Introduction to Real Analysis

George Voutsadakis¹

¹Mathematics and Computer Science Lake Superior State University

LSSU Math 421

Axioms for the Field ${\rm I\!R}$ of Real Numbers

- The Field Axioms
- The Order Axioms
- Bounded Sets, LUB and GLB
- The Completeness Axiom (Existence of LUBs)

Subsection 1

The Field Axioms

Fields

Definition (Field)

A **field** is a set F such that, for all a, b in F, there are defined a + b and ab in F, called the **sum** and **product** of a and b, subject to:

- (A1) (a+b)+c = a + (b+c) (associative law for addition);
- (A2) a + b = b + a (commutative law for addition);
- (A3) there is a unique element $0 \in F$ such that a + 0 = a, for all $a \in F$ (existence of a zero element);
- (A4) For each $a \in F$, there exists a unique element of F, denoted -a, such that a + (-a) = 0 (existence of negatives);
- (M1) (ab)c = a(bc) (associative law for multiplication);
- (M2) ab = ba (commutative law for multiplication);
- (M3) There is a unique element 1 of F, different from 0, such that 1a = a, for all $a \in F$ (existence of a unity element);
- (M4) For each nonzero a ∈ F, there exists a unique element of F, denoted a⁻¹, such that aa⁻¹ = 1 (existence of reciprocals);
 (D) a(b+c) = ab + ac (distributive law).

Examples I

- The field of rational numbers is the set ${\mathbb Q}$ of fractions,
 - $\mathbb{Q} = \{\frac{m}{n} : m \text{ and } n \text{ integers, } n \neq 0\}$, with the usual operations:

m __	m'	=	mn' + nm'
\overline{n}^{\top}	<u>n'</u>		nn′
т	m'		mm'
n	n'	=	nn'

The fraction $\frac{0}{1}$ serves as zero element, $\frac{1}{1}$ as unity element, $\frac{-m}{n}$ as the negative of $\frac{m}{n}$, and $\frac{n}{m}$ as the reciprocal of $\frac{m}{n}$ (assuming *m* and *n* both nonzero).

• The smallest field consists of two elements 0 and 1, where 1 + 1 = 0and all other sums and products are defined in the expected way (for example, 1 + 0 = 1, $0 \cdot 1 = 0$)

The Field of Rational Forms

• Let F be any field. Write F[t] for the set of all polynomials $p(t) = a_0 + a_1t + \cdots + a_nt^n$ in an indeterminate t, with coefficients a_k in F, and write F(t) for the set of all "fractions" $\frac{p(t)}{q(t)}$, with $p(t), q(t) \in F[t]$ and q(t) not the zero polynomial. With sums and products defined by

$$egin{array}{rll} rac{p(t)}{q(t)}+rac{p'(t)}{q'(t)}&=&rac{p(t)q'(t)+p'(t)q(t)}{q(t)q'(t)}\ &rac{p(t)}{q(t)}\cdotrac{p'(t)}{q'(t)}&=&rac{p(t)p'(t)}{q(t)q'(t)} \end{array}$$

F(t) is a field. It is called the field of **rational forms** over F.

The Field of Gaussian Rationals

Write Q + iQ for the set of all expressions a = r + is, r, s ∈ Q. If a = r + is and a' = r' + is' are two such expressions, a = a' means that r = r' and s = s'. Sums and products are defined by the formulas

$$\begin{array}{rcl} a + a' &=& (r + r') + i(s + s'), \\ a \cdot a' &=& (rr' - ss') + i(rs' + sr'). \end{array}$$

It is straightforward to verify that $\mathbb{Q} + i\mathbb{Q}$ is a field (called the field of **Gaussian rationals**), with 0 + i0 serving as zero element, -r + i(-s) as the negative of r + is, 1 + i0 as unity element, and $\frac{r}{r^2+s^2} + i\left(\frac{-s}{r^2+s^2}\right)$ as the reciprocal of r + is (assuming at least one of r and s nonzero).

- Abbreviating r + i0 as r, we can regard \mathbb{Q} as a subset of $\mathbb{Q} + i\mathbb{Q}$.
- Abbreviating 0 + i1 as *i*, we have $i^2 = -1$.

Properties of Fields

Theorem

Let F be a field, a and b elements of F.

(1)
$$a + a = a \Leftrightarrow a = 0$$
.

(2) a0 = 0, for all *a*.

(3)
$$-(-a) = a$$
, for all *a*.

(4)
$$a(-b) = -(ab) = (-a)b$$
, for all *a* and *b*.

(5)
$$(-a)^2 = a^2$$
, for all *a*.

(6)
$$ab = 0 \Rightarrow a = 0$$
 or $b = 0$; in other words,

(6') a
$$eq$$
 0 & b eq 0 \Rightarrow ab eq 0;

(7)
$$a \neq 0 \& b \neq 0 \Rightarrow (ab)^{-1} = a^{-1}b^{-1}$$

(8)
$$(-1)a = -a$$
, for all a.

(9)
$$-(a+b) = (-a) + (-b)$$
, for all *a* and *b*.

(10) Defining a - b to be a + (-b), we have -(a - b) = b - a.

Proof of the Theorem

- (1) If a + a = a, add -a to both sides: (a + a) + (-a) = a + (-a), use (A1), a + (a + (-a)) = a + (-a), apply (A4), a + 0 = 0 and, finally, apply (A3) a = 0. This shows a + a = a ⇒ a = 0. The converse is immediate from axiom (A3).
- (2) By axiom (D), a0 = a(0 + 0) = a0 + a0, so a0 = 0 by (1).
- (3) (-a) + a = a + (-a) = 0, so a = -(-a), by the uniqueness in (A4).
- (4) 0 = a0 = a[b + (-b)] = ab + a(-b), so a(-b) = -(ab) by (A4); it follows that (-a)b = b(-a) = -(ba) = -(ab).
- (5) Citing (4) twice, we have (-a)(-a) = -[a(-a)] = -[-(aa)] = aa, in other words $(-a)^2 = a^2$.
- (6,7) If a and b are nonzero, then $(ab)(a^{-1}b^{-1}) = (aa^{-1})(bb^{-1}) = 1 \cdot 1 = 1 \neq 0$; it follows from (2) that ab must be nonzero, and $(ab)^{-1} = a^{-1}b^{-1}$ follows from uniqueness in axiom (M4).

(8)
$$(-1)a = -(1a) = -a.$$

(9) $-(a+b) = (-1)(a+b) = (-1)a + (-1)b = (-a) + (-b).$
(10) $-(a-b) = -[a+(-b)] = (-a) + (-(-b)) = (-a) + b = b + (-a) = b - a.$

Notation: Division as an Analog of Subtraction

In the rational field Q, m/n = m'/n' means that mn' = nm'. Abbreviating m/1 as m, the set Z of integers can be regarded as a subset of Q.
For a nonzero integer n, n¹/_n = n/1 / 1 n = n/n = 1/1 = 1, whence 1/n = n^{-1}.
The fractional notation is useful in an arbitrary field F: one writes a/b for ab⁻¹, where a, b ∈ F and b ≠ 0 (this is the multiplicative analog of subtraction a - b = a + (-b)).

Subsection 2

The Order Axioms

Ordered Fields

Definition (Ordered Field)

An **ordered field** is a field F having a subset P of nonzero elements, called **positive**, such that

$$01) a, b \in P \Rightarrow a + b \in P;$$

O2)
$$a, b \in P \Rightarrow ab \in P$$
;

O3)
$$a \in F$$
, $a \neq 0 \Rightarrow$ either $a \in P$ or $-a \in P$, but not both.

In words, the sum and product of positive elements are positive and for each nonzero element a, exactly one of a and -a is positive.

• For elements
$$a, b$$
 of F , we write $a < b$ (or $b > a$) if $b - a \in P$.

Negative Elements and Trichotomy

- $b \in P \Leftrightarrow b > 0;$
- $-a \in P \Leftrightarrow a < 0;$
- Elements a with a < 0 are called **negative**.
- Properties (O1) and (O2) may be written

 $a > 0 \& b > 0 \Rightarrow a + b > 0 \& ab > 0$.

- Property (O3) yields the following:
 If a, b ∈ F, and a ≠ b (in other words, a b ≠ 0) then either a > b or a < b but not both.
- Thus, for any pair of elements *a*, *b* of *F*, exactly one of the following three statements is true:

$$a < b$$
, $a = b$, $a > b$.

This form of (O3) is called the **law of trichotomy**.

Properties of Ordered Fields

Theorem

In an ordered field. (1) a < a is impossible; (2) if a < b and b < c then a < c; (3) $a < b \Leftrightarrow a + c < b + c$: (4) $a < b \Leftrightarrow -a > -b$: (5) $a < 0 \& b < 0 \Rightarrow ab > 0;$ (6) $a < 0 \& b > 0 \Rightarrow ab < 0$; (7) $a < b \& c > 0 \Rightarrow ca < cb$; (8) $a < b \& c < 0 \Rightarrow ca > cb$: (9) $a \neq 0 \Rightarrow a^2 > 0$; (10) 1 > 0; (11) a+1 > a; (12) $a > 0 \Rightarrow a^{-1} > 0$.

Proof of the Theorem

(1)
$$a - a = 0 \notin P$$
, whence $a < a$ cannot hold.

(2) c - a = (c - b) + (b - a) is the sum of two positive elements, and, hence, positive. Thus, a < c.

(3)
$$(b+c) - (a+c) = b - a$$
.

$$(4) -a - (-b) = b - a.$$

- (5) ab = (-a)(-b) is the product of two positive elements.
- (6) 0 ab = (-a)b is the product of positives, whence ab < 0.

$$(7) \ cb-ca=c(b-a).$$

(8)
$$ca - cb = (-c)(b - a).$$

(9) $a^2 = aa = (-a)(-a)$ is the product of two positives.

(10)
$$1 = 1^2 > 0$$
 by (9).

- (11) (a+1) a = 1 > 0.
- (12) If a > 0, then $aa^{-1} = 1 > 0$ precludes $a^{-1} < 0$ by (6).

Notation and Examples

Definition

In any ordered field, one defines $2=1+1, \quad 3=2+1, \quad 4=3+1, \quad \textit{etc}.$

• By the preceding theorem $0 < 1 < 2 < 3 < 4 < \cdots$.

Definition

In an ordered field, we write $a \le b$ (also $b \ge a$) if either a < b or a = b. An element *a* such that $a \ge 0$ is said to be **nonnegative**.

- The relation \leq has all the expected properties, e.g.:
 - $a \leq b$ and $b \leq c$ imply $a \leq c$;
 - $a \le b$ and c > 0 imply $ca \le cb$.
- Example: The rational field Q is ordered, with $P = \{\frac{m}{n} : m \text{ and } n \text{ positive integers}\}$ as the set of positive elements.
- Example: The field of Gaussian rationals is not orderable, because $i^2 = -1$. (In an ordered field, nonzero squares are positive and -1 is negative, so -1 cannot be a square.)

Comparing Powers

Theorem

Let F be an ordered field, a and b nonnegative elements of F, n any positive integer.

- (i) $a < b \Leftrightarrow a^n < b^n$;
- (ii) $a = b \Leftrightarrow a^n = b^n$;
- (iii) $a > b \Leftrightarrow a^n > b^n$.
 - (i) \Rightarrow : By assumption, $0 \le a < b$; We prove that $a^n < b^n$, for every positive integer *n* by induction on *n*:
 - The case n = 1 is the given inequality.
 - Assume $a^k < b^k$. Consider $b^{k+1} a^{k+1} = b(b^k a^k) + (b a)a^k$. The right side is positive because b > 0, $b^k a^k > 0$, b a > 0 and $a^k > 0$. Thus, $a^{k+1} < b^{k+1}$.
- (iii) \Rightarrow : Follows on interchanging the roles of *a* and *b*.
- (ii) \Rightarrow : is obvious.
 - The implications \leftarrow follow by trichotomy!

Subsection 3

Bounded Sets, LUB and GLB

Bounded Sets in Ordered Fields

Definition

Let F be an ordered field. A nonempty subset A of F is said to be:

- (i) **bounded above** if there exists an element $K \in F$, such that $x \le K$ for all $x \in A$. Such an element K is called an **upper bound** for A.
- (ii) **bounded below** if there exists an element $k \in F$, such that $k \le x$, for all $x \in A$. Such an element k is called a **lower bound** for A.
- (iii) **bounded** if it is both bounded above and bounded below;
- (iv) **unbounded** if it is not bounded.

Intervals in Ordered Fields

 Let F be an ordered field, a and b elements of F with a < b. Each of the following subsets of F is bounded, with a serving as a lower bound and b as an upper bound:

Such subsets of F are called **intervals**, with **endpoints** a and b. More precisely,

- [*a*, *b*] is called a **closed interval** (because it contains the endpoints);
- (*a*, *b*) is called an **open interval** (because it does not);
- the intervals [a, b) and (a, b] are called **semiclosed** or **semi-open**.
- If F = Q, then the term "interval" loses some of its intuitive meaning (an interval in Q is considerably more ventilated than the familiar intervals on the real line).
- Note that (a, a) = [a, a) = (a, a] = ∅ because a < a is impossible. On the other hand, [a, a] = {a}.

Examples

- An ordered field is neither bounded above nor bounded below: e.g., any proposed upper bound K is topped by K + 1.
- In an ordered field F, the interval [0,1] has a largest element but [0,1) does not: If a is any element of [0,1) then $x = \frac{a+1}{2}$ is a larger element of [0,1).
 - 1 is an upper bound for [0,1), but nothing smaller will do: If a < 1 then [0,1) contains an element x larger than a:
 - If a < 0, let $x = \frac{1}{2}$.
 - If $0 \le a < 1$, let $x = \frac{a+1}{2}$.

Least Upper Bound

Definition (Least Upper Bound)

Let *F* be an ordered field, *A* a nonempty subset of *F*. We say that *A* has a **least upper bound** in *F* if there exists an element $M \in F$, such that:

- (a) *M* is an upper bound for *A*, i.e., $x \leq M$, for all $x \in A$;
- (b) nothing smaller than M is an upper bound for A, i.e., $M' < M \Rightarrow \exists x \in A \text{ such that } x > M'.$
 - By the contrapositive, (b) is equivalent to M' an upper bound for A implies M ≤ M'.
 - Conditions (a) and (b) can be combined into a single condition:

M' is an upper bound for $A \Leftrightarrow M' \ge M$.

 If such a number M exists, it is unique and is called the least upper bound, or supremum, of A, written M = LUB A, or M = sup A.

Greatest Lower Bound

- The supremum of a set need not belong to the set.
- A set that is bounded above need not have a least upper bound.
- For sets that are bounded below:

Definition (Greatest Lower Bound)

Let A be a nonempty subset of an ordered field F. We say that A has a **greatest lower bound** in F if there exists an element $m \in F$, such that:

- (a) m is a lower bound for A,
- (b) if m' is a lower bound for A then $m \ge m'$.
 - If such an element m exists, it is unique and is called the greatest lower bound, or infimum, of A, written m = GLB A, or m = inf A.

Duality Theorem

Theorem

Let *F* be an ordered field, *A* a nonempty subset of *F*. Write $-A = \{-x : x \in A\}$. Let $c \in F$. Then:

- (i) c is an upper bound for A iff -c is a lower bound for -A;
- (ii) c is a lower bound for A iff -c is an upper bound for -A;
- (iii) If A has a least upper bound, then -A has a greatest lower bound and inf(-A) = -(sup A).
- (iv) If A has a greatest lower bound, then -A has a least upper bound and sup $(-A) = -(\inf A)$.
- (i) The mapping x → -x is a bijection F → F that reverses order: a < b iff -a > -b. The condition x ≤ c, for all x ∈ A, is therefore equivalent to the condition -c ≤ y, for all y ∈ -A. This proves (i).
 (ii) The proof of (ii) is similar.

Proof of (iii) and (iv)

(iii) If A has a least upper bound, then -A has a greatest lower bound and inf(-A) = -(sup A):

Suppose A has a least upper bound a. We know from (i) that -a is a lower bound for -A. We have to show that it is larger than all others. Let k be any lower bound for -A. For all $a \in A$, we have $k \leq -a$, so $a \leq -k$. So -k is an upper bound for A, whence $a \leq -k$, and, therefore, $-a \geq k$.

(iv) If A has a greatest lower bound, then -A has a least upper bound and sup $(-A) = -(\inf A)$: The proof of (iv) is similar to that of (iii).

Subsection 4

The Completeness Axiom (Existence of LUBs)

The Field of Real Numbers ${\mathbb R}$

Definition (Complete Ordered Field)

An ordered field is said to be **complete** if it satisfies the condition: Every nonempty subset that is bounded above has a least upper bound.

- Do such fields exist? If so, how many? The point of departure of "real analysis" is the assumption that the answers are "yes" and "one".
- We assume that there exists a complete ordered field \mathbb{R} and that it is unique in the sense that every complete ordered field is isomorphic to \mathbb{R} :

Definition (Real Number Field)

 \mathbbm{R} is a complete ordered field whose elements are called real numbers.

• This definition means that \mathbb{R} is a set with two operations (addition and multiplication) satisfying the field axioms, the order axioms and the completeness axiom.

George Voutsadakis (LSSU)

Positive Integers and Natural Numbers

- Example: The ordered field Q(t) is not complete. The rational field Q is not complete either.
- The statements that follow are not self-evident, but we will take them for granted:
 - The set of **positive integers** is the set $\mathbb{P} = \{1, 2, 3, ...\}$, where 2 = 1 + 1, 3 = 2 + 1, etc. (The "etc." and the three dots "..." hide all the difficulties!)
 - Every positive integer is > 0, and 1 is the smallest.
 - The set \mathbb{P} is closed under addition and multiplication.
 - The set of **natural numbers** is the set $\mathbb{N} = \{0\} \cup \mathbb{P} = \{0, 1, 2, 3, \ldots\}$.
 - \mathbb{N} is also closed under addition and multiplication.

Integers and Rational Numbers

 $\bullet\,$ The set of integers is the set $\mathbb Z$ of all differences of positive integers,

$$\mathbb{Z} = \{m - n : m, n \in \mathbb{P}\}.$$

- \mathbb{Z} is closed under the operations x + y, xy and -x.
- The set of positive elements of \mathbb{Z} is precisely the set \mathbb{P} , whence $\mathbb{Z} = \{0\} \cup \mathbb{P} \cup (-\mathbb{P})$, where $-\mathbb{P} = \{-n : n \in \mathbb{P}\}$.
- The set of rational numbers is the set

$$\mathbb{Q} = \{\frac{m}{n} : m, n \in \mathbb{Z}, n \neq 0\},\$$

where $\frac{m}{n} = mn^{-1}$.

- Q contains sums, products, negatives and reciprocals (of its nonzero elements), thus Q is itself a field (a "subfield" of \mathbb{R}).
- We have the inclusions $\mathbb{P} \subset \mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}$.

Outline of a Rigorous Treatment

- Besides the overt axioms for R (field, order, completeness) we propose to accept a somewhat vague hidden one:
 P is "equal" to the set of "ordinary positive integers".
- For this to become rigorous, we should
 - set down axioms for the set of positive integers (for example, Peano's axioms);
 - 2) show that there is essentially only one set satisfying the axioms;
 - (3) give an unambiguous definition of the set \mathbb{P} defined informally above;
 - 4) verify that \mathbb{P} satisfies the axioms in question.
- To avoid the complete axiomatic development with its associated formalism, we accept the informal description of \mathbb{P} .