Introduction to Projective Geometry

George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science
Lake Superior State University

LSSU Math 400

(1) A Finite Projective Plane

- The Idea of a Finite Geometry
- A Combinatorial Scheme for PG $(2,5)$
- Verifying the Axioms
- Involutions
- Collineations and Correlations
- Conics

Subsection 1

The Idea of a Finite Geometry

The Geometry PG (n, q)

- Abandoning the "intuitive" idea that the number of points is infinite, we find that all our theorems remain valid (although the figures are somewhat misleading).
- In 1892, Fano described an n-dimensional geometry in which the number of points on each line is $p+1$, for a fixed prime p.
- In 1906, Veblen and Bussey gave this finite Projective Geometry the name $\operatorname{PG}(n, p)$ and extended it to $\operatorname{PG}(n, q)$, where $q=p^{k}, p$ is prime, and k is any positive integer.

The Number q

- Any range or pencil can be related to any other by a sequence of elementary correspondences:
- The number of points on a line must be the same for all lines;
- The number of points on a line must be the same as the number of lines in a pencil;
- The number of points on a line must be the same as the number of planes through a line.
We call this number $q+1$.
- In a plane, any point is joined to the remaining points by a pencil consisting of $q+1$ lines, each containing the one point and q others. Hence, the plane contains $q(q+1)+1=q^{2}+q+1$ points and (dually) the same number of lines.
- In space, any line ℓ is joined to the points outside ℓ by $q+1$ planes, each containing the $q+1$ points on ℓ and q^{2} others. Hence the whole space contains $(q+1)\left(q^{2}+1\right)=q^{3}+q^{2}+q+1$ points and (dually) the same number of planes.
- The general formula for the number of points in $\operatorname{PG}(n, q)$ is

$$
q^{n}+q^{n-1}+\cdots+q+1=\frac{q^{n+1}-1}{q-1}
$$

Subsection 2

A Combinatorial Scheme for PG $(2,5)$

- The finite projective plane $\operatorname{PG}(2,5)$ has:
- 6 points on each line;
- 6 lines through each point;
- a total of $5^{2}+5+1=\frac{5^{3}-1}{5-1}=31$ points;
- 31 lines.
- The appropriate scheme uses symbols $P_{0}, P_{1}, \ldots, P_{30}$ for the 31 points, and $\ell_{0}, \ell_{1}, \ldots, \ell_{30}$ for the 31 lines, with a table telling us which are the 6 points on each line and which are the 6 lines through each point:

Table of possible values of s, given r, such that P_{r} and l_{s} (or l_{r} and P_{s}) are incident

$r	$	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	0		
2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	0	1		
4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	0	1	2	3		
9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	0	1	2	3	4	5	6	7	8		
13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	0	1	2	3	4	5	6	7	8	9	10	11	12		
19	20	21	22	23	24	25	26	27	28	29	30	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18		

- For good measure, this table gives every relation of incidence twice:

Table of possible values of s, given r, such that P_{r} and l_{s} (or l_{r} and P_{s}) are incident

r	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	0
	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	0	1
5	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	0	1	2	3
	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	0	1	2	3	4	5	6	7	8
	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	0	1	2	3	4	5	6	7	8	9	10	11	12
	19	20	21	22	23	24	25	26	27	28	29	30	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18

Each column tells us which points lie on a line and also which lines pass through a point.
Example: The last column says that the line ℓ_{0} contains the six points $P_{0}, P_{1}, P_{3}, P_{8}, P_{12}, P_{18}$ and that the point P_{0} belongs to the six lines $\ell_{0}, \ell_{1}, \ell_{3}, \ell_{8}, \ell_{12}, \ell_{18}$.
Thus the notation exhibits a polarity $P_{r} \leftrightarrow \ell_{r}$.

Using Congruences to Express Incidence

- By regarding the subscripts as residues modulo 31, so that $r+31$ has the same significance as r itself, we can condense the whole table into the simple statement that the point P_{r}, and line ℓ_{s}, are incident if and only if

$$
r+s \equiv 0,1,3,8,12, \text { or } 18(\bmod 31)
$$

- The congruence $a \equiv b(\bmod n)$ is a convenient abbreviation for the statement that a and b leave the same remainder (or "residue") when divided by n.
- The residues $0,1,3,8,12,18(\bmod 31)$ are said to form a perfect difference set because every possible residue except zero (namely, $1,2,3, \ldots, 30$) is uniquely expressible as the difference between two of these special residues:

$$
\begin{aligned}
1 \equiv 1-0,2 & \equiv 3-1,3 \equiv 3-0,4 \equiv 12-8, \ldots, \\
13 & \equiv 0-18, \ldots, 30 \equiv 0-1 .
\end{aligned}
$$

Subsection 3

Verifying the Axioms

Axioms of Two-Dimensional Projective Geometry

- The following five axioms suffice for the development of two-dimensional projective geometry:

Axiom 3 Any two distinct points are incident with just one line.
New Axiom 1 Any two lines are incident with at least one point.
New Axiom 2 There exist four points of which no three are collinear.
Axiom 7 The three diagonal points of a quadrangle are never collinear.
Axiom 8 If a projectivity leaves invariant each of three distinct points on a line, it leaves invariant every point on the line.

Logical Consistency of the Axioms

Claim: This is a logically consistent geometry.
We verify that all the axioms are satisfied in PG $(2,5)$.
To verify Axiom 3 and New Axiom 1, we observe that:

Table of possible values of s, given r, such that P_{r} and l_{s} (or l_{r} and P_{s}) are incident

$\cdot \boldsymbol{r}$| 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 0 |
| 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 0 | 1 |
| 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 0 | 1 | 2 | 3 |
| 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |

- Any two residues are found together in just one column of the table.
- Any two columns contain just one common number.

For New Axiom 2, we can cite $P_{0} P_{1} P_{2} P_{5}$.

- To check Axiom 7, for every complete quadrangle (or rather, for every one having P_{0} for a vertex) is possible but tedious.

Table of possible values of s, given r, such that P_{r} and I_{s} (or I_{r} and P_{s}) are incident

$r	$	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	0		
2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	0	1		
4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	0	1	2	3		
9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	0	1	2	3	4	5	6	7	8		
13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	0	1	2	3	4	5	6	7	8	9	10	11	12		
19	20	21	22	23	24	25	26	27	28	29	30	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18		

We illustrate with a single instance: Take $P_{0} P_{1} P_{2} P_{9}$. Its diagonal points are $\ell_{0} \cdot \ell_{29}=P_{3}, \ell_{1} \cdot \ell_{7}=P_{11}, \ell_{3} \cdot \ell_{30}=P_{9}$.

- Axiom 8 is superseded by

If a projectivity leaves invariant each of three distinct points A, B, C on a line, it leaves invariant every point of the harmonic net $\mathrm{R}(A B C)$.
because a harmonic net fills the whole line.
In fact, the harmonic net $\mathrm{R}\left(P_{0} P_{1} P_{18}\right)$ contains the harmonic sequence $P_{0} P_{1} P_{3} P_{12} P_{8} \cdots$. To verify this, we use the procedure in the figure taking A, B, M, P, Q to be P_{0}, P_{1}, P_{18}, P_{5}, P_{30}, so that $C=P_{3}, D=$ $P_{12}, E=P_{8}, \quad F=P_{0}=A$. Since there are only six points on the line, the sequence is inevitably periodic:

The five points $P_{0}, P_{1}, P_{3}, P_{12}, P_{8}$ are repeated cyclically for ever. Instead of taking P and Q to be P_{5} and P_{30}, we could just as well have taken them to be any other pair of points on ℓ_{13} or ℓ_{14} or ℓ_{18} or ℓ_{21} or ℓ_{25} (these being, with ℓ_{0}, the lines through P_{18}). We would still have obtained the same harmonic sequence.

Subsection 4

Involutions

- The sections of the quadrangles $P_{4} P_{5} P_{6} P_{9}, P_{14} P_{15} P_{16} P_{19}$, $P_{9} P_{10} P_{11} P_{14}$ by the line ℓ_{0} yield the quadrangular and harmonic relations
$\left(P_{1} P_{8}\right)\left(P_{0} P_{3}\right)\left(P_{18} P_{12}\right)$,
$\left(P_{12} P_{18}\right)\left(P_{8} P_{0}\right)\left(P_{3} P_{1}\right)$, $\mathrm{H}\left(P_{12} P_{18}, P_{3} P_{8}\right)$.

The fundamental theorem shows that every projectivity on ℓ_{0} is expressible in the form $P_{0} P_{1} P_{3} \bar{\wedge} P_{i} P_{j} P_{k}$, where i, j, k are any three distinct numbers selected from $0,1,3,8,12,18$.
Hence there are just $6 \cdot 5 \cdot 4=120$ projectivities (including the identity).

- Of the 120 projectivities, 25 are involutions; 15 hyperbolic and 10 elliptic:
Suppose i and j are any two of the six numbers.
- Then, since an involution is determined by any two of its pairs, there is a hyperbolic involution $\left(P_{i} P_{i}\right)\left(P_{j} P_{j}\right)$ which interchanges the remaining four numbers in pairs in a definite way.
- Since involutions are either hyperbolic or elliptic, the other two possible ways of pairing the remaining four numbers must each determine an elliptic involution which interchanges P_{i} and P_{j}.
Example: The hyperbolic involution $\left(P_{12} P_{12}\right)\left(P_{18} P_{18}\right)$, interchanging P_{3} and P_{8}, must also interchange P_{0} and P_{1}, and is expressible as $\left(P_{0} P_{1}\right)\left(P_{3} P_{8}\right)$;
On the other hand, both the involutions $\left(P_{1} P_{8}\right)\left(P_{0} P_{3}\right),\left(P_{0} P_{8}\right)\left(P_{1} P_{3}\right)$ interchange P_{12} and P_{18}, and are therefore elliptic.

Subsection 5

Collineations and Correlations

Projective Collineations and Projective Correlations

- By previous results, every projective collineation or projective correlation is determined by its effect on a particular quadrangle, such as $P_{0} P_{1} P_{2} P_{6}$.
- The collineation may transform P_{0} into any one of the 31 points, and P_{1} into any one of the remaining 30 .
- It may transform P_{2} into any one of the $31-6=25$ points not collinear with the first two.
- The number of points that lie on at least one side of a given triangle is evidently $3+(3 \cdot 4)=15$; therefore the number not on any side is 16 .
Hence PG $(2,5)$ admits altogether $31 \cdot 30 \cdot 25 \cdot 16=372000$ projective collineations, and the same number of projective correlations.
- Of the 372000 projective collineations, 775 are of period 2.

By a previous result, the number of harmonic homologies is $31 \cdot 25=775$.

- Apart from the identity, the two most obvious collineations are:
- $P_{r} \rightarrow P_{5 r}\left(\right.$ of period 3 , since $\left.5^{3} \equiv 1(\bmod 31)\right)$;
- $P_{r} \rightarrow P_{r+1}$ (of period 31).
- The appropriate criterion (any collineation that transforms one range projectively is a projective collineation) assures us they are projective:
- The corresponding ranges of the former on $P_{0} P_{1}$ and $P_{0} P_{5}$ are related by the perspectivity $P_{0} P_{1} P_{3} P_{8} P_{12} P_{18} \stackrel{P_{11}}{{ }_{\lambda}} P_{0} P_{5} P_{15} P_{9} P_{29} P_{28}$;
- The corresponding ranges of the latter on $P_{0} P_{1}$, and $P_{1} P_{2}$ are related by a projectivity with axis $P_{0} P_{2}$:

$$
P_{0} P_{1} P_{3} P_{8} P_{12} P_{18} \stackrel{P_{9}}{\stackrel{ }{\wedge}} P_{0} P_{2} P_{30} P_{11} P_{17} P_{7} \stackrel{P_{8}}{\bar{\wedge}} P_{1} P_{2} P_{4} P_{9} P_{13} P_{19}
$$

Subsection 6

Conics

- The most obvious correlation is, of course, $P_{r} \rightarrow \ell_{r}$.

To verify that it is projective, we use a preceding result in the form

$$
P_{1} P_{2} P_{4} P_{9} P_{13} P_{19} \stackrel{P_{8}}{\bar{\wedge}} P_{0} P_{29} P_{28} P_{9} P_{5} P_{15} \bar{\wedge} \ell_{1} \ell_{2} \ell_{4} \ell_{9} \ell_{13} \ell_{19} .
$$

Being of period 2, it is a polarity.
Since P_{0} lies on ℓ_{0}, it is a hyperbolic polarity, and determines a conic.

- By Steiner's Construction, we see that the number of points on a conic (in any finite projective plane) is equal to the number of lines through a point, in the present case 6.
By inspecting the incidence table, or by halving the residues $0,1,3,8$, $12,18(\bmod 31)$, we see that the conic determined by the polarity $P_{r} \leftrightarrow \ell_{r}$ consists of the 6 points and 6 lines $P_{0} P_{4} P_{6} P_{9} P_{19} P_{17}$, $\ell_{0} \ell_{4} \ell_{6} \ell_{9} \ell_{16} \ell_{17}$.

Tangents, Secants and Nonsecants

- The 6 lines $\ell_{0} \ell_{4} \ell_{6} \ell_{9} \ell_{16} \ell_{17}$ are the tangents;
- By joining the 6 points $P_{0} P_{4} P_{6} P_{9} P_{19} P_{17}$ in pairs, we obtain the $\binom{6}{2}=15$ secants
$\ell_{1}=P_{0} P_{17}, \quad \ell_{2}=P_{6} P_{16}, \quad \ell_{3}=P_{0} P_{9}, \quad \ell_{8}=P_{0} P_{4}, \quad \ell_{12}=P_{0} P_{6}$,
$\ell_{14}=P_{4} P_{17}, \quad \ell_{15}=P_{16} P_{17}, \quad \ell_{18}=P_{0} P_{16}, \quad \ell_{22}=P_{9} P_{17}, \quad \ell_{23}=P_{9} P_{16}$,
$\ell_{25}=P_{6} P_{9}, \quad \ell_{26}=P_{6} P_{17}, \quad \ell_{27}=P_{4} P_{16}, \quad \ell_{28}=P_{4} P_{6}, \quad \ell_{30}=P_{4} P_{9}$.
- It follows that the remaining 10 lines ℓ_{5}, $\ell_{7}, \ell_{10}, \ell_{11}, \ell_{13}, \ell_{19}, \ell_{20}, \ell_{21}, \ell_{24}$, ℓ_{29} are nonsecants, each containing an elliptic involution of conjugate points.

- Any two conjugate points on a secant or nonsecant determine a self-polar triangle.
- For instance, the secant ℓ_{1}, containing the hyperbolic involution $\left(P_{0} P_{0}\right)\left(P_{17} P_{17}\right)$ or $\left(P_{2} P_{30}\right)\left(P_{7} P_{11}\right)$, is a common side of the two self-polar triangles $P_{1} P_{2} P_{30}, P_{1} P_{7} P_{11}$.
These two triangles are of different types:
- Of the former, all three sides $\ell_{1}, \ell_{2}, \ell_{30}$ are secants;
- The sides ℓ_{7} and ℓ_{11} of the latter are nonsecants.

We speak of triangles of the first type and second type, respectively.

- Since each of the 15 secants belongs to one self-polar triangle of either type, there are altogether
- 5 triangles of the first type;
- 15 triangles of the second type.
- These properties of a conic are amusingly different from what happens in real geometry, where the sides of a self-polar triangle always consist of two secants and one nonsecant.

Polarities Through a Triangle a Polar Pair

- There are, of course, many ways to express a given polarity by a symbol of the form $(A B C)(P p)$;
- For example, the polarity $P_{r} \leftrightarrow \ell_{r}$ is $\left(P_{1} P_{2} P_{30}\right)\left(P_{3} \ell_{3}\right)$ or $\left(P_{1} P_{7} P_{11}\right)\left(P_{3} \ell_{3}\right)$ or $\left(P_{1} P_{7} P_{11}\right)\left(P_{4} \ell_{4}\right)$.
- Such symbols will enable us to find the total number of polarities:
- If $A B C$ is given, there are:
- 16 possible choices for P (not on any side);
- 16 possible choices for p (not through a vertex);

So there are $16^{2}=256$ available symbols $(A B C)(P p)$ for polarities in which $A B C$ is self-polar.

- Of the 16 lines, each contains 3 of the 16 points.

Thus, just 48 of the 256 symbols have P lying on p, as in the case of $\left(P_{1} P_{7} P_{11}\right)\left(P_{4} \ell_{4}\right)$.

All Polarities in PG $(2,5)$ are Hyperbolic

Theorem

There are no elliptic polarities in $\operatorname{PG}(2,5)$.

- Suppose that the self-polar triangle is of the first type (with every side a secant).
Then, all the six points on the conic are on sides of the triangle. Hence, P never lies on p. Each hyperbolic polarity (with $A B C$ of this type) is named 16 times by a symbol $(A B C)(P p)$ with P not on p.
- Suppose only one side is a secant.

Then 2 of the 6 points are on this side and the remaining 4 are among the 16. Therefore each hyperbolic polarity (with $A B C$ of the second type) is named:

- 4 times with P on p;
- 12 times with P not on p.
- Conversely, if P lies on $p, A B C$ can only be of the second type. Therefore the number of such hyperbolic polarities (each accounting for 4 of the 48 symbols) is 12.
Since each hyperbolic polarity (or conic) has 5 self-polar triangles of the first type and 15 of the second, the number of hyperbolic polarities in which a given triangle $A B C$ is of the first type is one-third of 12 , that is, 4 .
The total number of symbols $(A B C)(P p)$ that denote hyperbolic polarities is thus

$$
\underbrace{48}_{P \text { on } p}+\underbrace{16}_{P \text { not on } p} \cdot \underbrace{4}_{A B C \text { of type I }}+\underbrace{12}_{P \text { not on } p} \cdot \underbrace{12}_{A B C \text { of type II }}=256
$$

Since we have accounted for all the available symbols, there are no elliptic polarities in $\mathrm{PG}(2,5)$.

Number of Triangles and Conics

- The total number of triangles in PG $(2,5)$ can be found as follows:
- There are 31 choices for the first vertex;
- There are 30 choices for the second vertex;
- There are $31-6=25$ choices for the third vertex;

The three vertices can be permuted in $3!=6$ ways.
Hence, the number of triangles is $\frac{31 \cdot 30 \cdot 25}{6}=31 \cdot 125=3875$.

- We now compute the number of conics:
- Each conic has 5 self-polar triangles of the first type.
- Each triangle plays this role for 4 conics.

Therefore, the number of conics is $\frac{31 \cdot 125 \cdot 4}{5}=3100$.

