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Coordinates The Idea of Analytic Geometry

Subsection 1

The Idea of Analytic Geometry
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Coordinates The Idea of Analytic Geometry

Coordinates for Projective Geometry

For Euclidean geometry we use the classical “non-homogeneous”
coordinates, which may be illustrated by the description of a point in
ordinary space (with reference to a chosen origin) as being at
distances x1 east, x2 north, and x3 up.

For projective geometry it is more convenient to use “homogeneous
coordinates”, which may be illustrated by the description of a point in
a plane (with reference to a triangle A1A2A3) as being at the center of
gravity of masses x1 at A1, x2 at A2, and x3 at A3.

The important idea is to take an ordered set of numbers (x1,x2,x3)
and call it a point.

The “numbers” that we use may be thought of as real numbers.

However, they can be the elements of any commutative field in which
1+1 6= 0.

In particular, they can form a finite field (thus, related to finite
projective geometries).
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Coordinates The Idea of Analytic Geometry

Points and Lines in the Projective Plane

In order to be able to interpret lines as well as points, we consider two
types of ordered triads of numbers:

(x1,x2,x3);
[X1,X2,X3].

We exclude the “trivial” triads (0,0,0), [0,0,0];

We regard two triads of the same type as being equivalent (that is,
geometrically indistinguishable) if they are proportional, i.e., for all
λ 6= 0,

(x1,x2,x3) is equivalent to (λx1,λx2,λx3);
[X1,X2,X3] is equivalent to [λX1,λX2,λX3].

With two triads of opposite types we associate a single number, their
“ inner product”

{xX } = {Xx} =X1x1+X2x2+X3x3,

which may be zero.
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Coordinates Definitions

Subsection 2

Definitions
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Coordinates Definitions

Points and Lines

A point is the set of all triads equivalent to a given triad (x1,x2,x3).

In other words, a point is an ordered set of three numbers (x1,x2,x3),
not all zero, with the understanding that (λx1,λx2,λx3) is the same
point for any nonzero λ.

Example: (2,3,6) is a point, and (−1
3

,−
1
2

,−1) is another way of
writing the same point.

A line is the set of all triads equivalent to a given triad [X1,X2,X3].

In other words, a line is defined in the same manner as a point, but
with square brackets instead of ordinary parentheses, and with capital
letters to represent the three numbers.

Example: [3,2,−2] is a line, and [−1,−
2
3

,
2
3
] is the same line.

We will see that the point (x1,x2,x3) and the line [x1,x2,x3] (with the
same x ’s) are related by a polarity.
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Coordinates Definitions

Incidence and Coordinates

The point (x)= (x1,x2,x3) and line [X ]= [X1,X2,X3] are said to be
incident (the point lying on the line and the line passing through the
point) if and only if

{xX } = 0.

Example: (2,3,6) lies on [3,2,−2].

Any discussion can be dualized by interchanging small and capital
letters, round and square brackets.

The three numbers xi are called the coordinates (or “homogeneous

coordinates”, or “projective coordinates”) of the point (x).

The three numbers Xi are called the coordinates (or “ line

coordinates”, or “envelope coordinates”, or “tangential

coordinates”) of the line [X ].
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Coordinates Definitions

Equations of Lines and Points

If (x) is a variable point on a fixed line [X ], we call {Xx} = 0 the
equation of the line [X ], because it is a characteristic property of
points on the line.

Claim: The line [3,2,−2] has the equation

3x1+2x2−2x3 = 0, or 3x1+2x2 = 2x3.

Dually, if [X ] is a variable line through a fixed point (x), we call
{xX } = 0 (which is the same as {Xx} = 0) the equation of the point

(x), because it is a characteristic property of lines through the point.

Example:

The point (2,3,6) has the equation 2X1+3X2+6X3 = 0;
The point (1,0,0) has the equation X1 = 0.

Thus, the coordinates of a line or point are the coefficients in its
equation (with zero for any missing term).
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Coordinates Definitions

Triangle of Reference

The three points (1,0,0), (0,1,0),
(0,0,1), or Xi = 0, i = 1,2,3, and the
three lines [1,0,0], [0,1,0], [0,0,1], or
xi = 0, are evidently the vertices and
sides of a triangle. We call this the
triangle of reference.

The point (1,1,1) and line [1,1,1] are called the unit point and unit

line.

The key features are:

The point does not lie on a side;
The line does not pass through a vertex;
The point is the trilinear pole of the line.
Recall this means that the line passes through the points of
intersection of corresponding sides of the original triangle and the
triangle formed by the foots of the Cevians through the point.

George Voutsadakis (LSSU) Projective Geometry August 2020 10 / 52



Coordinates Definitions

Collinearity of Points

By eliminating X1,X2,X3 from the equations

{xX } = 0, {yX } = 0, {zX } = 0

of three given points (x), (y), (z), we find the necessary and sufficient
condition

∣

∣

∣

∣

∣

∣

x1 x2 x3

y1 y2 y3

z1 z2 z3

∣

∣

∣

∣

∣

∣

= 0

for the three points to be collinear.

This condition is equivalent to the existence of numbers λ,µ,ν, not all
zero, such that

λxi +µyi +νzi = 0, i = 1,2,3.
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Coordinates Definitions

Relative Positions of Collinear Points

Suppose (x),(y),(z) are collinear, i.e., λxi +µyi +νzi = 0, i = 1,2,3.
If (y) and (z) are distinct points, λ 6= 0.
Hence, the general point collinear with (y) and (z) is

(µy1+νz1,µy2 +νz2,µy3+νz3) or (µy +νz),

where µ and ν are not both zero.
When ν= 0, this is the point (y) itself.

For any other position, since (νz) is the same point as (z), we can

allow the coordinates of (z) to absorb the ν, and the point collinear

with (y) and (z) is simply (µy +z).
If we are concerned with only one such point, we may allow the µ to be

absorbed too; thus three distinct collinear points may be expressed as

(y), (z), (y +z).
The last simplification cannot be effected simultaneously on two lines if

thereby one point would have to absorb two different parameters.

The symbol (µy +z) can be made to include every point on the line
(y)(z) if we adopt the convention that (y) is (µy +z) with µ=∞.
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Coordinates Definitions

Concurrent Lines

Dually, the condition for three lines [X ], [Y ], [Z ] to be concurrent is

∣

∣

∣

∣

∣

∣

X1 X2 X3

Y1 Y2 Y3

Z1 Z2 Z3

∣

∣

∣

∣

∣

∣

= 0.

The general line concurrent with [Y ] and [Z ] is [µY +νZ ];

A particular line concurrent with [Y ] and [Z ], but distinct from them,
may be expressed as [Y +Z ].
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Coordinates Verifying the Axioms for the Projective Geometry

Subsection 3

Verifying the Axioms for the Projective Geometry
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Coordinates Verifying the Axioms for the Projective Geometry

Axiom 3 and New Axiom 1

To show that this analytic geometry provides a model for the synthetic
geometry developed in earlier chapters, we must verify that Axiom 3,
New Axioms 1, 2, and Axioms 7, 8 are all satisfied.

The first two can be verified as follows: Two points (y)= (y1,y2,y3)
and (z)= (z1,z2,z3) are joined by the line

[∣

∣

∣

∣

y2 y3

z2 z3

∣

∣

∣

∣

,

∣

∣

∣

∣

y3 y1

z3 z1

∣

∣

∣

∣

,

∣

∣

∣

∣

y1 y2

z1 z3

∣

∣

∣

∣

]

.

Two lines [Y ]= [Y1,Y2,Y3] and [Z ]= [Z1,Z2,Z3] meet in the point

(∣

∣

∣

∣

Y2 Y3

Z2 Z3

∣

∣

∣

∣

,

∣

∣

∣

∣

Y3 Y1

Z3 Z1

∣

∣

∣

∣

,

∣

∣

∣

∣

Y1 Y2

Z1 Z3

∣

∣

∣

∣

)

.
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Coordinates Verifying the Axioms for the Projective Geometry

New Axiom 2 and Axiom 7

To verify New Axiom 2 and Axiom 7, we consider a quadrangle PQRS

whose first three vertices (p),(q),(r) satisfy

∣

∣

∣

∣

∣

∣

p1 p2 p3

q1 q2 q3

r1 r2 r3

∣

∣

∣

∣

∣

∣

6= 0. Since

the side PS joins (p) to the diagonal point A=QR ·PS , we may take:
A (on, QR , but distinct from Q and R) to be (q+ r);
S (on PA, but distinct from P and A) to be (p+q+ r), meaning
(p1+q1+ r1,p2+q2+ r2,p3+q3+ r3).

Then B , on both RP and QS , must be (r +p).

C , on both PQ and RS , must be (p+q).

The three diagonal points A,B ,C are noncollinear since

∣

∣

∣

∣

∣

∣

q1+ r1 q2+ r2 q3+ r3
r1+p1 r2+p2 r3+p3

p1+q1 p2+q2 p3+q3

∣

∣

∣

∣

∣

∣

= 2

∣

∣

∣

∣

∣

∣

p1 p2 p3

q1 q2 q3

r1 r2 r3

∣

∣

∣

∣

∣

∣

6= 0.
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Coordinates Verifying the Axioms for the Projective Geometry

Axiom 8

Let the first triangle PQR and the center of perspective O be
(p)(q)(r) and (u). There is no loss of generality in taking the second
triangle P ′Q ′R ′ to be (p+u)(q+u)(r +u).

The point D =QR ·Q ′R ′, being collinear with (q) and (r) and also
with (q+u) and (r +u), can only be (q− r).

Similarly, E is (r −p), and F is (p−q).

These points D ,E ,F are collinear since

∣

∣

∣

∣

∣

∣

q1− r1 q2− r2 q3− r3
r1−p1 r2−p2 r3−p3

p1−q1 p2−q2 p3−q3

∣

∣

∣

∣

∣

∣

= 0

or, more simply, since (qi − ri )+ (ri −pi )+ (pi −qi )= 0, i = 1,2,3.
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Coordinates Verifying the Axioms for the Projective Geometry

Axiom 8 (Cont’d)

When a range of points P arises as a section of a pencil of lines p, the
“elementary correspondence” P ⊼p may be described as relating three
positions of P , say (y),(z),(y +z) to three positions of p, say
[Y ], [Z ], [Y +Z ].

Claim: From the information that P and p are incident in these three
cases, we can deduce that, when P is (µy +z), p is [µY +Z ] with the
same µ.

Since
{(Y +Z )(y +z)} = {Yy }+ {Yz }+ {Zy }+ {Zz },

the three given incidences imply {Yy } = 0, {Zz } = 0, {Yz }+ {Zy } = 0,
whence

{(µY +Z )(µy +z)} =µ2
{Yy }+µ({Yz }+ {Zy })+ {Zz } = 0,

Thus, the line [µY +Z ] is indeed incident with the point (µy +z).
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Coordinates Verifying the Axioms for the Projective Geometry

Axiom 8 (Conclusion)

Repeated application of the claim shows that the relation

(y)(z)(y +z)(µy +z)⊼ [Y ][Z ][Y +Z ][µY +Z ]

holds not only for an elementary correspondence but for any
projectivity from a range to a pencil;

And of course we have also

(y)(z)(y +z)(µy +z) ⊼ (y ′)(z ′)(y ′+z ′)(µy ′+z ′),

[Y ] [Z ][Y +Z ][µY +Z ] ⊼ [Y ′][Z ′][Y ′+Z ′][µY ′+Z ′].

This is the algebraic version of the Fundamental Theorem.

From this, Axiom 8 can be deduced as a special case.
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Coordinates Projective Collineations

Subsection 4

Projective Collineations
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Coordinates Projective Collineations

Barycentric Coordinates of a Point

The condition

∣

∣

∣

∣

∣

∣

p1 p2 p3

q1 q2 q3

r1 r2 r3

∣

∣

∣

∣

∣

∣

6= 0 makes (p),(q),(r) noncollinear, so

that they form a triangle.

This triangle enables us to describe the position of any point by means
of barycentric coordinates λ,µ,ν, which are the coefficients in the
expression (λp+µq+νr).

Points on a side of the triangle can be included by allowing λµν= 0;
When µ= ν= 0, we have the point (p) itself.

When (p)(q)(r) and (p+q+ r) are the triangle of reference and unit
point, (λp+µq+µr) is (λ,µ,ν), and the barycentric coordinates are
the same as the ordinary coordinates.
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Coordinates Projective Collineations

The General Projective Collineation

The correspondence (x)→ (x ′), where







x ′
1

= p1x1+q1x2+ r1x3
x ′
2

= p2x1+q2x2+ r3x3
x ′
3

= p3x1+q3x2+ r3x3
transforms (λ,µ,ν) into (λp+µq+νr) having same barycentric
coordinates referred to (p)(q)(r) instead of (1,0,0)(0,1,0)(0,0,1).

Under the hypothesis
∣

∣

∣

∣

∣

∣

p1 p2 p3
q1 q2 q3
r1 r2 r3

∣

∣

∣

∣

∣

∣

6= 0, the preceding system can be

solved for the xs in terms of the x ′s, whence this is a point-to-point
correspondence;
Since {X ′x ′} = 0 is equivalent to {X ′p}x1+ {X ′q}x2+ {X ′r }x3 = 0, it is a
collineation;
Since it transforms (0,µ,ν) into (µq+νr), it is projective.

It transforms (1,0,0)(0,1,0)(0,0,1)(1,1,1) into (p)(q)(r)(p+q+ r),
which may be identified with any given quadrangle by a suitable choice
of p’s, q’s and r ’s.

So it is the general projective collineation.
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Coordinates Projective Collineations

Alibis and Aliases

The general projective collineation, which shifts the points (x) to new
positions (x ′), is the active or alibi aspect of the linear
transformation.

A passive or alias aspect is a coordinate transformation that gives a
new name to each point:

We may regard (p)(q)(r) as a new triangle of reference, with respect
to which the point that we have been calling (x ′) has coordinates
(x1,x2,x3), whereas its coordinates with respect to the original triangle
are, of course, (x ′1,x ′2,x ′3).
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Coordinates Projective Collineations

Usefulness of Aliases

Practical consequences of the “alias” aspect:

A triangle and a point of general position may be taken to be the
triangle of reference and unit point.
A given quadrangle may be taken to have vertices (1,±1,±1), so that
the six sides have equations xi ±xj = 0, i < j , and the diagonal triangle
is the triangle of reference.
A given quadrilateral may be taken to have sides [1,±1,±1] and
vertices Xi ±Xj = 0.
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Coordinates Projective Collineations

Line-to-Line Aspect of Collineations and Incidence

A collineation is not only a point-to-point transformation but also a
line-to-line transformation. This aspect is expressed by

X1 = {pX ′
}, X2 = {qX ′

}, X3 = {rX ′
}.

A more systematic notation for the same two sets of equations is

ρx ′
i

= ci1x1+ci2x2+ci3x3 =
∑

cijxj , i = 1,2,3,

σXj = c1jX
′
1+c2jX

′
2+c3jX

′
3 =

∑

cijX
′

i
, j = 1,2,3,

where ρσ 6= 0 and

∣

∣

∣

∣

∣

∣

c11 c12 c13
c21 c22 c23
c31 c32 c33

∣

∣

∣

∣

∣

∣

6= 0.

The preservation of incidence is verified as follows:

ρ{X ′x ′} = ρ
∑

X ′

i x
′

i =
∑∑

cijX
′

i xj =σ
∑

Xjxj =σ{Xx}.

Since our coordinates are homogeneous, there are many occasions
when we can omit the ρ and σ, i.e., set ρ =σ= 1.
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Coordinates Projective Collineations

Invariance

Since ρx ′
i
=

∑

cijxj , i = 1,2,3, the invariant points x ′
i
= xi are given by

ρxi =
∑

cijxj , i = 1,2,3.

Eliminating the x ’s from these three equations, we obtain

∣

∣

∣

∣

∣

∣

c11 −ρ c12 c13
c21 c22−ρ c23
c31 c32 c33−ρ

∣

∣

∣

∣

∣

∣

= 0.

Any root ρ of this characteristic equation makes the three equations
for the x ’s consistent, and then we can solve any two of them to
obtain the coordinates of an invariant point.
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Coordinates Projective Collineations

Example: A Homology

Consider the collineation

ρx ′1 = x1, ρx ′2 = x2, ρx ′3 =µ−1x3, µ 6= 1.

It has the characteristic equation

(ρ−1)2(ρ−µ−1)= 0.

The double root ρ = 1 yields the range of invariant points (x1,x2,0);

The remaining root ρ =µ−1 yields the isolated invariant point (0,0,1).

By preceding results, this collineation is a homology with center
(0,0,1) and axis [0,0,1].
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Coordinates Projective Collineations

Example: An Elation

Consider the collineation

ρx ′1 = x1+a1x3, ρx ′2 = x2+a2x3, ρx ′3 = x3.

It has the characteristic equation

(ρ−1)3 = 0.

If a1 and a3 are not both zero, the triple root ρ = 1 yields the range of
invariant points (x1,x2,0) and no others.

By preceding results, this collineation is an elation with axis [0,0,1].

Since the equation a2x
′
1−a1x

′
2 = 0 implies a2x1−a1x2 = 0, there is an

invariant line (other than [0,0,1]) through the point (a1,a2,0). Hence,
this point is the center of the elation.
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Coordinates Projective Collineations

Homology and Elation as Line-to-Line Transformations

We compare the two parts of

ρx ′
i

= ci1x1+ci2x2+ci3x3 =
∑

cijxj , i = 1,2,3,

σXj = c1jX
′
1+c2jX

′
2+c3jX

′
3 =

∑

cijX
′

i
, j = 1,2,3.

The expression for the homology

ρx ′1 = x1, ρx ′2 = x2, ρx ′3 =µ−1x3, µ 6= 1,

as a line-to-line transformation is

σX1 =X ′

1, σX2 =X ′

2, σX3 =µ−1X ′

3

or, taking σ= 1, for convenience, and solving,

X ′

1 =X1, X ′

2 =X2, X ′

3 =µX3.

The elation
ρx ′1 = x1+a1x3, ρx ′2 = x2+a2x3, ρx ′3 = x3,

qua line-to-line transformation, is

X ′

1 =X1, X ′

2 =X2, X ′

3 =X3−a1X1−a2X2.
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Coordinates Polarities

Subsection 5

Polarities
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Coordinates Polarities

The General Projective Correlation

The product of two correlations (e.g., a polarity and another projective
correlation) is a collineation.

Thus, any given projective correlation can be exhibited as the product
of an arbitrary polarity and a suitable projective collineation.

The most convenient polarity for this purpose is the one that
transforms each point (or line) into the line (or point) that has the
same coordinates (it is obviously projective, and of period 2).
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Coordinates Polarities

The General Projective Correlation: Coordinates

Combining the general projective collineation

ρx ′
i

= ci1x1+ci2x2+ci3x3 =
∑

cijxj , i = 1,2,3,

σXj = c1jX
′
1+c2jX

′
2+c3jX

′
3 =

∑

cijX
′

i
, j = 1,2,3.

with the polarity that interchanges X ′

i
and x ′

i
, we obtain the general

projective correlation in the form

ρX ′

i
= ci1x1+ci2x2+ci3x3 =

∑

cijxj , i = 1,2,3,

σXj = c1jx
′
1+c2jx

′
2+c3jx

′
3 =

∑

cijx
′

i
, j = 1,2,3.

where again the coefficients satisfy the nonzero determinant property.

Incidences are dualized in the proper manner for a correlation, since

ρ{X ′x ′} =ρ
∑

X ′

i x
′

i =
∑∑

cijx
′

i xj =σ
∑

Xjxj =σ{Xx}.
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Coordinates Polarities

Incidence and Polarities

The projective correlation is a polarity if it is equivalent to the inverse
correlation σX ′

j
=

∑

cijxi or (interchanging i and j)

σX ′

i =
∑

cjixj .

This gives cji =
σ
ρ
cij , with the same σ

ρ
, for all i and j .

Hence, since the cij are not all zero, cij =
σ
ρ cij = (σρ )

2cij .

So (σρ )
2 = 1, whence σ

ρ =±1.

The minus sign is inadmissible, as that would make cji =−cij , and

∣

∣

∣

∣

∣

∣

c11 c12 c13
c21 c22 c23
c31 c32 c33

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

0 c12 −c31
−c12 0 c23
c31 −c23 0

∣

∣

∣

∣

∣

∣

= 0.

Hence σ= ρ and cji = cij .

In other words, a projective correlation is a polarity if and only if the
matrix of coefficients cij is symmetric.
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Coordinates Polarities

Polar and Pole

By the nature of a polarity, no confusion can be caused by omitting
the prime

Xi =
∑

cijxj , i = 1,2,3,

where cij = cji and det(cij )=∆ 6= 0.

These equations give us the polar [X ] of a given point (x).

Solving them, we obtain the pole (x) of a given line [X ] in the form

∆xi =
∑

CijXj , i = 1,2,3,

where Cij is the cofactor of cij in the determinant ∆.
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Coordinates Polarities

Conjugates

Two points (x) and (y) are conjugate if (x) lies on the polar [Y ] of
(y). Since Yi =

∑

cijyj , the condition {Yx} = 0 or
∑

Yixi = 0 becomes

∑∑

cijxiyj = 0,

which we shall sometimes write in the abbreviated form (xy)= 0.

Letting (x) vary, we see that this is the equation of the polar of (y).

Dually, the condition for lines [X ] and [Y ] to be conjugate, or the
equation of the pole of [Y ], is [XY ]= 0, where

[XY ]=
∑∑

CijXiYj .
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Coordinates Polarities

Obtaining a Canonical Form

As a particular case of (xy)= 0, the condition for (0,1,0) and (0,0,1)
to be conjugate is c23 = 0.

Thus the triangle of reference is self-polar if and only if
c23 = c31 = c12 = 0.

By choosing any self-polar triangle as triangle of reference, we reduce
a given polarity to its canonical form

Xi = ciixi , c11c22c33 6= 0,

or, more conveniently,

X1 = ax1, X2 = bx2, X3 = cx3, abc 6= 0.

This is the polarity (ABC )(Pp), where ABC is the triangle of
reference, P is (1,1,1), and p is [a,b,c].
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Coordinates Conics

Subsection 6

Conics
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Coordinates Conics

General Equation for Conics

Consider the polarity

Xi =
∑

cijxj , i = 1,2,3, cij = cji , det(cij )=∆ 6= 0.

The condition for a point (x) to be self-conjugate is (xx)= 0, or

c11x
2
1 +c22x

2
2 +c33x

2
3 +2c23x2x3+2c31x3x1+2c12x1x2 = 0.

Dually, the condition for a line [X ] to be self-conjugate is [XX ]= 0, or

C11X
2
1 +C22X

2
2 +C33X

2
3 +2C23X2X3+2C31X3X1+2C12X1X2 = 0.

Hence every conic (locus or envelope) has such an equation.
Using the standard form

X1 = ax1, X2 = bx2, X3 = cx3,

every conic for which the triangle of reference is self-polar has an
equation of the form

ax2
1 +bx2

2 +cx2
3 = 0 or a−1X 2

1 +b−1X 2
2 +c−1X 2

3 = 0.
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Coordinates Conics

Existence of Elliptic Polarities

The polarity

Xi =
∑

cijxj , i = 1,2,3, cij = cji , det(cij )=∆ 6= 0,

is hyperbolic or elliptic according as the equation (xx)= 0 does or does
not have a solution (other than x1 = x2 = x3 = 0).
The distinction depends on the coordinate field.

If this is the field of complex numbers, every such equation can be
solved.
Example: The equation x2

1
+x2

2
+x2

3
= 0 is satisfied by (1, i ,0).

Over such a field, every polarity is hyperbolic.
In the case of the field of real numbers, on the other hand, the
quadratic form (xx) may be “definite”, in which case the polarity (for
instance, Xi = xi ) is elliptic.

Some particular equations represent conics regardless of the field.

Example: The equation x2
1 +x2

2 −x2
3 = 0, being satisfied by (1,0,1),

cannot fail to represent a conic.
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Coordinates Conics

Triangle and Circumscribed Conic

Since the condition for the conic (xx)= 0 to pass through (1,0,0) is
c11 = 0, the most general conic circumscribing the triangle of reference
is

c23x2x3+c31x3x1+c12x1x2 = 0.

The coordinate transformation

x1 → c23x1, x2 → c31x2, x3 → c12x3

converts this into
x2x3+x3x1+x1x2 = 0.

Thus, in any problem concerning a triangle and a circumscribed conic,
the conic can be expressed in this simple form.

George Voutsadakis (LSSU) Projective Geometry August 2020 40 / 52



Coordinates Conics

Envelop, Conic Inscribed in a Triangle

Working out the cofactors in the determinant, we obtain the envelope
equation

X 2
1 +X 2

2 +X 2
3 −2X2X3−2X3X1−2X1X2 = 0

or
X

1/2
1

±X
1/2
2

±X
1/2
3

= 0.

Dually, a conic inscribed in the triangle of reference is

X2X3+X3X1+X1X2 = 0

or
x

1/2
1

±x
1/2
2

±x
1/2
3

= 0.
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Coordinates The Analytic Geometry PG(2,q)

Subsection 7

The Analytic Geometry PG(2,q)
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Coordinates The Analytic Geometry PG(2,q)

The Projective Plane PG(2,q)

If q is any power of a prime, there is a field having just q elements.

A famous theorem tells us that a finite field must necessarily be
commutative.

We saw that our coordinates can belong to any such field, provided q

is odd (i.e., not a power of 2), since, if q = 2k , the determinant of the
coordinates of A,B ,C , being twice the determinant of the coordinates
of P ,Q ,R , must be zero.

We also saw that all the points on the general line (y)(z) can be
expressed in the form (µy +z), where µ runs over all the elements of
the field and the extra element ∞, which yields (y).

Hence the field with q elements (q a power of an odd prime) yields the
finite projective plane with q+1 points on each line, that is, PG(2,q).

In an n-dimensional geometry such as PG(n, q), a point has n + 1
coordinates.

George Voutsadakis (LSSU) Projective Geometry August 2020 43 / 52



Coordinates The Analytic Geometry PG(2,q)

Number of Points and Number of Lines

In PG(2,q), the number of coordinate symbols (x1,x2,x3), with q

possible values for each xi , is q3.

From this number we subtract 1, since the symbol (0,0,0) has no
geometric meaning.

Moreover, each point (x) is the same as (λx), for q−1 values of λ,
namely all the nonzero elements of the field.

We compute again that the number of points in the plane is

q3−1

q−1
= q2

+q+1.

For each point (x), there is a corresponding line [x ];

So the number of lines is the same.
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Coordinates Cartesian Coordinates

Subsection 8

Cartesian Coordinates
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Coordinates Cartesian Coordinates

Affine Geometry

The analytic treatment can also be carried out in two dimensions.

Consider the affine plane, that is, the ordinary plane of elementary
geometry, in which two lines are said to be parallel if they do not
meet.

We regard this as part of the projective plane, namely, the projective
plane minus one line: “the line at infinity”.

Two lines are said to be parallel if they meet on this special line.

The apparent inconsistency, of saying that parallel lines meet and yet
do not meet, is resolved by regarding the affine plane as being derived
from the projective plane by omitting the special line (and all its
points) while retaining the consequent concept of parallelism.

This modification of projective geometry is called affine geometry.
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Coordinates Cartesian Coordinates

Affine Coordinates

When coordinates are used, it is convenient to take the line at infinity
to be [0,0,1] or x3 = 0, so that the points at infinity are just all the
points (x) for which the third coordinate is zero.

The points of the affine plane are thus all the points (x) for which the
third coordinate is not zero.

By a suitable multiplication (if necessary), any such point can be
expressed in the form (x1,x2,1), which can be shortened to (x1,x2).

The two numbers x1 and x2 are called the affine coordinates of the
point.

In other words, if x3 6= 0, the point (x1,x2,x3) of the projective plane
can be regarded as the point (x1

x3
,
x2

x3
) of the affine plane.
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Coordinates Cartesian Coordinates

Equations of Loci

The equation of any locus can be made into the corresponding
equation in affine coordinates by setting x3 = 1.

In particular:

The line [X ] has the equation X1x1+X2x2+X3 = 0;
A pencil of parallel lines is obtained by fixing X1 and X2 (or, more
precisely, the ratio X1 :X2) while allowing X3 to take various values.
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Coordinates Cartesian Coordinates

The Triangle of Reference

The first two sides of the triangle of reference have become the
coordinate axes:

The x2-axis x1 = 0 (along which x2 varies);
The x1-axis x2 = 0 (along which x1 varies).

The third side, x3 = 0, is the line at infinity.

The first two vertices are the points at infinity on the axes: (1,0,0) on
the x1-axis; (0,1,0) on the x2-axis.

The third vertex is the origin (0,0), where the two axes meet.
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Coordinates Cartesian Coordinates

Central Dilatations and Translations

The homology ρx ′1 = x1, ρx
′
2 = x2, ρx

′
3 =µ−1x3, becomes a

transformation of affine coordinates

x ′1 =µx1, x ′2 =µx2,

when we set x3 = x ′3 = 1, which requires ρ =µ−1.

Similarly, the elation ρx ′1 = x1+a1x3, ρx
′
2 = x2+a2x3, ρx

′
3 = x3, with

ρ = 1, becomes
x ′1 = x1+a1, x ′2 = x2+a2.

In either case, every line is transformed into a parallel line, i.e.,
directions are preserved.

The homology leaves the origin invariant and multiplies the coordinates
of every point by µ; we call this a central dilatation.
The elation, leaving no (proper) point invariant, is a translation (or
“parallel displacement”).

These two affine transformations enable us to define relative distances
along one line, or along parallel lines; but affine geometry provides no
comparison for distances in different directions.
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Coordinates Cartesian Coordinates

Hyperbolas, Parabolas and Ellipses

A conic is called a hyperbola, a parabola, or an ellipse, according as
the line at infinity is a secant, a tangent, or a nonsecant.

This agrees with the classical definitions:
A hyperbola “goes off to infinity” in two directions;
A parabola in one direction;
The ellipse not at all.

The pole of the line at infinity is called the center of the conic.

In the case of a hyperbola, this is an exterior point, and the two
tangents that can be drawn from it are the asymptotes, whose points
of contact are at infinity.

We have:
x1x2 = 1 is a hyperbola;
x2
1
−x2

2
= 1 is also a hyperbola;

x2
2
= x1 is a parabola;

In real geometry, x2
1
+x2

2
= 1 is an ellipse.

George Voutsadakis (LSSU) Projective Geometry August 2020 51 / 52



Coordinates Cartesian Coordinates

From Affine to Euclidean Geometry

To pass from affine geometry to Euclidean geometry we select,
among all the ellipses centered at the origin, a particular one, and call
it the unit circle.

This provides units of measurement in all directions.

To pass from affine coordinates to Cartesian coordinates we choose, as
unit circle, the ellipse x2

1 +x2
2 = 1.

The dilatation x ′
1
=µx1, x

′

2
=µx2 transforms this into a circle of radius

µ:
x2
1 +x2

2 =µ2
.

The translation x ′
1
= x1+a1, x

′

2
= x2+a2 then yields the general circle

(x1−a1)
2
+ (x2−a2)

2
=µ2

.
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