Introduction to Projective Geometry

George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science
Lake Superior State University

LSSU Math 400

(1) Triangles and Quadrangles

- Axioms
- Simple Consequences of the Axioms
- Perspective Triangles
- Quadrangular Sets
- Harmonic Sets

Subsection 1

Axioms

- We assume the three primitive concepts point, line, and incidence.
- We have already defined the words plane, quadrangle, and projectivity in terms of the primitive concepts.

Axiom 1 There exist a point and a line that are not incident.
Axiom 2 Every line is incident with at least three distinct points.
Axiom 3 Any two distinct points are incident with just one line.
Axiom 4 If A, B, C, D are four distinct points such that $A B$ meets $C D$, then $A C$ meets $B D$.
Axiom 5 If $A B C$ is a plane, there is at least one point not in the plane $A B C$.
Axiom 6 Any two distinct planes have at least two common points.
Axiom 7 The three diagonal points of a complete quadrangle are never collinear.
Axiom 8 If a projectivity leaves invariant each of three distinct points on a line, it leaves invariant all points on the line.

|llustration of Axioms 4 and 7

Axiom 4 If A, B, C, D are four distinct points such that $A B$ meets $C D$, then $A C$ meets $B D$.

Axiom 7 The three diagonal points of a complete quadrangle are never collinear.

Subsection 2

Simple Consequences of the Axioms

On Axiom 4

- The first departure from Euclidean geometry appears in Axiom 4, which rules out the possibility that $A C$ and $B D$ might fail to meet by being "parallel".
- The axiom is Veblen's device for declaring that any two coplanar lines have a common point before defining a plane!

Suppose $A B \cdot C D=E$. Then B lies on $A E$ and D lies on $E C$. Hence, $B D$ lies on the plane $A E C$.

Pencils and Planes

- Given a triangle $A B C$, we can define a pencil of lines through C as consisting of all the lines $C X$, where X belongs to the range of points on $A B$.
- The first four axioms are all that we need in order to define the plane $A B C$ as a certain set of points and lines, namely,
- all the points on all the lines of the pencil;
- all the lines that join pairs of such points.
- We then find that the same plane is determined when we replace C by another one of the points, and $A B$ by one of the lines not incident with this point.
- Axiom 5 makes the geometry three-dimensional.
- Axiom 6 prevents it from being four-dimensional.

In fact, four-dimensional geometry would admit a pair of planes having only one common point!

- It follows that two distinct planes, α and β, meet in a line, which we call the line $\alpha \cdot \beta$.
- By Axiom 7, the diagonal points of a quadrangle form a triangle, called the diagonal triangle of the quadrangle.
- The plausibility of Axiom 8 will appear later, when we will prove, on the basis of the remaining seven axioms, that a projectivity having three invariant points leaves invariant, if not the whole line, so many of its points that they have the "appearance" of filling the whole line.

Intersection of Two Distinct Lines

Theorem

Any two distinct lines have at most one common point.

- Suppose, if possible, that two given lines have two common points A and B. Axiom 3 tells us that each line is determined by these two points. Thus, the two lines coincide, contradicting our assumption that they are distinct.

Intersection of Coplanar Lines

Theorem

Any two coplanar lines have at least one common point.

- Let E be a point coplanar with the two lines but not on either of them. Let $A C$ be one of the lines.

Since the plane $A C E$ is determined by the pencil of lines through E that meet $A C$, the other one of the two given lines may be taken to join two points on distinct lines of this pencil, say B on $E A$, and D on $E C$.

According to Axiom 4, the two lines $A C$ and $B D$ have a common point.

Intersecting Lines

Theorem

If two lines have a common point, they are coplanar.

- If two lines have a common point C, we may name them $A C, B C$. We conclude that they lie in the plane $A B C$.

Theorem

There exist four coplanar points of which no three are collinear.

- By our first three axioms, there exist two distinct lines having a common point and each containing at least two other points, say lines $E A$ and $E C$ containing also B and D, respectively.

The four distinct points A, B, C, D have the desired property of noncollinearity.
For instance, if the three points A, B, C were collinear, E (on $A B$) would be collinear with all of them, and $E A$ would be the same line as $E C$, contradicting our assumption that these two lines are distinct.

- Without this theorem, Axiom 7 might be "vacuous": it says that, if a complete quadrangle exists, its three diagonal points are not collinear.

Subsection 3

Perspective Triangles

Perspective Figures

- Two ranges or pencils are said to be perspective if they are related by a perspectivity.
- Two plane figures involving more than one point and more than one line are said to be perspective if
- their points can be put into one-to-one correspondence so that pairs of corresponding points are joined by concurrent lines, or
- their lines can be put into one-to-one correspondence so that pairs of corresponding lines meet in collinear points.
Example: The two triangles $P Q R$ and $P^{\prime} Q^{\prime} R^{\prime}$ are perspective: Corresponding vertices are joined by the three concurrent lines $P P^{\prime}, Q Q^{\prime}, R R^{\prime}$, or since corresponding sides meet in the three collinear points $D=Q R \cdot Q^{\prime} R^{\prime}, E=R P \cdot R^{\prime} P^{\prime}, F=$ $P Q \cdot P^{\prime} Q^{\prime}$.

Perspectivities of Arbitrary Figures

- We will see that either kind of correspondence implies the other.
- For now, we say that two figures are:
- perspective from a point O if pairs of corresponding points are joined by lines through O;
- perspective from a line o if pairs of corresponding lines meet on o.
- It is sometimes convenient to call O the center, and o the axis.
- Whenever we speak of perspective figures we assume that the points, and also the lines, are all distinct;
e.g., in the case of a pair of triangles, we assume that there are six distinct vertices and six distinct sides.

Perspectivity of Triangles

Theorem

If two triangles are perspective from a line they are perspective from a point.

- Let two triangles, $P Q R$ and $P^{\prime} Q^{\prime} R^{\prime}$, be perspective from a line o. In other words, let o contain three points D, E, F, such that D lies on both $Q R$ and $Q^{\prime} R^{\prime}, E$ on both $R P$ and $R^{\prime} P^{\prime}, F$ on both $P Q$ and $P^{\prime} Q^{\prime}$. We wish to prove that the three lines $P P^{\prime}, Q Q^{\prime}$, $R R^{\prime}$ all pass through one point O.
 We distinguish two cases, according as the given triangles are in distinct planes or both in one plane.

Perspectivity of Triangles Case (1)

According to Axiom 4, since $Q R$ meets $Q^{\prime} R^{\prime}, Q Q^{\prime}$ meets $R R^{\prime}$. Similarly, $R R^{\prime}$ meets $P P^{\prime}$, and $P P^{\prime}$ meets $Q Q^{\prime}$. Thus, the three lines $P P^{\prime}, Q Q^{\prime}, R R^{\prime}$ all meet one another. If the planes $P Q R$ and $P^{\prime} Q^{\prime} R^{\prime}$ are distinct, the three lines must be concurrent; for otherwise they would form a triangle, and this triangle
 would lie in both planes.

Perspectivity of Triangles Case (2)

- If $P Q R$ and $P^{\prime} Q^{\prime} R^{\prime}$ are in one plane, draw, in another plane through o, three nonconcurrent lines through D, E, F, respectively, so as to form a triangle $P_{1} Q_{1} R_{1}$, with $Q_{1} R_{1}$ through $D, R_{1} P_{1}$ through E, and $P_{1} Q_{1}$ through F. This triangle is perspective from o with both $P Q R$ and $P^{\prime} Q^{\prime} R^{\prime}$.

Perspectivity of Triangles Case (2) (Cont'd)

- By the result for noncoplanar triangles, the three lines $P P_{1}, Q Q_{1}, R R_{1}$ all pass through one point S, and the three lines $P^{\prime} P_{1}, Q^{\prime} Q_{1}, R^{\prime} R_{1}$ all pass through another point S^{\prime}.
The points S and S^{\prime} are distinct; for otherwise P_{1} would lie on $P P^{\prime}$ instead of being outside the original plane.
Since P_{1} lies on both $P S$ and $P^{\prime} S^{\prime}$, Axiom 4 tells us that $S S^{\prime}$ meets $P P^{\prime}$. Similarly $S S^{\prime}$ meets both $Q Q^{\prime}$ and $R R^{\prime}$. Hence, finally, the three lines $P P^{\prime}, Q Q^{\prime}, R R^{\prime}$ all pass through the point $O=P Q R \cdot S S^{\prime}$.

Desargues's Theorem

Desargues's Theorem

If two triangles are perspective from a point they are perspective from a line.

- Let two triangles, $P Q R$ and $P^{\prime} Q^{\prime} R^{\prime}$ (coplanar or noncoplanar) be perspective from a point O. We see from $A x-$ iom 4 that their three pairs of corresponding sides meet, say in D, E, F. It remains to be proved that these three points are collinear. Consider the two triangles $P P^{\prime} E$ and $Q Q^{\prime} D$.

Since pairs of corresponding sides meet in the three collinear points R^{\prime}, R, O, these triangles are perspective from a line. Therefore, they are perspective from a point, namely, from the point $P Q \cdot P^{\prime} Q^{\prime}=F$. That is, the three points E, D, F are collinear.

Subsection 4

Quadrangular Sets

Quadrangular Sets

- A quadrangular set is the section of a complete quadrangle by any line g that does not pass through a vertex.

It is thus, in general, a set of six collinear points, one point on each side of the quadrangle; but the number of points is reduced to five or four if the line happens to pass through one or two diagonal points.

- We use the symbol $(A D)(B E)(C F)$ to denote the statement that the six points A, B, C, D, E, F form a quadrangular set in the manner of the figure (that is, lying on the respective sides $P S, Q S, R S, Q R, R P$, $P Q$ of the quadrangle), so that the first three points lie on sides through one vertex while the remaining three lie on the respectively opposite sides, which form a triangle.

The Quadrangular Set Notation

- This statement $(A D)(B E)(C F)$ is evidently unchanged if we apply any permutation to $A B C$ and the same permutation to $D E F$.

For instance, $(A D)(B E)(C F)$ has the same meaning as $(B E)(A D)(C F)$, since the quadrangle $P Q R S$ can equally well be called $Q P R S$.
Similarly, the statement $(A D)(B E)(C F)$ is equivalent to each of $(A D)(E B)(F C),(D A)(B E)(F C),(D A)(E B)(C F)$.

Five Collinear Points

- Any five collinear points A, B, C, D, E may be regarded as belonging to a quadrangular set.

Draw a triangle $Q R S$ whose sides $R S, S Q, Q R$ pass, respectively, through C, B, D. (These sides may be any three nonconcurrent lines through C, B, D.) We can now construct $P=A S \cdot E R$ and $F=g \cdot P Q$.

Five Points Determine a Quadrangular Set

Theorem

Each point of a quadrangular set is uniquely determined by the remaining points.

- To show that F is uniquely determined by A, B, C, D, E we set up another quadrangle $P^{\prime} Q^{\prime} R^{\prime} S^{\prime}$ whose first five sides pass through the same five points on g. Since the two triangles $P R S$ and $P^{\prime} R^{\prime} S^{\prime}$ are perspective from g, they are also perspective from a point. Thus, the line $P P^{\prime}$ passes through the point $O=R R^{\prime} \cdot S S^{\prime}$. Similarly, the perspective triangles $Q R S$ and $Q^{\prime} R^{\prime} S^{\prime}$ show that $Q Q^{\prime}$ passes through this same point O. (In other words, $P Q R S$ and $P^{\prime} Q^{\prime} R^{\prime} S^{\prime}$ are perspective quadrangles.)

Five Points Determine a Quadrangular Set (Cont'd)

The triangles $P Q R$ and $P^{\prime} Q^{\prime} R^{\prime}$, which are perspective from the point O, are also perspective from the line $D E$, which is g; that is, the sides $P Q$ and $P^{\prime} Q^{\prime}$ both meet g in the same point F.

Subsection 5

Harmonic Sets

Harmonic Sets

- A harmonic set of four collinear points may be defined to be the special case of a quadrangular set when the line g joins two diagonal points of the quadrangle.

- Because of the importance of this special case, we write the relation $(A A)(B B)(C F)$ in the abbreviated form $H(A B, C F)$.
- This has the same meaning as $H(B A, C F)$ or $H(A B, F C)$ or $H(B A, F C)$, namely that A and B are two of the three diagonal points of a quadrangle while C and F lie, respectively, on the sides that pass through the third diagonal point.
- We call F the harmonic conjugate of C with respect to A and B. Of course also C is the harmonic conjugate of F.

Harmonic Sets Determined by Three Points

- By a preceding theorem, F is uniquely determined by A, B, C.

For a simple construction, draw a triangle $Q R S$ whose sides $Q R, Q S$, $R S$ pass through A, B, C. Then $P=A S \cdot B R$ and $F=A B \cdot P Q$.

The Fourth Point of a Harmonic Set

Theorem

If A, B, C are all distinct, the relation $H(A B, C F)$ implies that F is distinct from C.

- Axiom 7 implies that C and F are distinct, except in the degenerate case when they coincide with A or B.
- It follows that there must be at least four points on every line.

