Introduction to Projective Geometry

George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science
Lake Superior State University

LSSU Math 400

Polarities

- Conjugate Points and Conjugate Lines
- The Use of a Self-Polar Triangle
- Polar Triangles
- A Construction for the Polar of a Point
- The Use of a Self-Polar Pentagon
- A Self-Conjugate Quadrilateral
- The Product of Two Polarities
- The Self-Polarity of the Desargues Configuration

Subsection 1

Conjugate Points and Conjugate Lines

- A polarity is a projective correlation of period 2 .
- In general, a correlation transforms:
- each point A into a line a^{\prime};
- transforms this line into a new point $A^{\prime \prime}$.

When the correlation is of period $2, A^{\prime \prime}$ always coincides with A and we can simplify the notation by omitting the prime.

- Thus a polarity relates A to a, and vice versa. We call a the polar of A, and A the pole of a.
- Since this is a projective correlation, the polars of all the points on a form a projectively related pencil of lines through A.

Conjugate Points and Conjugate Lines

- If A lies on b, the polar a passes through the pole B.

In this case we say that A and B are conjugate points, and that a and b are conjugate lines.

- It may happen that A and a are incident, so that each is self-conjugate: A on its own polar, and a through its own pole.
- The occurrence of self-conjugate lines (and points) is restricted by the following

Theorem

The join of two self-conjugate points cannot be a self-conjugate line.

- If the join a of two self-conjugate points were a self-conjugate line, it would contain its own pole A and at least one other self-conjugate point, say B. The polar of B, containing both A and B, would coincide with a. Thus, two distinct points would both have the same polar. This is impossible, since a polarity is a one-to-one correspondence between points and lines.

Theorem

It is impossible for a line to contain more than two self-conjugate points.

- Let p and q (through C) be the polars of two self-conjugate points P and Q on a line c. Let R be a point on p, distinct from C and P. Let its polar r meet q in S. Then $S=q \cdot r$ is the pole of $Q R=s$, which meets r in T, say. Also $T=r \cdot s$ is the pole of $R S=t$, which meets c in B, say.

Finally, $B=c \cdot t$ is the pole of $C T=b$, which meets c in A, the harmonic conjugate of B with respect to P and Q. The point B cannot coincide with Q or P. For, $B=Q$ would imply $R=C$; and $B=P$ would imply $S=C, r=p, R=P$; but we are assuming that R is neither C nor P. Hence, $A \neq B$, and B is not self-conjugate. On c, we have two self-conjugate points P, Q and a non-selfconjugate point B.

- Since the polars of a range form a projectively related pencil, each point X on c determines a conjugate point Y on c, which is where its polar x meets c. This correspondence between X and Y is a projectivity: $X \bar{\wedge} x \bar{\wedge} Y$. When X is P, x is p, and Y is P again. Thus, P is an invariant point of this projectivity.
 Similarly, Q is another invariant point. But when X is B, Y is the distinct point A. Therefore, the projectivity is not the identity. By Axiom $8, P$ and Q are its only invariant points, that is, P and Q are the only self-conjugate points on c. This completes the proof that c cannot contain more than two self-conjugate points.

Polarities, Involutions and Self-Polar Triangles

Theorem

A polarity induces an involution of conjugate points on any line that is not self-conjugate.

- On a non-selfconjugate line c, the projectivity $X \bar{\wedge} Y$, where $Y=c \cdot x$ transforms any nonselfconjugate point B into another point $A=$ $b \cdot c$, whose polar is $B C$. The same projectivity transforms A into B. Since it interchanges A and B, it must be an involution.

- Dually, the lines x and $C X$ are paired in the involution of conjugate lines through C.
- Such a triangle $A B C$, in which each vertex is the pole of the opposite side (so that any two vertices are conjugate points, and any two sides are conjugate lines), is called a self-polar triangle.

Subsection 2

The Use of a Self-Polar Triangle

Correlations, Triangles and Polarities

Theorem

Any projective correlation that relates the three vertices of one triangle to the respectively opposite sides is a polarity.

- Consider the correlation $A B C P \rightarrow a b c p$, where a, b, c are the sides of the given triangle $A B C$ and P is a point not on any of them. Then p is a line not through any of A, B, C. The point P and line p determine 6 points on the sides of the triangle:
$P_{a}=a \cdot A P, P_{b}=b \cdot B P, P C=c \cdot C P$, $A_{p}=a \cdot p, B_{p}=b \cdot p, C_{p}=c \cdot p$. The correlation, transforming A, B, C into a, b, c, also transforms $a=B C$ into b. $c=A, A P$ into $a \cdot p=A_{p}, P_{a}=a \cdot A P$ into $A A_{p}$, and so on.

Thus, it transforms the triangle $A B C$ in the manner of a polarity. We next show, besides transforming P into p, it also transforms p into P.

- The correlation transforms each point X on c into a certain line which intersects c in Y, say. Since it is a projective correlation, we have $X \bar{\wedge} Y$.
- When X is A, Y is B;
- When X is B, Y is A.

Thus the projectivity $X \bar{\wedge} Y$ interchanges A and B, and is an involution. Since the correlation transforms P_{c} into $C C_{p}$, the involution includes $P_{c} C_{p}$, as one of its pairs. Hence, the correlation transforms C_{p} into $C P_{c}$, which is $C P$. Similarly, it transforms A_{p} into $A P$, and B_{p} into $B P$. Therefore, it transforms $p=A_{p} B_{p}$ into $A P \cdot B P=P$, as required.

The Construction of the Polar

- We proved that the correlation $A B C P \rightarrow a b c p$ is a polarity.

An appropriate symbol, analogous to the symbol $(A B)(P Q)$ for an involution, is $(A B C)(P p)$.

- Thus any triangle $A B C$, any point P not on a side, and any line p not through a vertex, determine a definite polarity $(A B C)(P p)$, in which the polar x of an arbitrary point X can be constructed by incidences.
- This construction could be carried out by adapting the notation of the figure: $X_{a}=a \cdot A X, X_{b}=b \cdot B X, A_{x}=a \cdot x$, $B_{x}=b \cdot x$. Then A_{x} is the mate of X_{a} in the involution $(B C)\left(P_{a} A_{p}\right), B_{x}$ is the mate of X_{b} in $(C A)\left(P_{b} B_{p}\right)$, and x is $A_{x} B_{x}$.

Involution Determined by Quadrangles

Theorem

In a polarity $(A B C)(P p)$, where P is not on p, the involution of conjugate points on p is the involution determined on p by the quadrangle $A B C P$.

- Consider a polarity $(A B C)(P p)$, in which P does not lie on p. The polars of the points $A_{p}=a \cdot p$, $B_{p}=b \cdot p, C_{p}=c \cdot p$, are $A P, B P$, $C P$. So the pairs of opposite sides of the quadrangle $A B C P$ meet the line p in pairs of conjugate points.

Subsection 3

Polar Triangles

Chasles's Theorem

- From any given triangle we can derive a polar triangle by taking the polars of the three vertices, or the poles of the three sides.

Chasles's Theorem

If the polars of the vertices of a triangle do not coincide with the respectively opposite sides, they meet these sides in three collinear points.

- Let $P Q R$ be a triangle whose sides $Q R$, $R P, P Q$ meet the polars p, q, r of its vertices in points P_{1}, Q_{1}, R_{1}. The polar of $R_{1}=P Q \cdot r$ is $r_{1}=(p \cdot q) R$. Define the extra points $P^{\prime}=P Q \cdot q, R^{\prime}=Q R \cdot q$, and the polar $p^{\prime}=(p \cdot q) Q$ of the former.

By a previous theorem, $R_{1} P P^{\prime} Q \bar{\wedge} P R_{1} Q P^{\prime} \bar{\wedge} p r_{1} q p^{\prime} \wedge P_{1} R R^{\prime} Q$. Since Q is invariant, $R_{1} P P^{\prime} \overline{\bar{\wedge}} P_{1} R R^{\prime}$. The center of the perspectivity, namely $P R \cdot P^{\prime} R^{\prime}=Q_{1}$, must lie on the line $R_{1} P_{1}$. So P_{1}, Q_{1}, R_{1} are collinear.

The Exceptional Cases

- This proof breaks down if P_{1} or Q lies on q.

- In the former case, $P_{1}\left(=R^{\prime}\right)$ and $R_{1}\left(=P^{\prime}\right)$ are collinear with Q_{1}.
- In the latter (when Q lies on q) we can permute the names of P, Q, R (and correspondingly p, q, r), or call the first triangle pqr and the second $P Q R$, in such a way that the new Q and q are not incident. It is evidently impossible for each triangle to be inscribed in the other.

Subsection 4

A Construction for the Polar of a Point

Construction for the Polar of a Point

Theorem

The polar of a point X (not on $A P, B P$, or p) in the polarity $(A B C)(P p)$ is the line $X_{1} X_{2}$ determined by

$$
\begin{array}{lll}
A_{1}=a \cdot P X, & P_{1}=p \cdot A X, & X_{1}=A P \cdot A_{1} P_{1} \\
B_{2}=b \cdot P X, & P_{2}=p \cdot B X, & X_{2}=B P \cdot B_{2} P_{2}
\end{array}
$$

- Applying Chasles' Theorem to the triangle $P A X$, we deduce that its sides $A X, X P, P A$ meet the polars p, a, x of its vertices in three collinear points, the first two of which are P_{1}, and A_{1}.

Hence x must meet $P A$ in a point lying on $P_{1} A_{1}$, namely, in the point $P A \cdot P_{1} A_{1}=X_{1}$. That is, x passes through X_{1}. Similarly, (by using triangle $P B X$ instead of $P A X$), x passes through X_{2}.

Construction of the Polar: Special Case 1

- The construction fails when X lies on $A P$.

Then $A_{1} P_{1}$ coincides with $A P$, and X_{1}, is no longer properly defined. However, since X_{2} can still be constructed as above, the polar of X is now $A_{p} X_{2}$ (where $A_{p}=a \cdot p$). Similarly, when X is on $B P$, its polar is $X_{1} B_{p}$.

Construction for the Polar: Special Case 2

- Finally, to locate the polar of a point X on p, we can apply the dual of the above construction to locate the pole Y of a line y through X.
This y may be any line through X except p or $P X$.
It is convenient to choose $y=A X$ or, if this happens to coincide with $P X$, to choose $y=B X$.
Then the desired polar is $x=P Y$.

Subsection 5

The Use of a Self-Polar Pentagon

Self-Polar Pentagons

- Instead of describing a polarity as $(A B C)(P p)$, we can equally well describe it in terms of a selfpolar pentagon, i.e., a pentagon in which each of the five vertices is the pole of the "opposite" side.

Theorem (von Staudt)

The projective correlation that transforms four vertices of a pentagon into the respectively opposite sides is a polarity and transforms the remaining vertex into the remaining side.

- The correlation that transforms vertices Q, R, S, T of $P Q R S T$ into the four sides $q=S T, r=T P, s=P Q, t=Q R$ also transforms the three sides $t=Q R, p=R S$, $q=S T$ into the three vertices $T=q \cdot r$, $P=r \cdot s, Q=s \cdot t$, and the "diagonal point" $A=q \cdot t$ into the "diagonal line" $a=Q T$. Thus, it transforms each vertex of the triangle $A Q T$ into the opposite side. By the triangle Theorem, this is a polarity, namely (since it transforms p into P), the polarity $(A Q T)(P p)$.

Subsection 6

A Self-Conjugate Quadrilateral

Hesse's Theorem

Hesse's Theorem

If two pairs of opposite vertices of a complete quadrilateral are pairs of conjugate points (in a given polarity), then the third pair of opposite vertices is likewise a pair of conjugate points.

- Let $P Q R P_{1} Q_{1} R_{1}$ be a quadrilateral, with P conjugate to P_{1}, and Q to Q_{1}. The polars p and q (of P and $Q)$ pass through P_{1} and Q_{1}, respectively. By Chasles's Theorem, the polar of R meets $P Q$ in a point that lies on $P_{1} Q_{1}$, namely in the point $P Q \cdot P_{1} Q_{1}=R_{1}$.

Therefore, the polar of R passes through R_{1}. That is, R is conjugate to R_{1}.

Subsection 7

The Product of Two Polarities

- The figure shows the homology with center O and axis $o=D F$ that transforms P into P^{\prime} (and consequently Q into Q^{\prime}). Let p be any line not passing through a vertex of the triangle $O D F$. Then the given homology may be expressed as the product of two polarities $(O D F)(P p)$ and $(O D F)\left(P^{\prime} p\right)$.

It suffices to observe that the homology and the product of polarities both transform the quadrangle ODFP into ODFP'. Unfortunately, this expression for a homology as the product of two polarities cannot in any simple way be adapted to an elation. We mention a subtler expression that applies equally well to either kind of perspective collineation.

A Collineation as a Product of Two Polarities

- The figure shows the homology or elation with center O and axis $O=C P$ that transforms A into another point A^{\prime} on the line $c=O A$. Here C and P are arbitrary points on the axis o (passing through O if the collineation is an elation). Let p be any line through O, meeting $b=C A$ in Q and $b^{\prime}=C A^{\prime}$ in Q^{\prime}. Let B be any point
 on c.

A Collineation as a Product of Two Polarities (Cont'd)

- Claim: The given perspective collineation is the product of the polarities $(A B C)(P p),\left(A^{\prime} B C\right)(P p)$.

In fact, the first polarity transforms the four points $A, P, O=c \cdot p, Q=$ $b \cdot p$ into the four lines $B C, p, C P$, $B P$; and the second transforms these lines into the four points $A^{\prime}, P, c \cdot p=$ $O, b^{\prime} \cdot p=Q^{\prime}$. Thus, their product transforms the quadrangle $A P O Q$ into $A^{\prime} P O Q^{\prime}$. By a preceding result, this product is the same as the given
 perspective collineation.

Projective Collineations as Products of Polarities

Theorem

Any projective collineation is expressible as the product of two polarities.

- By the preceding remarks, this is certainly true if the given collineation is perspective. We look at nonperspective collineations.

Let A be a noninvariant point, and ℓ a noninvariant line through A. Suppose the given collineation transforms A into A^{\prime}, A^{\prime} into $A^{\prime \prime}, \ell$ into $\ell^{\prime}, \ell^{\prime}$ into $\ell^{\prime \prime}$, and $\ell^{\prime \prime}$ into $\ell^{\prime \prime \prime}$.

Since the collineation is not perspective, we may choose A and ℓ, so that $A A^{\prime}$ is not an invariant line and $\ell \cdot \ell^{\prime}$ is not an invariant point. So $A^{\prime \prime}$ does not lie on ℓ, nor A^{\prime} on any of the three lines $\ell, \ell^{\prime \prime}, \ell^{\prime \prime \prime}$. Consequently, A does not lie on ℓ^{\prime} nor on $\ell^{\prime \prime}$.

Projective Collineations as Products of Polarities (Cont'd)

- Let $\ell^{\prime \prime}$ meet ℓ in B, ℓ^{\prime} in C. The polarity $\left(A A^{\prime \prime} B\right)\left(A^{\prime} \ell^{\prime}\right)$ transforms the four points $A, A^{\prime}, B, C=\ell^{\prime} \cdot \ell^{\prime \prime}$ into the four lines $A^{\prime \prime} B=\ell^{\prime \prime}=A^{\prime \prime} C$, $\ell^{\prime}=C A^{\prime}, A^{\prime \prime} A, A^{\prime} A$. The polarity $\left(A^{\prime} A^{\prime \prime} C\right)\left(A \ell^{\prime \prime \prime}\right)$ transforms these lines into the four points $A^{\prime}, A^{\prime \prime}, \ell^{\prime} \cdot \ell^{\prime \prime \prime}=B^{\prime}, \ell^{\prime \prime} \cdot \ell^{\prime \prime \prime}=C^{\prime}$. Hence, their product is the same as the given collineation.

Corollary

In any projective collineation, the invariant points and invariant lines form a self-dual figure.

Subsection 8

The Self-Polarity of the Desargues Configuration

- The Desargues configuration 10_{3} can be regarded as a pair of mutually inscribed pentagons, such as $F D R O P^{\prime}$ and $E P Q Q^{\prime} R^{\prime}$. Any pentagon determines a polarity for which each vertex is the pole of the opposite side.

Consider the polarity for which $F D R O P^{\prime}$ is such a self-polar pentagon, having sides $f=R O, d=O P^{\prime}, r=P^{\prime} F, o=F D, p^{\prime}=D R$. Since d passes through A, and f through C, the involution of pairs of conjugate points on o is $(A D)(C F)$. The quadrangle $O P Q R$ yields the quadrangular relation $(A D)(B E)(C F)$. This indicates that e (the polar of E) is $O B$.

The Self-Polarity of the Desargues Configuration (Cont'd)

- Since Q^{\prime} is $r \cdot e, q^{\prime}$ is $R E$; since P is $d \cdot q^{\prime}, p$ is $D Q^{\prime}$; since R^{\prime} is $f \cdot p, r^{\prime}$ is $F P$; and since Q is $p^{\prime} \cdot r^{\prime}, q$ is $P^{\prime} R^{\prime}$. Thus $E P Q Q^{\prime} R^{\prime}$ is another self-polar pentagon. Also the perspective triangles $P Q R$ and $P^{\prime} Q^{\prime} R^{\prime}$ are polar triangles. We obtain:

Theorem

There is a unique polarity for which $G_{i j}$ is the pole of $g_{i j}$.

