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Limit Theorems Chebyshev’s Inequality and Weak Law of Large Numbers

Subsection 1

Chebyshev’s Inequality and Weak Law of Large Numbers
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Limit Theorems Chebyshev’s Inequality and Weak Law of Large Numbers

Markov’s Inequality

Proposition (Markov’s inequality)

If X is a random variable that takes only nonnegative values, then, for any
value a > 0,

P{X ≥ a} ≤ E [X ]

a
.

For a > 0, let I =

{

1, if X ≥ a

0, otherwise
.

Note that, since X ≥ 0, I ≤ X
a
.

Now we get

P{X ≥ a} = E [I ] ≤ E

[

X

a

]

≤ E [X ]

a
.
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Limit Theorems Chebyshev’s Inequality and Weak Law of Large Numbers

Chebyshev’s Inequality

Proposition (Chebyshev’s Inequality)

If X is a random variable with finite mean µ and variance σ2, then, for any
value k > 0,

P{|X − µ| ≥ k} ≤ σ2

k2
.

Note (X − µ)2 is a nonnegative random variable.

So we can apply Markov’s inequality (with a = k2) to obtain

P{(X − µ)2 ≥ k2} ≤ E [(X − µ)2]

k2
.

But (X − µ)2 ≥ k2 if and only if |X − µ| ≥ k .

Hence, the last equation is equivalent to

P{|X − µ| ≥ k} ≤ E [(X − µ)2]

k2
=

σ2

k2
.
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Limit Theorems Chebyshev’s Inequality and Weak Law of Large Numbers

Example

Suppose that it is known that the number of items produced in a
factory during a week is a random variable with mean 50.
(a) What can be said about the probability that this week’s production will

exceed 75?
(b) If the variance of a week’s production is known to equal 25, then what

can be said about the probability that this week’s production will be
between 40 and 60?

Let X be the number of items that will be produced in a week.

(a) By Markov’s inequality,

P{X > 75} ≤ E [X ]

75
=

50

75
=

2

3
.

(b) By Chebyshev’s inequality, P{|X − 50| ≥ 10} ≤ σ2

102
= 1

4 .

Hence, P{|X − 50| < 10} ≥ 1− 1
4 = 3

4 .

So the probability that this week’s production will be between 40 and
60 is at least 0.75.
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Limit Theorems Chebyshev’s Inequality and Weak Law of Large Numbers

Example: Laxity of Bounds

Suppose X is uniformly distributed over the interval (0, 10).

We have

E [X ] = 5 and Var(X ) =
25

3
.

Thus, from Chebyshev’s inequality,

P{|X − 5| > 4} ≤ 25

3(16)
≈ 0.52.

The exact result is

P{|X − 5| > 4} = 0.20.

Although Chebyshev’s inequality is correct, the upper bound that it
provides is not particularly close to the actual probability.
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Limit Theorems Chebyshev’s Inequality and Weak Law of Large Numbers

Example: Laxity of Bounds

Suppose X is a normal random variable with mean µ and variance σ2.

Chebyshev’s inequality states that

P{|X − µ| > 2σ} ≤ 1

4
.

The actual probability is given by

P{|X − µ| > 2σ} = P

{
∣

∣

∣

∣

X − µ

σ

∣

∣

∣

∣

> 2

}

= 2[1− Φ(2)] ≈ 0.0456.
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Limit Theorems Chebyshev’s Inequality and Weak Law of Large Numbers

Random Variables With Zero Variance

Proposition

If Var(X ) = 0, then
P{X = E [X ]} = 1.

In other words, the only random variables having variances equal to 0 are
those which are constant with probability 1.

By Chebyshev’s Inequality, we have, for any n ≥ 1,

P

{

|X − µ| > 1

n

}

= 0.

Letting n → ∞ and using the continuity property of probability yields

0 = lim
n→∞

P

{

|X − µ| > 1

n

}

= P

{

lim
n→∞

{

|X − µ| > 1

n

}}

= P{X 6= µ}.
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Limit Theorems Chebyshev’s Inequality and Weak Law of Large Numbers

The Weak Law of Large Numbers

Theorem (The Weak Law of Large Numbers)

Let X1,X2, . . . be a sequence of independent and identically distributed
random variables, each having finite mean E [Xi ] = µ. Then, for any
ε > 0,

P

{∣

∣

∣

∣

X1 + · · ·+ Xn

n
− µ

∣

∣

∣

∣

≥ ε

}

→ 0 as n → ∞.

We shall prove the theorem only under the additional assumption that
the random variables have a finite variance σ2.

We know that

E

[

X1 + · · ·+ Xn

n

]

= µ and Var

(

X1 + · · ·+ Xn

n

)

=
σ2

n
.

Thus, by Chebyshev’s inequality,

P

{∣

∣

∣

∣

X1 + · · ·+ Xn

n
− µ

∣

∣

∣

∣

≥ ε

}

≤ σ2

nε2
.
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Limit Theorems The Central Limit Theorem

Subsection 2

The Central Limit Theorem

George Voutsadakis (LSSU) Probability October 2020 11 / 60



Limit Theorems The Central Limit Theorem

A Technical Lemma

Lemma

Let Z1,Z2, . . . be a sequence of random variables having distribution
functions FZn

and moment generating functions MZn
, n ≥ 1. Let Z be a

random variable having distribution function FZ and moment generating
function MZ . If MZn

(t) → MZ (t) for all t, then FZn
(t) → FZ (t) for all t

at which FZ (t) is continuous.

Example:

Let Z be a standard normal random variable.

Then MZ (t) = et
2/2.

Suppose that MZn
(t) → et

2/2 as n → ∞.

Then, by the lemma, FZn
(t) → Φ(t) as n → ∞.
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Limit Theorems The Central Limit Theorem

The Central Limit Theorem

Theorem (The Central Limit Theorem)

Let X1,X2, . . . be a sequence of independent and identically distributed
random variables, each having mean µ and variance σ2. Then the
distribution of

X1 + · · · + Xn − nµ

σ
√
n

tends to the standard normal as n → ∞. That is, for −∞ < a < ∞,

P

{

X1 + · · ·+ Xn − nµ

σ
√
n

≤ a

}

n→∞−→ 1√
2π

∫ a

−∞
e−x2/2dx .

Let us assume at first that µ = 0 and σ2 = 1.

We shall prove the theorem under the assumption that the moment
generating function of the Xi , M(t), exists and is finite.
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Limit Theorems The Central Limit Theorem

The Central Limit Theorem (Cont’d)

The moment generating function of Xi√
n
is given by

E

[

exp

{

tXi√
n

}]

= M

(

t√
n

)

.

Thus, the moment generating function of
∑n

i=1
Xi√
n
is [M( t√

n
)]n.

Let L(t) = logM(t).

Note that

L(0) = 0;

L′(0) =
M ′(0)
M(0)

= µ = 0;

L′′(0) =
M(0)M ′′(0) − [M ′(0)]2

[M(0)]2
= E [X 2] = 1.
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Limit Theorems The Central Limit Theorem

The Central Limit Theorem (Cont’d)

We must now show that [M( t√
n
)]n → et

2/2 as n → ∞.

Equivalently, that nL( t√
n
) → t2

2 as n → ∞.

We have

lim
n→∞

L( t√
n
)

1
n

= lim
n→∞

−L′( t√
n
) t√

n3

− 2
n2

(by L’Hôpital’s rule)

= lim
n→∞

[

L′( t√
n
)t

2√
n

]

= lim
n→∞

[

−L′′( t√
n
) t2√

n3

− 2√
n3

]

(by L’Hôpital’s rule)

= lim
n→∞

[

L′′( t√
n
) t

2

2

]

= t2

2 .

Thus, the central limit theorem is proven when µ = 0 and σ2 = 1.

The general case follows by considering X ∗
i = Xi−µ

σ and applying the
preceding result, since E [X ∗

i ] = 0, Var(X ∗
i ) = 1.
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Limit Theorems The Central Limit Theorem

Example

An astronomer is interested in measuring the distance, in light-years,
from his observatory to a distant star.

Because of changing atmospheric conditions and normal error, a
measurement does not yield the exact distance, but only an estimate.

The astronomer plans to make a series of measurements and then use
the average value of these measurements as his estimated value of the
actual distance.

Suppose the astronomer believes that the values of the measurements
are independent and identically distributed random variables having:

a common mean d (the actual distance);
a common variance of 4 (light-years).

How many measurements need he make to be reasonably sure that
his estimated distance is accurate to within ±0.5 light-year?
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Limit Theorems The Central Limit Theorem

Example (Cont’d)

Suppose that the astronomer decides to make n observations.

Let X1,X2, . . . ,Xn be the n measurements.

From the central limit theorem, Zn =
∑n

i=1 Xi−nd

2
√
n

has approximately a

standard normal distribution:

P
{

−0.5 ≤
∑n

i=1 Xi

n
− d ≤ 0.5

}

= P
{

−0.5
√
n
2 ≤ Zn ≤ 0.5

√
n
2

}

≈ Φ(
√
n
4 )− Φ(−

√
n
4 )

= 2Φ(
√
n
4 )− 1.

Suppose this probability is to be 95 percent.

Then the number n∗ of measurements must be such that
2Φ(

√
n∗

4 )− 1 = 0.95 or Φ(
√
n∗

4 ) = 0.975.

Consulting a table, we get
√
n∗

4 = 1.96 or n∗ = (7.84)2 ≈ 61.47.

As n∗ is not integral valued, he should make 62 observations.
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Limit Theorems The Central Limit Theorem

Example (Cont’d)

The preceding analysis has been done under the assumption that the
normal approximation will be a good approximation when n = 62.

In general the question of how large n need be before the
approximation is “good” depends on the distribution of the Xi .

If this is a point of concern, to avoid taking any chances, apply
Chebyshev’s inequality.

We have E [
∑n

i=1
Xi

n
] = d and Var(

∑n
i=1

Xi

n
) = 4

n
.

Thus, Chebyshev’s inequality yields

P

{
∣

∣

∣

∣

∣

n
∑

i=1

Xi

n
− d

∣

∣

∣

∣

∣

> 0.5

}

≤ 4

n(0.5)2
=

16

n
.

Hence, if n = 16
0.05 = 320 observations are made, there is 95 percent

assurance that the estimate will be accurate to within 0.5 light-year.
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Limit Theorems The Central Limit Theorem

Example

The number of students who enroll in a psychology course is a
Poisson random variable with mean 100.

The Dean has decided that:

If the number enrolling is 120 or more, two separate sections will run;
If fewer than 120 students enroll, a single section will run.

What is the probability that two sections are created?

The exact solution is

e−100
∞
∑

i=120

(100)i

i !
.

However, it does not readily yield a numerical answer.
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Limit Theorems The Central Limit Theorem

Example (Cont’d)

Recall that a Poisson random variable with mean 100 is the sum of
100 independent Poisson random variables, each with mean 1.

So we can make use of the central limit theorem to obtain an
approximate solution.

Let X denote the number of students that enroll in the course:

P{X ≥ 120} = P{X ≥ 119.5} (the continuity correction)

= P
{

X−100√
100

≥ 119.5−100√
100

}

≈ 1− Φ(1.95) ≈ 0.0256.

Here we have used the fact that the variance of a Poisson random
variable is equal to its mean.
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Limit Theorems The Central Limit Theorem

Example

If 10 fair dice are rolled, find the approximate probability that the sum
obtained is between 30 and 40, inclusive.

Let Xi denote the value of the ith die, i = 1, 2, . . . , 10.

We have

E (Xi) =
7

2
, Var(Xi ) = E [X 2

i ]− (E [Xi ])
2 =

35

12
.

Thus, by the Central Limit Theorem,

P{29.5 ≤ X ≤ 40.5} = P

{

29.5−35
√

350
12

≤ X−35
√

350
12

≤ 40.5−35
√

350
12

}

≈ 2Φ(1.0184) − 1

≈ 0.692.
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Limit Theorems The Central Limit Theorem

Example

Let Xi , i = 1, . . . , 10, be independent random variables, each
uniformly distributed over (0, 1).

Calculate an approximation to P{∑10
i=1 Xi > 6}.

We have

E [Xi ] =
1

2
and Var(Xi ) =

1

12
.

Thus, by the Central Limit Theorem,

P{∑10
1 Xi > 6} = P

{

∑10
1 Xi−5

√

10( 1
12
)
> 6−5

√

10( 1
12
)

}

≈ 1− Φ(
√
1.2)

≈ 0.1367.

Hence,
∑10

i=1 Xi will be greater than 6 only 14 percent of the time.
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Limit Theorems The Central Limit Theorem

Example

An instructor has 50 exams that will be graded in sequence.

The times required to grade the 50 exams are independent, with a
common distribution that has mean 20 minutes and standard
deviation 4 minutes.

Approximate the probability that the instructor will grade at least 25
of the exams in the first 450 minutes of work.

Let Xi be the time that it takes to grade exam i .

Then the time it takes to grade the first 25 exams is X =
∑25

i=1 Xi .

The instructor will grade at least 25 exams in the first 450 minutes if
the time it takes to grade the first 25 exams is ≤ 450.

Thus, the desired probability is P{X ≤ 450}.
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Limit Theorems The Central Limit Theorem

Example (Cont’d)

To approximate P{X ≤ 450}, we apply the Central Limit Theorem.

We have

E [X ] =
∑25

i=1 E [Xi ] = 25 · 20 = 500;

Var(X ) =
∑25

i=1 Var(Xi ) = 25 · 16 = 400.

Consequently, with Z being a standard normal random variable, we
have

P{X ≤ 450} = P
{

X−500√
400

≤ 450−500√
400

}

≈ P{Z ≤ −2.5}
= P{Z ≥ 2.5}
= 1− Φ(2.5) = 0.006.
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Limit Theorems The Central Limit Theorem

Another Version of the Central Limit Theorem

Central limit theorems also exist when the Xi are independent, but
not necessarily identically distributed random variables.

One version, by no means the most general, is as follows.

Central Limit Theorem for Independent Random Variables

Let X1,X2, . . . be a sequence of independent random variables having
respective means and variances µi = E [Xi ], σ

2
i = Var(Xi), and such that:

(a) The Xi are uniformly bounded - that is, if for some M , P{|Xi | < M} = 1 for
all i ;

(b)
∑∞

i=1 σ
2
i = ∞.

Then

P







∑n
i=1(Xi − µi)
√

∑n
i=1 σ

2
i

≤ a







n→∞−→ Φ(a).
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Limit Theorems The Strong Law Of Large Numbers

Subsection 3

The Strong Law Of Large Numbers
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Limit Theorems The Strong Law Of Large Numbers

The Strong Law of Large Numbers

Theorem (The Strong Law of Large Numbers)

Let X1,X2, . . . be a sequence of independent and identically distributed
random variables, each having a finite mean µ = E [Xi ]. Then, with
probability 1,

X1 + X2 + · · ·+ Xn

n

n→∞−→ µ.

That is, the strong law of large numbers states that

P

{

lim
n→∞

X1 + · · ·+ Xn

n
= µ

}

= 1.
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Limit Theorems The Strong Law Of Large Numbers

Example

Suppose that a sequence of independent trials of some experiment is
performed.

Let E be a fixed event of the experiment, and denote by P(E ) the
probability that E occurs on any particular trial.

Let

Xi =

{

1, if E occurs on the ith trial
0, if E does not occur on the ith trial

By the strong law of large numbers, with probability 1,

X1 + · · ·+ Xn

n
→ E [X ] = P(E ).

X1 + · · ·+ Xn is the number of times that the event E occurs in the
first n trials.

Thus, we may interpret this equation as stating that, with probability
1, the limiting proportion of time that the event E occurs is P(E ).
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Limit Theorems The Strong Law Of Large Numbers

Proof of the Strong Law Of Large Numbers

We assume that the random variables Xi have a finite fourth moment.

However, the theorem can be proven without this assumption.

Suppose that E [X 4
i ] = K < ∞.

Assume that µ, the mean of the Xi , is equal to 0.

Let Sn =
∑n

i=1 Xi and consider

E [S4
n ] = E [(X1 + · · · + Xn)(X1 + · · ·+ Xn)

× (X1 + · · ·+ Xn)(X1 + · · · + Xn)].

Expanding the right side of the preceding equation results in terms of
the form

X 4
i , X 3

i Xj , X 2
i X

2
j , X 2

i XjXk , XiXjXkXℓ,

where i , j , k and ℓ are all different.
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Limit Theorems The Strong Law Of Large Numbers

Proof of the Strong Law Of Large Numbers (Cont’d)

All the Xi have mean 0.

Thus, by independence,

E [X 3
i Xj ] = E [X 3

i ]E [Xj ] = 0;

E [X 2
i XjXk ] = E [X 2

i ]E [Xj ]E [Xk ] = 0;

E [XiXjXkXℓ] = 0.

Now, for a given pair i and j , there will be
(4
2

)

= 6 terms in the
expansion that will equal X 2

i X
2
j .

We expanding the preceding product and take expectations (using,
once more, independence):

E [S4
n ] = nE [X 4

i ] + 6
(

n
2

)

E [X 2
i X

2
j ]

= nK + 3n(n − 1)E [X 2
i ]E [X

2
j ].
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Limit Theorems The Strong Law Of Large Numbers

Proof of the Strong Law Of Large Numbers (Cont’d)

But 0 ≤ Var(X 2
i ) = E [X 4

i ]− (E [X 2
i ])

2.

Thus,
(E [X 2

i ])
2 ≤ E [X 4

i ] = K .

Therefore, from E [S4
n ] = nK + 3n(n − 1)E [X 2

i ]E [X
2
j ], we obtain

E [S4
n ] ≤ nK + 3n(n − 1)K ;

E
[

S4
n

n4

]

≤ K
n3

+ 3K
n2
;

E
[

∑∞
n=1

S4
n

n4

]

=
∑∞

n=1 E
[

S4
n

n4

]

< ∞.

Hence, with probability 1,
∑∞

n=1
S4
n

n4
< ∞.

By the convergence criterion, the nth term goes to 0.

So, with probability 1, limn→∞
S4
n

n4
= 0.

But if S4
n

n4
= (Sn

n
)4 goes to 0, then so must Sn

n
.

Hence, with probability 1, Sn
n
→ 0 as n → ∞.
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Limit Theorems The Strong Law Of Large Numbers

Proof of the Strong Law Of Large Numbers (Cont’d)

In general, suppose µ, the mean of the Xi , is not equal to 0.

We can apply the preceding argument to the random variables Xi − µ.

We obtain that with probability 1,

lim
n→∞

n
∑

i=1

(Xi − µ)

n
= 0.

Equivalently, with probability 1,

lim
n→∞

n
∑

i=1

Xi

n
= µ.
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Limit Theorems The Strong Law Of Large Numbers

Weak versus Strong Law of Large Numbers

The Weak Law of Large Numbers states that, for any specified large
value n∗, X1+···+Xn∗

n∗
is likely to be near µ.

However, it does not say that X1+···+Xn

n
is bound to stay near µ for all

values of n larger than n∗.

Thus, it leaves open the possibility that large values of
∣

∣

∣

X1+···+Xn

n
− µ

∣

∣

∣

can occur infinitely often (though at infrequent intervals).

The Strong Law shows that this cannot occur.

It implies that, with probability 1, for any positive value ε,

∣

∣

∣

∣

∣

n
∑

i=1

Xi

n
− µ

∣

∣

∣

∣

∣

will be greater than ε only a finite number of times.

George Voutsadakis (LSSU) Probability October 2020 33 / 60



Limit Theorems Other Inequalities

Subsection 4

Other Inequalities
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Limit Theorems Other Inequalities

One-Sided Chebyshev Inequality

Proposition (One-Sided Chebyshev Inequality)

If X is a random variable with mean 0 and finite variance σ2, then, for any
a > 0,

P{X ≥ a} ≤ σ2

σ2 + a2
.

Let b > 0. Note that X ≥ a is equivalent to X + b ≥ a+ b.

Hence,
P{X ≥ a} = P{X + b ≥ a+ b}

≤ P{(X + b)2 ≥ (a + b)2}.
Here the inequality is obtained by noting that since a + b > 0,
X + b ≥ a+ b implies that (X + b)2 ≥ (a + b)2.
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Limit Theorems Other Inequalities

One-Sided Chebyshev Inequality (Cont’d)

We obtained P{X ≥ a} ≤ P{(X + b)2 ≥ (a + b)2}.
Upon applying Markov’s inequality, the preceding yields that

P{X ≥ a} ≤ E [(X + b)2]

(a + b)2
=

σ2 + b2

(a + b)2
.

The function f (b) = σ2+b2

(a+b)2
has derivative

f ′(b) =
2b(a + b)2 − 2(a + b)(σ2 + b2)

(a + b)4
=

2ab − 2σ2

(a + b)3
.

So it is minimized by b = σ2

a
.

Thus,

P{X ≥ a} ≤ σ2 + (σ
2

a
)2

(a + σ2

a
)2

=
a2σ2+σ4

a2

(a2+σ2)2

a2

=
σ2

σ2 + a2
.
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Limit Theorems Other Inequalities

Example

Suppose the number of items produced in a factory during a week is a
random variable with mean 100 and variance 400.

Compute an upper bound on the probability that this week’s
production will be at least 120.

The one-sided Chebyshev inequality yields

P{X ≥ 120} = P{X − 100 ≥ 20} ≤ 400

400 + (20)2
=

1

2
.

Hence, the probability that this week’s production will be 120 or more
is at most 1

2 .

The bound obtained by applying Markov’s inequality is

P{X ≥ 120} ≤ E (X )

120
=

5

6
.

Note that this is a far weaker bound than the preceding one.
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Limit Theorems Other Inequalities

A Corollary

Suppose that X has mean µ and variance σ2.

Then both X − µ and µ− X have mean 0 and variance σ2.

Thus, by the one-sided Chebyshev inequality, for a > 0,

P{X − µ ≥ a} ≤ σ2

σ2+a2
;

P{µ− X ≥ a} ≤ σ2

σ2+a2
.

Corollary

If E [X ] = µ and Var(X ) = σ2, then, for a > 0,

P{X ≥ µ+ a} ≤ σ2

σ2+a2
,

P{X ≤ µ− a} ≤ σ2

σ2+a2
.
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Limit Theorems Other Inequalities

Example

A set of 200 people consisting of 100 men and 100 women is
randomly divided into 100 pairs of 2 each.

Give an upper bound to the probability that at most 30 of these pairs
will consist of a man and a woman.

Number the men arbitrarily from 1 to 100.

For i = 1, 2, . . . , 100, let

Xi =

{

1, if man i is paired with a woman
0, otherwise

Then the number X of man-woman pairs is X =
∑100

i=1 Xi .

Because man i is equally likely to be paired with any of the other 199
people, of which 100 are women, we have

E [Xi ] = P{Xi = 1} =
100

199
.
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Example (Cont’d)

Similarly, for i 6= j ,

E [XiXj ] = P{Xi = 1,Xj = 1}
= P{Xi = 1}P{Xj = 1|Xi = 1} = 100

199
99
197 .

Here P{Xj = 1|Xi = 1} = 99
197 , since, given that man i is paired with

a woman, man j is equally likely to be paired with any of the
remaining 197 people, of which 99 are women.

Hence, we obtain

E [X ] =
∑100

i=1 E [Xi ] = 100 · 100
199 ≈ 50.25;

Var(X ) =
∑100

i=1Var(Xi ) + 2
∑∑

i<j

Cov(Xi ,Xj)

= 100100
199

99
199 + 2

(

100
2

)

[100199
99
197 − (100199 )

2]

≈ 25.126.
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Example (Cont’d)

The Chebyshev inequality then yields

P{X ≤ 30} = P{|X − 50.25| ≥ 20.25} ≤ 25.126

(20.25)2
≈ 0.061.

Thus, there are fewer than 6 chances in a hundred that fewer than 30
men will be paired with women.

We can improve on this bound by using the one-sided Chebyshev
inequality:

P{X ≤ 30} = P{X ≤ 50.25 − 20.25}

≤ 25.126

25.126 + (20.25)2

≈ 0.058.
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Chernoff Bounds

When the moment generating function of the random variable X is
known, we can obtain even more effective bounds on P{X ≥ a}.
Let M(t) = E [etX ] be the moment generating function of X .

For t > 0, P{X ≥ a} = P{etX ≥ eta}
Markov

≤ E [etX ]e−ta;
For t < 0, P{X ≤ a} = P{etX ≥ eta} ≤ E [etX ]e−ta.

Proposition (Chernoff Bounds)

P{X ≥ a} ≤ e−taM(t), for all t > 0

P{X ≤ a} ≤ e−taM(t), for all t < 0.

The Chernoff bounds hold for all t, either positive or negative.

So the best bound on P{X ≥ a} is obtained by using the t that
minimizes e−taM(t).
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Chernoff Bounds for Standard Normal Random Variable

If Z is a standard normal random variable, then its moment
generating function is M(t) = et

2/2.

So the Chernoff bound on P{Z ≥ a} is given by

P{Z ≥ a} ≤ e−taet
2/2, for all t > 0.

The value of t, t > 0, that minimizes et
2/2−ta is the value that

minimizes t2

2 − ta, which is t = a.

Thus, for a > 0, we have

P{Z ≥ a} ≤ e−a2/2.

Similarly, we can show that, for a < 0,

P{Z ≤ a} ≤ e−a2/2.
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Chernoff Bounds for the Poisson Random Variable

If X is a Poisson random variable with parameter λ, then its moment
generating function is M(t) = eλ(e

t−1).

Hence, the Chernoff bound on P{X ≥ i} is

P{X ≥ i} ≤ eλ(e
t−1)e−it , t > 0.

Minimizing the right side of the preceding inequality is equivalent to
minimizing λ(et − 1)− it.

Calculus shows that the minimal value occurs when et = i
λ .

Provided that i
λ > 1, this minimizing value of t will be positive.

Therefore, assuming that i > λ and letting et = i
λ in the Chernoff

bound yields

P{X ≥ i} ≤ eλ(i/λ−1)

(

λ

i

)i

=
e−λ(eλ)i

i i
.
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Example

Consider a gambler who is equally likely to either win or lose 1 unit on
every play, independently of his past results.

Let Xi be the gambler’s winnings on the ith play.

The Xi are independent and

P{Xi = 1} = P{Xi = −1} =
1

2
.

Let Sn =
∑n

i=1 Xi denote the gambler’s winnings after n plays.

We will use the Chernoff bound on P{Sn ≥ a}.
Note, first, that the moment generating function of Xi is

E [etX ] =
et + e−t

2
.
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Example (Cont’d)

Now, using the McLaurin expansions of et and e−t , we see that

et + e−t = 1 + t +
t2

2!
+

t3

3!
+ · · ·+

(

1− t +
t2

2!
− t3

3!
+ · · ·

)

= 2

{

1 +
t2

2!
+

t4

4!
+ · · ·

}

= 2
∑∞

n=0

t2n

(2n)!

≤ 2
∑∞

n=0

(t2/2)n

n!
(since (2n)! ≥ n!2n)

= 2et
2/2.

Therefore, E [etX ] ≤ et
2/2.
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Example (Cont’d)

But the moment generating function of the sum of independent
random variables is the product of their moment generating functions.

Hence, we have

E [etSn ] = (E [etX ])n ≤ ent
2/2.

Using the preceding result along with the Chernoff bound gives

P{Sn ≥ a} ≤ M(t)e−ta ≤ e−taent
2/2, t > 0.

The value of t that minimizes the right side of the preceding is the
value that minimizes nt2

2 − ta, which is t = a
n
.

Supposing that a > 0 (so that the minimizing t is positive) and
letting t = a

n
in the preceding inequality yields

P{Sn ≥ a} ≤ e−a2/2n, a > 0.
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Convex and Concave Functions

Definition

A twice-differentiable real-valued function f (x) is said to be:

convex if f ′′(x) ≥ 0, for all x ;

concave if f ′′(x) ≤ 0, for all x .

Some examples of convex functions:

f (x) = x2;
f (x) = eax ;
f (x) = −x1/n, for x ≥ 0.

A useful observation is that

f (x) is convex if and only if g(x) = −f (x) is concave.
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Jensen’s Inequality

Proposition (Jensen’s Inequality)

If f (x) is a convex function, then

E [f (X )] ≥ f (E [X ]),

provided that the expectations exist and are finite.

Expand f (x) in a Taylor series expansion about µ = E [X ]:

f (x) = f (µ) + f ′(µ)(x − µ) +
f ′′(ξ)(x − µ)2

2
,

where ξ is some value between x and µ.

Since f ′′(ξ) ≥ 0, we obtain f (x) ≥ f (µ) + f ′(µ)(x − µ).

Hence, f (X ) ≥ f (µ) + f ′(µ)(X − µ).

Taking expectations yields

E [f (X )] ≥ f (µ) + f ′(µ)E [X − µ] = f (µ).
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Example

An investor is faced with the following choices:

She can invest all of her money in a risky proposition that would lead
to a random return X that has mean m;
She can put the money into a risk-free venture that will lead to a
return of m with probability 1.

Denote by:

R her return;
u her utility function.

Suppose that her decision will be made on the basis of maximizing
the expected value of u(R).

By Jensen’s inequality, it follows that:

If u is a concave function, then E [u(X )] ≤ u(m).
So the risk-free alternative is preferable.
If u is convex, then E [u(X )] ≥ u(m).
So the risky investment alternative would be preferred.
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Subsection 5

Approximating a Sum of Bernoulli by a Poisson Variable
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Strategy

Suppose that we want to approximate the sum of independent
Bernoulli random variables with respective means p1, p2, . . . , pn.

Start with a sequence Y1, . . . ,Yn of independent Poisson random
variables, with Yi having mean pi .

We construct a sequence of independent Bernoulli random variables
X1, . . . ,Xn with parameters p1, . . . , pn, such that

P{Xi 6= Yi} ≤ p2i , for each i .

Letting X =
∑n

i=1 Xi and Y =
∑n

i=1 Yi , we use the preceding
inequality to conclude that

P{X 6= Y } ≤
n

∑

i=1

p2i .

George Voutsadakis (LSSU) Probability October 2020 52 / 60



Limit Theorems Approximating a Sum of Bernoulli by a Poisson Variable

Strategy (Cont’d)

Finally, we show that the preceding inequality implies that, for any set
of real numbers A,

|P{X ∈ A} − P{Y ∈ A}| ≤
n

∑

i=1

p2i .

But, by hypothesis,

X is the sum of independent Bernoulli random variables;
Y is a Poisson random variable.

So, the latter inequality yields the desired bound.
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Random Variables Yi and Ui

Let Yi , i = 1, . . . , n, be independent Poisson random variables with
respective means pi .

Recall the inequality
e−p ≥ 1− p.

It implies that (1− pi)e
pi ≤ 1.

Let U1, . . . ,Un be random variables, that are:

independent;
independent of the Yi ’s;
such that

Ui =

{

0, with probability (1 − pi)e
pi

1, with probability 1− (1 − pi)e
pi
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Random Variables Xi

Define the random variables Xi , i = 1, . . . , n, by

Xi =

{

0, if Yi = Ui = 0
1, otherwise

Note that:

P{Xi = 0} = P{Yi = 0}P{Ui = 0}
= e−pi (1− pi )e

pi

= 1− pi ;

P{Xi = 1} = 1− P{Xi = 0}
= pi .
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Probability of Xi 6= Yi

If Xi is equal to 0, then so must Yi equal 0 (by the definition of Xi).

Therefore,

P{Xi 6= Yi} = P{Xi = 1,Yi 6= 1}
= P{Yi = 0,Xi = 1}+ P{Yi > 1}
= P{Yi = 0,Ui = 1}+ P{Yi > 1}
= e−pi [1− (1− pi)e

pi ] + 1− e−pi − pie
−pi

= pi − pie
−pi

≤ p2i (since 1− e−p ≤ p)
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Probability of X 6= Y

Let X =
∑n

i=1 Xi and Y =
∑n

i=1 Yi .

Note that:

X is the sum of independent Bernoulli random variables;
Y is Poisson with the expected value E [Y ] = E [X ] =

∑n
i=1 pi .

Note also that the inequality X 6= Y implies that Xi 6= Yi for some i .

So

P{X 6= Y } ≤ P{Xi 6= Yi for some i}
≤ ∑n

i=1 P{Xi 6= Yi} (Boole’s Inequality)

≤
∑n

i=1 p
2
i .
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Final Step

For any event B , let IB , the indicator variable for the event B , be
defined by

IB =

{

1, if B occurs
0, otherwise

Let A be any set of real numbers.

I{X∈A} − I{Y∈A} = 1 implies I{X∈A} = 1 and I{Y∈A} = 0;
This implies that X ∈ A and Y 6∈ A;
This implies that X 6= Y , i.e., I{X 6=Y} = 1.

Thus, we get
I{X∈A} − I{Y∈A} ≤ I{X 6=Y }.

Upon taking expectations of the preceding inequality, we obtain

P{X ∈ A} − P{Y ∈ A} ≤ P{X 6= Y }.
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Final Step (Cont’d)

We showed that

P{X ∈ A} − P{Y ∈ A} ≤ P{X 6= Y }.

By reversing X and Y , we obtain, in the same manner,

P{Y ∈ A} − P{X ∈ A} ≤ P{X 6= Y }.

Thus, we can conclude that

|P{X ∈ A} − P{Y ∈ A}| ≤ P{X 6= Y }.

Therefore, with λ =
∑n

i=1 pi ,

∣

∣

∣

∣

∣

P

{

n
∑

i=1

Xi ∈ A

}

−
∑

i∈A

e−λλi

i !

∣

∣

∣

∣

∣

≤
n

∑

i=1

p2i .
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Case of Binomial Random Variables

When all the pi are equal to p, X is a binomial random variable.

Hence, the preceding inequality shows that, for any set of nonnegative
integers A,

∣

∣

∣

∣

∣

∑

i∈A

(

n

i

)

pi(1− p)n−i −
∑

i∈A

e−np(np)i

i !

∣

∣

∣

∣

∣

≤ np2.
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