Introduction to Real Analysis

George Voutsadakis¹

¹Mathematics and Computer Science Lake Superior State University

LSSU Math 421

) First Properties of ${ m R}$

- Existence of GLBs
- Archimedean Property
- Bracket Function
- Density of the Rationals
- Monotone Sequences
- Theorem on Nested Intervals
- Dedekind Cut Property
- Square Roots
- Absolute Value

Existence of GLBs

Existence of GLBs

- In the axiomatization of \mathbb{R} , we assumed the existence of least upper bounds (completeness axiom).
- The existence of greatest lower bounds then follows:

Theorem (Existence of GLBs)

If A is a nonempty subset of \mathbb{R} that is bounded below, then A has a greatest lower bound:

$$\inf A = -\sup (-A).$$

The set -A = {-a : a ∈ A} is nonempty and bounded above. Thus, it has a least upper bound by the completeness axiom. By a preceding proposition, -(-A) = A has a greatest lower bound and inf A = - sup (-A).

A Useful Corollary

Corollary

$$\inf\left\{\frac{1}{n}:n\in\mathbb{P}\right\}=0.$$

• Let
$$A = \{\frac{1}{n} : n \in \mathbb{P}\}.$$

- We know that A is bounded below by 0, so A has a greatest lower bound a and 0 ≤ a.
- On the other hand, a ≤ 1/2n, for all positive integers n, so 2a is also a lower hound for A. It follows that 2a ≤ a, whence, a ≤ 0.

This proves that a = 0.

Archimedean Property

Archimedean Ordered Fields

- In every ordered field, $1 < 2 < 3 < \dots$, therefore, $1 > \frac{1}{2} > \frac{1}{3} > \dots$ For every y > 0, we thus have $y > \frac{y}{2} > \frac{y}{3} > \dots$
- As a result, we are expecting the elements ^y/_n (n = 1, 2, 3, ...) to be "arbitrarily small" in the sense that, for every x > 0, there is an n for which ^y/_n is smaller than x.
- In actuality, there exist ordered fields in which it can happen that $\frac{y}{n} \ge x > 0$ for all *n*, i.e., the elements $\frac{y}{n}$ (n = 1, 2, 3, ...) are "buffered away from 0" by the element *x*.
- The property at the heart of such considerations is the following:

Definition (Archimedean Ordered Field)

An ordered field is said to be **Archimedean** if, for each pair of elements x, y with x > 0, there exists a positive integer n such that nx > y. (If x is thought of as a "unit of measurement", then each element y can be surpassed by a sufficiently large multiple of the unit of measurement.)

${\mathbb R}$ is Archimedean

Theorem

The field \mathbb{R} of real numbers is Archimedean.

- Let x and y be real numbers, with x > 0.
 - If y < 0, then 1x > y.
 - Assuming y > 0, we seek a positive integer *n*, such that $\frac{1}{n} < \frac{x}{y}$. The alternative is that $0 < \frac{x}{y} \le \frac{1}{n}$, for every positive integer *n*. This is contrary to inf $\{\frac{1}{n} : n \in \mathbb{P}\} = 0$.
- Example: The field Q(t) of rational forms over Q is not Archimedean.
- In fact, the completeness property implies the Archimedean property, but the converse statement fails:

${\mathbb Q}$ is Archimedean but Not Complete

Theorem

The field Q of rational numbers is Archimedean but not complete.

The Archimedean property for Q is an immediate consequence of the preceding theorem (since Q is a subfield of R).
 We have to exhibit a nonempty subset A of Q that is bounded above but has no least upper bound in Q. The core of the proof is the fact

that 2 is not the square of a rational number. Let

$$A = \{r \in \mathbb{Q} : r > 0 \text{ and } r^2 < 2\}.$$

Since $1 \in A$, $A \neq \emptyset$. If $r \in \mathbb{Q}$ and $r \ge 2$ then $r^2 \ge 4 > 2$, so $r \notin A$, i.e., r < 2, for all $r \in A$, whence A is bounded above. Now we show that:

- A has no largest element;
- There is no smallest element r in \mathbb{Q} , with $r^2 > 2$;
- We conclude that A has no least upper bound in Q.

A has no Largest Element

• We show that $A = \{r \in \mathbb{Q} : r > 0 \text{ and } r^2 < 2\}$ has no largest element. Given any element r of A, we produce a larger element of A. It suffices to find a positive integer n, such that $r + \frac{1}{n} \in A$, i.e., $(r + \frac{1}{n})^2 < 2$. Expand the square $r^2 + \frac{2r}{n} + \frac{1}{n^2} < 2$. Multiply both sides by n > 0: $nr^2 + 2r + \frac{1}{n} < 2n$. Rearrange: $2r + \frac{1}{n} < n(2 - r^2)$. Since $2 - r^2 > 0$, the Archimedean property yields a positive integer n, such that $n(2 - r^2) > 2r + 1$. But $2r + 1 > 2r + \frac{1}{n}$, so $n(2 - r^2) > 2r + \frac{1}{n}$ holds.

There is no smallest *r* in \mathbb{Q} , with $r^2 > 2$

• There are positive elements r of \mathbb{Q} , such that $r^2 > 2$ (e.g., r = 2). We show that there is no smallest such element r. Given any $r \in \mathbb{Q}$, with r > 0 and $r^2 > 2$, we shall produce a positive element of \mathbb{Q} , that is smaller than r but whose square is also larger than 2. It suffices to find a positive integer n such that $r - \frac{1}{n} > 0$ and $(r - \frac{1}{n})^2 > 2$, equivalently, nr > 1 and $n(r^2 - 2) > 2r - \frac{1}{n}$. Since r > 0 and $r^2 - 2 > 0$, the Archimedean property yields a positive integer n such that both nr > 1 and $n(r^2 - 2) > 2r$ (choose an n for each inequality, then take the larger of the two). But $2r > 2r - \frac{1}{n}$, so the required conditions are verified.

A has no LUB in \mathbb{Q}

 We assert that A = {r ∈ Q : r > 0 and r² < 2} has no least upper bound in Q.

Assume to the contrary that A has a least upper bound t in \mathbb{Q} . We know that $t^2 \neq 2$ (2 is not the square of a rational number) and t > 0 (because $1 \in A$). Let us show that each of the possibilities $t^2 < 2$ and $t^2 > 2$ leads to a contradiction.

- If t² < 2, then t ∈ A. But then t would be the largest element of A, contrary to our earlier observation that no such element exists.
- If $t^2 > 2$, then, as observed above, there exists a rational number *s*, such that 0 < s < t and $s^2 > 2$. Since *t* is supposedly the least upper bound of *A* and *s* is smaller than *t*, *s* cannot be an upper bound for *A*. This means that there exists an element *r* of *A* with s < r. But then $s^2 < r^2 < 2$, contrary to $s^2 > 2$.

Bracket Function

Uniqueness of Bracket

• A useful application of the Archimedean property is that every real number can be sandwiched between a pair of successive integers:

Theorem

For each real number x, there exists a unique integer n such that $n \le x < n + 1$.

Uniqueness: The claim is that a real number x cannot belong to the interval [n, n + 1) for two distinct values of n.
 If m and n are distinct integers, say m < n, then n − m is an integer and is > 0. Therefore n − m ≥ 1. Thus, m + 1 ≤ n and it follows that the intervals [m, m + 1) and [n, n + 1) can have no element x in common.

Existence of Bracket

- Existence: Let $x \in \mathbb{R}$. By the Archimedean property, there exists a positive integer j such that $j \cdot 1 > -x$, that is, j + x > 0. It will suffice to find an integer k such that $j + x \in [k, k + 1)$: This would imply that $x \in [k j, k j + 1)$. Changing notation, we can suppose that x > 0. Let $S = \{k \in \mathbb{P} : k \cdot 1 > x\}$.
 - By the Archimedean property, S is nonempty;
 - So S has a smallest element m by the "well-ordering principle".
 - Since $m \in S$, we have m > x.
 - If m = 1, then 0 < x < 1 and the assertion is proved with n = 0.
 - If m > 1, then m 1 is a positive integer smaller than m, so it cannot belong to S. This means that $m 1 \le x$. Thus, $x \in [m 1, m)$ and n = m 1 is the required integer.

Definition (Bracket Function)

The integer *n* is denoted [x] and the function $\mathbb{R} \to \mathbb{Z}$ defined by $x \mapsto [x]$ is called the **bracket function** (or the **greatest integer function**, since [x] is the largest integer that is $\leq x$).

Density of the Rationals

Density of Rationals

Between any two reals, there is a rational:

Theorem (Density of Rationals)

If x and y are real numbers such that x < y, then there exists a rational number r, such that x < r < y.

Since y - x > 0, by the Archimedean property, there exists a positive integer n such that n(y - x) > 1, i.e., ¹/_n < y - x. Think of ¹/_n as a "unit of measurement", small enough for the task at hand. We find a multiple of ¹/_n that lands between x and y.
 Let m = [nx]. Then m ≤ nx < m + 1. Hence ^m/_n ≤ x and x < ^{m+1}/_n = ^m/_n + ¹/_n ≤ x + ¹/_n < x + (y - x) = y, so r = ^{m+1}/_n meets the requirements of the theorem.

Irrational Numbers

- The conclusion of the theorem is expressed by saying that the rational field \mathbb{Q} is everywhere dense in \mathbb{R} .
- There are "lots" of rational numbers, but are there any real numbers that are not rational?

The answer is yes: The set $A = \{r \in \mathbb{Q} : r > 0 \text{ and } r^2 < 2\}$ is nonempty and bounded above, so it has a least upper bound u in \mathbb{R} by completeness. If u were rational, then it would be a least upper bound for A in the ordered field \mathbb{Q} , contrary to what we proved.

Definition (Irrational Numbers)

A real number that is not rational is called an **irrational number**. Thus, the irrational numbers are the elements of the difference set $\mathbb{R} - \mathbb{Q} = \{x \in \mathbb{R} : x \notin \mathbb{Q}\}.$

Monotone Sequences

Sequences

Definition (Sequence)

If X is a set and if, for each positive integer n, an element x_n of X is given, we say that we have a **sequence** of elements of X, or "a sequence in X", whose *n*-**th term** is x_n .

- Various notations are used to indicate sequences, for example $(x_n), (x_n)_{n \in \mathbb{P}}, (x_n)_{n \ge 1}, (x_n)_{n = 1,2,3,...}$
- Informally, a sequence of elements of a set is an unending list x_1, x_2, x_3, \ldots of (not necessarily distinct) elements of the set.
- Formally, it is a function $f : \mathbb{P} \to X$, where we write x_n instead of f(n) for the element of X corresponding to the positive integer n.
- Another notation that stresses the functional aspect of a sequence: $n \mapsto x_n, n \in \mathbb{P}$.
- In the notation (x_n) , the integers *n* are called the **indices**.
- Sometimes index sets other than P are appropriate, as, for example, (a_n)_{n∈ℕ} for the coefficients of a power series ∑_{n=0}[∞] a_nxⁿ.

Increasing and Decreasing Sequences

Definition (Increasing/Decreasing Sequence)

A sequence (a_n) in \mathbb{R} is said to be:

- increasing if $a_1 \leq a_2 \leq a_3 \leq \cdots$, i.e., if $a_n \leq a_{n+1}$, for all $n \in \mathbb{P}$;
- strictly increasing if $a_n < a_{n+1}$, for all n;
- decreasing if $a_1 \ge a_2 \ge a_3 \ge \cdots$;
- strictly decreasing if $a_n > a_{n+1}$, for all n.
- A sequence that is either increasing or decreasing is said to be monotone; more precisely, one speaks of sequences that are "monotone increasing" or "monotone decreasing".
- If (a_n) is an increasing sequence, we write a_n ↑, and if it is a decreasing sequence we write a_n ↓ (no special notation is offered for "strictly monotone" sequences.)

Suprema and Infima of Monotone Sequences

Definition (Supremun and Infimum of Monotone Sequences)

- If (a_n) is an increasing sequence in ℝ, such that A = {a_n : n ∈ ℙ} is bounded above, and if a = sup A, then we write a_n ↑ a.
- Similarly, a_n ↓ a means that (a_n) is a decreasing sequence, the set
 A = {a_n : n ∈ P} is bounded below, and a = inf A.
- Example: $\frac{1}{n} \downarrow 0$:
 - The sequence $\left(\frac{1}{n}\right)$ is decreasing;
 - inf $\{\frac{1}{n}: n \in \mathbb{P}\}=0.$
- Example: If 0 < c < 1, then the sequence of powers (cⁿ) is strictly decreasing and cⁿ ↓ 0:
 - (c^n) is strictly decreasing since 0 < c < 1 implies $0 < c^2 < c$ implies $0 < c^3 < c^2$ etc.
 - Let $a = \inf \{c^n : n \in \mathbb{P}\}$. We know that $a \ge 0$ and $c^n \downarrow a$. Now $a \le c^{n+1}$ implies $\frac{a}{c} \le c^n$, for all n. It follows that $\frac{a}{c} \le a$, whence $a(1-c) \le 0$ and, therefore, $a \le 0$, which gives a = 0.

Properties of Infima and Suprema of Monotone Sequences

Theorem

- If $a_n \uparrow a$ and $b_n \uparrow b$, then: (i) $a_n + b_n \uparrow a + b$; (ii) $-a_n \downarrow -a$; (iii) $a_n + c \uparrow a + c$, for every real number c.
- (i) It is clear that (a_n + b_n) is an increasing sequence. Moreover, it is bounded above by a + b. To show that a + b is the least upper bound, suppose a_n + b_n ≤ c, for all n. We have to show that a + b ≤ c, i.e., a ≤ c b. Given any index m, it is enough to show that a_m ≤ c b, i.e., b ≤ c a_m. Thus, given any index n, we need only show that b_n < c a_m, i.e., a_m + b_n ≤ c. Indeed, if p is the larger of m and n then a_m + b_n ≤ a_p + b_p ≤ c, by the assumed monotonicity.
 (ii) This follows from inf {-a_n} = sup {a_n}.

Theorem on Nested Intervals

Nested Intervals

- A sequence of intervals (I_n) of \mathbb{R} is said to be **nested** if $I_1 \supseteq I_2 \supseteq I_3 \supseteq \cdots$. As the intervals "shrink" with increasing *n*, there is no assurance that there is any point that belongs to every I_n .
- Example: If $I_n = (0, \frac{1}{n}]$, then there is no point belonging to all I_n .
- However, if the intervals are closed, we can be sure that there is at least one survivor:

Theorem (Sequence of Nested Closed Intervals)

If (I_n) is a nested sequence of closed intervals, then the intersection of the I_n is nonempty. More precisely, if $I_n = [a_n, b_n]$, where $a_n \leq b_n$ and $I_1 \supseteq I_2 \supseteq I_3 \supseteq \cdots$, and if $a = \sup \{a_n : n \in \mathbb{P}\}$, $b = \inf \{b_n : n \in \mathbb{P}\}$, then $a \leq b$ and $\bigcap_{n=1}^{\infty} [a_n, b_n] = [a, b]$.

Proof of the Theorem

- The notation ∩[∞]_{n=1}[a_n, b_n] means the intersection ∩S of the set S of all the intervals [a_n, b_n].
- From $[a_{n+1}, b_{n+1}] \subseteq [a_n, b_n]$ we see that it follows that the sequence (a_n) is increasing and bounded above (for example by b_1). On the other had, (b_n) is decreasing and bounded below (for example by a_1). If a and b are defined as in the statement of the theorem, we have $a_n \uparrow a$ and $b_n \downarrow b$. By the preceding theorem (and its "dual") we have $-b_n \uparrow -b$, so $a_n + (-b_n) \uparrow a + (-b)$. Therefore, $b_n - a_n \downarrow b - a$. Since $b_n - a_n \ge 0$, for all *n*, it follows that $b - a \ge 0$. Then $a_n \leq a \leq b \leq b_n$, whence $[a, b] \subseteq [a_n, b_n]$, for all *n*, and, therefore, $[a, b] \subseteq \bigcap_{n=1}^{\infty} [a_n, b_n].$ Conversely, if x belongs to every $[a_n, b_n]$ then $a_n \le x \le b_n$, for all n, and, therefore, $a \le x \le b$ showing that $\bigcap_{n=1}^{\infty} [a_n, b_n] \subseteq [a, b]$.

Theorem on Nested Intervals

• The following corollary is known as the **Theorem on Nested** Intervals:

Corollary (Theorem on Nested Intervals)

Suppose $I_n = [a_n, b_n]$, where $a_n \leq b_n$ and $I_1 \supseteq I_2 \supseteq I_3 \supseteq \cdots$. Suppose, also, that $\inf (b_n - a_n) = 0$. Then $\bigcap_{n=1}^{\infty} [a_n, b_n] = \{c\}$, where c = a = b, with $a = \sup \{a_n : n \in \mathbb{P}\}$, $b = \inf \{b_n : n \in \mathbb{P}\}$.

- As shown in the proof of the theorem, $b_n a_n \downarrow b a$. By hypothesis, $b_n a_n \downarrow 0$, so b = a and $\bigcap_{n=1}^{\infty} [a_n, b_n] = [a, a] = \{a\}$.
- A surprising corollary is a nonconstructive proof of the existence of irrational numbers.

Dedekind Cut Property

Dedekind Cuts

Definition (Dedekind Cut)

A **cut** (or **Dedekind cut**) of the real field \mathbb{R} is a pair (A, B) of nonempty subsets of \mathbb{R} , such that (a) every real number belongs to either A or B and (b) a < b, for all $a \in A$ and $b \in B$. In symbols, $A \neq \emptyset$, $B \neq \emptyset$, $\mathbb{R} = A \cup B$, a < b, $a \in A, b \in B$. (It follows from the latter property that $A \cap B = \emptyset$.)

• Examples: If $\gamma \in \mathbb{R}$ and

$$A = \{ x \in \mathbb{R} : x \le \gamma \}, \quad B = \{ x \in \mathbb{R} : x > \gamma \},$$

then (A, B) is a cut of \mathbb{R} . Note that A has a largest element but B has no smallest.

The pair

$$A = \{x \in \mathbb{R} : x < \gamma\}, \quad B = \{x \in \mathbb{R} : x \ge \gamma\}$$

also defines a cut of $\mathbbm{R}.$ Here, B has a smallest element but A has no largest.

• The key fact about cuts of ${\mathbb R}$ is that there are no other examples.

Uniqueness of γ

Theorem

If (A, B) is a cut of \mathbb{R} , then there exists a unique real number γ , such that either

(i)
$$A = \{x \in \mathbb{R} : x \le \gamma\}$$
 and $B = \{x \in \mathbb{R} : x > \gamma\}$, or

(ii)
$$A = \{x \in \mathbb{R} : x < \gamma\}$$
 and $B = \{x \in \mathbb{R} : x \ge \gamma\}$.

 Uniqueness: The number γ is uniquely determined by the property of being either the largest element of A or the smallest element of B, according as case (i) or case (ii) holds.

Existence of γ

- Existence: Note that A is bounded above (by any element of B) and B is bounded below (by any element of A). Let α = sup A, β = inf B. If a ∈ A, then a < b, for all b ∈ B, whence a ≤ β. Since a ∈ A is arbitrary, α ≤ β. In fact α = β, for if α < β, then any number in the gap between α and β would be too large to belong to A and too small to belong to B, which would contradict ℝ = A ∪ B. Write γ for the common value of α and β. By assumption, γ must belong to either A or B.
 - (i) Case 1: γ ∈ A. We have A ⊆ {x ∈ ℝ : x ≤ γ}, B ⊆ {x ∈ ℝ : x > γ}: The first inclusion follows from γ = sup A. The second inclusion follows from γ = inf B and the fact that γ ∈ B is ruled out by γ ∈ A. These imply that both inclusions are actually equalities: if x ≤ γ then necessarily x ∈ A. The alternative x ∈ B is unacceptable because it would imply x > γ.
 - (ii) Case 2: $\gamma \in B$. In this case, a similar argument shows that the other pair of formulas hold.

Square Roots

Uniqueness of Square Roots

Theorem

Every positive real number has a unique positive square root. That is, if $c \in \mathbb{R}, c > 0$, then there exists a unique $x \in \mathbb{R}, x > 0$, such that $x^2 = c$.

• Uniqueness: If x and y are positive real numbers such that $x^2 = c = y^2$, then $0 = x^2 - y^2 = (x + y)(x - y)$ and x + y > 0, whence x - y = 0, i.e., x = y.

Existence of Square Roots

Existence: Given c ∈ ℝ, c > 0, the strategy is to construct a cut (A, B) of ℝ for which the γ of the preceding theorem satisfies γ² = c. Let

$$A = \{x \in \mathbb{R} : x \le 0\} \cup \{x \in \mathbb{R} : x > 0 \text{ and } x^2 < c\},\$$
$$B = \{x \in \mathbb{R} : x > 0 \text{ and } x^2 \ge c\}.$$

Then $A \neq \emptyset$, $B \neq \emptyset$ ($c + 1 \in B$) and $A \cup B = \mathbb{R}$. Moreover, if $a \in A$ and $b \in B$, then a < b:

• If $a \leq 0$, this is trivial.

• If a > 0, then $a^2 < c \le b^2$ implies a < b.

In summary, (A, B) is a cut of \mathbb{R} . Let γ be the real number that defines the cut.

Note that A contains numbers > 0:

- If c > 1 then $\frac{1}{2} \in A$ (because $\frac{1}{4} < 1 \le c$).
- If 0 < c < 1, then $c \in A$ (because $c^2 < c$).

It follows that $\gamma > 0$.

Existence (Cont'd)

- Next, we assert that γ ∈ B. By the arguments in the preceding section, we need only show that A has no largest element. Assuming a ∈ A, we find a larger element of A.
 - If $a \leq 0$, then any positive element of A will do.
 - Suppose a > 0. We know that $a^2 < c$. It will suffice to find a positive integer *n*, such that $(a + \frac{1}{n})^2 < c$. The existence of such an *n* is due to the Archimedean Property applied to $n(c a^2) > 2a + 1 \ge 2a + \frac{1}{n}$.

We now know that $A = \{x \in \mathbb{R} : x < \gamma\}$, $B = \{x \in \mathbb{R} : x \ge \gamma\}$. Since $\gamma \in B$, we have $\gamma^2 \ge c$. It remains only to show that $\gamma^2 \le c$, i.e., $\gamma^2 - c \le 0$.

By the Archimedean property, choose a positive integer N such that $N\gamma > 1$. For every integer $n \ge N$, we have $\frac{1}{n} \le \frac{1}{N} < \gamma$, so $\gamma - \frac{1}{n} > 0$. Since $\gamma - \frac{1}{n}$ belongs to A, it follows that $(\gamma - \frac{1}{n})^2 < c$, whence $\gamma^2 - c < \frac{2\gamma}{n} - \frac{1}{n^2} < \frac{2\gamma}{n}$. Thus, $\frac{\gamma^2 - c}{2\gamma} < \frac{1}{n}$, for all $n \ge N$, and a fortiori also for $1 \le n < N$. Consequently, $\frac{\gamma^2 - c}{2\gamma} \le \inf \{\frac{1}{n} : n \in \mathbb{P}\} = 0$. Since $2\gamma > 0$, we conclude that $\gamma^2 - c \le 0$.

Definition of Square Root

Definition (Square Root)

If $c \in \mathbb{R}$, c > 0, then the unique $x \in \mathbb{R}$, x > 0, such that $x^2 = c$ is called the square root of c and is denoted \sqrt{c} . We also define $\sqrt{0} = 0$.

• It follows by the theorem that every nonnegative real number has a unique nonnegative square root.

Absolute Value

Absolute Value and Basic Properties

Definition (Absolute Value)

The **absolute value** of a real number *a* is the nonnegative real number |a| defined as follows:

$$|a| = \begin{cases} a, & \text{if } a \ge 0\\ -a, & \text{if } a \le 0 \end{cases}$$

Theorem (Properties of the Absolute Value)

For real numbers a, b, c, x,

(1)
$$|a| \ge 0.$$

(2) $|a|^2 = a^2.$

(3) Properties (1) and (2) characterize
$$|a|$$
: if $x \ge 0$ and $x^2 = a^2$, then $x = |a|$.

(4)
$$|a| = 0 \Leftrightarrow a = 0; |a| > 0 \Leftrightarrow a \neq 0.$$

$$(5) |a| = |b| \Leftrightarrow a^2 = b^2 \Leftrightarrow a = \pm b.$$

(6)
$$|-a| = |a|$$
.
(7) $|ab| = |a||b|$.
(8) $-|a| \le a \le |a|$.
(9) $|x| \le c \Leftrightarrow -c \le x \le c$.
(10) $|a+b| \le |a| + |b|$.
(11) $||a| - |b|| \le |a-b|$.

Proof of the Absolute Value Properties

- (1) $|a| \ge 0$, (2) $|a|^2 = a^2$ and (4) |a| = 0 iff a = 0 and |a| > 0 iff $a \ne 0$ are obvious from the definition of absolute value.
- (3) If $x \ge 0$ and $x^2 = a^2$, that is, $x^2 = |a|^2$, then x = |a|, by a previous theorem.
 - (5) and (6) follow easily from (1)-(3).
- (7) If x = |a||b|, then $x^2 = |a|^2|b|^2 = a^2b^2 = (ab)^2$, whence x = |ab|, by (3).
- (8) If $a \ge 0$, then $-|a| = -a \le 0 \le a = |a|$. If $a \le 0$, then $-|a| = -(-a) = a \le 0 \le |a|$.
- (9) If $-c \le x \le c$, then both $-x \le c$ and $x \le c$. But |x| is either x or -x, so $|x| \le c$. Conversely, if $|x| \le c$, then $-c \le -|x| \le x \le |x| \le c$.
- (10) Addition of the inequalities $-|a| \le a \le |a|, -|b| \le b \le |b|$ yields $-(|a|+|b|) \le a+b \le |a|+|b|$. So $|a+b| \le |a|+|b|$ by (9).
- (11) Let x = |a| |b|. Then $|a| = |(a b) + b| \le |a b| + |b|$, whence $x \le |a b|$. Interchanging *a* and *b*, we have $-x \le |b a| = |a b|$, and, hence, $|x| \le |a b|$.

Distance Between Real Numbers

- |a| may be interpreted as the distance from the origin to the point a.
- Example: $|\pm 5| = 5$ means that either of the points labeled 5 and -5 has distance 5 from the origin.

Definition (Distance)

For real numbers a, b the **distance** from a to b is defined to be |a - b|. We also write d(a, b) = |a - b|. The function $d : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ defined by this formula is called the **distance function** on \mathbb{R} .

• Example: If a = -2 and b = 5, then |a - b| = |-2 - 5| = 7.

George Voutsadakis (LSSU)