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Axioms for the Field R of Real Numbers The Field Axioms

Fields

Definition (Field)

A field is a set F such that, for all a, b in F , there are defined a+ b and
ab in F , called the sum and product of a and b, subject to:

(A1) (a + b) + c = a + (b + c) (associative law for addition);

(A2) a + b = b + a (commutative law for addition);

(A3) there is a unique element 0 ∈ F such that a + 0 = a, for all a ∈ F

(existence of a zero element);
(A4) For each a ∈ F , there exists a unique element of F , denoted −a, such

that a + (−a) = 0 (existence of negatives);

(M1) (ab)c = a(bc) (associative law for multiplication);

(M2) ab = ba (commutative law for multiplication);

(M3) There is a unique element 1 of F , different from 0, such that 1a = a,
for all a ∈ F (existence of a unity element);

(M4) For each nonzero a ∈ F , there exists a unique element of F , denoted
a−1, such that aa−1 = 1 (existence of reciprocals);

(D) a(b + c) = ab + ac (distributive law).
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Axioms for the Field R of Real Numbers The Field Axioms

Examples I

The field of rational numbers is the set Q of fractions,
Q = {m

n
: m and n integers, n 6= 0}, with the usual operations:

m

n
+

m′

n′
=

mn′ + nm′

nn′

m

n
·
m′

n′
=

mm′

nn′

The fraction 0
1 serves as zero element, 1

1 as unity element, −m
n

as the
negative of m

n
, and n

m
as the reciprocal of m

n
(assuming m and n both

nonzero).

The smallest field consists of two elements 0 and 1, where 1 + 1 = 0
and all other sums and products are defined in the expected way (for
example, 1 + 0 = 1, 0 · 1 = 0)
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The Field of Rational Forms

Let F be any field. Write F [t] for the set of all polynomials
p(t) = a0 + a1t + · · · + ant

n in an indeterminate t, with coefficients

ak in F , and write F (t) for the set of all “fractions” p(t)
q(t) , with

p(t), q(t) ∈ F [t] and q(t) not the zero polynomial. With sums and
products defined by

p(t)

q(t)
+

p′(t)

q′(t)
=

p(t)q′(t) + p′(t)q(t)

q(t)q′(t)

p(t)

q(t)
·
p′(t)

q′(t)
=

p(t)p′(t)

q(t)q′(t)

F (t) is a field. It is called the field of rational forms over F .
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The Field of Gaussian Rationals

Write Q+ iQ for the set of all expressions a = r + is, r , s ∈ Q. If
a = r + is and a′ = r ′ + is ′ are two such expressions, a = a′ means
that r = r ′ and s = s ′. Sums and products are defined by the formulas

a + a′ = (r + r ′) + i(s + s ′),
a · a′ = (rr ′ − ss ′) + i(rs ′ + sr ′).

It is straightforward to verify that Q+ iQ is a field (called the field of
Gaussian rationals), with 0 + i0 serving as zero element,
−r + i(−s) as the negative of r + is, 1 + i0 as unity element, and

r
r2+s2

+ i
(

−s
r2+s2

)

as the reciprocal of r + is (assuming at least one of

r and s nonzero).

Abbreviating r + i0 as r , we can regard Q as a subset of Q+ iQ.

Abbreviating 0 + i1 as i , we have i2 = − 1.
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Axioms for the Field R of Real Numbers The Field Axioms

Properties of Fields

Theorem

Let F be a field, a and b elements of F .

(1) a + a = a ⇔ a = 0.

(2) a0 = 0, for all a.

(3) −(−a) = a, for all a.

(4) a(−b) = −(ab) = (−a)b, for all a and b.

(5) (−a)2 = a2, for all a.

(6) ab = 0 ⇒ a = 0 or b = 0; in other words,

(6’) a 6= 0 & b 6= 0 ⇒ ab 6= 0;

(7) a 6= 0 & b 6= 0 ⇒ (ab)−1 = a−1b−1.

(8) (−1)a = −a, for all a.

(9) −(a + b) = (−a) + (−b), for all a and b.

(10) Defining a − b to be a + (−b), we have −(a − b) = b − a.
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Proof of the Theorem

(1) If a+ a = a, add −a to both sides: (a+ a) + (−a) = a+ (−a), use (A1),
a+ (a+ (−a)) = a+ (−a), apply (A4), a+ 0 = 0 and, finally, apply (A3)
a = 0. This shows a + a = a ⇒ a = 0. The converse is immediate from
axiom (A3).

(2) By axiom (D), a0 = a(0 + 0) = a0 + a0, so a0 = 0 by (1).

(3) (−a) + a = a + (−a) = 0, so a = −(−a), by the uniqueness in (A4).

(4) 0 = a0 = a[b + (−b)] = ab + a(−b), so a(−b) = −(ab) by (A4); it follows
that (−a)b = b(−a) = −(ba) = −(ab).

(5) Citing (4) twice, we have (−a)(−a) = −[a(−a)] = −[−(aa)] = aa, in other
words (−a)2 = a2.

(6,7) If a and b are nonzero, then (ab)(a−1b−1) = (aa−1)(bb−1) = 1 · 1 = 1 6= 0;
it follows from (2) that ab must be nonzero, and (ab)−1 = a−1b−1 follows
from uniqueness in axiom (M4).

(8) (−1)a = −(1a) = −a.

(9) −(a+ b) = (−1)(a+ b) = (−1)a+ (−1)b = (−a) + (−b).

(10) −(a− b) = −[a+(−b)] = (−a)+ (−(−b)) = (−a)+ b = b+(−a) = b− a.
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Axioms for the Field R of Real Numbers The Field Axioms

Notation: Division as an Analog of Subtraction

In the rational field Q,
m

n
=

m′

n′
means that mn′ = nm′. Abbreviating

m

1
as m, the set Z of integers can be regarded as a subset of Q.

For a nonzero integer n, n
1

n
=

n

1

1

n
=

n

n
=

1

1
= 1, whence

1

n
= n−1.

The fractional notation is useful in an arbitrary field F : one writes
a

b
for ab−1, where a, b ∈ F and b 6= 0 (this is the multiplicative analog
of subtraction a − b = a + (−b)).
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Subsection 2

The Order Axioms
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Axioms for the Field R of Real Numbers The Order Axioms

Ordered Fields

Definition (Ordered Field)

An ordered field is a field F having a subset P of nonzero elements,
called positive, such that

(O1) a, b ∈ P ⇒ a+ b ∈ P ;

(O2) a, b ∈ P ⇒ ab ∈ P ;

(O3) a ∈ F , a 6= 0 ⇒ either a ∈ P or −a ∈ P , but not both.

In words, the sum and product of positive elements are positive and for
each nonzero element a, exactly one of a and −a is positive.

For elements a, b of F , we write a < b (or b > a) if b − a ∈ P .
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Axioms for the Field R of Real Numbers The Order Axioms

Negative Elements and Trichotomy

b ∈ P ⇔ b > 0;

−a ∈ P ⇔ a < 0;

Elements a with a < 0 are called negative.

Properties (O1) and (O2) may be written

a > 0 & b > 0 ⇒ a+ b > 0 & ab > 0.

Property (O3) yields the following:

If a, b ∈ F , and a 6= b (in other words, a − b 6= 0) then either a > b

or a < b but not both.

Thus, for any pair of elements a, b of F , exactly one of the following
three statements is true:

a < b, a = b, a > b.

This form of (O3) is called the law of trichotomy.
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Properties of Ordered Fields

Theorem

In an ordered field,
(1) a < a is impossible;

(2) if a < b and b < c then a < c ;

(3) a < b ⇔ a+ c < b + c ;

(4) a < b ⇔ −a > −b;

(5) a < 0 & b < 0 ⇒ ab > 0;

(6) a < 0 & b > 0 ⇒ ab < 0;

(7) a < b & c > 0 ⇒ ca < cb;

(8) a < b & c < 0 ⇒ ca > cb;

(9) a 6= 0 ⇒ a2 > 0;

(10) 1 > 0;

(11) a + 1 > a;

(12) a > 0 ⇒ a−1 > 0.
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Proof of the Theorem

(1) a − a = 0 6∈ P , whence a < a cannot hold.

(2) c − a = (c − b) + (b − a) is the sum of two positive elements, and,
hence, positive. Thus, a < c .

(3) (b + c)− (a + c) = b − a.

(4) −a− (−b) = b − a.

(5) ab = (−a)(−b) is the product of two positive elements.

(6) 0− ab = (−a)b is the product of positives, whence ab < 0.

(7) cb − ca = c(b − a).

(8) ca − cb = (−c)(b − a).

(9) a2 = aa = (−a)(−a) is the product of two positives.

(10) 1 = 12 > 0 by (9).

(11) (a + 1)− a = 1 > 0.

(12) If a > 0, then aa−1 = 1 > 0 precludes a−1 < 0 by (6).
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Notation and Examples

Definition

In any ordered field, one defines
2 = 1 + 1, 3 = 2 + 1, 4 = 3 + 1, etc .

By the preceding theorem 0 < 1 < 2 < 3 < 4 < · · ·.

Definition

In an ordered field, we write a ≤ b (also b ≥ a) if either a < b or a = b.
An element a such that a ≥ 0 is said to be nonnegative.

The relation ≤ has all the expected properties, e.g.:
a ≤ b and b ≤ c imply a ≤ c ;
a ≤ b and c > 0 imply ca ≤ cb.

Example: The rational field Q is ordered, with P = {m
n
: m and n

positive integers} as the set of positive elements.

Example: The field of Gaussian rationals is not orderable, because
i2 = −1. (In an ordered field, nonzero squares are positive and −1 is
negative, so −1 cannot be a square.)
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Axioms for the Field R of Real Numbers The Order Axioms

Comparing Powers

Theorem

Let F be an ordered field, a and b nonnegative elements of F , n any
positive integer.

(i) a < b ⇔ an < bn;

(ii) a = b ⇔ an = bn;

(iii) a > b ⇔ an > bn.

(i) ⇒: By assumption, 0 ≤ a < b; We prove that an < bn, for every
positive integer n by induction on n:

The case n = 1 is the given inequality.
Assume ak < bk . Consider bk+1 − ak+1 = b(bk − ak) + (b− a)ak . The
right side is positive because b > 0, bk − ak > 0, b − a > 0 and
ak > 0. Thus, ak+1 < bk+1.

(iii) ⇒: Follows on interchanging the roles of a and b.

(ii) ⇒: is obvious.

The implications ⇐ follow by trichotomy!
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Subsection 3

Bounded Sets, LUB and GLB
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Axioms for the Field R of Real Numbers Bounded Sets, LUB and GLB

Bounded Sets in Ordered Fields

Definition

Let F be an ordered field. A nonempty subset A of F is said to be:

(i) bounded above if there exists an element K ∈ F , such that x ≤ K

for all x ∈ A. Such an element K is called an upper bound for A.

(ii) bounded below if there exists an element k ∈ F , such that k ≤ x ,
for all x ∈ A. Such an element k is called a lower bound for A.

(iii) bounded if it is both bounded above and bounded below;

(iv) unbounded if it is not bounded.
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Axioms for the Field R of Real Numbers Bounded Sets, LUB and GLB

Intervals in Ordered Fields

Let F be an ordered field, a and b elements of F with a < b. Each of
the following subsets of F is bounded, with a serving as a lower
bound and b as an upper bound:

[a, b] = {x ∈ F : a ≤ x ≤ b} [a, b) = {x ∈ F : a ≤ x < b}
(a, b) = {x ∈ F : a < x < b} (a, b] = {x ∈ F : a < x ≤ b}.

Such subsets of F are called intervals, with endpoints a and b.
More precisely,

[a, b] is called a closed interval (because it contains the endpoints);
(a, b) is called an open interval (because it does not);
the intervals [a, b) and (a, b] are called semiclosed or semi-open.

If F = Q, then the term “interval” loses some of its intuitive meaning
(an interval in Q is considerably more ventilated than the familiar
intervals on the real line).

Note that (a, a) = [a, a) = (a, a] = ∅ because a < a is impossible. On
the other hand, [a, a] = {a}.
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Examples

An ordered field is neither bounded above nor bounded below: e.g.,
any proposed upper bound K is topped by K + 1.

In an ordered field F , the interval [0, 1] has a largest element but
[0, 1) does not: If a is any element of [0, 1) then x = a+1

2 is a larger
element of [0, 1).
1 is an upper bound for [0, 1), but nothing smaller will do:
If a < 1 then [0, 1) contains an element x larger than a:

If a < 0, let x = 1
2 .

If 0 ≤ a < 1, let x = a+1
2 .
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Least Upper Bound

Definition (Least Upper Bound)

Let F be an ordered field, A a nonempty subset of F . We say that A has a
least upper bound in F if there exists an element M ∈ F , such that:

(a) M is an upper bound for A, i.e., x ≤ M, for all x ∈ A;

(b) nothing smaller than M is an upper bound for A, i.e.,
M ′ < M ⇒ ∃x ∈ A such that x > M ′.

By the contrapositive, (b) is equivalent to M ′ an upper bound for A
implies M ≤ M ′.

Conditions (a) and (b) can be combined into a single condition:

M ′ is an upper bound for A ⇔ M ′ ≥ M.

If such a number M exists, it is unique and is called the least upper

bound, or supremum, of A, written M = LUB A, or M = supA.
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Greatest Lower Bound

The supremum of a set need not belong to the set.

A set that is bounded above need not have a least upper bound.

For sets that are bounded below:

Definition (Greatest Lower Bound)

Let A be a nonempty subset of an ordered field F . We say that A has a
greatest lower bound in F if there exists an element m ∈ F , such that:

(a) m is a lower bound for A,

(b) if m′ is a lower bound for A then m ≥ m′.

If such an element m exists, it is unique and is called the greatest

lower bound, or infimum, of A, written m = GLB A, or m = inf A.

George Voutsadakis (LSSU) Real Analysis August 2014 23 / 30



Axioms for the Field R of Real Numbers Bounded Sets, LUB and GLB

Duality Theorem

Theorem

Let F be an ordered field, A a nonempty subset of F . Write
−A = {−x : x ∈ A}. Let c ∈ F . Then:

(i) c is an upper bound for A iff −c is a lower bound for −A;

(ii) c is a lower bound for A iff −c is an upper bound for −A;

(iii) If A has a least upper bound, then −A has a greatest lower bound
and inf(−A) = −(supA).

(iv) If A has a greatest lower bound, then −A has a least upper bound
and sup (−A) = −(inf A).

(i) The mapping x 7→ −x is a bijection F → F that reverses order: a < b

iff −a > −b. The condition x ≤ c , for all x ∈ A, is therefore
equivalent to the condition −c ≤ y , for all y ∈ −A. This proves (i).

(ii) The proof of (ii) is similar.
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Proof of (iii) and (iv)

(iii) If A has a least upper bound, then −A has a greatest lower bound
and inf(−A) = −(supA):
Suppose A has a least upper bound a. We know from (i) that −a is a
lower bound for −A. We have to show that it is larger than all others.
Let k be any lower bound for −A. For all a ∈ A, we have k ≤ −a, so
a ≤ −k . So −k is an upper bound for A, whence a ≤ −k , and,
therefore, −a ≥ k .

(iv) If A has a greatest lower bound, then −A has a least upper bound
and sup (−A) = −(inf A):
The proof of (iv) is similar to that of (iii).
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Subsection 4

The Completeness Axiom (Existence of LUBs)
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The Field of Real Numbers R

Definition (Complete Ordered Field)

An ordered field is said to be complete if it satisfies the condition: Every
nonempty subset that is bounded above has a least upper bound.

Do such fields exist? If so, how many? The point of departure of “real
analysis” is the assumption that the answers are “yes” and “one”.

We assume that there exists a complete ordered field R and that it is
unique in the sense that every complete ordered field is isomorphic to
R:

Definition (Real Number Field)

R is a complete ordered field whose elements are called real numbers.

This definition means that R is a set with two operations (addition
and multiplication) satisfying the field axioms, the order axioms and
the completeness axiom.
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Positive Integers and Natural Numbers

Example: The ordered field Q(t) is not complete. The rational field
Q is not complete either.

The statements that follow are not self-evident, but we will take them
for granted:

The set of positive integers is the set P = {1, 2, 3, . . .}, where
2 = 1+ 1, 3 = 2+ 1, etc. (The “etc.” and the three dots “. . .” hide all
the difficulties!)
Every positive integer is > 0, and 1 is the smallest.
The set P is closed under addition and multiplication.
The set of natural numbers is the set N = {0} ∪ P = {0, 1, 2, 3, . . .}.
N is also closed under addition and multiplication.
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Integers and Rational Numbers

The set of integers is the set Z of all differences of positive integers,

Z = {m − n : m, n ∈ P}.

Z is closed under the operations x + y , xy and −x .

The set of positive elements of Z is precisely the set P, whence
Z = {0} ∪P ∪ (−P), where −P = {−n : n ∈ P}.

The set of rational numbers is the set

Q = {
m

n
: m, n ∈ Z, n 6= 0},

where m
n
= mn−1.

Q contains sums, products, negatives and reciprocals (of its nonzero
elements), thus Q is itself a field (a “subfield” of R).

We have the inclusions P ⊂ N ⊂ Z ⊂ Q ⊂ R.
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Outline of a Rigorous Treatment

Besides the overt axioms for R (field, order, completeness) we
propose to accept a somewhat vague hidden one:
P is “equal” to the set of “ordinary positive integers”.

For this to become rigorous, we should

(1) set down axioms for the set of positive integers (for example, Peano’s
axioms);

(2) show that there is essentially only one set satisfying the axioms;
(3) give an unambiguous definition of the set P defined informally above;
(4) verify that P satisfies the axioms in question.

To avoid the complete axiomatic development with its associated
formalism, we accept the informal description of P.
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