∑n

i=1 P(Ai ) = np.

So, from the preceding equation

Var(X ) = E [X 2]− (E [X ])2 = n(n− 1)p2 + np − (np)2 = np(1− p).
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Properties of Expectation Moments of the Number of Events that Occur

Moments of Binomial Random Variables (Cont’d)

Noting that P(Ai1Ai2 · · ·Aik ) = pk , we obtain that

E

[(

X

k

)]

=
∑

i1<i2<···<ik

pk =

(

n

k

)

pk .

Equivalently,

E [X (X − 1) · · · (X − k + 1)] = n(n− 1) · · · (n − k + 1)pk .

The successive values E [X k ], k ≥ 3, can be recursively obtained from
this identity.

For instance, with k = 3, it yields

E [X (X − 1)(X − 2)] = n(n − 1)(n − 2)p3;

E [X 3 − 3X 2 + 2X ] = n(n − 1)(n − 2)p3;

E [X 3] = 3E [X 2]− 2E [X ] + n(n − 1)(n − 2)p3

= 3n(n − 1)p2 + np + n(n − 1)(n − 2)p3.
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Properties of Expectation Moments of the Number of Events that Occur

Moments of Hypergeometric Random Variables

Suppose an urn contains N balls, of which m are white.

n balls are randomly selected.

Let Ai be the event that the ith ball selected is white.

Then the number X of white balls selected is equal to the number of
the events A1, . . . ,An that occur.

Because the ith ball selected is equally likely to be any of the N balls,
of which m are white, P(Ai ) =

m
N
.

Consequently, we get E [X ] =
∑n

i=1 P(Ai) =
nm
N
.

Moreover, P(AiAj) = P(Ai )P(Aj |Ai) =
m
N

m−1
N−1 .

Hence, we obtain

E
[

(

X
2

)

]

=
∑

i<j
m(m−1)
N(N−1) =

(

n
2

)m(m−1)
N(N−1) ;

E [X (X − 1)] = n(n− 1)m(m−1)
N(N−1) ;

E [X 2] = n(n − 1)m(m−1)
N(N−1) + E [X ].
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Properties of Expectation Moments of the Number of Events that Occur

Moments of Hypergeometric Random Variables (Cont’d)

This formula yields the variance of the hypergeometric, namely,

Var(X ) = E [X 2]− (E [X ])2

= n(n − 1)m(m−1)
N(N−1) +

nm
N

− n2m2

N2

= mn
N

[

(n−1)(m−1)
N−1 + 1− mn

N

]

.

For higher moments of X , we have

P(Ai1Ai2 · · ·Aik ) =
m(m − 1) · · · (m − k + 1)

N(N − 1) · · · (N − k + 1)
.

So we get

E
[

(

X
k

)

]

=
(

n
k

)m(m−1)···(m−k+1)
N(N−1)···(N−k+1) ;

E [X (X − 1) · · · (X − k + 1)]

= n(n − 1) · · · (n − k + 1)m(m−1)···(m−k+1)
N(N−1)···(N−k+1) .

George Voutsadakis (LSSU) Probability October 2020 38 / 164



Properties of Expectation Moments of the Number of Events that Occur

Example: Moments in the Match Problem

For i = 1, . . . ,N, let Ai be the event that person i selects his or her
own hat in the match problem.

Then

P(AiAj) = P(Ai)P(Aj |Ai ) =
1

N

1

N − 1
.

This follows, since, conditional on person i selecting her own hat, the
hat selected by person j is equally likely to be any of the other N − 1
hats, of which one is his own.

Let X be the number of people who select their own hat.

Then
E
[

(

X
2

)

]

=
∑

i<j
1

N(N−1) =
(

N
2

)

1
N(N−1) ;

E [X (X − 1)] = 1;

E [X 2] = 1 + E [X ].
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Properties of Expectation Moments of the Number of Events that Occur

Example: Moments in the Match Problem (Cont’d)

Note that E [X ] =
∑N

i=1 P(Ai ) =
∑N

i=1
1
N
= 1.

So we get

Var(X ) = E [X 2]− (E [X ])2 = 1 + E [X ]− (E [X ])2 = 1.

Hence, both the mean and variance of the number of matches is 1.

For higher moments, we observe that

P(Ai1Ai2 · · ·Aik ) =
1

N(N − 1) · · · (N − k + 1)
.

So

E

[(

X

k

)]

=

(

N

k

)

1

N(N − 1) · · · (N − k + 1)
.

Equivalently
E [X (X − 1) · · · (X − k + 1)] = 1.
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Properties of Expectation Moments of the Number of Events that Occur

Example: Another Coupon-Collecting Problem

Suppose that there are N distinct types of coupons.

Independently of past types collected, each new one obtained is of
type j with probability pj , where

∑N
j=1 pj = 1.

Find the expected value and variance of the number of different types
of coupons that appear among the first n collected.

We will work with the number of uncollected types.

Let Y equal the number of different types of coupons collected.
Let X = N − Y denote the number of uncollected types.

Let Ai be the event that there are no type i coupons in the collection.

Then X is equal to the number of the events A1, . . . ,AN that occur.
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Properties of Expectation Moments of the Number of Events that Occur

Example: Another Coupon-Collecting Problem (Cont’d)

The types of the successive coupons collected are independent.

Moreover, each new coupon is not type i with probability 1− pi .

Thus, we get
P(Ai) = (1− pi )

n.

Hence,

E [X ] =
N
∑

i=1

(1− pi )
n.

Therefore,

E [Y ] = N − E [X ] = N −
N
∑

i=1

(1− pi )
n.
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Properties of Expectation Moments of the Number of Events that Occur

Example: Another Coupon-Collecting Problem (Cont’d)

Each of the n coupons collected is neither a type i nor a type j

coupon with probability 1− pi − pj .

Thus, we have

P(AiAj) = (1− pi − pj)
n, i 6= j .

We now get

E [X (X − 1)] = 2
∑

i<j P(AiAj) = 2
∑

i<j(1− pi − pj)
n;

E [X 2] = 2
∑

i<j(1− pi − pj)
n + E [X ].

Hence, we obtain

Var(Y ) = Var(X )

= E [X 2]− (E [X ])2

= 2
∑

i<j(1− pi − pj)
n +

∑N
i=1(1− pi )

n

− (
∑N

i=1(1− pi )
n)2.
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Properties of Expectation Covariance, Variance of Sums and Correlations

Subsection 4

Covariance, Variance of Sums and Correlations
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Properties of Expectation Covariance, Variance of Sums and Correlations

Expectation of Product of Independent Variables

Proposition

If X and Y are independent, then, for any functions h and g ,

E [g(X )h(Y )] = E [g(X )]E [h(Y )].

Assume X and Y are jointly continuous with joint density f (x , y).

Then

E [g(X )h(Y )] =
∫∞
−∞

∫∞
−∞ g(x)h(y)f (x , y)dxdy

=
∫∞
−∞

∫∞
−∞ g(x)h(y)fX (x)fY (y)dxdy

=
∫∞
−∞ h(y)fY (y)dy

∫∞
−∞ g(x)fX (x)dx

= E [h(Y )]E [g(X )].

The proof in the discrete case is similar.
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Properties of Expectation Covariance, Variance of Sums and Correlations

Covariance

Definition

The covariance between X and Y , denoted by Cov(X ,Y ), is defined by

Cov(X ,Y ) = E [(X − E [X ])(Y − E [Y ])].

Upon expanding the right side of the preceding definition, we see that

Cov(X ,Y ) = E [XY − E [X ]Y − XE [Y ] + E [Y ]E [X ]]

= E [XY ]− E [X ]E [Y ]− E [X ]E [Y ] + E [X ]E [Y ]

= E [XY ]− E [X ]E [Y ].
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Properties of Expectation Covariance, Variance of Sums and Correlations

Covariance and Independence

If X and Y are independent, then, by the preceding proposition,
Cov(X ,Y ) = 0.

The converse is not true.

Example: Let X be a random variable such that

P{X = 0} = P{X = 1} = P{X = −1} =
1

3
.

Define

Y =

{

0, if X 6= 0
1, if X = 0

We have XY = 0. So E [XY ] = 0. Also, E [X ] = 0.

Thus, Cov(X ,Y ) = E [XY ]− E [X ]E [Y ] = 0.

However, X and Y are clearly not independent.
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Properties of Expectation Covariance, Variance of Sums and Correlations

Properties of Covariance

Proposition

(i) Cov(X ,Y ) = Cov(Y ,X );

(ii) Cov(X ,X ) = Var(X );

(iii) Cov(aX ,Y ) = aCov(X ,Y );

(iv) Cov(
∑n

i=1 Xi ,
∑m

j=1 Yj) =
∑n

i=1

∑m
j=1 Cov(Xi ,Yj).

Note that

Cov(X ,Y ) = E [XY ]− E [X ]E [Y ]
= E [YX ]− E [Y ]E [X ] = Cov(Y ,X );

Cov(X ,X ) = E [X 2]− E [X ]E [X ] = Var(X );

Cov(aX ,Y ) = E [aXY ]− E [aX ]E [Y ] = aE [XY ]− aE [X ]E [Y ]
= a(E [XY ]− E [X ]E [Y ]) = aCov(X ,Y ).

George Voutsadakis (LSSU) Probability October 2020 48 / 164



Properties of Expectation Covariance, Variance of Sums and Correlations

Properties of Covariance (Cont’d)

To prove Cov(
∑n

i=1 Xi ,
∑m

j=1 Yj) =
∑n

i=1

∑m
j=1 Cov(Xi ,Yj), let

µi = E [Xi ] and νj = E [Yj ].

Then

E

[

n
∑

i=1

Xi

]

=
n
∑

i=1

µi , E





m
∑

j=1

Yj



 =
m
∑

j=1

νj .

Now we get

Cov(
∑n

i=1 Xi ,
∑m

j=1 Yj)

= E [(
∑n

i=1Xi −
∑n

i=1 µi)(
∑m

j=1 Yj −
∑m

j=1 νj)]

= E [
∑n

i=1(Xi − µi)
∑m

j=1(Yj − νj)]

= E [
∑n

i=1

∑m
j=1(Xi − µi)(Yj − νj)]

=
∑n

i=1

∑m
j=1 E [(Xi − µi )(Yj − νj)],

where the last equality follows because the expected value of a sum of
random variables is equal to the sum of the expected values.
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Properties of Expectation Covariance, Variance of Sums and Correlations

Variance and Covariance

From parts (ii) and (iv) of the proposition, upon taking Yj = Xj ,
j = 1, . . . ..., n, we get

Var(
∑n

i=1Xi ) = Cov(
∑n

i=1 Xi ,
∑n

j=1 Xj)

=
∑n

i=1

∑n
j=1 Cov(Xi ,Xj)

=
∑n

i=1 Var(Xi) +
∑∑

i 6=j

Cov(Xi ,Xj).

Since each pair of indices i , j , i 6= j , appears twice in the double
summation, the preceding formula is equivalent to

Var(

n
∑

i=1

Xi ) =

n
∑

i=1

Var(Xi ) + 2
∑∑

i<j

Cov(Xi ,Xj).

If X1, . . . ,Xn are pairwise independent,

Var(

n
∑

i=1

Xi ) =

n
∑

i=1

Var(Xi ).
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Properties of Expectation Covariance, Variance of Sums and Correlations

Example

Let X1, . . . ,Xn be independent and identically distributed random
variables having expected value µ and variance σ2.

Let X =
∑n

i=1
Xi

n
be the sample mean.

The differences between the individual data and the sample mean
Xi − X , i = 1, . . . , n, are called deviations.

The random variable

S2 =

n
∑

i=1

(Xi − X )2

n − 1

is called the sample variance.

We are interested in computing:

(a) Var(X );
(b) E [S2].
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Properties of Expectation Covariance, Variance of Sums and Correlations

Example (Cont’d)

(a)

Var(X ) = Var(
∑n

i=1
Xi

n
) = ( 1

n
)2Var(

∑n
i=1 Xi)

= ( 1
n
)2
∑n

i=1 Var(Xi ) (by independence)

= 1
n2
nσ2 = σ2

n
.

(b) We start with the following algebraic identity:

(n − 1)S2 =
∑n

i=1(Xi − µ+ µ− X )2

=
∑n

i=1(Xi − µ)2 +
∑n

i=1(X − µ)2

− 2(X − µ)
∑n

i=1(Xi − µ)

=
∑n

i=1(Xi − µ)2 + n(X − µ)2 − 2(X − µ)n(X − µ)

=
∑n

i=1(Xi − µ)2 − n(X − µ)2.
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Properties of Expectation Covariance, Variance of Sums and Correlations

Example (Cont’d)

We showed (n − 1)S2 =
∑n

i=1(Xi − µ)2 − n(X − µ)2.

Taking expectations yields

(n − 1)E [S2] =
∑n

i=1 E [(Xi − µ)2]− nE [(X − µ)2]

=
∑n

i=1 Var(Xi)− nVar(X )

= nσ2 − nσ2

n

= (n − 1)σ2,

where:

The final equality made use of Part (a);
The one preceding used E [X ] = µ, seen previously.

Dividing through by n − 1 shows that the expected value of the
sample variance is the distribution variance σ2.
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Properties of Expectation Covariance, Variance of Sums and Correlations

Variance of a Binomial Random Variable

Compute the variance of a binomial random variable X with
parameters n and p.

Such a random variable represents the number of successes in n

independent trials when each trial has probability p of success.

Thus, X = X1 + · · ·+ Xn, where the Xi are independent Bernoulli
random variables such that

Xi =

{

1, if the ith trial is a success
0, otherwise

Hence, we obtain Var(X ) = Var(X1) + · · ·+ Var(Xn).

But
Var(Xi ) = E [X 2

i ]− (E [Xi ])
2

= E [Xi ]− (E [Xi ])
2 (since X 2

i = Xi)

= p − p2.

Thus, Var(X ) = np(1− p).
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Properties of Expectation Covariance, Variance of Sums and Correlations

Correlation

The correlation of two random variables X and Y , denoted by
ρ(X ,Y ), is defined, as long as Var(X )Var(Y ) is positive, by

ρ(X ,Y ) =
Cov(X ,Y )

√

Var(X )Var(Y )
.

We show that −1 ≤ ρ(X ,Y ) ≤ 1.

Let σ2
x and σ2

y be the variances of X and Y , respectively.

Then
0 ≤ Var( X

σx
+ Y

σy
)

= Var(X )
σ2
x

+ Var(Y )
σ2
y

+ 2Cov(X ,Y )
σxσy

= 2[1 + ρ(X ,Y )].

This implies that −1 ≤ ρ(X ,Y ).
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Properties of Expectation Covariance, Variance of Sums and Correlations

Correlation (Cont’d)

Moreover
0 ≤ Var( X

σx
− Y

σy
)

= Var(X )
σ2
x

+ Var(Y )
(−σy )2

− 2Cov(X ,Y )
σxσy

= 2[1− ρ(X ,Y )].

This implies that ρ(X ,Y ) ≤ 1.
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Properties of Expectation Covariance, Variance of Sums and Correlations

Correlation and Linearity

Since Var(Z ) = 0 implies that Z is constant with probability 1 (to be
proven in the next chapter), it follows from the proof of the inequality
above that:

ρ(X ,Y ) = 1 implies that Y = a + bX , where b =
σy

σx
> 0;

ρ(X ,Y ) = −1 implies that Y = a+ bX , where b = −σy

σx
< 0.

The reverse is also true:
If Y = a+ bX , then ρ(X ,Y ) is either +1 or −1, depending on the sign
of b.

The correlation coefficient is a measure of the degree of linearity
between X and Y :

A value of ρ(X ,Y ) near +1 or −1 indicates a high degree of linearity
between X and Y ;
A value near 0 indicates that such linearity is absent;
A positive value of ρ(X ,Y ) indicates that Y tends to increase when X

does;
A negative value indicates that Y tends to decrease when X increases.

If ρ(X ,Y ) = 0, then X and Y are said to be uncorrelated.

George Voutsadakis (LSSU) Probability October 2020 57 / 164



Properties of Expectation Covariance, Variance of Sums and Correlations

Example

Let IA and IB be indicator variables for the events A and B :

IA =

{

1, if A occurs
0, otherwise

, IB =

{

1, if B occurs
0, otherwise

.

Then
E [IA] = P(A);
E [IB ] = P(B);

E [IAIB ] = P(AB).

So Cov(IA, IB) = P(AB)− P(A)P(B) = P(B)[P(A|B)− P(A)].

This shows that the indicator variables for A and B are:

Positively correlated if P(A|B) is greater than P(A);
Uncorrelated if P(A|B) = P(A);
Negatively correlated if P(A|B) is less than P(A).
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Properties of Expectation Covariance, Variance of Sums and Correlations

Example

Let X1, . . . ,Xn be independent and identically distributed random
variables having variance σ2. Show that Cov(Xi − X ,X ) = 0.

We have

Cov(Xi − X ,X ) = Cov(Xi ,X )− Cov(X ,X )

= Cov(Xi ,
1
n

∑n
j=1 Xj)− Var(X )

= 1
n

∑n
j=1 Cov(Xi ,Xj )− σ2

n

= σ2

n
− σ2

n
= 0.

The next-to-last equality uses a previous result.

The final equality follows by

Cov(Xi ,Xj) =

{

0, if j 6= i by independence
σ2, if j = i since Var(Xi ) = σ2

Although X and the deviation Xi − X are uncorrelated, they are not,
in general, independent.
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Properties of Expectation Covariance, Variance of Sums and Correlations

Example

Consider m independent trials, each of which results in any of r
possible outcomes with probabilities P1,P2, . . . ,Pr ,

∑r
1 Pi = 1.

If we let Ni , i = 1, . . . , r , denote the number of the m trials that result
in outcome i , then N1,N2, . . . ,Nr have the multinomial distribution

P{N1 = n1,N2 = n2, . . . ,Nr = nr}
= m!

n1!n2!···nr !P
n1
1 Pn2

2 · · ·Pnr
r ,

∑r
i=1 ni = m.

For i 6= j , we expect that when Ni is large, Nj would tend to be small.

Hence, it is intuitive that they should be negatively correlated.

We compute their covariance by using a previous proposition and the
representation Ni =

∑m
k=1 Ii(k) and Nj =

∑m
k=1 Ij (k), where

Ii (k) =

{

1, if trial k results in outcome i

0, otherwise
,

Ij(k) =

{

1, if trial k results in outcome j

0, otherwise
.
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Properties of Expectation Covariance, Variance of Sums and Correlations

Example (Cont’d)

We have

Cov(Ni ,Nj ) =

m
∑

ℓ=1

m
∑

k=1

Cov(Ii (k), Ij (ℓ)).

Now, on the one hand, when k 6= ℓ, Cov(Ii (k), Ij (ℓ)) = 0 since the
outcome of trial k is independent of the outcome of trial ℓ.

On the other hand,

Cov(Ii (ℓ), Ij (ℓ)) = E [Ii (ℓ)Ij (ℓ)]− E [Ii (ℓ)]E [Ij (ℓ)]
= 0− PiPj = − PiPj .

This equation uses the fact that Ii (ℓ)Ij (ℓ) = 0, since trial ℓ cannot
result in both outcome i and outcome j .

Hence, we obtain Cov(Ni ,Nj ) = −mPiPj .

This is in accord with the intuition that Ni and Nj are negatively
correlated.
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Properties of Expectation Conditional Expectation

Subsection 5

Conditional Expectation
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Properties of Expectation Conditional Expectation

Conditional Expectation

Definition

Recall that if X and Y are jointly discrete random variables, then the
conditional probability mass function of X , given that Y = y , is
defined, for all y such that P{Y = y} > 0, by

pX |Y (x |y) = P{X = x |Y = y} =
p(x , y)

pY (y)
.

We therefore define, the conditional expectation of X given that

Y = y , for all values of y such that pY (y) > 0, by

E [X |Y = y ] =
∑

x

xP{X = x |Y = y}

=
∑

x

xpX |Y (x |y).
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Properties of Expectation Conditional Expectation

Example

If X and Y are independent binomial random variables with identical
parameters n and p, calculate the conditional expected value of X
given that X + Y = m.

We first calculate the conditional probability mass function of X given
that X + Y = m. For k ≤ min (n,m),

P{X = k |X + Y = m} = P{X=k,X+Y=m}
P{X+Y=m}

= P{X=k,Y=m−k}
P{X+Y=m}

= P{X=k}P{Y=m−k}
P{X+Y=m}

=
(nk)p

k (1−p)n−k( n
m−k)p

m−k(1−p)n−m+k

(2nm)pm(1−p)2n−m

=
(nk)(

n
m−k)

(2nm)
.

We used that X + Y is binomial with parameters 2n and p.
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Properties of Expectation Conditional Expectation

Example (Cont’d)

Now for 0 ≤ i ≤ min (m, n), we get:

i

(

n
i

)(

n
m−i

)

(2n
m

) = i

n
i

(

n−1
i−1

)(

n
m−i

)

2n
m

(2n−1
m−1

) =
m

2

(

n−1
i−1

)(

n
m−i

)

(2n−1
m−1

) .

Therefore, we get

E [X |X + Y = m] =
∑m

i=0 ipX |X+Y (i |m)

=
∑m

i=0 i

(

n
i

)(

n
m−i

)

(2n
m

)

=
m

2

∑m
i=0

(

n−1
i−1

)(

n
m−i

)

(2n−1
m−1

)

=
m

2
.
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Properties of Expectation Conditional Expectation

Conditional Expectation: Continuous Case

If X and Y are jointly continuous with a joint probability density
function f (x , y), then the conditional probability density of X ,
given that Y = y , is defined, for all values of y such that fY (y) > 0,
by

fX |Y (x |y) =
f (x , y)

fY (y)
.

In this case, provided that fY (y) > 0, we define the conditional

expectation of X , given that Y = y , by

E [X |Y = y ] =

∫ ∞

−∞
xfX |Y (x |y)dx .
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Properties of Expectation Conditional Expectation

Example

Suppose that the joint density of X and Y is given by

f (x , y) =
e−x/ye−y

y
, 0 < x < ∞, 0 < y < ∞.

Compute E [X |Y = y ].

We start by computing the conditional density

fX |Y (x |y) = f (x ,y)
fY (y) = f (x ,y)∫∞

−∞ f (x ,y)dx

= (1/y)e−x/y e−y
∫∞
0

(1/y)e−x/y e−ydx
= (1/y)e−x/y

∫∞
0

(1/y)e−x/ydx

= (1/y)e−x/y

[−e−x/y ]x=∞
x=0

= 1
y
e−x/y .

Thus,
E [X |Y = y ] =

∫ ∞

0

x

y
e−x/ydx

By-Parts
= y .
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Properties of Expectation Conditional Expectation

Properties of Conditional Expectation

Just as conditional probabilities satisfy all of the properties of ordinary
probabilities, so do conditional expectations satisfy the properties of
ordinary expectations.

For instance, we have

E [g(X )|Y = y ] =

{

∑

x g(x)pX |Y (x |y), discrete case
∫∞
−∞ g(x)fX |Y (x |y)dx , continuous case

We also have

E

[

n
∑

i=1

Xi |Y = y

]

=
n
∑

i=1

E [Xi |Y = y ].

Conditional expectation given that Y = y can be thought of as being
an ordinary expectation on a reduced sample space consisting only of
outcomes for which Y = y .

George Voutsadakis (LSSU) Probability October 2020 68 / 164



Properties of Expectation Conditional Expectation

Computing Expectations by Conditioning

Denote by E [X |Y ] that function of the random variable Y whose
value at Y = y is E [X |Y = y ].

Note that E [X |Y ] is itself a random variable.

Proposition

E [X ] = E [E [X |Y ]].

If Y is a discrete random variable, then the Proposition states that

E [X ] =
∑

y

E [X |Y = y ]P{Y = y}.

If Y is continuous with density fY (y), then the Proposition states

E [X ] =

∫ ∞

−∞
E [X |Y = y ]fY (y)dy .
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Properties of Expectation Conditional Expectation

Computing Expectations by Conditioning (Cont’d)

We give a proof in the case where X and Y are both discrete.

We must show that E [X ] =
∑

y E [X |Y = y ]P{Y = y}.
Now, the right-hand side can be written as

∑

y

E [X |Y = y ]P{Y = y} =
∑

y

∑

x

xP{X = x |Y = y}P{Y = y}

=
∑

y

∑

x

x
P{X=x ,Y=y}

P{Y=y} P{Y = y}

=
∑

y

∑

x

xP{X = x ,Y = y}

=
∑

x

x
∑

y

P{X = x ,Y = y}

=
∑

x

xP{X = x}

= E [X ].
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Properties of Expectation Conditional Expectation

Example

A miner is trapped in a mine containing 3 doors.

The first door leads to a tunnel that will take him to safety after 3
hours of travel.
The second door leads to a tunnel that will return him to the mine
after 5 hours of travel.
The third door leads to a tunnel that will return him to the mine after
7 hours.

If the miner is at all times equally likely to choose any one of the
doors, what is the expected length of time until he reaches safety?

Let X denote the amount of time until the miner reaches safety.

Let Y denote the door he initially chooses.

E [X ] = E [X |Y = 1]P{Y = 1}+ E [X |Y = 2]P{Y = 2}
+ E [X |Y = 3]P{Y = 3}

= 1
3(E [X |Y = 1] + E [X |Y = 2] + E [X |Y = 3]).
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Properties of Expectation Conditional Expectation

Example (Cont’d)

However,
E [X |Y = 1] = 3;
E [X |Y = 2] = 5 + E [X ];
E [X |Y = 3] = 7 + E [X ].

To understand why this equation is correct, consider, for instance,
E [X |Y = 2] and reason as follows:

If the miner chooses the second door, he spends 5 hours in the tunnel
and then returns to his cell.
But once he returns to his cell, the problem is as before.
Thus his expected additional time until safety is just E [X ].
Hence, E [X |Y = 2] = 5 + E [X ].

Hence,

E [X ] =
1

3
(3 + 5 + E [X ] + 7 + E [X ]) ⇒ E [X ] = 15.
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Properties of Expectation Conditional Expectation

Sum of a Random number of Random Variables

Suppose that the number of people entering a department store on a
given day is a random variable with mean 50.

Suppose further that the amounts of money spent by these customers
are independent random variables having a common mean of $8.

Finally, suppose that the amount of money spent by a customer is also
independent of the total number of customers who enter the store.

What is the expected amount spent in the store on a given day?

Let N denote the number of customers that enter the store.

Let Xi the amount spent by the ith such customer.

Then the total amount spent can be expressed as
∑N

i=1 Xi .

Now,

E [

N
∑

i=1

Xi ] = E [E [

N
∑

i=1

Xi |N]].
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Properties of Expectation Conditional Expectation

Sum of a Random number of Random Variables (Cont’d)

But

E
[

∑N
i=1 Xi |N = n

]

= E [
∑n

i=1 Xi |N = n]

= E [
∑n

i=1 Xi ]
(by independence of the Xi and N)

= nE [X ]. (where E [X ] = E [Xi ])

This implies that

E

[

N
∑

i=1

Xi |N
]

= NE [X ].

Thus,

E

[

N
∑

i=1

Xi

]

= E [NE [X ]] = E [N]E [X ].

Hence, in our example, the expected amount of money spent in the
store is 50× $8 = $400.
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Properties of Expectation Conditional Expectation

Example

The game of craps is begun by rolling an ordinary pair of dice.

If the sum of the dice is 2, 3 or 12, the player loses.
If it is 7 or 11, the player wins.
If it is any other number i , the player continues to roll the dice until
the sum is either 7 or i .

If it is 7, the player loses;

if it is i, the player wins.

Let R denote the number of rolls of the dice in a game of craps.

Find E [R ].
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Properties of Expectation Conditional Expectation

Example (Cont’d)

If we let Pi denote the probability that the sum of the dice is i , then

Pi = P14−i =
i − 1

36
, i = 2, . . . , 7.

To compute E [R ], we condition on S , the initial sum, giving

E [R ] =
12
∑

i=2

E [R |S = i ]Pi .

However,

E [R |S = i ] =

{

1, if i = 2, 3, 7, 11, 12
1 + 1

Pi+P7
, otherwise

The preceding equation follows because:
If the sum is a value i that does not end the game, then the dice will
continue to be rolled until the sum is either i or 7;
The latter happens with probability Pi + P7.
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Properties of Expectation Conditional Expectation

Example (Cont’d)

Therefore,

E [R ] = 1 +

6
∑

i=4

Pi

Pi + P7
+

10
∑

i=8

Pi

Pi + P7

= 1 +
P4

P4 + P7
+

P5

P5 + P7
+

P6

P6 + P7

+
P8

P8 + P7
+

P9

P9 + P7
+

P10

P10 + P7

= 1 + 2

(

3

3 + 6
+

4

4 + 6
+

5

5 + 6

)

= 1 + 2

(

3

9
+

4

10
+

5

11

)

= 3.376.

George Voutsadakis (LSSU) Probability October 2020 77 / 164



Properties of Expectation Conditional Expectation

Example

Recall the bivariate normal joint density function of the random
variables X and Y , given by

f (x , y) = 1

2πσxσy

√
1−ρ2

exp {− 1
2(1−ρ2)

[(x−µx

σx
)2 + (

y−µy

σy
)2

−2ρ
(x−µx )(y−µy )

σxσy
]}.

We will now show that ρ is the correlation between X and Y .

We have seen in a previous example that µx = E [X ], σ2
x = Var(X ),

and µy = E [Y ], σ2
y = Var(Y ).

Consequently,

Corr(X ,Y ) =
Cov(X ,Y )

σxσy
=

E [XY ]− µxµy

σxσy
.
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Properties of Expectation Conditional Expectation

Example (Cont’d)

To determine E [XY ], we condition on Y , i.e., we use
E [XY ] = E [E [XY |Y ]].

Recall from a previous example that the conditional distribution of X
given that Y = y is normal with mean

E [X |Y = y ] = µx + ρ
σx

σy
(y − µy ).

Thus,
E [XY |Y = y ] = E [Xy |Y = y ]

= yE [X |Y = y ]

= y [µx + ρσx

σy
(y − µy )]

= yµx + ρσx

σy
(y2 − µyy).
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Properties of Expectation Conditional Expectation

Example (Cont’d)

Consequently,

E [XY |Y ] = Yµx + ρ
σx

σy
(Y 2 − µyY ).

This implies that

E [XY ] = E [Y µx + ρσx

σy
(Y 2 − µyY )]

= µxE [Y ] + ρσx

σy
E [Y 2 − µyY ]

= µxµy + ρσx

σy
(E [Y 2]− µ2

y )

= µxµy + ρσx

σy
Var(Y )

= µxµy + ρσxσy .

Therefore,

Corr(X ,Y ) =
E [XY ]− µxµy

σxσy
=

ρσxσy

σxσy
= ρ.
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Properties of Expectation Conditional Expectation

Example

Suppose each of n independent trials results in one of the outcomes
1, . . . , k , with respective probabilities p1, . . . , pk ,

∑k
i=1 pi = 1.

Let Ni be the number of trials that result in outcome i , i = 1, . . . , k .

For i 6= j , find: E [Nj |Ni > 0];

Let I =

{

0, if Ni = 0
1, if Ni > 0

Then

E [Nj ] = E [Nj |I = 0]P{I = 0}+ E [Nj |I = 1]P{I = 1}.
E [Nj ] = E [Nj |Ni = 0]P{Ni = 0}+ E [Nj |Ni > 0]P{Ni > 0}.
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Properties of Expectation Conditional Expectation

Example (Cont’d)

The unconditional distribution of Nj is binomial with parameters n, pj .

Given that Ni = r , each of the n− r trials that do not result in
outcome i will, independently, result in outcome j with probability
P(j |not i) = pj

1−pi
.

Consequently, the conditional distribution of Nj , given that Ni = r , is
binomial with parameters n − r ,

pj
1−pi

.

But P{Ni = 0} = (1− pi)
n.

Thus, the preceding equation yields

npj = n
pj

1− pi
(1− pi)

n + E [Nj |Ni > 0](1− (1− pi )
n).

This gives
E [Nj |Ni > 0] = npj

1− (1− pi )
n−1

1− (1− pi )n
.
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Properties of Expectation Conditional Expectation

Variance of the Geometric Distribution

Independent trials, each resulting in a success with probability p, are
successively performed.

Let N be the time of the first success. Find Var(N).

Set Y =

{

1, if the first trial results in a success
0, otherwise

We have Var(N) = E [N2]− (E [N])2.

To calculate E [N2], we condition on Y : E [N2] = E [E [N2|Y ]].

However,
E [N2|Y = 1] = 1;

E [N2|Y = 0] = E [(1 + N)2].

For these two equations:
If the first trial results in a success, then N = 1 and so N2 = 1.
If the first trial results in a failure, then the total number of trials
necessary for the first success will have the same distribution as 1 plus
the necessary number of additional trials.
The latter has same distribution as N , so E [N2|Y = 0] = E [(1 + N)2].
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Properties of Expectation Conditional Expectation

Variance of the Geometric Distribution (Cont’d)

Hence,

E [N2] = E [N2|Y = 1]P{Y = 1}+ E [N2|Y = 0]P{Y = 0}
= p + (1− p)E [(1 + N)2]

= 1 + (1− p)E [2N + N2].

However, as was shown in a previous example E [N] = 1
p
.

Therefore,

E [N2] = 1 + 2(1−p)
p

+ (1− p)E [N2];

E [N2] = 2−p
p2

.

Consequently,

Var(N) = E [N2]− (E [N])2 =
2− p

p2
−
(

1

p

)2

=
1− p

p2
.
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Properties of Expectation Conditional Expectation

Example

Consider a gambling situation in which there are r players, with player
i initially having ni units, ni > 0, i = 1, . . . , r .

At each stage, two of the players are chosen to play a game, with the
winner of the game receiving 1 unit from the loser.

Any player whose fortune drops to 0 is eliminated, and this continues
until a single player has all n =

∑r
i=1 ni units, with that player

designated as the victor.

Assume that:

The results of successive games are independent;
Each game is equally likely to be won by either of its two players.

Find the average number of stages until one of the players has all n
units.
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Properties of Expectation Conditional Expectation

Example (Cont’d)

Suppose first that there are only 2 players.

Player 1 initially has j units;
Player 2 initially has n − j units.

Let Xj denote the number of stages that will be played.

Let Aj be the additional number of stages needed beyond the first.

Let mj = E [Xj ].

Then, for j = 1, . . . , n − 1, Xj = 1 + Aj .

Taking expectations gives mj = 1 + E [Aj ].

Conditioning on the result of the first stage then yields

mj = 1 + E [Aj |1 wins first stage]
1

2
+ E [Aj |2 wins first stage]

1

2
.
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Properties of Expectation Conditional Expectation

Example (Cont’d)

Now, if player 1 wins at the first stage, then the situation from that
point on is exactly the same as in a problem which supposes that:

Player 1 starts with j + 1 units;
Player 2 starts with n − (j + 1) units.

Consequently,

E [Aj |1 wins first stage] = mj+1, E [Aj |2 wins first stage] = mj−1;

mj = 1 + 1
2mj+1 +

1
2mj−1;

mj+1 = 2mj −mj−1 − 2, j = 1, . . . , n − 1.

Using that m0 = 0, the preceding equation yields

m2 = 2m1 − 2;

m3 = 2m2 −m1 − 2 = 3m1 − 6 = 3(m1 − 2);

m4 = 2m3 −m2 − 2 = 4m1 − 12 = 4(m1 − 3).

This suggests that

mi = i(m1 − i + 1), i = 1, . . . , n.
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Properties of Expectation Conditional Expectation

Example (Cont’d)

To prove the preceding equality, we use mathematical induction.

The equation is true for i = 1, 2.

Take as the induction hypothesis that it is true whenever i ≤ j < n.

Now we must prove that it is true for j + 1.

Using the previously obtain equation yields

mj+1 = 2mj −mj−1 − 2

= 2j(m1 − j + 1)− (j − 1)(m1 − j + 2)− 2
(induction hypothesis)

= (j + 1)m1 − 2j2 + 2j + j2 − 3j + 2− 2

= (j + 1)m1 − j2 − j = (j + 1)(m1 − j).

Letting i = n, and using that mn = 0, now yields that m1 = n − 1.

Again using the equation proved above gives the result

mi = i(n − i).
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Properties of Expectation Conditional Expectation

Example (Cont’d)

We return to the problem involving r players with initial amounts ni ,
i = 1, . . . , r ,

∑r
i=1 ni = n.

Let X denote the number of stages needed to obtain a victor.

Let Xi denote the number of stages involving player i .

From the point of view of player i , starting with ni , he will continue
to play stages, independently being equally likely to win or lose each
one, until his fortune is either n or 0.

Thus, the number of stages he plays is exactly the same as when he
has a single opponent with an initial fortune of n − ni .

Consequently, by the preceding result it follows that

E [Xi ] = ni(n − ni ).

So
E

[

r
∑

i=1

Xi

]

=

r
∑

i=1

ni(n − ni ) = n2 −
r
∑

i=1

n2i .
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Properties of Expectation Conditional Expectation

Example (Cont’d)

But because each stage involves two players,

X =
1

2

r
∑

i=1

Xi .

Taking expectations now yields

E [X ] =
1

2

(

n2 −
r
∑

i=1

n2i

)

.

This argument shows that the mean number of stages does not
depend on the manner in which the teams are selected at each stage.
However, the same is not true for the distribution of the number of
stages:

Suppose r = 3, n1 = n2 = 1, and n3 = 2.
If Players 1 and 2 are chosen in the first stage, then it will take at least

three stages to determine a winner.

If Player 3 is in the first stage, then it is possible for there to be only

two stages.
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Properties of Expectation Conditional Expectation

Example

Let U1,U2, . . . be a sequence of independent uniform (0, 1) random
variables.

Find E [N] when N = min {n :
∑n

i=1Ui > 1}.
We will find E [N] by obtaining a more general result.

For x ∈ [0, 1], let N(x) = min {n :
∑n

i=1Ui > x}.
Set m(x) = E [N(x)].

N(x) is the number of uniform (0, 1) random variables we must add
until their sum exceeds x , and m(x) is its expected value.

We will now derive an equation for m(x) by conditioning on U1.

This gives, from a previous equation,

m(x) =

∫ 1

0
E [N(x)|U1 = y ]dy .
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Properties of Expectation Conditional Expectation

Example (Cont’d)

We have

E [N(x)|U1 = y ] =

{

1, if y > x

1 +m(x − y), if y ≤ x

The preceding formula is:
Obviously true when y > x ;
True when y ≤ x , since, if the first uniform value is y , then the
remaining number of uniform random variables needed is the same as if
we were just starting and were going to add uniform random variables
until their sum exceeded x − y .

Now we get
m(x) = 1 +

∫ x

0 m(x − y)dy

= 1 +
∫ x

0 m(u)du (u = x − y).

Differentiating the preceding equation yields

m′(x) = m(x) ⇔ m′(x)
m(x) = 1 ⇒ log [m(x)] = x + c ⇒ m(x) = kex .

Since m(0) = 1, it follows that k = 1. So m(x) = ex .
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Properties of Expectation Conditional Expectation

Computing Probabilities by Conditioning

Let E denote an arbitrary event.

Define the indicator random variable X by

X =

{

1, if E occurs
0, if E does not occur

It follows from the definition of X that

E [X ] = P(E );

E [X |Y = y ] = P(E |Y = y), for any random variable Y .

Therefore, we obtain

P(E ) =

{

∑

y P(E |Y = y)P(Y = y), if Y is discrete
∫∞
−∞ P(E |Y = y)fY (y)dy , if Y is continuous
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Properties of Expectation Conditional Expectation

Computing Probabilities by Conditioning (Cont’d)

For Y discrete, we got

P(E ) =
∑

y

P(E |Y = y)P(Y = y).

Suppose Y is a discrete random variable taking on one of the values
y1, . . . , yn.

Define the events Fi , i = 1, . . . , n, by Fi = {Y = yi}.
Then F1, . . . ,Fn are mutually exclusive events whose union is the
sample space.

Thus, the equation reduces to the familiar equation

P(E ) =

n
∑

i=1

P(E |Fi )P(Fi ).
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Properties of Expectation Conditional Expectation

Example: The Best-Prize Problem

Suppose we are presented with n distinct prizes in sequence.

After being presented with a prize, we must immediately decide
whether to accept it or to reject it and consider the next prize.

The only information we are given when deciding whether to accept a
prize is the relative rank of that prize compared to ones already seen.

E.g., when the fifth prize is presented, we learn how it compares with
the four prizes we’ve already seen.

Suppose that once a prize is rejected, it is lost.

Our objective is to maximize the probability of obtaining the best
prize.

Assuming that all n! orderings of the prizes are equally likely, how well
can we do?
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Properties of Expectation Conditional Expectation

Example: The Best-Prize Problem (Cont’d)

Fix a value k , 0 ≤ k < n.

Consider the strategy that rejects the first k prizes and then accepts
the first one that is better than all of those first k .

Let Pk(best) be the probability that the best prize is selected under
this strategy.

To compute it, we condition on X , the position of the best prize.

This gives

Pk(best) =
∑n

i=1 Pk(best|X = i)P(X = i)

= 1
n

∑n
i=1 Pk(best|X = i).

If the overall best prize is among the first k , then no prize is ever
selected under the strategy considered, i.e.,

Pk(best|X = i) = 0, if i ≤ k .
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Properties of Expectation Conditional Expectation

Example: The Best-Prize Problem (Cont’d)

Fix a value i > k . If the best prize is in position i , then the best prize
will be selected if the best of the first i − 1 prizes is among the first k .
Then none of the prizes in positions k + 1, k + 2, . . . , i − 1 would be
selected.
But, conditional on the best prize being in position i , all possible
orderings of the other prizes remain equally likely. So each of the first
i − 1 prizes is equally likely to be the best of that batch.
Hence, we have

Pk(best|X = i)

= P{best of first i − 1 is among the first k |X = i}
= k

i−1 , if i > k .

Now we get

Pk(best) = k
n

∑n
i=k+1

1
i−1 ≈ k

n

∫ n

k+1
1

x−1dx

= k
n
log (n−1

k
) ≈ k

n
log (n

k
).
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Example: The Best-Prize Problem (Cont’d)

Consider the function

g(x) =
x

n
log
(n

x

)

.

Then

g ′(x) =
1

n
log (

n

x
)− 1

n
.

g ′(x) = 0 ⇒ log
(n

x

)

= 1 ⇒ x =
n

e
.

But we saw that Pk(best) ≈ g(k).

Thus, the best strategy of the type considered is to:

Let the first n
e
prizes go by;

Accept the first one to appear that is better than all of those.

The probability that this strategy selects the best prize is
approximately g(n

e
) = 1

e
≈ 0.36788.
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Properties of Expectation Conditional Expectation

Example: The Best-Prize Problem (Cont’d)

Even without detailed calculations, we can see that the probability of
obtaining the best prize can be made reasonably large.

Consider the strategy of:

Letting half of the prizes go by;
Selecting the first one to appear that is better than all of those.

The probability that a prize is actually selected is the probability that
the overall best is among the second half; This is 1

2 .

Given that a prize is selected, at the time of selection that prize would
have been the best of more than n

2 prizes to have appeared.

So it would have probability of at least 1
2 of being the overall best.

Hence, the strategy above has a probability greater than 1
4 of

obtaining the best prize.
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Properties of Expectation Conditional Expectation

Example

Let U be a uniform random variable on (0, 1).

Suppose that the conditional distribution of X , given that U = p, is
binomial with parameters n and p.

Find the probability mass function of X .

Conditioning on the value of U gives

P{X = i} =

∫ 1

0
P{X = i |U = p}fU(p)dp

=

∫ 1

0
P{X = i |U = p}dp

=
n!

i !(n− i)!

∫ 1

0
pi(1− p)n−idp.
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Properties of Expectation Conditional Expectation

Example (Cont’d)

It can be shown that

∫ 1

0
pi(1− p)n−idp =

i !(n − i)!

(n + 1)!
.

Hence, we obtain

P{X = i} =
n!

i !(n − i)!

i !(n − i)!

(n + 1)!
=

1

n + 1
, i = 0, . . . , n.

If a coin whose probability of coming up heads is uniformly distributed
over (0, 1) is flipped n times, then the number of heads occurring is
equally likely to be any of the values 0, . . . , n.
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Properties of Expectation Conditional Expectation

Example (Cont’d)

Because the preceding conditional distribution has such a nice form, it
is worth trying to find another argument to enhance our intuition as
to why such a result is true.

To do so, let U,U1, . . . ,Un be n+ 1 independent uniform (0, 1)
random variables.

Let X denote the number of the random variables U1, . . . ,Un that are
smaller than U.

Since all the random variables U ,U1, . . . ,Un have the same
distribution, it follows that U is equally likely to be the smallest, or
second smallest, or largest of them.
So X is equally likely to be any of the values 0, 1, . . . , n.
On the other hand, given that U = p, the number of the Ui that are
less than U is a binomial random variable with parameters n and p.

This establishes our previous result.
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Properties of Expectation Conditional Expectation

Example

Suppose that X and Y are independent continuous random variables
having densities fX and fY , respectively.

Compute P{X < Y }.
Conditioning on the value of Y yields

P{X < Y } =
∫∞
−∞ P{X < Y |Y = y}fY (y)dy

=
∫∞
−∞ P{X < y |Y = y}fY (y)dy

=
∫∞
−∞ P{X < y}fY (y)dy (independence)

=
∫∞
−∞ FX (y)fY (y)dy .

Here

FX (y) =

∫ y

−∞
fX (x)dx .
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Properties of Expectation Conditional Expectation

Example

Suppose that X and Y are independent continuous random variables.

Find the distribution of X + Y .

By conditioning on the value of Y , we obtain

P{X + Y < a} =
∫∞
−∞ P{X + Y < a|Y = y}fY (y)dy

=
∫∞
−∞ P{X + y < a|Y = y}fY (y)dy

=
∫∞
−∞ P{X < a− y}fY (y)dy

=
∫∞
−∞ FX (a − y)fY (y)dy .
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Properties of Expectation Conditional Expectation

Conditional Variance

Just as we have defined the conditional expectation of X given the
value of Y , we can also define the conditional variance of X given

that Y = y :
Var(X |Y ) ≡ E [(X − E [X |Y ])2|Y ].

Var(X |Y ) is equal to the (conditional) expected square of the
difference between X and its (conditional) mean when the value of Y
is given.

In other words, Var(X |Y ) is exactly analogous to the usual definition
of variance, but now all expectations are conditional on the fact that
Y is known.
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Properties of Expectation Conditional Expectation

Conditional and Unconditional Variance

Proposition (The Conditional Variance Formula)

Var(X ) = E [Var(X |Y )] + Var(E [X |Y ]).

By the same reasoning that yields Var(X ) = E [X 2]− (E [X ])2, we
have

Var(X |Y ) = E [X 2|Y ]− (E [X |Y ])2.
So

E [Var(X |Y )] = E [E [X 2|Y ]]− E [(E [X |Y ])2]
= E [X 2]− E [(E [X |Y ])2].

Also,

Var(E [X |Y ]) = E [(E [X |Y ])2]− (E [E [X |Y ]])2

= E [(E [X |Y ])2]− (E [X ])2.

Finally adding, we get

E [Var(X |Y )] + Var(E [X |Y ]) = E [X 2]− (E [X ])2 = Var(X ).
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Properties of Expectation Conditional Expectation

Example

Suppose that by any time t the number of people that have arrived at
a train depot is a Poisson random variable with mean λt.

Suppose the initial train arrives at the depot at a time (independent
of passenger arrivals) uniformly distributed over (0,T ).
(a) Find the mean of the number of passengers who enter the train;
(b) What is the variance of the number of passengers who enter the train?

Let N(t) be the number of arrivals by time t, t ≥ 0;

Let Y be the time at which the train arrives.

The random variable of interest is then N(Y ).

(a) Conditioning on Y gives

E [N(Y )|Y = t] = E [N(t)|Y = t]

= E [N(t)] (independence of Y and N(t))

= λt (N(t) is Poisson with mean λt).

Hence, E [N(Y )|Y ] = λY .

George Voutsadakis (LSSU) Probability October 2020 107 / 164



Properties of Expectation Conditional Expectation

Example (Cont’d)

So taking expectations gives E [N(Y )] = λE [Y ] = λT
2 .

(b) To obtain Var(N(Y )), we use the conditional variance formula:

Var(N(Y )|Y = t) = Var(N(t)|Y = t)
= Var(N(t)) (by independence)
= λt.

Thus,
Var(N(Y )|Y ) = λY , E [N(Y )|Y ] = λY .

Hence, from the conditional variance formula,

Var(N(Y )) = E [Var(N(Y )|Y )] + Var(E [N(Y )|Y )])

= E [λY ] + Var(λY )

= λT
2 + λ2 T 2

12 . (since Var(Y ) = T 2

12 )
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Properties of Expectation Conditional Expectation

Variance of Sum of Random Number of Random Variables

Let X1,X2, . . . be a sequence of independent and identically
distributed random variables.
Let N be a nonnegative integer-valued random variable that is
independent of the sequence Xi , i ≥ 1.
Note that, given N,

∑N
i=1 Xi is the sum of a fixed number of independent random variables;

So its expectation and variance are just the sums of the individual
means and variances, respectively.

Thus, we get:

E

[

N
∑

i=1

Xi |N
]

= NE [X ]; Var

(

N
∑

i=1

Xi |N
)

= NVar(X ).

From the conditional variance formula,

Var

(

N
∑

i=1

Xi

)

= E [N]Var(X ) + (E [X ])2Var(N).
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Properties of Expectation Conditional Expectation and Prediction

Subsection 6

Conditional Expectation and Prediction
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Properties of Expectation Conditional Expectation and Prediction

Prediction

Sometimes a situation arises in which the value of a random variable
X is observed and then, on the basis of the observed value, an
attempt is made to predict the value of a second random variable Y .

Let g(X ) denote the predictor:

If X is observed to equal x , then
g(x) is our prediction for the value of Y .

We would like to choose g so that g(X ) tends to be close to Y .

One possible criterion for closeness is:

Choose g so as to minimize E [(Y − g(X ))2].

We show that:

Under this criterion, the best possible predictor is g(X ) = E [Y |X ].
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Properties of Expectation Conditional Expectation and Prediction

Best Predictor

Proposition

E [(Y − g(X ))2] ≥ E [(Y − E [Y |X ])2].

We have

E [(Y − g(X ))2|X ] = E [(Y − E [Y |X ] + E [Y |X ]− g(X ))2|X ]

= E [(Y − E [Y |X ])2|X ]
+ E [(E [Y |X ]− g(X ))2|X ]
+ 2E [(Y − E [Y |X ])(E [Y |X ]− g(X ))|X ].

Given X , E [Y |X ]− g(X ), being a function of X , can be treated as a
constant:

E [(Y − E [Y |X ])(E [Y |X ]− g(X ))|X ]

= (E [Y |X ]− g(X ))E [Y − E [Y |X ]|X ]

= (E [Y |X ]− g(X ))(E [Y |X ]− E [Y |X ]) = 0.
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Properties of Expectation Conditional Expectation and Prediction

Best Predictor (Cont’d)

Hence, from these equations we obtain

E [(Y − g(X ))2|X ] ≥ E [(Y − E [Y |X ])2|X ].

Taking expectations, we get

E [E [(Y − g(X ))2|X ]] ≥ E [E [(Y − E [Y |X ])2|X ]].

We conclude that

E [(Y − g(X ))2] ≥ E [(Y − E [Y |X ])2].
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Properties of Expectation Conditional Expectation and Prediction

Best Predictor (Alternative Argument)

A more intuitive, although less rigorous, argument verifying the
proposition is as follows.

We can verify that E [(Y − c)2] is minimized at c = E [Y ].

Thus, in the absence of data, if we want to predict the value of Y ,
the best possible prediction, in the sense of minimizing the mean
square error, is to predict that Y will equal its mean.

However, if the value of the random variable X is observed to be x ,
then the prediction problem remains exactly as in the previous
(no-data) case, with the exception that all probabilities and
expectations are now conditional on the event that X = x .

Hence, the best prediction in this situation is to predict that Y will
equal its conditional expected value given that X = x .
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Properties of Expectation Conditional Expectation and Prediction

Example

Suppose that the son of a man of height x (in inches) attains a
height that is normally distributed with mean x + 1 and variance 4.
What is the best prediction of the height at full growth of the son of
a man who is 6 feet tall?

Let X represent the height of the man;
Let Y represent the height of his son;
Let e is a normal random variable, independent of X , having mean 0
and variance 4.

The model can be written as

Y = X + 1 + e.

The best prediction is equal to

E [Y |X = 72] = E [X + 1 + e|X = 72]

= 73 + E [e|X = 72]

= 73 + E (e) (by independence)

= 73.
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Properties of Expectation Conditional Expectation and Prediction

Example

Suppose that:

A signal value s is sent from location A;
The value received at B is normally distributed with parameters (s, 1).

Suppose S , the value of the signal sent at A, is normally distributed
with parameters (µ, σ2).

Given that R , the value received at B, is equal to r , what is the best
estimate of the signal sent?

We start by computing the conditional density of S given R .

fS|R(s|r) =
fS,R(s, r)

fR(r)
=

fS(s)fR|S(r |s)
fR(r)

= Ke−(s−µ)2/2σ2
e−(r−s)2/2,

Here K does not depend on s.
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Properties of Expectation Conditional Expectation and Prediction

Example (Cont’d)

We calculate the negative of the exponent:

(s−µ)2

2σ2 + (r−s)2

2 = s2

2σ2 − sµ
σ2 +

µ2

2σ2 +
r2

2 − rs + s2

2

= s2( 1
2σ2 +

1
2)− ( µ

σ2 + r)s + C1

= s2(1+σ2

2σ2 )− (µ+rσ2

σ2 )s + C1

= s2(1+σ2

2σ2 )− 2(µ+rσ2

1+σ2 )(
1+σ2

2σ2 )s + C1

= 1+σ2

2σ2

[

s2 − 2(µ+rσ2

1+σ2 )s
]

+ C1

= 1+σ2

2σ2

[

s2 − 2µ+rσ2

1+σ2 s + (µ+rσ2

1+σ2 )
2 − (µ+rσ2

1+σ2 )
2
]

+ C1

= 1+σ2

2σ2 (s − µ+rσ2

1+σ2 )
2 − 1+σ2

2σ2 (1+rσ2

1+σ2 )
2 + C1

= 1+σ2

2σ2 (s − (µ+rσ2)
1+σ2 )2 + C2.

Here C1 and C2 do not depend on s.
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Properties of Expectation Conditional Expectation and Prediction

Example (Cont’d)

Hence,

fS|R(s|r) = C exp











−
[

s − (µ+rσ2)
1+σ2

]2

2( σ2

1+σ2 )











.

Here C does not depend on s.

Thus, the conditional distribution of S , given that r is received, is
normal with mean and variance now given by

E [S |R = r ] =
µ+ rσ2

1 + σ2
, Var(S |R = r) =

σ2

1 + σ2
.

By the proposition, given that the value received is r , the best
estimate, in the sense of minimizing the mean square error, for the
signal sent is

E [S |R = r ] =
1

1 + σ2
µ+

σ2

1 + σ2
r .
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Properties of Expectation Conditional Expectation and Prediction

Example

In digital signal processing, raw continuous analog data X must be
quantized, or discretized, in order to obtain a digital representation.

In order to quantize the raw data X :
An increasing set of numbers ai , i = 0,±1,±2, . . ., such that
limi→+∞ ai = ∞ and limi→−∞ ai = −∞ is fixed;
The raw data are quantized according to the interval (ai , ai+1] in which
X lies.

Let yi be the discretized value when X ∈ (ai , ai+1].

Let Y denote the observed discretized value:

Y = yi , if ai < X ≤ ai+1.

The distribution of Y is given by

P{Y = yi} = FX (ai+1)− FX (ai).
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Properties of Expectation Conditional Expectation and Prediction

Example (Cont’d)

Suppose now that we want to choose the values yi , i = 0,±1,±2, . . .
so as to minimize

E [(X − Y )2],

the expected mean square difference between the raw data and their
quantized version.

(a) Find the optimal values yi , i = 0,±1, . . ..
For the optimal quantizer Y , show that:

(b) E [Y ] = E [X ], so the mean square error quantizer preserves the input
mean;

(c) Var(Y ) = Var(X)− E [(X − Y )2].
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Properties of Expectation Conditional Expectation and Prediction

Example (Cont’d)

(a) For any quantizer Y , upon conditioning on the value of Y , we obtain

E [(X − Y )2] =
∑

i

E [(X − yi )
2|ai < X ≤ ai+1]P{ai < X ≤ ai+1}.

Now, if we let I = i if ai < X ≤ ai+1, then

E [(X − yi )
2|ai < X ≤ ai+1] = E [(X − yi)

2|I = i ].

By the proposition, this quantity is minimized when

yi = E [X |I = i ] = E [X |ai < X ≤ ai+1]

=
∫ ai+1

ai

xfX (x)dx
FX (ai+1)−FX (ai )

.

Since the optimal quantizer is given by Y = E [X |I ], we get:

(b) E [Y ] = E [X ];

(c) Var(X ) = E [Var(X |I )] + Var(E [X |I ]) =
E [E [(X − Y )2|I ]] + Var(Y ) = E [(X − Y )2] + Var(Y ).
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Properties of Expectation Conditional Expectation and Prediction

The Best Linear Predictor

Sometimes, the joint probability distribution of X and Y is not known.

If it is known, it may be that the calculation of E [Y |X = x ] is
difficult.

If, however, the means and variances of X and Y and the correlation
of X and Y are known, then we can at least determine the best linear
predictor of Y with respect to X .

To obtain the best linear predictor of Y with respect to X , we need
to choose a and b so as to minimize

E [(Y − (a + bX ))2].
We have

E [(Y − (a + bX ))2]
= E [Y 2 − 2aY − 2bXY + a2 + 2abX + b2X 2]
= E [Y 2]− 2aE [Y ]− 2bE [XY ] + a2 + 2abE [X ] + b2E [X 2].
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Properties of Expectation Conditional Expectation and Prediction

The Best Linear Predictor (Cont’d)

We found

E [(Y−(a+bX ))2] = E [Y 2]−2aE [Y ]−2bE [XY ]+a2+2abE [X ]+b2E [X 2].

Taking partial derivatives, we obtain

∂
∂aE [(Y − a − bX )2] = − 2E [Y ] + 2a + 2bE [X ];
∂
∂bE [(Y − a − bX )2] = − 2E [XY ] + 2aE [X ] + 2bE [X 2].

Setting these to 0 and solving for a and b yields the solutions

b = E [XY ]−E [X ]E [Y ]
E [X 2]−(E [X ])2

= Cov(X ,Y )
σ2
x

= ρ
σy

σx
;

a = E [Y ]− bE [X ] = E [Y ]− ρσyE [X ]
σx

.

Here ρ = Cor(X ,Y ), σ2
y = Var(Y ) and σ2

x = Var(X ).

Thus, the best (in the sense of mean square error) linear predictor Y
with respect to X is µy +

ρσy

σx
(X −µx), where µy = E [Y ], µx = E [X ].
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Properties of Expectation Conditional Expectation and Prediction

The Best Linear Predictor (Cont’d)

The mean square error of this predictor is given by

E [(Y − µy − ρ
σy

σx
(X − µx))

2]

= E [(Y − µy )
2] + ρ2

σ2
y

σ2
x
E [(X − µx)

2]− 2ρ
σy

σx
E [(Y − µy )(X − µx)]

= σ2
y + ρ2σ2

y − 2ρ2σ2
y

= σ2
y (1− ρ2).

If ρ is near +1 or −1, then the mean square error of the best linear
predictor is near zero.
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Properties of Expectation Moment Generating Functions

Subsection 7

Moment Generating Functions
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Properties of Expectation Moment Generating Functions

Moment Generating Functions

The moment generating function M(t) of the random variable X is
defined for all real values of t by

M(t) = E [etX ]

=



















∑

x e
txp(x), if X is discrete

with mass function p(x)
∫∞
−∞ etx f (x)dx , if X is continuous

with density f (x)

We call M(t) the moment generating function because all of the
moments of X can be obtained by:

Successively differentiating M(t);
Evaluating the result at t = 0.
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Properties of Expectation Moment Generating Functions

Interchanging Differentiation and Expectation

For the first moment (i.e., the expectation), We have

M ′(t) =
d

dt
E [etX ] = E

[

d

dt
(etX )

]

= E [XetX ].

Here we have assumed that the interchange of the differentiation and
expectation operators is legitimate, i.e., that

In the discrete case,

d

dt

[

∑

x

etxp(x)

]

=
∑

x

d

dt
[etxp(x)];

In the continuous case,

d

dt

[
∫

etx f (x)dx

]

=

∫

d

dt
[etx f (x)]dx .

This assumption is valid for all of the distributions considered here.
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Properties of Expectation Moment Generating Functions

Computing Moments

M(t) = E [etX ] ⇒ dM
dt

= d
dt
E [etX ] = E

[

d
dt
etX
]

= E [XetX ].

Evaluating at t = 0, we obtain

M ′(0) = E [X ].

Similarly,

M ′′(t) = d
dt
M ′(t) = d

dt
E [XetX ]

= E
[

d
dt
(XetX )

]

= E [X 2etX ].

Thus, M ′′(0) = E [X 2].

In general, the nth derivative of M(t) is given by

M(n)(t) = E [X netX ], n ≥ 1.

So, we get
M(n)(0) = E [X n], n ≥ 1.
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Properties of Expectation Moment Generating Functions

Binomial Distribution With Parameters n and p

If X is a binomial random variable with parameters n and p, then

M(t) = E [etX ]

=
∑n

k=0 e
tk
(

n
k

)

pk(1− p)n−k

=
∑n

k=0

(

n
k

)

(pet)k(1− p)n−k

= (pet + 1− p)n.

The last equality follows from the binomial theorem.

Differentiation yields

M ′(t) = n(pet + 1− p)n−1pet .

Thus,
E [X ] = M ′(0) = np.
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Properties of Expectation Moment Generating Functions

Binomial Distribution With Parameters n and p (Cont’d)

Differentiating a second time yields

M ′′(t) = (n(pet + 1− p)n−1pet)′

= n(n − 1)(pet + 1− p)n−2(pet)2

+ n(pet + 1− p)n−1pet .

So
E [X 2] = M ′′(0) = n(n− 1)p2 + np.

The variance of X is given by

Var(X ) = E [X 2]− (E [X ])2

= n(n − 1)p2 + np − n2p2

= np(1− p).

George Voutsadakis (LSSU) Probability October 2020 130 / 164



Properties of Expectation Moment Generating Functions

Poisson Distribution With Mean λ

If X is a Poisson random variable with parameter λ, then

M(t) = E [etX ] =
∑∞

n=0
etne−λλn

n! = e−λ
∑∞

n=0
(λet)n

n!

= e−λeλe
t
= exp {λ(et − 1)}.

Differentiation yields

M ′(t) = λet exp {λ(et − 1)}
M ′′(t) = (λet)2 exp {λ(et − 1)}+ λet exp {λ(et − 1)}.

Thus,
E [X ] = M ′(0) = λ;

E [X 2] = M ′′(0) = λ2 + λ;

Var(X ) = E [X 2]− (E [X ])2 = λ.
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Properties of Expectation Moment Generating Functions

Exponential Distribution With Parameter λ

We have

M(t) = E [etX ] =
∫∞
0 etxλe−λxdx

= λ
∫∞
0 e−(λ−t)xdx = λ

λ−t
, for t < λ.

We note from this derivation that, for the exponential distribution,
M(t) is defined only for values of t less than λ.

Differentiation of M(t) yields

M ′(t) =
λ

(λ− t)2
, M ′′(t) =

2λ

(λ− t)3
.

Hence,
E [X ] = M ′(0) = 1

λ ;

E [X 2] = M ′′(0) = 2
λ2 ;

Var(X ) = E [X 2]− (E [X ])2 = 1
λ2 .
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Properties of Expectation Moment Generating Functions

Normal Distribution

We first compute the moment generating function of a unit normal
random variable Z , with parameters 0 and 1.

MZ (t) = E [etZ ]

= 1√
2π

∫∞
−∞ etxe−x2/2dx

= 1√
2π

∫∞
−∞ exp {− (x2−2tx)

2 }dx

= 1√
2π

∫∞
−∞ exp {− (x−t)2

2 + t2

2 }dx

= et
2/2 1√

2π

∫∞
−∞ e−(x−t)2/2dx

= et
2/2.

Hence, the moment generating function of the unit normal random
variable Z is given by MZ (t) = et

2/2.
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Properties of Expectation Moment Generating Functions

Normal Distribution (Cont’d)

Now recall that X = µ+ σZ will have a normal distribution with
parameters µ and σ2 whenever Z is a unit normal random variable.

Hence, the moment generating function of X is given by

MX (t) = E [etX ] = E [et(µ+σZ)]

= E [etµetσZ ] = etµE [etσZ ]

= etµMZ (tσ) = etµe(tσ)
2/2

= exp {σ2t2

2 + µt}.
By differentiating, we obtain

M ′
X (t) = (µ+ tσ2) exp {σ2t2

2 + µt};
M ′′

X (t) = (µ+ tσ2)2 exp {σ2t2

2 + µt}+ σ2 exp {σ2t2

2 + µt}.
Thus,

E [X ] = M ′(0) = µ; E [X 2] = M ′′(0) = µ2 + σ2;

Var(X ) = E [X 2]− E ([X ])2 = σ2.
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Properties of Expectation Moment Generating Functions

Generating Function of Sum of Independent Variables

The moment generating function of the sum of independent random
variables equals the product of the individual moment generating
functions.

Suppose that X and Y are independent and have moment generating
functions MX (t) and MY (t), respectively.

Then MX+Y (t), the moment generating function of X + Y , is given
by

MX+Y (t) = E [et(X+Y )]

= E [etX etY ]

= E [etX ]E [etY ]

= MX (t)MY (t).

The next-to-last equality follows from a previous proposition, since X

and Y are independent.

George Voutsadakis (LSSU) Probability October 2020 135 / 164



Properties of Expectation Moment Generating Functions

Moment Generating Functions and Distributions

The moment generating function uniquely determines the distribution.

That is, if MX (t) exists and is finite in some region about t = 0, then
the distribution of X is uniquely determined.

For instance, we know that the binomial random variable with
parameters n and p has moment generating function

(pet + 1− p)n.

Suppose

MX (t) =

(

1

2

)10

(et + 1)10 =

(

1

2
et + 1− 1

2

)10

.

It follows that X is a binomial random variable with parameters 10
and 1

2 .
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Properties of Expectation Moment Generating Functions

Example

Suppose that the moment generating function of a random variable X

is given by
M(t) = e3(e

t−1).

What is P{X = 0}?
We know that M(t) = e3(e

t−1) is the moment generating function of
a Poisson random variable with mean 3.

Hence, by the one-to-one correspondence between moment generating
functions and distribution functions, it follows that X must be a
Poisson random variable with mean 3, i.e., fX (x) = e−3 3x

x! .

Thus, P{X = 0} = e−3.
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Properties of Expectation Moment Generating Functions

Sums of Independent Binomial Random Variables

If X and Y are independent binomial random variables with
parameters (n, p) and (m, p), respectively, what is the distribution of
X + Y ?

The moment generating function of X + Y is given by

MX+Y (t) = MX (t)MY (t)

= (pet + 1− p)n(pet + 1− p)m

= (pet + 1− p)m+n.

However, (pet + 1− p)m+n is the moment generating function of a
binomial random variable having parameters m + n and p.

Thus, this must be the distribution of X + Y .
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Properties of Expectation Moment Generating Functions

Sums of Independent Poisson Random Variables

Calculate the distribution of X + Y when X and Y are independent
Poisson random variables with means respectively λ1 and λ2.

MX+Y (t) = MX (t)MY (t)

= exp {λ1(e
t − 1)} exp {λ2(e

t − 1)}
= exp {(λ1 + λ2)(e

t − 1)}.
Hence, X + Y is Poisson distributed with mean λ1 + λ2.
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Properties of Expectation Moment Generating Functions

Sums of Independent Normal Random Variables

Show that if X and Y are independent normal random variables with
respective parameters (µ1, σ

2
1) and (µ2, σ

2
2), then X + Y is normal

with mean µ1 + µ2 and variance σ2
1 + σ2

2 .

MX+Y (t) = MX (t)MY (t)

= exp
{

σ2
1t

2

2 + µ1t
}

exp
{

σ2
2t

2

2 + µ2t
}

= exp
{

(σ2
1+σ2

2)t
2

2 + (µ1 + µ2)t
}

.

This is the moment generating function of a normal random variable
with mean µ1 + µ2 and variance σ2

1 + σ2
2 .

The desired result follows because the moment generating function
uniquely determines the distribution.
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Properties of Expectation Moment Generating Functions

Sum of a Random Number of Random Variables

Let X1,X2, . . . be a sequence of independent and identically
distributed random variables.

Let N be a nonnegative, integer-valued random variable that is
independent of the sequence Xi , i ≥ 1.

We compute the moment generating function of Y =
∑N

i=1 Xi .

We first condition on N:

E [exp {t∑N
1 Xi}|N = n] = E [exp {t∑n

1 Xi}|N = n]

= E [exp {t∑n
1 Xi}] = [MX (t)]

n.

Here MX (t) = E [etXi ].

Hence, E [etY |N] = (MX (t))
N .

Thus, MY (t) = E [(MX (t))
N ].
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Properties of Expectation Moment Generating Functions

Sum of a Random Number of Random Variables (Cont’d)

We found MY (t) = E [(MX (t))
N ].

The moments of Y can now be obtained upon differentiation, as
follows:

M ′
Y (t) = E [N(MX (t))

N−1M ′
X (t)].

So
E [Y ] = M ′

Y (0)

= E [N(MX (0))
N−1M ′

X (0)]

= E [NE [X ]]

= E [N]E [X ].
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Properties of Expectation Moment Generating Functions

Sum of a Random Number of Random Variables (Cont’d)

We have M ′
Y (t) = E [N(MX (t))

N−1M ′
X (t)].

Hence

M ′′
Y (t) = E [N(N − 1)(MX (t))

N−2(M ′
X (t))

2 + N(MX (t))
N−1M ′′

X (t)].

So

E [Y 2] = M ′′
Y (0)

= E [N(N − 1)(E [X ])2 + NE [X 2]]

= (E [X ])2(E [N2]− E [N]) + E [N]E [X 2]

= E [N](E [X 2]− (E [X ])2) + (E [X ])2E [N2]

= E [N]Var(X ) + (E [X ])2E [N2].

Hence, we have

Var(Y ) = E [N]Var(X ) + (E [X ])2(E [N2]− (E [N])2)

= E [N]Var(X ) + (E [X ])2Var(N).
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Properties of Expectation Moment Generating Functions

Example

Let Y denote a uniform random variable on (0, 1).

Suppose that, conditional on Y = p, the random variable X has a
binomial distribution with parameters n and p.

We showed that X is equally likely to take on any of the values
0, 1, . . . , n.

Now, we establish this result by using moment generating functions.

To compute the moment generating function of X , we start by
conditioning on the value of Y .

Using the formula for the binomial moment generating function gives

E [etX |Y = p] = (pet + 1− p)n.
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Properties of Expectation Moment Generating Functions

Example

Y is uniform on (0, 1).

Taking expectations, we obtain

E [etX ] =
∫ 1
0 (pet + 1− p)ndp

= 1
et−1

∫ et

1 yndy (by the substitution y = pet + 1− p)

= 1
n+1

et(n+1)−1
et−1

= 1
n+1 (1 + et + e2t + · · ·+ ent).

This is the moment generating function of a random variable that is
equally likely to be any of the values 0, 1, . . . , n.

The desired result follows from the fact that the moment generating
function of a random variable uniquely determines its distribution.
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Properties of Expectation Moment Generating Functions

Joint Moment Generating Functions

For any n random variables X1, . . . ,Xn, the joint moment generating
function, M(t1, . . . , tn), is defined, for all real values of t1, . . . , tn, by

M(t1, . . . , tn) = E [et1X1+···+tnXn ].

The individual moment generating functions can be obtained from
M(t1, . . . , tn) by letting all but one of the tj ’s be 0.

That is,
MXi

(t) = E [etXi ] = M(0, . . . , 0, t, 0, . . . , 0),

where the t is in the ith place.
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Properties of Expectation Moment Generating Functions

Uniqueness and Independence

It can be proven that the joint moment generating function
M(t1, . . . , tn) uniquely determines the joint distribution of X1, . . . ,Xn.

This result can then be used to prove that the n random variables
X1, . . . ,Xn are independent if and only if

M(t1, . . . , tn) = MX1
(t1) · · ·MXn

(tn).

Suppose, first, that the n random variables are independent.

Then we have:

M(t1, . . . , tn) = E [et1X1+···+tnXn ]

= E [et1X1 · · · etnXn ]

= E [et1X1 ] · · ·E [etnXn ] (by independence)

= MX1
(t1) · · ·MXn

(tn).
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Properties of Expectation Moment Generating Functions

Uniqueness and Independence (Cont’d)

In the other direction, suppose the equation is satisfied.

Then the joint moment generating function M(t1, . . . , tn) is the same
as the joint moment generating function of n independent random
variables, the ith of which has the same distribution as Xi .

But the joint moment generating function uniquely determines the
joint distribution.

Thus, this must be the joint distribution.

Hence, the random variables are independent.

George Voutsadakis (LSSU) Probability October 2020 148 / 164



Properties of Expectation Moment Generating Functions

Example

Let X and Y be independent normal random variables, each with
mean µ and variance σ2.

We showed that X + Y and X − Y are independent.

We now establish this result by computing their joint moment
generating function:

E [et(X+Y )+s(X−Y )] = E [e(t+s)X+(t−s)Y ]

= E [e(t+s)X ]E [e(t−s)Y ]

= eµ(t+s)+σ2(t+s)2/2eµ(t−s)+σ2(t−s)2/2

= e2µt+σ2t2eσ
2s2 .

This is the joint moment generating function of the sum of two
independent normal random variables:

One with with mean 2µ and variance 2σ2;
One with mean 0 and variance 2σ2.

The joint moment generating function uniquely determines the joint
distribution. So X + Y and X − Y are independent normal.
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Properties of Expectation Moment Generating Functions

Example

Suppose that the number of events that occur is a Poisson random
variable with mean λ and that each event is independently counted
with probability p.

Show that the number of counted events and the number of
uncounted events are independent Poisson random variables with
respective means λp and λ(1− p).

Let X denote the total number of events.
Let Xc denote the number of them that are counted.

We start by conditioning on X to obtain

E [esXc+t(X−Xc )|X = n] = etnE [e(s−t)Xc |X = n]

= etn(pes−t + 1− p)n

= (pes + (1− p)et)n.

The last equation follows because, conditional on X = n, Xc is a
binomial random variable with parameters n and p.
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Properties of Expectation Moment Generating Functions

Example

Hence,
E [esXc+t(X−Xc )|X ] = (pes + (1− p)et)X .

Taking expectations of both sides of this equation yields

E [esXc+t(X−Xc )] = E [(pes + (1− p)et)X ].

Now, since X is Poisson with mean λ, E [etX ] = eλ(e
t−1).

Therefore, for any a > 0, by letting a = et , we get E [aX ] = eλ(a−1).

Thus,

E [esXc+t(X−Xc )] = eλ(pe
s+(1−p)et−1)

= eλpe
s−λp+λet−λpet−λ+λp

= eλp(e
s−1)eλ(1−p)(et−1).

This is the joint moment generating function of independent Poisson
random variables with respective means λp and λ(1− p).
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Properties of Expectation Additional Properties of Normal Random Variables

Subsection 8

Additional Properties of Normal Random Variables
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Properties of Expectation Additional Properties of Normal Random Variables

The Multivariate Normal Distribution

Let Z1, . . . ,Zn be n independent unit normal random variables.

If, for some constants aij , 1 ≤ i ≤ m, 1 ≤ j ≤ n, and µi , 1 ≤ i ≤ m,

X1 = a11Z1 + · · ·+ a1nZn + µ1

X2 = a21Z1 + · · ·+ a2nZn + µ2
...

Xm = am1Z1 + · · ·+ amnZn + µm,

then the random variables X1, . . . ,Xm are said to have a multivariate

normal distribution.

From the fact that the sum of independent normal random variables
is itself a normal random variable, it follows that each Xi is a normal
random variable with mean and variance given, respectively, by

E [Xi ] = µi , Var(Xi) =
n
∑

j=1

a2ij .
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Properties of Expectation Additional Properties of Normal Random Variables

Joint Moment Generating Function of Normals

Consider

M(t1, . . . , tm) = E [exp {t1X1 + · · · + tmXm}]

the joint moment generating function of X1, . . . ,Xm.

Since
∑m

i=1 tiXi is itself a linear combination of the independent
normal random variables Z1, . . . ,Zn, it is also normally distributed.

Its mean and variance are

E [
∑m

i=1 tiXi ] =
∑m

i=1 tiµi ;

Var(
∑m

i=1 tiXi) = Cov(
∑m

i=1 tiXi ,
∑m

j=1 tjXj)

=
∑m

i=1

∑m
j=1 ti tjCov(Xi ,Xj).

George Voutsadakis (LSSU) Probability October 2020 154 / 164



Properties of Expectation Additional Properties of Normal Random Variables

Joint Moment Generating Function of Normals (Cont’d)

If Y is a normal random variable with mean µ and variance σ2, then

E [eY ] = MY (t)|t=1 = eµ+σ2/2.

Thus,

M(t1, . . . , tm) = exp







m
∑

i=1

tiµi +
1

2

m
∑

i=1

m
∑

j=1

ti tjCov(Xi ,Xj)







.

This shows that the joint distribution of X1, . . . ,Xm is completely
determined from a knowledge of the values of

E [Xi ] and Cov(Xi ,Xj ), i , j = 1, . . . ,m.
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Properties of Expectation Additional Properties of Normal Random Variables

Example

Find P(X < Y ) for bivariate normal random variables X and Y

having parameters

µx = E [X ], µy = E [Y ], σ2
x = Var(X ), σ2

y = Var(Y ), ρ = Corr(X ,Y ).

X − Y is normal with mean

E [X − Y ] = µx − µy ;

Var(X − Y ) = Var(X ) + Var(−Y ) + 2Cov(X ,−Y )

= σ2
x + σ2

y − 2ρσxσy .
Thus,

P{X < Y } = P{X − Y < 0}

= P

{

X−Y−(µx−µy )√
σ2
x+σ2

y−2ρσxσy
<

−(µx−µy )√
σ2
x+σ2

y−2ρσxσy

}

= Φ

(

µy−µx√
σ2
x+σ2

y−2ρσxσy

)

.
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Properties of Expectation Additional Properties of Normal Random Variables

Example

Suppose that:

The conditional distribution of X , given that Θ = θ, is normal with
mean θ and variance 1;
Θ itself is a normal random variable with mean µ and variance σ2.

Find the conditional distribution of Θ given that X = x .

We show that X ,Θ has a bivariate normal distribution.

The joint density function of X ,Θ can be written as

fX ,Θ(x , θ) = fX |Θ(x |θ)fΘ(θ),

where fX |Θ(x |θ) is a normal density with mean θ and variance 1.

Let Z be a standard normal random variable that is independent of Θ.

Then the conditional distribution of Z +Θ, given that Θ = θ, is also
normal with mean θ and variance 1.

Thus, the joint density of Z +Θ, Θ is the same as that of X ,Θ.
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Properties of Expectation Additional Properties of Normal Random Variables

Example (Cont’d)

The joint density of Z +Θ and Θ is clearly bivariate normal (both are
linear combinations of the independent normal Z and Θ).

Hence, X ,Θ has a bivariate normal distribution.

Now, E [X ] = E [Z +Θ] = µ;

Var(X ) = Var(Z +Θ) = 1 + σ2;

ρ = Corr(X ,Θ) = Corr(Z +Θ,Θ)

= Cov(Z+Θ,Θ)√
Var(Z+Θ)Var(Θ)

= σ√
1+σ2

.

The conditional distribution of Θ, given X = x , is normal with

E [Θ|X = x ] = E [Θ] + ρ

√

Var(Θ)
Var(X )(x − E [X ])

= µ+ σ2

1+σ2 (x − µ);

Var(Θ|X = x) = Var(Θ)(1− ρ2) = σ2

1+σ2 .
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Properties of Expectation Additional Properties of Normal Random Variables

Joint Distribution of Sample Mean and Sample Variance

Let X1, . . . ,Xn be independent normal random variables, each with
mean µ and variance σ2.

Let X =
∑n

i=1
Xi

n
denote their sample mean.

As a sum of independent normal random variables, X is also a normal
random variable.

As we have seen, X has expected value µ and variance σ2

n
.

Recall that Cov(X ,Xi − X ) = 0, i = 1, . . . , n.

Note X , X1 − X , X2 − X , . . ., Xn − X are all linear combinations of
the independent standard normals Xi−µ

σ , i = 1, . . . , n.

Thus, X , Xi − X , i = 1, . . . , n has a joint distribution that is
multivariate normal.
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Properties of Expectation Additional Properties of Normal Random Variables

Sample Mean and Sample Variance (Cont’d)

Let Y be a normal random variable, with mean µ and variance σ2

n
,

that is independent of the Xi , i = 1, . . . , n.

Then Y ,Xi − X , i = 1, . . . , n also has a multivariate normal
distribution with the same expected values and covariances as the
random variables X ,Xi − X , i = 1, . . . , n.

But a multivariate normal distribution is determined completely by its
expected values and covariances.

Thus, Y ,Xi − X , i = 1, . . . , n and X ,Xi − X , i = 1, . . . , n have the
same joint distribution.

This shows that X is independent of the sequence of deviations
Xi − X , i = 1, . . . , n.

X being independent of Xi − X , i = 1, . . . , n, it is also independent of

the sample variance S2 ≡∑n
i=1

(Xi−X)2

n−1 .
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Properties of Expectation Additional Properties of Normal Random Variables

Sample Mean and Sample Variance (Cont’d)

Since we already know that X is normal with mean µ and variance
σ2

n
, it remains only to determine the distribution of S2.

Recall, from a previous example, the algebraic identity

(n − 1)S2 =
∑n

i=1(Xi − X )2

=
∑n

i=1(Xi − µ)2 − n(X − µ)2.

Upon dividing by σ2, we obtain

(n − 1)S2

σ2
+

(

X − µ
σ√
n

)2

=

n
∑

i=1

(

Xi − µ

σ

)2

.

Now,
∑n

i=1(
Xi−µ
σ )2 is the sum of the squares of n independent

standard normal random variables.

This is called a chi-squared random variable with n degrees of

freedom.
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Properties of Expectation Additional Properties of Normal Random Variables

Moment Generating Function of Chi-Squared

Compute the moment generating function of a chi-squared random
variable with n degrees of freedom.

Represent such a random variable as

Z 2
1 + · · ·+ Z 2

n ,

where Z1, . . . ,Zn are independent standard normal random variables.

Let M(t) be its moment generating function.

Then, M(t) = (E [etZ
2
])n, where Z is standard normal.

Now,

E [etZ
2
] = 1√

2π

∫∞
−∞ etx

2
e−x2/2dx

= 1√
2π

∫∞
−∞ e−x2/2σ2

dx (σ2 = (1− 2t)−1)

= σ = (1− 2t)−1/2.

We used the fact that the normal density with mean 0 and variance
σ2 integrates to 1. Thus, M(t) = (1− 2t)−n/2.
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Properties of Expectation Additional Properties of Normal Random Variables

Sample Mean and Sample Variance (Cont’d)

A chi-squared with n degrees of freedom has moment generating
function is (1− 2t)−n/2.

But

(

X−µ
σ√
n

)2

is the square of a standard normal random variable.

Hence, it is a chi-squared random variable with 1 degree of freedom.

So it has moment generating function (1− 2t)−1/2.

But, as we saw, the two random variables on the left side of the
displayed equation above are independent.

Hence, as the moment generating function of the sum of independent
random variables is equal to the product of their individual moment
generating functions:

E [et(n−1)S2/σ2
](1 − 2t)−1/2 = (1− 2t)−n/2;

E [et(n−1)S2/σ2
] = (1− 2t)−(n−1)/2.
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Properties of Expectation Additional Properties of Normal Random Variables

Sample Mean and Sample Variance (Cont’d)

But (1− 2t)−(n−1)/2 is the moment generating function of a
chi-squared random variable with n − 1 degrees of freedom.

A moment generating function determines the distribution uniquely.

We conclude that the distribution of (n−1)S2

σ2 must be a chi-squared
with n− 1 degrees of freedom.

Proposition

If X1, . . . ,Xn are independent and identically distributed normal random
variables with mean µ and variance σ2, then:

The sample mean X and the sample variance S2 are independent;

X is a normal random variable with mean µ and variance σ
2

n
;

(n−1)S2

σ
2 is a chi-squared random variable with n − 1 degrees of freedom.
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