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A Finite Projective Plane The Idea of a Finite Geometry

Subsection 1

The Idea of a Finite Geometry
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A Finite Projective Plane The Idea of a Finite Geometry

The Geometry PG(n,q)

Abandoning the “intuitive” idea that the number of points is infinite,
we find that all our theorems remain valid (although the figures are
somewhat misleading).

In 1892, Fano described an n-dimensional geometry in which the
number of points on each line is p+1, for a fixed prime p.

In 1906, Veblen and Bussey gave this finite Projective Geometry the
name PG(n,p) and extended it to PG(n,q), where q = pk , p is prime,
and k is any positive integer.
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A Finite Projective Plane The Idea of a Finite Geometry

The Number q

Any range or pencil can be related to any other by a sequence of
elementary correspondences:

The number of points on a line must be the same for all lines;
The number of points on a line must be the same as the number of
lines in a pencil;
The number of points on a line must be the same as the number of
planes through a line.

We call this number q+1.
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A Finite Projective Plane The Idea of a Finite Geometry

von Staudt’s Formula for Number of Points in PG(n,q)

In a plane, any point is joined to the remaining points by a pencil
consisting of q+1 lines, each containing the one point and q others.

Hence, the plane contains q(q+1)+1= q2
+q+1 points and (dually)

the same number of lines.

In space, any line ℓ is joined to the points outside ℓ by q+1 planes,
each containing the q+1 points on ℓ and q2 others.

Hence the whole space contains (q+1)(q2
+1)= q3

+q2
+q+1 points

and (dually) the same number of planes.

The general formula for the number of points in PG(n,q) is

qn+qn−1
+·· ·+q+1=

qn+1
−1

q−1
.
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A Finite Projective Plane A Combinatorial Scheme for PG(2,5)

Subsection 2

A Combinatorial Scheme for PG(2,5)
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A Finite Projective Plane A Combinatorial Scheme for PG(2,5)

The Projective Geometry PG(2,5)

The finite projective plane PG(2,5) has:
6 points on each line;
6 lines through each point;

a total of 52
+5+1=

53
−1

5−1 = 31 points;
31 lines.

The appropriate scheme uses symbols P0,P1, . . . ,P30 for the 31 points,
and ℓ0,ℓ1, . . . ,ℓ30 for the 31 lines, with a table telling us which are the
6 points on each line and which are the 6 lines through each point:
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A Finite Projective Plane A Combinatorial Scheme for PG(2,5)

A Polarity Pr ↔ ℓr

For good measure, this table gives every relation of incidence twice:

Each column tells us which points lie on a line and also which lines
pass through a point.

Example: The last column says that the line ℓ0 contains the six points
P0,P1,P3,P8,P12,P18 and that the point P0 belongs to the six lines
ℓ0,ℓ1,ℓ3,ℓ8,ℓ12,ℓ18.

Thus the notation exhibits a polarity Pr ↔ ℓr .
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A Finite Projective Plane A Combinatorial Scheme for PG(2,5)

Using Congruences to Express Incidence

By regarding the subscripts as residues modulo 31, so that r +31 has
the same significance as r itself, we can condense the whole table into
the simple statement that the point Pr , and line ℓs , are incident if and
only if

r + s ≡ 0, 1, 3, 8, 12, or 18 (mod 31).

The congruence a≡ b (mod n) is a convenient abbreviation for the
statement that a and b leave the same remainder (or “residue”) when
divided by n.

The residues 0,1,3,8,12,18 (mod 31) are said to form a perfect

difference set because every possible residue except zero (namely,
1,2,3, . . . ,30) is uniquely expressible as the difference between two of
these special residues:

1≡ 1−0, 2≡ 3−1, 3≡ 3−0, 4≡ 12−8, . . . ,

13≡ 0−18, . . . , 30≡ 0−1.
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A Finite Projective Plane Verifying the Axioms

Subsection 3

Verifying the Axioms
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A Finite Projective Plane Verifying the Axioms

Axioms of Two-Dimensional Projective Geometry

The following five axioms suffice for the development of
two-dimensional projective geometry:

Axiom 3 Any two distinct points are incident with just one line.
New Axiom 1 Any two lines are incident with at least one point.
New Axiom 2 There exist four points of which no three are collinear.

Axiom 7 The three diagonal points of a quadrangle are never
collinear.

Axiom 8 If a projectivity leaves invariant each of three distinct
points on a line, it leaves invariant every point on the
line.
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A Finite Projective Plane Verifying the Axioms

Logical Consistency of the Axioms

Claim: This is a logically consistent geometry.

We verify that all the axioms are satisfied in PG(2,5).

To verify Axiom 3 and New Axiom 1, we observe that:

Any two residues are found together in just one column of the table.

Any two columns contain just one common number.

For New Axiom 2, we can cite P0P1P2P5.
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A Finite Projective Plane Verifying the Axioms

Logical Consistency of the Axioms (Cont’d)

To check Axiom 7, for every complete quadrangle (or rather, for every
one having P0 for a vertex) is possible but tedious.

We illustrate with a single instance: Take P0P1P2P9.

Its diagonal points are ℓ0 ·ℓ29 =P3, ℓ1 ·ℓ7 =P11, ℓ3 ·ℓ30 =P9.
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A Finite Projective Plane Verifying the Axioms

Logical Consistency of the Axioms (Cont’d)

Axiom 8 is superseded by
If a projectivity leaves invariant each of three distinct points A,B ,C on
a line, it leaves invariant every point of the harmonic net R(ABC ).

because a harmonic net fills the whole line.

In fact, the harmonic net R(P0P1P18) contains the harmonic sequence
P0P1P3P12P8 · · · . To verify this, we use the procedure in the figure

taking A,B ,M ,P ,Q to be P0, P1,
P18, P5, P30, so that C = P3, D =

P12, E = P8, F = P0 = A. Since
there are only six points on the line,
the sequence is inevitably periodic:

The five points P0,P1,P3,P12,P8 are repeated cyclically for ever.

Instead of taking P and Q to be P5 and P30, we could just as well
have taken them to be any other pair of points on ℓ13 or ℓ14 or ℓ18 or
ℓ21 or ℓ25 (these being, with ℓ0, the lines through P18). We would
still have obtained the same harmonic sequence.
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A Finite Projective Plane Involutions

Subsection 4

Involutions
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A Finite Projective Plane Involutions

Projectivities

The sections of the quadrangles
P4P5P6P9, P14P15P16P19,
P9P10P11P14 by the line ℓ0

yield the quadrangular and
harmonic relations
(P1P8)(P0P3)(P18P12),
(P12P18)(P8P0)(P3P1),
H(P12P18,P3P8).

The fundamental theorem shows that every projectivity on ℓ0 is
expressible in the form P0P1P3⊼PiPjPk , where i , j ,k are any three
distinct numbers selected from 0, 1, 3, 8, 12, 18.

Hence there are just 6 ·5 ·4= 120 projectivities (including the identity).
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A Finite Projective Plane Involutions

Classification of the Projectivities

Of the 120 projectivities, 25 are involutions; 15 hyperbolic and 10
elliptic:

Suppose i and j are any two of the six numbers.

Then, since an involution is determined by any two of its pairs, there is
a hyperbolic involution (PiPi )(PjPj ) which interchanges the remaining
four numbers in pairs in a definite way.
Since involutions are either hyperbolic or elliptic, the other two possible
ways of pairing the remaining four numbers must each determine an
elliptic involution which interchanges Pi and Pj .

Example: The hyperbolic involution (P12P12)(P18P18), interchanging
P3 and P8, must also interchange P0 and P1, and is expressible as
(P0P1)(P3P8);

On the other hand, both the involutions (P1P8)(P0P3), (P0P8)(P1P3)
interchange P12 and P18, and are therefore elliptic.
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A Finite Projective Plane Collineations and Correlations

Subsection 5

Collineations and Correlations
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A Finite Projective Plane Collineations and Correlations

Projective Collineations and Projective Correlations

By previous results, every projective collineation or projective
correlation is determined by its effect on a particular quadrangle, such
as P0P1P2P6.

The collineation may transform P0 into any one of the 31 points, and
P1 into any one of the remaining 30.
It may transform P2 into any one of the 31−6= 25 points not collinear
with the first two.
The number of points that lie on at least one side of a given triangle is
evidently 3+ (3 ·4)= 15; therefore the number not on any side is 16.

Hence PG(2,5) admits altogether 31 ·30 ·25 ·16= 372000 projective
collineations, and the same number of projective correlations.
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A Finite Projective Plane Collineations and Correlations

Examples

Of the 372000 projective collineations, 775 are of period 2.

By a previous result, the number of harmonic homologies is
31 ·25= 775.

Apart from the identity, the two most obvious collineations are:
Pr →P5r (of period 3, since 53

≡ 1 (mod 31));
Pr →Pr+1 (of period 31).

The appropriate criterion (any collineation that transforms one range
projectively is a projective collineation) assures us they are projective:

The corresponding ranges of the former on P0P1 and P0P5 are related

by the perspectivity P0P1P3P8P12P18

P11

[ P0P5P15P9P29P28;
The corresponding ranges of the latter on P0P1, and P1P2 are related
by a projectivity with axis P0P2:

P0P1P3P8P12P18

P9

[ P0P2P30P11P17P7

P8

[ P1P2P4P9P13P19.

George Voutsadakis (LSSU) Projective Geometry August 2020 21 / 29



A Finite Projective Plane Conics

Subsection 6

Conics
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A Finite Projective Plane Conics

From Polarities to Conics

The most obvious correlation is, of course, Pr → ℓr .

To verify that it is projective, we use a preceding result in the form

P1P2P4P9P13P19

P8

[ P0P29P28P9P5P15⊼ℓ1ℓ2ℓ4ℓ9ℓ13ℓ19.

Being of period 2, it is a polarity.

Since P0 lies on ℓ0, it is a hyperbolic polarity, and determines a conic.

By Steiner’s Construction, we see that the number of points on a
conic (in any finite projective plane) is equal to the number of lines
through a point, in the present case 6.

By inspecting the incidence table, or by halving the residues 0, 1, 3, 8,
12, 18 (mod 31), we see that the conic determined by the polarity
Pr ↔ ℓr consists of the 6 points and 6 lines P0P4P6P9P19P17,
ℓ0ℓ4ℓ6ℓ9ℓ16ℓ17.
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A Finite Projective Plane Conics

Tangents, Secants and Nonsecants

The 6 lines ℓ0ℓ4ℓ6ℓ9ℓ16ℓ17 are the tangents;

By joining the 6 points P0P4P6P9P19P17 in pairs, we obtain the
(6
2

)

= 15 secants

ℓ1 =P0P17, ℓ2 =P6P16, ℓ3 =P0P9, ℓ8 =P0P4, ℓ12 =P0P6,

ℓ14 =P4P17, ℓ15 =P16P17, ℓ18 =P0P16, ℓ22 =P9P17, ℓ23 =P9P16,

ℓ25 =P6P9, ℓ26 =P6P17, ℓ27 =P4P16, ℓ28 =P4P6, ℓ30 =P4P9.

It follows that the remaining 10 lines ℓ5,
ℓ7, ℓ10, ℓ11, ℓ13, ℓ19, ℓ20, ℓ21, ℓ24,
ℓ29 are nonsecants, each containing an
elliptic involution of conjugate points.
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A Finite Projective Plane Conics

Self-Polar Triangles

Any two conjugate points on a secant or nonsecant determine a
self-polar triangle.

For instance, the secant ℓ1, containing the hyperbolic involution
(P0P0)(P17P17) or (P2P30)(P7P11), is a common side of the two
self-polar triangles P1P2P30, P1P7P11.
These two triangles are of different types:

Of the former, all three sides ℓ1,ℓ2,ℓ30 are secants;
The sides ℓ7 and ℓ11 of the latter are nonsecants.

We speak of triangles of the first type and second type, respectively.
Since each of the 15 secants belongs to one self-polar triangle of
either type, there are altogether

5 triangles of the first type;
15 triangles of the second type.

These properties of a conic are amusingly different from what happens
in real geometry, where the sides of a self-polar triangle always consist
of two secants and one nonsecant.
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A Finite Projective Plane Conics

Polarities Through a Triangle a Polar Pair

There are, of course, many ways to express a given polarity by a
symbol of the form (ABC )(Pp);

For example, the polarity Pr ↔ ℓr is (P1P2P30)(P3ℓ3) or
(P1P7P11)(P3ℓ3) or (P1P7P11)(P4ℓ4).

Such symbols will enable us to find the total number of polarities:
If ABC is given, there are:

16 possible choices for P (not on any side);
16 possible choices for p (not through a vertex);

So there are 162
= 256 available symbols (ABC )(Pp) for polarities in

which ABC is self-polar.

Of the 16 lines, each contains 3 of the 16 points.

Thus, just 48 of the 256 symbols have P lying on p, as in the case of
(P1P7P11)(P4ℓ4).
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A Finite Projective Plane Conics

All Polarities in PG(2,5) are Hyperbolic

Theorem

There are no elliptic polarities in PG(2,5).

Suppose that the self-polar triangle is of the first type (with every side
a secant).

Then, all the six points on the conic are on sides of the triangle.
Hence, P never lies on p. Each hyperbolic polarity (with ABC of this
type) is named 16 times by a symbol (ABC )(Pp) with P not on p.

Suppose only one side is a secant.

Then 2 of the 6 points are on this side and the remaining 4 are among
the 16. Therefore each hyperbolic polarity (with ABC of the second
type) is named:

4 times with P on p;
12 times with P not on p.
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A Finite Projective Plane Conics

All Polarities in PG(2,5) are Hyperbolic (Cont’d)

Conversely, if P lies on p, ABC can only be of the second type.

Therefore the number of such hyperbolic polarities (each accounting
for 4 of the 48 symbols) is 12.

Since each hyperbolic polarity (or conic) has 5 self-polar triangles of
the first type and 15 of the second, the number of hyperbolic
polarities in which a given triangle ABC is of the first type is one-third
of 12, that is, 4.

The total number of symbols (ABC )(Pp) that denote hyperbolic
polarities is thus

48
︸︷︷︸

P on p

+ 16
︸︷︷︸

P not on p

· 4
︸︷︷︸

ABC of type I

+ 12
︸︷︷︸

P not on p

· 12
︸︷︷︸

ABC of type II

= 256.

Since we have accounted for all the available symbols, there are no
elliptic polarities in PG(2,5).
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A Finite Projective Plane Conics

Number of Triangles and Conics

The total number of triangles in PG(2,5) can be found as follows:

There are 31 choices for the first vertex;
There are 30 choices for the second vertex;
There are 31−6= 25 choices for the third vertex;

The three vertices can be permuted in 3!= 6 ways.

Hence, the number of triangles is 31·30·25
6

= 31 ·125= 3875.

We now compute the number of conics:

Each conic has 5 self-polar triangles of the first type.
Each triangle plays this role for 4 conics.

Therefore, the number of conics is 31·125·4
5

= 3100.
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