Introduction to Real Analysis

George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science
Lake Superior State University

LSSU Math 421

(1) Axioms for the Field \mathbb{R} of Real Numbers

- The Field Axioms
- The Order Axioms
- Bounded Sets, LUB and GLB
- The Completeness Axiom (Existence of LUBs)

Subsection 1

The Field Axioms

Fields

Definition (Field)

A field is a set F such that, for all a, b in F, there are defined $a+b$ and $a b$ in F, called the sum and product of a and b, subject to:
(A1) $(a+b)+c=a+(b+c)$ (associative law for addition);
(A2) $a+b=b+a$ (commutative law for addition);
(A3) there is a unique element $0 \in F$ such that $a+0=a$, for all $a \in F$ (existence of a zero element);
(A4) For each $a \in F$, there exists a unique element of F, denoted $-a$, such that $a+(-a)=0$ (existence of negatives);
(M1) $(a b) c=a(b c)$ (associative law for multiplication);
(M2) $a b=b a$ (commutative law for multiplication);
(M3) There is a unique element 1 of F, different from 0 , such that $1 a=a$, for all $a \in F$ (existence of a unity element);
(M4) For each nonzero $a \in F$, there exists a unique element of F, denoted a^{-1}, such that $a a^{-1}=1$ (existence of reciprocals);
(D) $a(b+c)=a b+a c$ (distributive law).

Examples I

- The field of rational numbers is the set \mathbb{Q} of fractions, $\mathbb{Q}=\left\{\frac{m}{n}: m\right.$ and n integers, $\left.n \neq 0\right\}$, with the usual operations:

$$
\begin{aligned}
\frac{m}{n}+\frac{m^{\prime}}{n^{\prime}} & =\frac{m n^{\prime}+n m^{\prime}}{n n^{\prime}} \\
\frac{m}{n} \cdot \frac{m^{\prime}}{n^{\prime}} & =\frac{m m^{\prime}}{n n^{\prime}}
\end{aligned}
$$

The fraction $\frac{0}{1}$ serves as zero element, $\frac{1}{1}$ as unity element, $\frac{-m}{n}$ as the negative of $\frac{m}{n}$, and $\frac{n}{m}$ as the reciprocal of $\frac{m}{n}$ (assuming m and n both nonzero).

- The smallest field consists of two elements 0 and 1 , where $1+1=0$ and all other sums and products are defined in the expected way (for example, $1+0=1,0 \cdot 1=0$)

The Field of Rational Forms

- Let F be any field. Write $F[t]$ for the set of all polynomials $p(t)=a_{0}+a_{1} t+\cdots+a_{n} t^{n}$ in an indeterminate t, with coefficients a_{k} in F, and write $F(t)$ for the set of all "fractions" $\frac{p(t)}{q(t)}$, with $p(t), q(t) \in F[t]$ and $q(t)$ not the zero polynomial. With sums and products defined by

$$
\begin{aligned}
\frac{p(t)}{q(t)}+\frac{p^{\prime}(t)}{q^{\prime}(t)} & =\frac{p(t) q^{\prime}(t)+p^{\prime}(t) q(t)}{q(t) q^{\prime}(t)} \\
\frac{p(t)}{q(t)} \cdot \frac{p^{\prime}(t)}{q^{\prime}(t)} & =\frac{p(t) p^{\prime}(t)}{q(t) q^{\prime}(t)}
\end{aligned}
$$

$F(t)$ is a field. It is called the field of rational forms over F.

The Field of Gaussian Rationals

- Write $\mathbb{Q}+i \mathbb{Q}$ for the set of all expressions $a=r+i s, r, s \in \mathbb{Q}$. If $a=r+i s$ and $a^{\prime}=r^{\prime}+i s^{\prime}$ are two such expressions, $a=a^{\prime}$ means that $r=r^{\prime}$ and $s=s^{\prime}$. Sums and products are defined by the formulas

$$
\begin{aligned}
a+a^{\prime} & =\left(r+r^{\prime}\right)+i\left(s+s^{\prime}\right) \\
a \cdot a^{\prime} & =\left(r r^{\prime}-s s^{\prime}\right)+i\left(r s^{\prime}+s r^{\prime}\right)
\end{aligned}
$$

It is straightforward to verify that $\mathbb{Q}+i \mathbb{Q}$ is a field (called the field of Gaussian rationals), with $0+i 0$ serving as zero element, $-r+i(-s)$ as the negative of $r+i s, 1+i 0$ as unity element, and $\frac{r}{r^{2}+s^{2}}+i\left(\frac{-s}{r^{2}+s^{2}}\right)$ as the reciprocal of $r+i s$ (assuming at least one of r and s nonzero).

- Abbreviating $r+i 0$ as r, we can regard \mathbb{Q} as a subset of $\mathbb{Q}+i \mathbb{Q}$.
- Abbreviating $0+i 1$ as i, we have $i^{2}=-1$.

Properties of Fields

Theorem

Let F be a field, a and b elements of F.
(1) $a+a=a \Leftrightarrow a=0$.
(2) $a 0=0$, for all a.
(3) $-(-a)=a$, for all a.
(4) $a(-b)=-(a b)=(-a) b$, for all a and b.
(5) $(-a)^{2}=a^{2}$, for all a.
(6) $a b=0 \Rightarrow a=0$ or $b=0$; in other words,
(6') $a \neq 0 \& b \neq 0 \Rightarrow a b \neq 0$;
(7) $a \neq 0 \& b \neq 0 \Rightarrow(a b)^{-1}=a^{-1} b^{-1}$.
(8) $(-1) a=-a$, for all a.
(9) $-(a+b)=(-a)+(-b)$, for all a and b.
(10) Defining $a-b$ to be $a+(-b)$, we have $-(a-b)=b-a$.

Proof of the Theorem

(1) If $a+a=a$, add $-a$ to both sides: $(a+a)+(-a)=a+(-a)$, use (A1), $a+(a+(-a))=a+(-a)$, apply (A4), $a+0=0$ and, finally, apply (A3) $a=0$. This shows $a+a=a \Rightarrow a=0$. The converse is immediate from axiom (A3).
(2) By axiom (D), $a 0=a(0+0)=a 0+a 0$, so $a 0=0$ by (1).
(3) $(-a)+a=a+(-a)=0$, so $a=-(-a)$, by the uniqueness in (A4).
(4) $0=a 0=a[b+(-b)]=a b+a(-b)$, so $a(-b)=-(a b)$ by (A4); it follows that $(-a) b=b(-a)=-(b a)=-(a b)$.
(5) Citing (4) twice, we have $(-a)(-a)=-[a(-a)]=-[-(a a)]=a a$, in other words $(-a)^{2}=a^{2}$.
$(6,7)$ If a and b are nonzero, then $(a b)\left(a^{-1} b^{-1}\right)=\left(a a^{-1}\right)\left(b b^{-1}\right)=1 \cdot 1=1 \neq 0$; it follows from (2) that $a b$ must be nonzero, and $(a b)^{-1}=a^{-1} b^{-1}$ follows from uniqueness in axiom (M4).
(8) $(-1) a=-(1 a)=-a$.
(9) $-(a+b)=(-1)(a+b)=(-1) a+(-1) b=(-a)+(-b)$.
(10)
$-(a-b)=-[a+(-b)]=(-a)+(-(-b))=(-a)+b=b+(-a)=b-a$.

Notation: Division as an Analog of Subtraction

- In the rational field $\mathbb{Q}, \frac{m}{n}=\frac{m^{\prime}}{n^{\prime}}$ means that $m n^{\prime}=n m^{\prime}$. Abbreviating $\frac{m}{1}$ as m, the set \mathbb{Z} of integers can be regarded as a subset of \mathbb{Q}.
- For a nonzero integer $n, n \frac{1}{n}=\frac{n}{1} \frac{1}{n}=\frac{n}{n}=\frac{1}{1}=1$, whence $\frac{1}{n}=n^{-1}$.
- The fractional notation is useful in an arbitrary field F : one writes $\frac{a}{b}$ for $a b^{-1}$, where $a, b \in F$ and $b \neq 0$ (this is the multiplicative analog of subtraction $a-b=a+(-b))$.

Subsection 2

The Order Axioms

Ordered Fields

Definition (Ordered Field)

An ordered field is a field F having a subset P of nonzero elements, called positive, such that
(O1) $a, b \in P \Rightarrow a+b \in P$;
(O2) $a, b \in P \Rightarrow a b \in P$;
(O3) $a \in F, a \neq 0 \Rightarrow$ either $a \in P$ or $-a \in P$, but not both.
In words, the sum and product of positive elements are positive and for each nonzero element a, exactly one of a and $-a$ is positive.

- For elements a, b of F, we write $a<b$ (or $b>a$) if $b-a \in P$.

Negative Elements and Trichotomy

- $b \in P \Leftrightarrow b>0$;
- $-a \in P \Leftrightarrow a<0$;
- Elements a with $a<0$ are called negative.
- Properties (O1) and (O2) may be written

$$
a>0 \& b>0 \Rightarrow a+b>0 \& a b>0
$$

- Property (O3) yields the following:

If $a, b \in F$, and $a \neq b$ (in other words, $a-b \neq 0$) then either $a>b$ or $a<b$ but not both.

- Thus, for any pair of elements a, b of F, exactly one of the following three statements is true:

$$
a<b, \quad a=b, \quad a>b
$$

This form of (O3) is called the law of trichotomy.

Properties of Ordered Fields

Theorem

In an ordered field,
(1) $a<a$ is impossible;
(2) if $a<b$ and $b<c$ then $a<c$;
(3) $a<b \Leftrightarrow a+c<b+c$;
(4) $a<b \Leftrightarrow-a>-b$;
(5) $a<0 \& b<0 \Rightarrow a b>0$;
(6) $a<0 \& b>0 \Rightarrow a b<0$;
(7) $a<b \& c>0 \Rightarrow c a<c b$;
(8) $a<b \& c<0 \Rightarrow c a>c b$;
(9) $a \neq 0 \Rightarrow a^{2}>0$;
(10) $1>0$;
(11) $a+1>a$;
(12) $a>0 \Rightarrow a^{-1}>0$.

Proof of the Theorem

(1) $a-a=0 \notin P$, whence $a<a$ cannot hold.
(2) $c-a=(c-b)+(b-a)$ is the sum of two positive elements, and, hence, positive. Thus, $a<c$.
(3) $(b+c)-(a+c)=b-a$.
(4) $-a-(-b)=b-a$.
(5) $a b=(-a)(-b)$ is the product of two positive elements.
(6) $0-a b=(-a) b$ is the product of positives, whence $a b<0$.
(7) $c b-c a=c(b-a)$.
(8) $c a-c b=(-c)(b-a)$.
(9) $a^{2}=a a=(-a)(-a)$ is the product of two positives.
(10) $1=1^{2}>0$ by (9).
(11) $(a+1)-a=1>0$.
(12) If $a>0$, then $a a^{-1}=1>0$ precludes $a^{-1}<0$ by (6).

Notation and Examples

Definition

In any ordered field, one defines

$$
2=1+1, \quad 3=2+1, \quad 4=3+1, \quad \text { etc } .
$$

- By the preceding theorem $0<1<2<3<4<\cdots$.

Definition

In an ordered field, we write $a \leq b$ (also $b \geq a$) if either $a<b$ or $a=b$. An element a such that $a \geq 0$ is said to be nonnegative.

- The relation \leq has all the expected properties, e.g.:
- $a \leq b$ and $b \leq c$ imply $a \leq c$;
- $a \leq b$ and $c>0$ imply $c a \leq c b$.
- Example: The rational field \mathbb{Q} is ordered, with $P=\left\{\frac{m}{n}: m\right.$ and n positive integers $\}$ as the set of positive elements.
- Example: The field of Gaussian rationals is not orderable, because $i^{2}=-1$. (In an ordered field, nonzero squares are positive and -1 is negative, so -1 cannot be a square.)

Comparing Powers

Theorem

Let F be an ordered field, a and b nonnegative elements of F, n any positive integer.
(i) $a<b \Leftrightarrow a^{n}<b^{n}$;
(ii) $a=b \Leftrightarrow a^{n}=b^{n}$;
(iii) $a>b \Leftrightarrow a^{n}>b^{n}$.
(i) \Rightarrow : By assumption, $0 \leq a<b$; We prove that $a^{n}<b^{n}$, for every positive integer n by induction on n :

- The case $n=1$ is the given inequality.
- Assume $a^{k}<b^{k}$. Consider $b^{k+1}-a^{k+1}=b\left(b^{k}-a^{k}\right)+(b-a) a^{k}$. The right side is positive because $b>0, b^{k}-a^{k}>0, b-a>0$ and $a^{k}>0$. Thus, $a^{k+1}<b^{k+1}$.
(iii) \Rightarrow : Follows on interchanging the roles of a and b.
(ii) \Rightarrow : is obvious.
- The implications \Leftarrow follow by trichotomy!

Subsection 3

Bounded Sets, LUB and GLB

Bounded Sets in Ordered Fields

Definition

Let F be an ordered field. A nonempty subset A of F is said to be:
(i) bounded above if there exists an element $K \in F$, such that $x \leq K$ for all $x \in A$. Such an element K is called an upper bound for A.
(ii) bounded below if there exists an element $k \in F$, such that $k \leq x$, for all $x \in A$. Such an element k is called a lower bound for A.
(iii) bounded if it is both bounded above and bounded below;
(iv) unbounded if it is not bounded.

Intervals in Ordered Fields

- Let F be an ordered field, a and b elements of F with $a<b$. Each of the following subsets of F is bounded, with a serving as a lower bound and b as an upper bound:

$$
\begin{array}{ll}
{[a, b]=\{x \in F: a \leq x \leq b\}} & \quad[a, b)=\{x \in F: a \leq x<b\} \\
(a, b)=\{x \in F: a<x<b\} & (a, b]=\{x \in F: a<x \leq b\} .
\end{array}
$$

Such subsets of F are called intervals, with endpoints a and b. More precisely,

- $[a, b]$ is called a closed interval (because it contains the endpoints);
- (a, b) is called an open interval (because it does not);
- the intervals $[a, b)$ and ($a, b]$ are called semiclosed or semi-open.
- If $F=\mathbb{Q}$, then the term "interval" loses some of its intuitive meaning (an interval in \mathbb{Q} is considerably more ventilated than the familiar intervals on the real line).
- Note that $(a, a)=[a, a)=(a, a]=\emptyset$ because $a<a$ is impossible. On the other hand, $[a, a]=\{a\}$.

Examples

- An ordered field is neither bounded above nor bounded below: e.g., any proposed upper bound K is topped by $K+1$.
- In an ordered field F, the interval $[0,1]$ has a largest element but $[0,1)$ does not: If a is any element of $[0,1)$ then $x=\frac{a+1}{2}$ is a larger element of $[0,1)$.
1 is an upper bound for $[0,1)$, but nothing smaller will do:
If $a<1$ then $[0,1)$ contains an element x larger than a :
- If $a<0$, let $x=\frac{1}{2}$.
- If $0 \leq a<1$, let $x=\frac{a+1}{2}$.

Least Upper Bound

Definition (Least Upper Bound)

Let F be an ordered field, A a nonempty subset of F. We say that A has a least upper bound in F if there exists an element $M \in F$, such that:
(a) M is an upper bound for A, i.e., $x \leq M$, for all $x \in A$;
(b) nothing smaller than M is an upper bound for A, i.e., $M^{\prime}<M \Rightarrow \exists x \in A$ such that $x>M^{\prime}$.

- By the contrapositive, (b) is equivalent to M^{\prime} an upper bound for A implies $M \leq M^{\prime}$.
- Conditions (a) and (b) can be combined into a single condition:
M^{\prime} is an upper bound for $A \Leftrightarrow M^{\prime} \geq M$.
- If such a number M exists, it is unique and is called the least upper bound, or supremum, of A, written $M=\operatorname{LUB} A$, or $M=\sup A$.

Greatest Lower Bound

- The supremum of a set need not belong to the set.
- A set that is bounded above need not have a least upper bound.
- For sets that are bounded below:

Definition (Greatest Lower Bound)

Let A be a nonempty subset of an ordered field F. We say that A has a greatest lower bound in F if there exists an element $m \in F$, such that:
(a) m is a lower bound for A,
(b) if m^{\prime} is a lower bound for A then $m \geq m^{\prime}$.

- If such an element m exists, it is unique and is called the greatest lower bound, or infimum, of A, written $m=G L B A$, or $m=\inf A$.

Duality Theorem

Theorem

Let F be an ordered field, A a nonempty subset of F. Write $-A=\{-x: x \in A\}$. Let $c \in F$. Then:
(i) c is an upper bound for A iff $-c$ is a lower bound for $-A$;
(ii) c is a lower bound for A iff $-c$ is an upper bound for $-A$;
(iii) If A has a least upper bound, then $-A$ has a greatest lower bound and $\inf (-A)=-(\sup A)$.
(iv) If A has a greatest lower bound, then $-A$ has a least upper bound and $\sup (-A)=-(\inf A)$.
(i) The mapping $x \mapsto-x$ is a bijection $F \rightarrow F$ that reverses order: $a<b$ iff $-a>-b$. The condition $x \leq c$, for all $x \in A$, is therefore equivalent to the condition $-c \leq y$, for all $y \in-A$. This proves (i).
(ii) The proof of (ii) is similar.

Proof of (iii) and (iv)

(iii) If A has a least upper bound, then $-A$ has a greatest lower bound and $\inf (-A)=-(\sup A)$:
Suppose A has a least upper bound a. We know from (i) that -a is a lower bound for $-A$. We have to show that it is larger than all others. Let k be any lower bound for $-A$. For all $a \in A$, we have $k \leq-a$, so $a \leq-k$. So $-k$ is an upper bound for A, whence $a \leq-k$, and, therefore, $-a \geq k$.
(iv) If A has a greatest lower bound, then $-A$ has a least upper bound and $\sup (-A)=-(\inf A)$:
The proof of (iv) is similar to that of (iii).

Subsection 4

The Completeness Axiom (Existence of LUBs)

The Field of Real Numbers \mathbb{R}

Definition (Complete Ordered Field)

An ordered field is said to be complete if it satisfies the condition: Every nonempty subset that is bounded above has a least upper bound.

- Do such fields exist? If so, how many? The point of departure of "real analysis" is the assumption that the answers are "yes" and "one".
- We assume that there exists a complete ordered field \mathbb{R} and that it is unique in the sense that every complete ordered field is isomorphic to R :

Definition (Real Number Field)

\mathbb{R} is a complete ordered field whose elements are called real numbers.

- This definition means that \mathbb{R} is a set with two operations (addition and multiplication) satisfying the field axioms, the order axioms and the completeness axiom.

Positive Integers and Natural Numbers

- Example: The ordered field $\mathbb{Q}(t)$ is not complete. The rational field Q is not complete either.
- The statements that follow are not self-evident, but we will take them for granted:
- The set of positive integers is the set $\mathbb{P}=\{1,2,3, \ldots\}$, where $2=1+1,3=2+1$, etc. (The "etc." and the three dots ". .." hide all the difficulties!)
- Every positive integer is >0, and 1 is the smallest.
- The set \mathbb{P} is closed under addition and multiplication.
- The set of natural numbers is the set $\mathbb{N}=\{0\} \cup \mathbb{P}=\{0,1,2,3, \ldots\}$.
- $\mathbb{I N}$ is also closed under addition and multiplication.

Integers and Rational Numbers

- The set of integers is the set \mathbb{Z} of all differences of positive integers,

$$
\mathbb{Z}=\{m-n: m, n \in \mathbb{P}\}
$$

- \mathbb{Z} is closed under the operations $x+y, x y$ and $-x$.
- The set of positive elements of \mathbb{Z} is precisely the set \mathbb{P}, whence $\mathbb{Z}=\{0\} \cup \mathbb{P} \cup(-\mathbb{P})$, where $-\mathbb{P}=\{-n: n \in \mathbb{P}\}$.
- The set of rational numbers is the set

$$
\mathbb{Q}=\left\{\frac{m}{n}: m, n \in \mathbb{Z}, n \neq 0\right\}
$$

where $\frac{m}{n}=m n^{-1}$.

- Q contains sums, products, negatives and reciprocals (of its nonzero elements), thus \mathbb{Q} is itself a field (a "subfield" of \mathbb{R}).
- We have the inclusions $\mathbb{P} \subset \mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}$.

Outline of a Rigorous Treatment

- Besides the overt axioms for \mathbb{R} (field, order, completeness) we propose to accept a somewhat vague hidden one: \mathbb{P} is "equal" to the set of "ordinary positive integers".
- For this to become rigorous, we should
(1) set down axioms for the set of positive integers (for example, Peano's axioms);
(2) show that there is essentially only one set satisfying the axioms;
(3) give an unambiguous definition of the set \mathbb{P} defined informally above;
(4) verify that \mathbb{P} satisfies the axioms in question.
- To avoid the complete axiomatic development with its associated formalism, we accept the informal description of \mathbb{P}.

