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One and Two Dimensional Projectivities Superposed Ranges

Subsection 1

Superposed Ranges
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One and Two Dimensional Projectivities Superposed Ranges

Classification of One-Dimensional Projectivities

Axiom 8 tells us that a projectivity relating two ranges on one line
(that is, a projective transformation of the line into itself) cannot have
more than two invariant points without being the identity, which
relates each point to itself.

The projectivity is said to be elliptic, parabolic, or hyperbolic

according as the number of invariant points is 0, 1, or 2.

We will see that both parabolic and hyperbolic projectivities always
exist.
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One and Two Dimensional Projectivities Superposed Ranges

Hyperbolic and Parabolic Projectivities

The figure suggests a simple construction
for the hyperbolic or parabolic projectivity

AEC ⊼BDC

with A,B ,C ,D ,E any five collinear points
and C invariant. We draw a quadrangle
PQRS as if we were looking for the sixth
point of a quadrangular set.

The given projectivity can be expressed as the product of two
perspectivities

AEC
P

[SRC
Q

[BDC ,

and it is easy to see what happens to any other point on the line.
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One and Two Dimensional Projectivities Superposed Ranges

Hyperbolic and Parabolic Projectivities (Cont’d)

C (on RS) is invariant. If any other point is invariant, it must be
collinear with the centers P and Q of the two perspectivities, i.e., it
can only be F . Hence, the projectivity AEC ⊼BDC is:

hyperbolic if C and F are distinct; We write AECF ⊼BDCF ;
parabolic if they are coincident; We write AECC ⊼BDCC , the repeated
letter indicating the parabolic nature.
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One and Two Dimensional Projectivities Superposed Ranges

Using the Quadrangular Set Notation

Proposition

The two statements AECF ⊼BDCF and (AD)(BE )(CF ) are equivalent,
not only when C and F are distinct, but also when they coincide.

The statement AECF ⊼BDCF involves C and F symmetrically.

So the statement (AD)(BE )(CF ) is equivalent to (AD)(BE )(FC ).

Similarly, (AD)(BE )(CF ) is equivalent to to (AD)(EB)(FC ) and to
(DA)(EB)(FC ).

This is remarkable because, when the quadrangular set is derived from
the quadrangle, the two triads ABC and DEF arise differently:

the first from three sides with a common vertex;
the second from three that form a triangle.

Whereas one way of matching two quadrangles uses only Desargues’s
theorem, the other needs the fundamental theorem.
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One and Two Dimensional Projectivities Parabolic Projectivities

Subsection 2

Parabolic Projectivities
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One and Two Dimensional Projectivities Parabolic Projectivities

Hyperbolic Projectivities

The fundamental theorem shows that a hyperbolic projectivity is
determined when both its invariant points and one pair of distinct
corresponding points are given.

In fact, any four collinear points A,B ,C ,F determine such a
projectivity ACF ⊼BCF , with invariant points C and F .

To construct it, we take a triangle QPS

whose sides PS ,SQ ,QP pass, respectively,
through A,B ,F . Suppose the side through
F meets CS in U . Then we have

ACF
P

[SCU
Q

[BCF .

If we regard E as an arbitrary point on the same line AB , this
construction yields the corresponding point D.
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One and Two Dimensional Projectivities Parabolic Projectivities

Parabolic Projectivities

The preceding construction remains effec-
tive when C ,F and U coincide, i.e., when
the line AB passes through the diagonal
point U =PQ ·RS of the quadrangle. The
relations become

ACC
P

[SCC
Q

[BCC .

Thus a parabolic projectivity is determined when its single invariant
point and one pair of distinct corresponding points are given.

We naturally call it the projectivity ACC ⊼BCC .
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One and Two Dimensional Projectivities Parabolic Projectivities

Transitivity of Parabolic Projectivities

Theorem

The product of two parabolic projectivities having the same invariant point
is another such parabolic projectivity (if it is not the identity).

Clearly, the common invariant point C of the two projectivities is still
invariant for the product.

The product is therefore either parabolic or hyperbolic.

Claim: The latter possibility is excluded.

If any other point A were invariant for the product, the first parabolic
projectivity would take A to some different point B , and the second
would take B back to A. Thus, the first would be ACC ⊼BCC , the
second would be its inverse BCC ⊼ACC . The product, thus, would
not be properly hyperbolic, but merely the identity.
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One and Two Dimensional Projectivities Parabolic Projectivities

Iterating Parabolic Projectivities

The product of ACC ⊼A′CC and A′CC ⊼A′′CC is ACC ⊼A′′CC ;

Moreover, we can safely write out strings of parabolic relations, such as

ABCC ⊼A′B ′CC ⊼A′′B ′′CC .

In particular, by “iterating” a parabolic projectivity ACC ⊼A′CC , we
obtain a sequence of points A,A′

,A′′
, . . ., such that

CCAA′A′′
. . .⊼CCA′A′′A′′′

. . . .

Comparing this with the figure on the right we see that AA′A′′
. . . is a

harmonic sequence.
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One and Two Dimensional Projectivities Parabolic Projectivities

Projectivities and Quadrangular Relations

The statements AECF ⊼BDCF and (AD)(BE )(CF ) are equivalent.

Setting B =E and C = F , we deduce the equivalence of
ABCC ⊼BDCC and H(BC ,AD).

Theorem

The projectivity AA′C ⊼A′A′′C is parabolic if H(A′C ,AA′′), and hyperbolic
otherwise.

In other words, the parabolic projectivity ACC ⊼A′CC transforms A′

into the harmonic conjugate of A with respect to A′ and C .
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One and Two Dimensional Projectivities Involutions

Subsection 3

Involutions
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One and Two Dimensional Projectivities Involutions

Involutions

An involution is a projectivity of period two, that is, a projectivity
which interchanges pairs of points.

Theorem

Any projectivity that interchanges two distinct points is an involution.

Let X ⊼X ′ be the given projectivity which interchanges two distinct
points A and A′, so that AA′X ⊼A′AX ′, where X is an arbitrary point
on the line AA′. By a previous theorem, there is a projectivity in which
AA′XX ′⊼A′AX ′X . By the fundamental theorem, this projectivity,
which interchanges X and X ′, is the same as the given projectivity.
Since X was arbitrarily chosen, the given projectivity is an involution.
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One and Two Dimensional Projectivities Involutions

Notation on Convolutions

Any four collinear points A,A′
,B ,B ′ determine a projectivity

AA′B ⊼A′AB ′
,

which we now know to be an involution.

Theorem

An involution is determined by any two of its pairs.

Accordingly, it is convenient to denote the involution AA′B ⊼A′AB ′ by
(AA′)(BB ′) or (A′A)(BB ′), or (BB ′)(AA′), and so forth.

This notation remains valid when B ′ coincides with B , i.e., the
involution AA′B ⊼A′AB , for which B is invariant, may be denoted by
(AA′)(BB).
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One and Two Dimensional Projectivities Involutions

Involutions and Quadrangular Relations

Theorem

The three pairs of opposite sides of a complete quadrangle meet any line
(not through a vertex) in three pairs of an involution. Conversely, any three
collinear points, along with their mates in an involution, form a
quadrangular set.

Suppose (AD)(BE )(CF ). Consider
the projectivity AECF⊼BDCF . Com-
bine it with the involution (BD)(CF ).
We get AECF ⊼BDCF ⊼DBFC . This
shows that there is a projectivity in
which AECF ⊼DBFC . Since this interchanges C and F , it is an
involution, (BE )(CF ) or (CF )(AD) or (AD)(BE ). Thus, the
quadrangular relation (AD)(BE )(CF ) is equivalent to the statement
that the projectivity ABC ⊼DEF is an involution, or that
ABCDEF ⊼DEFABC .
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One and Two Dimensional Projectivities Involutions

Equivalence of Involutions

We saw that CF is a pair of the involution (AD)(BE ) if and only if
AECF ⊼BDCF .

Using other letters in the same context, we get, e.g., MN is a pair of
the involution (AB ′)(BA′) if and only if AA′MN ⊼BB ′MN.

Since (AB ′)(BA′) is the same as (AB ′)(A′B), it follows that the two
statements

AA′MN ⊼BB ′MN and ABMN ⊼A′B ′MN

are equivalent (here it is only the statements that are equivalent, the
two projectivities being, of course, distinct).

If two involutions, (AA′)(BB ′) and (AA1)(BB1), have a common pair
MN, we deduce A′B ′MN ⊼BAMN⊼A1B1MN.

Theorem

If MN is a pair of each of the involutions (AA′)(BB ′) and (AA1)(BB1), it
is also a pair of (A′B1)(B

′A1).
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One and Two Dimensional Projectivities Involutions

Equivalence of Involutions in the Parabolic Case

The equivalences remain valid when M and N coincide, so that we are
dealing with parabolic (instead of hyperbolic) projectivities.

Thus, M is an invariant point of the involution (AB ′)(BA′) if and only
if AA′MM ⊼BB ′MM, i.e., if and only if ABMM ⊼A′B ′MM.

If M is an invariant point of each of the involutions (AA′)(BB ′) and
(AA1)(BB1), it is also an invariant point of (A′B1)(B

′A1).
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One and Two Dimensional Projectivities Involutions

Decomposition as a Product of Involutions

If two involutions have a common pair MN, their product is evidently
hyperbolic, with invariant points M and N.

By watching their effect on A,M ,N in turn, we see that the product of
(AB)(MN) and (BC )(MN) is AMN ⊼CMN.

Theorem

Any one-dimensional projectivity is expressible as the product of two
involutions.

Let the given projectivity be ABC ⊼A′B ′C ′, where neither A nor B is
invariant. Suppose D is the mate of C in (AB ′)(BA′). Consider the
product of the two involutions (AB ′)(BA′) and (A′B ′)(C ′D).

A→B ′
→A′;

B →A′
→B ′;

C →D →C ′.

Thus ABC ⊼A′B ′C ′ has the same effect as this product.

George Voutsadakis (LSSU) Projective Geometry August 2020 20 / 53



One and Two Dimensional Projectivities Hyperbolic Involutions

Subsection 4

Hyperbolic Involutions
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One and Two Dimensional Projectivities Hyperbolic Involutions

Involutions with an Invariant Point

Theorem

Any involution that has an invariant point B has another invariant point A,
which is the harmonic conjugate of B with respect to any pair of distinct
corresponding points.

Any involution that has an invariant point B (and a pair of distinct
corresponding points C and C ′) may be expressed as BCC ′⊼BC ′C or
(BB)(CC ′).

Let A denote the harmonic conjugate of B with respect to C and C ′.
Then, the two harmonic sets ABCC ′ and ABC ′C are related by a
unique projectivity ABCC ′⊼ABC ′C . The fundamental theorem
identifies this with the given involution.

Thus any involution that is not elliptic is hyperbolic: there are no
“parabolic involutions”.
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One and Two Dimensional Projectivities Hyperbolic Involutions

Revisiting Harmonic Conjugates

Any two distinct points A and B are the invariant points of a unique
hyperbolic involution, which is simply the correspondence between
harmonic conjugates with respect to A and B .

This is naturally denoted by (AA)(BB).

The harmonic conjugate of C with respect to any two distinct

points A and B may now be redefined as the mate of C in the
involution (AA)(BB).

This new definition remains meaningful when C coincides with A or B :

Theorem

Any point is its own harmonic conjugate with respect to itself and any
other point.
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One and Two Dimensional Projectivities Projective Collineations

Subsection 5

Projective Collineations
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One and Two Dimensional Projectivities Projective Collineations

Two-Dimensional Projectivities

The one-dimensional projectivity ABC ⊼A′B ′C ′ has two different
analogues in two dimensions:

One relates points to points and lines to lines;
The other relates points to lines and lines to points.

The names collineation and correlation were introduced by Möbius
in 1827, but some special collineations (such as translations, rotations,
reflections, and dilatations) were considered much earlier.

Another example is Poncelet’s “homology”:

This is the relation between the central projections of a plane figure
onto another plane from two different centers of perspective.
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One and Two Dimensional Projectivities Projective Collineations

Transformations and Collineations

By a point-to-point transformation X →X ′ we mean a rule for
associating every point X with every point X ′ so that there is exactly
one X ′ for each X and exactly one X for each X ′.

A line-to-line transformation x → x ′ is defined similarly.

A collineation is a point-to-point and line-to-line transformation that
preserves the relation of incidence.

Thus, it transforms ranges into ranges, pencils into pencils,
quadrangles into quadrangles, and so on.

Clearly,

collineation is a self-dual concept;
the inverse of a collineation is a collineation;
the product of two collineations is again a collineation.
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One and Two Dimensional Projectivities Projective Collineations

Projective Collineations

A projective collineation is a collineation that transforms every
one-dimensional form (range or pencil) projectively. If it transforms
the points Y on a line b into the points Y ′ on the corresponding line
b′, the relation between Y and Y ′ is a projectivity Y ⊼Y ′.

Theorem

Any collineation that transforms one range projectively is a projective
collineation.

Let a and a′ be the corresponding lines that carry the projectively
related ranges. We must establish the same kind of relationship
between any other pair of corresponding lines, say b and b′.
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One and Two Dimensional Projectivities Projective Collineations

Projective Collineations

Let Y be a variable point on b, and O a fixed point on neither a nor b.
Let OY meet a in X . The given collineation transforms O into a fixed
point O ′ (on neither a′ nor b′), and OY into a line O ′Y ′ that meets a′

in X ′. Since X is on the special line a, we have X ⊼X ′. Thus,

Y
O

[X ⊼X ′

O ′

[ Y ′
,

so the collineation induces a projectivity Y ⊼Y ′ between b and b′.
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One and Two Dimensional Projectivities Projective Collineations

Characterization of the Identity

Theorem

The only projective collineation that leaves invariant 4 lines forming a
quadrilateral, or 4 points forming a quadrangle, is the identity.

Suppose the sides of a quadrilateral are 4 invariant lines. Then the
vertices (where the sides intersect in pairs) are 6 invariant points, 3 on
each side. Since the relation between corresponding sides is projective,
every point on each side is invariant. Any other line contains invariant
points where it meets the sides and is consequently invariant. Thus,
the collineation must be the identity.

The dual argument gives the same result when there is an invariant
quadrangle.
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One and Two Dimensional Projectivities Projective Collineations

Analog of the Fundamental Theorem

Theorem

Given any two complete quadrilaterals (or quadrangles), with their four
sides (or vertices) named in a corresponding order, there is just one
projective collineation that will transform the first into the second.

Let DEFPQR and D ′E ′F ′P ′Q ′R ′ be
the two given quadrilaterals. Consider
an arbitrary line a. There are certainly
two sides of the first quadrilateral that
meet a in two distinct points. For def-
initeness, suppose a is XY , with X on
DE and Y on DQ.

The projectivities DEF ⊼D ′E ′F ′ and DQR ⊼D ′Q ′R ′ determine a line
a′ =X ′Y ′, where DEFX ⊼D ′E ′F ′X ′ and DQRY ⊼D ′Q ′R ′Y ′.
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One and Two Dimensional Projectivities Projective Collineations

Analog of the Fundamental Theorem (Cont’d)

To prove that the correspondence a→

a′ is a collineation, we have to ver-
ify that it also relates points to points
in such a way that incidences are pre-
served. Let a vary in a pencil, so that
X [Y . By our construction for a′, we
now have X ′⊼X [Y ⊼Y ′.

Since D is the invariant point of the perspectivity X [Y , D ′ must be
an invariant point of the projectivity X ′⊼Y ′. Hence, this projectivity
is again a perspectivity. Thus a′, like a, varies in a pencil, i.e.,
concurrent lines yield concurrent lines. We have not only a line-to-line
transformation but also a point-to-point transformation, preserving
incidences, namely, a collineation. The projectivity X ⊼X ′ suffices to
make it a projective collineation.
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One and Two Dimensional Projectivities Projective Collineations

Analog of the Fundamental Theorem (Uniqueness)

There is no other projective collineation transforming DEFPQR into
D ′E ′F ′P ′Q ′R ′:

If another transformed a into a1, the inverse of the latter would take
a1 to a. Since the original collineation takes a to a′, altogether we
would have a projective collineation leaving D ′E ′F ′P ′Q ′R ′ invariant
and taking a1 to a′. Thus, this combined collineation can only be the
identity. So, for every a, a1 coincides with a′: the “other” collineation
is really the old one over again. In other words, the projective
collineation a→ a′ is unique.
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One and Two Dimensional Projectivities Projective Collineations

Remarks on the Fundamental Theorem

In the statement of the theorem, we used the phrase “named in a
corresponding order”.

In general, we could have permuted the sides of one of the
quadrilaterals in any one of 4!= 24 ways, obtaining not just one
collineation but 24 collineations.

We happened to use quadrilaterals, but the dual argument would
immediately yield the same result for quadrangles.
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One and Two Dimensional Projectivities Perspective Collineations

Subsection 6

Perspective Collineations
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One and Two Dimensional Projectivities Perspective Collineations

Perspective Collineations

We obtain Desargues configuration by
taking two triangles PQR and P ′Q ′R ′,
perspective from O. There is just one
projective collineation that transforms the
quadrangle DEPQ into DEP ′Q ′. This
collineation, transforming the line o =DE

into itself and PQ into P ′Q ′, leaves in-
variant the point o ·PQ =F = o ·P ′Q ′.

By Axiom 8, it leaves invariant every point on o. The join of any two
distinct corresponding points meets o in an invariant point, and is
therefore an invariant line. The two invariant lines PP ′ and QQ ′ meet
in an invariant point, namely O. The point R =DQ ·EP is
transformed into DQ ′

·EP ′
=R ′.

By the dual of Axiom 8, every line through O is invariant.
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One and Two Dimensional Projectivities Perspective Collineations

Perspective Collineations: Homologies and Elations

This collineation, relating two perspective triangles, is naturally called
a perspective collineation. The point O and line o, from which the
triangles are perspective, are the center and axis.

If O and o are nonincident, the collineation is a homology (Poncelet).
If O and o are incident, it is an elation (Lie).

Theorem

Any two perspective triangles are related by a perspective collineation, an
elation or a homology according as the center and axis are or not incident.
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One and Two Dimensional Projectivities Perspective Collineations

Determining a Homology

Theorem

A homology is determined when its center and axis and one pair of
corresponding points (collinear with the center) are given.

Let O be the center, o the axis, P and P ′ (collinear with O) the given
corresponding points. We set up a construction whereby each point R
yields a definite corresponding point R ′.

If R coincides with O or lies on o, it is, of course, invariant, that is, R ′

coincides with R .
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One and Two Dimensional Projectivities Perspective Collineations

Determining a Homology (Cont’d)

If R is neither on o nor on OP (as on the left), take E = o ·PR and set
R ′

=EP ′
·OR .

If R is on OP (as on the right), we use an auxiliary pair of points
Q ,Q ′ (of which the former is arbitrary while the latter is derived from
it the way we derived R ′ from R). Again take D = o ·QR and set
R ′

=DQ ′
·OP .
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One and Two Dimensional Projectivities Perspective Collineations

Determining an Elation

Theorem

An elation is determined when its axis and one pair of corresponding points
are given.

Let o be the axis, P and P ′ the given pair. Since the collineation is
known to be an elation, its center is o ·PP ′. We proceed as in the
proof of Homology, using:

The elation, with center o ·PP ′, is denoted by [o;P →P ′].
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One and Two Dimensional Projectivities Perspective Collineations

Perspective Collineations

Theorem

Any collineation that has one range of invariant points (but not more than
one) is perspective.

Since the identity is (trivially) a projectivity, any such collineation is
projective. There cannot be more than one invariant point outside the
line o whose points are all invariant: two such would form, with two
arbitrary points on o, a quadrangle left invariant, yielding the identity.
If there is one invariant point O outside o, every line through O meets
o in another invariant point. Hence, every line through O is invariant.

Any noninvariant point P lies on such a line and is therefore
transformed into another point P ′ on this line OP . Hence, the
collineation is a homology.
If, on the other hand, all the invariant points lie on o, any two distinct
joins PP ′ and QQ ′ (of pairs of corresponding points) must meet o in
the same point O. Thus, the collineation is an elation.
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One and Two Dimensional Projectivities Perspective Collineations

Invariant Points of Collineations

Corollary

If a collineation has a range of invariant points, it has a pencil of invariant
lines.

Corollary

All the invariant points of an elation lie on its axis.

Corollary

For a homology, the center is the only invariant point not on the axis.
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One and Two Dimensional Projectivities Involutory Collineations

Subsection 7

Involutory Collineations
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One and Two Dimensional Projectivities Involutory Collineations

Periodic Transformations and Harmonic Homologies

Suppose a given transformation relates a point X to X ′, X ′ to X ′′, X ′′

to X ′′′, . . ., X (n−1) to X (n). If, for every position of X , X (n) coincides
with X itself, the transformation is said to be periodic and the
smallest n for which this happens is called the period.

The identity is of period 1.

An involution is (by definition) of period 2.

The projectivity ABC ⊼BCA (for any three distinct collinear points
A,B ,C , is of period 3.

We know that a homology is determined by its center O, axis o, and
one pair of corresponding points P ,P ′.

In the special case when the harmonic conjugate of O with respect to
P and P ′ lies on o, we speak of a harmonic homology.
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One and Two Dimensional Projectivities Involutory Collineations

Periodicity and Harmonicity

Theorem

A harmonic homology is determined when its center and axis are given.

For any point P , the corresponding point P ′ is simply the harmonic
conjugate of P with respect to O and o ·OP . Thus a harmonic
homology is of period 2.

Theorem

Every projective collineation of period 2 is a harmonic homology.

Given a projective collineation of period 2, suppose it interchanges the
pair of distinct points PP ′ and also another pair QQ ′ (not on the line
PP ′). By a previous result, it is the only projective collineation that
transforms the quadrangle PP ′QQ ′ into P ′PQ ′Q. The invariant lines
PP ′ and QQ ′ meet in an invariant point O.
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One and Two Dimensional Projectivities Involutory Collineations

Periodicity and Harmonicity (Cont’d)

The invariant lines PP ′ and QQ ′ meet in
an invariant point O. The collineation
interchanges the pair of lines PQ, P ′Q ′.
Likewise, it interchanges the pair PQ ′,
P ′Q. So the two points M = PQ ·P ′Q ′

and N = PQ ′
·P ′Q are invariant. More-

over, the two invariant lines PP ′ and MN

meet in a third invariant point L on MN.

By Axiom 8, every point on MN is invariant. Thus, the collineation is
perspective. Since, by Axiom 7, its center O does not lie on its axis
MN, it is a homology. Finally, since H(PP ′

,OL), it is a harmonic
homology.
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One and Two Dimensional Projectivities Projective Correlations

Subsection 8

Projective Correlations
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One and Two Dimensional Projectivities Projective Correlations

Correlations

We have considered the elementary point-to-line correspondence that
relates a range to a pencil when the former is a section of the latter.

We will now extend this to a transformation X → x ′ relating all the
points in a plane to all the lines in the same plane, and its dual x →X ′

which relates all the lines to all the points.

A correlation is a point-to-line and line-to-point transformation that
preserves the relation of incidence in accordance with the principle of
duality.

Thus, a correlation transforms ranges into pencils, pencils into ranges,
quadrangles into quadrilaterals, and so on.

We have:

A correlation is a self-dual concept;
The inverse of a correlation is again a correlation;
The product of two correlations is a collineation.
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One and Two Dimensional Projectivities Projective Correlations

Projective Correlations

A projective correlation is a correlation that transforms every
one-dimensional form projectively, so that, if it transforms the points
Y on a line b into the lines y ′ through the corresponding point B ′, the
relation between Y and y ′ is a projectivity Y ⊼y ′.

Theorem

Any correlation that transforms one range projectively is a projective
correlation.

Let a and A′ be the corresponding line and point that carry the
projectively related range and pencil X ⊼x ′. We establish the same
kind of relationship between any other corresponding pair, say b, B ′.
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Projective Correlations

Let Y be a variable point on b, and O a fixed point on neither a nor
b. Let OY meet a in X . The given correlation transforms O into a
fixed line o′ (through neither A′ nor B ′), and OY into a point o′

·y ′

which is joined to A′ by a line x ′. Since Y
O

[X ⊼x ′
o ′

[ y ′, the correlation
induces a projectivity Y ⊼y ′ between b and B ′.
To obtain the dual result for a pencil and the corresponding range, we
regard the range of points Y on b as a section of the given pencil.
This pencil yields a range which is a section of the pencil of lines y ′

through B ′.
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Determining a Projective Correlation

Theorem

A quadrangle and a quadrilateral, with the four vertices of the former
associated in a definite order with the four sides of the latter, are related by
just one projective correlation.

Let defpqr , D ′E ′F ′P ′Q ′R ′

be the quadrangle and the
quadrilateral. What effect
should such a correlation
have on an arbitrary point
A? For definiteness, sup-
pose A is x ·y , with

x through d ·e;

y through d ·q.
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Projective Correlation: Incidence and Projectivity

The projectivities def ⊼D ′E ′F ′ and dqr ⊼D ′Q ′R ′ determine a line
a′ =X ′Y ′, where defx ⊼D ′E ′F ′X ′, dqry ⊼D ′Q ′R ′Y ′.

To prove that this correspon-
dence A→ a′ is a correlation,
we have to verify that it also
relates lines to points in such
a way that incidences are pre-
served. Let A vary in a range,
so that x [ y . By our con-
struction for a′, we now have
X ′⊼x [y ⊼Y ′.

Since d is an invariant line of the perspectivity x [y , D ′ must be an
invariant point of the projectivity X ′⊼Y ′. Thus a′ varies in a pencil.
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Projective Correlation (Cont’d)

We showed that collinear
points yield concurrent
lines.

We have not only a point -
to - line transformation
but also a line-to-point
transformation, dualizing
incidences.

Hence, we obtain a correlation.

Finally, the projectivity x ⊼X ′ suffices to make it a projective
correlation.
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Determining a Projective Correlation: Uniqueness

There is no other projective correlation transforming defpqr into
D ′E ′F ′P ′Q ′R ′:

If another transformed A into a1, the inverse of the latter would take
a1 to A. Since the original correlation takes A to a′, altogether we
would have a projective collineation leaving D ′E ′F ′P ′Q ′R ′ invariant
and taking a1 to a′. This establishes the uniqueness of the correlation
A→ a′.

The dual construction yields a projective correlation transforming a
given quadrilateral into a given quadrangle.
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