Introduction to Real Analysis

George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science
Lake Superior State University

LSSU Math 421

(1) First Properties of \mathbb{R}

- Existence of GLBs
- Archimedean Property
- Bracket Function
- Density of the Rationals
- Monotone Sequences
- Theorem on Nested Intervals
- Dedekind Cut Property
- Square Roots
- Absolute Value

Subsection 1

Existence of GLBs

Existence of GLBs

- In the axiomatization of \mathbb{R}, we assumed the existence of least upper bounds (completeness axiom).
- The existence of greatest lower bounds then follows:

Theorem (Existence of GLBs)

If A is a nonempty subset of \mathbb{R} that is bounded below, then A has a greatest lower bound:

$$
\inf A=-\sup (-A)
$$

- The set $-A=\{-a: a \in A\}$ is nonempty and bounded above. Thus, it has a least upper bound by the completeness axiom. By a preceding proposition, $-(-A)=A$ has a greatest lower bound and $\inf A=-\sup (-A)$.

A Useful Corollary

Corollary

$$
\inf \left\{\frac{1}{n}: n \in \mathbb{P}\right\}=0
$$

- Let $A=\left\{\frac{1}{n}: n \in \mathbb{P}\right\}$.
- We know that A is bounded below by 0 , so A has a greatest lower bound a and $0 \leq a$.
- On the other hand, $a \leq \frac{1}{2 n}$, for all positive integers n, so $2 a$ is also a lower hound for A. It follows that $2 a \leq a$, whence, $a \leq 0$.
This proves that $a=0$.

Subsection 2

Archimedean Property

Archimedean Ordered Fields

- In every ordered field, $1<2<3<\ldots$, therefore, $1>\frac{1}{2}>\frac{1}{3}>\ldots$. For every $y>0$, we thus have $y>\frac{y}{2}>\frac{y}{3}>\ldots$.
- As a result, we are expecting the elements $\frac{y}{n}(n=1,2,3, \ldots)$ to be "arbitrarily small" in the sense that, for every $x>0$, there is an n for which $\frac{y}{n}$ is smaller than x.
- In actuality, there exist ordered fields in which it can happen that $\frac{y}{n} \geq x>0$ for all n, i.e., the elements $\frac{y}{n}(n=1,2,3, \ldots)$ are "buffered away from 0 " by the element x.
- The property at the heart of such considerations is the following:

Definition (Archimedean Ordered Field)

An ordered field is said to be Archimedean if, for each pair of elements x, y with $x>0$, there exists a positive integer n such that $n x>y$. (If x is thought of as a "unit of measurement", then each element y can be surpassed by a sufficiently large multiple of the unit of measurement.)

\mathbb{R} is Archimedean

Theorem

The field \mathbb{R} of real numbers is Archimedean.

- Let x and y be real numbers, with $x>0$.
- If $y<0$, then $1 x>y$.
- Assuming $y>0$, we seek a positive integer n, such that $\frac{1}{n}<\frac{x}{y}$. The alternative is that $0<\frac{x}{y} \leq \frac{1}{n}$, for every positive integer n. This is contrary to $\inf \left\{\frac{1}{n}: n \in \mathbb{P}\right\}=0$.
- Example: The field $\mathbb{Q}(t)$ of rational forms over \mathbb{Q} is not Archimedean.
- In fact, the completeness property implies the Archimedean property, but the converse statement fails:

Q is Archimedean but Not Complete

Theorem

The field \mathbb{Q} of rational numbers is Archimedean but not complete.

- The Archimedean property for \mathbb{Q} is an immediate consequence of the preceding theorem (since \mathbb{Q} is a subfield of \mathbb{R}).
We have to exhibit a nonempty subset A of \mathbb{Q} that is bounded above but has no least upper bound in \mathbb{Q}. The core of the proof is the fact that 2 is not the square of a rational number. Let

$$
A=\left\{r \in \mathbb{Q}: r>0 \text { and } r^{2}<2\right\} .
$$

Since $1 \in A, A \neq \emptyset$. If $r \in \mathbb{Q}$ and $r \geq 2$ then $r^{2} \geq 4>2$, so $r \notin A$, i.e., $r<2$, for all $r \in A$, whence A is bounded above. Now we show that:

- A has no largest element;
- There is no smallest element r in \mathbb{Q}, with $r^{2}>2$;
- We conclude that A has no least upper bound in \mathbb{Q}.

A has no Largest Element

- We show that $A=\left\{r \in \mathbb{Q}: r>0\right.$ and $\left.r^{2}<2\right\}$ has no largest element.

Given any element r of A, we produce a larger element of A. It suffices to find a positive integer n, such that $r+\frac{1}{n} \in A$, i.e., $\left(r+\frac{1}{n}\right)^{2}<2$. Expand the square $r^{2}+\frac{2 r}{n}+\frac{1}{n^{2}}<2$. Multiply both sides by $n>0$: $n r^{2}+2 r+\frac{1}{n}<2 n$. Rearrange: $2 r+\frac{1}{n}<n\left(2-r^{2}\right)$. Since $2-r^{2}>0$, the Archimedean property yields a positive integer n, such that $n\left(2-r^{2}\right)>2 r+1$. But $2 r+1>2 r+\frac{1}{n}$, so $n\left(2-r^{2}\right)>2 r+\frac{1}{n}$ holds.

There is no smallest r in \mathbb{Q}, with $r^{2}>2$

- There are positive elements r of \mathbb{Q}, such that $r^{2}>2$ (e.g., $r=2$). We show that there is no smallest such element r. Given any $r \in \mathbb{Q}$, with $r>0$ and $r^{2}>2$, we shall produce a positive element of \mathbb{Q}, that is smaller than r but whose square is also larger than 2. It suffices to find a positive integer n such that $r-\frac{1}{n}>0$ and $\left(r-\frac{1}{n}\right)^{2}>2$, equivalently, $n r>1$ and $n\left(r^{2}-2\right)>2 r-\frac{1}{n}$. Since $r>0$ and $r^{2}-2>0$, the Archimedean property yields a positive integer n such that both $n r>1$ and $n\left(r^{2}-2\right)>2 r$ (choose an n for each inequality, then take the larger of the two). But $2 r>2 r-\frac{1}{n}$, so the required conditions are verified.

A has no LUB in \mathbb{Q}

- We assert that $A=\left\{r \in \mathbb{Q}: r>0\right.$ and $\left.r^{2}<2\right\}$ has no least upper bound in \mathbb{Q}.
Assume to the contrary that A has a least upper bound t in \mathbb{Q}. We know that $t^{2} \neq 2$ (2 is not the square of a rational number) and $t>0$ (because $1 \in A$). Let us show that each of the possibilities $t^{2}<2$ and $t^{2}>2$ leads to a contradiction.
- If $t^{2}<2$, then $t \in A$. But then t would be the largest element of A, contrary to our earlier observation that no such element exists.
- If $t^{2}>2$, then, as observed above, there exists a rational number s, such that $0<s<t$ and $s^{2}>2$. Since t is supposedly the least upper bound of A and s is smaller than t, s cannot be an upper bound for A. This means that there exists an element r of A with $s<r$. But then $s^{2}<r^{2}<2$, contrary to $s^{2}>2$.

Subsection 3

Bracket Function

Uniqueness of Bracket

- A useful application of the Archimedean property is that every real number can be sandwiched between a pair of successive integers:

Theorem

For each real number x, there exists a unique integer n such that $n \leq x<n+1$.

- Uniqueness: The claim is that a real number x cannot belong to the interval $[n, n+1)$ for two distinct values of n.
If m and n are distinct integers, say $m<n$, then $n-m$ is an integer and is >0. Therefore $n-m \geq 1$. Thus, $m+1 \leq n$ and it follows that the intervals $[m, m+1)$ and $[n, n+1)$ can have no element x in common.

Existence of Bracket

- Existence: Let $x \in \mathbb{R}$. By the Archimedean property, there exists a positive integer j such that $j \cdot 1>-x$, that is, $j+x>0$. It will suffice to find an integer k such that $j+x \in[k, k+1)$: This would imply that $x \in[k-j, k-j+1)$. Changing notation, we can suppose that $x>0$. Let $S=\{k \in \mathbb{P}: k \cdot 1>x\}$.
- By the Archimedean property, S is nonempty;
- So S has a smallest element m by the "well-ordering principle".

Since $m \in S$, we have $m>x$.

- If $m=1$, then $0<x<1$ and the assertion is proved with $n=0$.
- If $m>1$, then $m-1$ is a positive integer smaller than m, so it cannot belong to S. This means that $m-1 \leq x$. Thus, $x \in[m-1, m)$ and $n=m-1$ is the required integer.

Definition (Bracket Function)

The integer n is denoted $[x]$ and the function $\mathbb{R} \rightarrow \mathbb{Z}$ defined by $x \mapsto[x]$ is called the bracket function (or the greatest integer function, since $[x]$ is the largest integer that is $\leq x$).

Subsection 4

Density of the Rationals

Density of Rationals

- Between any two reals, there is a rational:

Theorem (Density of Rationals)

If x and y are real numbers such that $x<y$, then there exists a rational number r, such that $x<r<y$.

- Since $y-x>0$, by the Archimedean property, there exists a positive integer n such that $n(y-x)>1$, i.e., $\frac{1}{n}<y-x$. Think of $\frac{1}{n}$ as a "unit of measurement", small enough for the task at hand. We find a multiple of $\frac{1}{n}$ that lands between x and y.
Let $m=[n x]$. Then $m \leq n x<m+1$. Hence $\frac{m}{n} \leq x$ and $x<\frac{m+1}{n}=\frac{m}{n}+\frac{1}{n} \leq x+\frac{1}{n}<x+(y-x)=y$, so $r=\frac{m+1}{n}$ meets the requirements of the theorem.

Irrational Numbers

- The conclusion of the theorem is expressed by saying that the rational field \mathbb{Q} is everywhere dense in \mathbb{R}.
- There are "lots" of rational numbers, but are there any real numbers that are not rational?
The answer is yes: The set $A=\left\{r \in \mathbb{Q}: r>0\right.$ and $\left.r^{2}<2\right\}$ is nonempty and bounded above, so it has a least upper bound u in \mathbb{R} by completeness. If u were rational, then it would be a least upper bound for A in the ordered field \mathbb{Q}, contrary to what we proved.

Definition (Irrational Numbers)

A real number that is not rational is called an irrational number. Thus, the irrational numbers are the elements of the difference set $\mathbb{R}-\mathbb{Q}=\{x \in \mathbb{R}: x \notin \mathbb{Q}\}$.

Subsection 5

Monotone Sequences

Sequences

Definition (Sequence)

If X is a set and if, for each positive integer n, an element x_{n} of X is given, we say that we have a sequence of elements of X, or "a sequence in $X^{\prime \prime}$, whose n-th term is x_{n}.

- Various notations are used to indicate sequences, for example

$$
\left(x_{n}\right), \quad\left(x_{n}\right)_{n \in \mathbb{P}}, \quad\left(x_{n}\right)_{n \geq 1}, \quad\left(x_{n}\right)_{n=1,2,3, \ldots}
$$

- Informally, a sequence of elements of a set is an unending list $x_{1}, x_{2}, x_{3}, \ldots$ of (not necessarily distinct) elements of the set.
- Formally, it is a function $f: \mathbb{P} \rightarrow X$, where we write x_{n} instead of $f(n)$ for the element of X corresponding to the positive integer n.
- Another notation that stresses the functional aspect of a sequence: $n \mapsto x_{n}, n \in \mathbb{P}$.
- In the notation $\left(x_{n}\right)$, the integers n are called the indices.
- Sometimes index sets other than \mathbb{P} are appropriate, as, for example, $\left(a_{n}\right)_{n \in \mathbb{N}}$ for the coefficients of a power series $\sum_{n=0}^{\infty} a_{n} x^{n}$.

Increasing and Decreasing Sequences

Definition (Increasing/Decreasing Sequence)

A sequence $\left(a_{n}\right)$ in \mathbb{R} is said to be:

- increasing if $a_{1} \leq a_{2} \leq a_{3} \leq \cdots$, i.e., if $a_{n} \leq a_{n+1}$, for all $n \in \mathbb{P}$;
- strictly increasing if $a_{n}<a_{n+1}$, for all n;
- decreasing if $a_{1} \geq a_{2} \geq a_{3} \geq \cdots$;
- strictly decreasing if $a_{n}>a_{n+1}$, for all n.
- A sequence that is either increasing or decreasing is said to be monotone; more precisely, one speaks of sequences that are "monotone increasing" or "monotone decreasing".
- If $\left(a_{n}\right)$ is an increasing sequence, we write $a_{n} \uparrow$, and if it is a decreasing sequence we write $a_{n} \downarrow$ (no special notation is offered for "strictly monotone" sequences.)

Suprema and Infima of Monotone Sequences

Definition (Supremun and Infimum of Monotone Sequences)

- If $\left(a_{n}\right)$ is an increasing sequence in \mathbb{R}, such that $A=\left\{a_{n}: n \in \mathbb{P}\right\}$ is bounded above, and if $a=\sup A$, then we write $a_{n} \uparrow a$.
- Similarly, $a_{n} \downarrow$ a means that $\left(a_{n}\right)$ is a decreasing sequence, the set $A=\left\{a_{n}: n \in \mathbb{P}\right\}$ is bounded below, and $a=\inf A$.
- Example: $\frac{1}{n} \downarrow 0$:
- The sequence $\left(\frac{1}{n}\right)$ is decreasing;
- $\inf \left\{\frac{1}{n}: n \in \mathbb{P}\right\}=0$.
- Example: If $0<c<1$, then the sequence of powers (c^{n}) is strictly decreasing and $c^{n} \downarrow 0$:
- (c^{n}) is strictly decreasing since $0<c<1$ implies $0<c^{2}<c$ implies $0<c^{3}<c^{2}$ etc.
- Let $a=\inf \left\{c^{n}: n \in \mathbb{P}\right\}$. We know that $a \geq 0$ and $c^{n} \downarrow$ a. Now $a \leq c^{n+1}$ implies $\frac{a}{c} \leq c^{n}$, for all n. It follows that $\frac{a}{c} \leq a$, whence $a(1-c) \leq 0$ and, therefore, $a \leq 0$, which gives $a=0$.

Properties of Infima and Suprema of Monotone Sequences

Theorem

If $a_{n} \uparrow a$ and $b_{n} \uparrow b$, then:
(i) $a_{n}+b_{n} \uparrow a+b$;
(ii) $-a_{n} \downarrow-a$;
(iii) $a_{n}+c \uparrow a+c$, for every real number c.
(i) It is clear that $\left(a_{n}+b_{n}\right)$ is an increasing sequence. Moreover, it is bounded above by $a+b$. To show that $a+b$ is the least upper bound, suppose $a_{n}+b_{n} \leq c$, for all n. We have to show that $a+b \leq c$, i.e., $a \leq c-b$. Given any index m, it is enough to show that $a_{m} \leq c-b$, i.e., $b \leq c-a_{m}$. Thus, given any index n, we need only show that $b_{n}<c-a_{m}$, i.e, $a_{m}+b_{n} \leq c$. Indeed, if p is the larger of m and n then $a_{m}+b_{n} \leq a_{p}+b_{p} \leq c$, by the assumed monotonicity.
(ii) This follows from $\inf \left\{-a_{n}\right\}=-\sup \left\{a_{n}\right\}$.
(iii) This is a special case of (i), with $b_{n}=c$, for all n.

Subsection 6

Theorem on Nested Intervals

Nested Intervals

- A sequence of intervals $\left(I_{n}\right)$ of \mathbb{R} is said to be nested if $I_{1} \supseteq I_{2} \supseteq I_{3} \supseteq \cdots$. As the intervals "shrink" with increasing n, there is no assurance that there is any point that belongs to every I_{n}.
- Example: If $I_{n}=\left(0, \frac{1}{n}\right]$, then there is no point belonging to all I_{n}.
- However, if the intervals are closed, we can be sure that there is at least one survivor:

Theorem (Sequence of Nested Closed Intervals)

If $\left(I_{n}\right)$ is a nested sequence of closed intervals, then the intersection of the I_{n} is nonempty. More precisely, if $I_{n}=\left[a_{n}, b_{n}\right]$, where $a_{n} \leq b_{n}$ and $I_{1} \supseteq I_{2} \supseteq I_{3} \supseteq \cdots$, and if $a=\sup \left\{a_{n}: n \in \mathbb{P}\right\}, b=\inf \left\{b_{n}: n \in \mathbb{P}\right\}$, then $a \leq b$ and $\bigcap_{n=1}^{\infty}\left[a_{n}, b_{n}\right]=[a, b]$.

Proof of the Theorem

- The notation $\bigcap_{n=1}^{\infty}\left[a_{n}, b_{n}\right]$ means the intersection $\bigcap \mathcal{S}$ of the set \mathcal{S} of all the intervals $\left[a_{n}, b_{n}\right]$.
- From $\left[a_{n+1}, b_{n+1}\right] \subseteq\left[a_{n}, b_{n}\right]$ we see that it follows that the sequence $\left(a_{n}\right)$ is increasing and bounded above (for example by b_{1}). On the other had, $\left(b_{n}\right)$ is decreasing and bounded below (for example by a_{1}). If a and b are defined as in the statement of the theorem, we have $a_{n} \uparrow a$ and $b_{n} \downarrow b$. By the preceding theorem (and its "dual") we have $-b_{n} \uparrow-b$, so $a_{n}+\left(-b_{n}\right) \uparrow a+(-b)$. Therefore, $b_{n}-a_{n} \downarrow b-a$.
Since $b_{n}-a_{n} \geq 0$, for all n, it follows that $b-a \geq 0$. Then $a_{n} \leq a \leq b \leq b_{n}$, whence $[a, b] \subseteq\left[a_{n}, b_{n}\right]$, for all n, and, therefore, $[a, b] \subseteq \bigcap_{n=1}^{\infty}\left[a_{n}, b_{n}\right]$.
Conversely, if x belongs to every $\left[a_{n}, b_{n}\right]$ then $a_{n} \leq x \leq b_{n}$, for all n, and, therefore, $a \leq x \leq b$ showing that $\bigcap_{n=1}^{\infty}\left[a_{n}, b_{n}\right] \subseteq[a, b]$.

Theorem on Nested Intervals

- The following corollary is known as the Theorem on Nested Intervals:

Corollary (Theorem on Nested Intervals)

Suppose $I_{n}=\left[a_{n}, b_{n}\right]$, where $a_{n} \leq b_{n}$ and $I_{1} \supseteq I_{2} \supseteq I_{3} \supseteq \cdots$. Suppose, also, that $\inf \left(b_{n}-a_{n}\right)=0$. Then $\bigcap_{n=1}^{\infty}\left[a_{n}, b_{n}\right]=\{c\}$, where $c=a=b$, with $a=\sup \left\{a_{n}: n \in \mathbb{P}\right\}, b=\inf \left\{b_{n}: n \in \mathbb{P}\right\}$.

- As shown in the proof of the theorem, $b_{n}-a_{n} \downarrow b-a$. By hypothesis, $b_{n}-a_{n} \downarrow 0$, so $b=a$ and $\bigcap_{n=1}^{\infty}\left[a_{n}, b_{n}\right]=[a, a]=\{a\}$.
- A surprising corollary is a nonconstructive proof of the existence of irrational numbers.

Subsection 7

Dedekind Cut Property

Dedekind Cuts

Definition (Dedekind Cut)

A cut (or Dedekind cut) of the real field \mathbb{R} is a pair (A, B) of nonempty subsets of \mathbb{R}, such that (a) every real number belongs to either A or B and (b) $a<b$, for all $a \in A$ and $b \in B$. In symbols, $A \neq \emptyset, B \neq \emptyset, \mathbb{R}=A \cup B$, $a<b, a \in A, b \in B$. (It follows from the latter property that $A \cap B=\emptyset$.)

- Examples: If $\gamma \in \mathbb{R}$ and

$$
A=\{x \in \mathbb{R}: x \leq \gamma\}, \quad B=\{x \in \mathbb{R}: x>\gamma\}
$$

then (A, B) is a cut of \mathbb{R}. Note that A has a largest element but B has no smallest.
The pair

$$
A=\{x \in \mathbb{R}: x<\gamma\}, \quad B=\{x \in \mathbb{R}: x \geq \gamma\}
$$

also defines a cut of \mathbb{R}. Here, B has a smallest element but A has no largest.

- The key fact about cuts of \mathbb{R} is that there are no other examples.

Uniqueness of γ

Theorem

If (A, B) is a cut of \mathbb{R}, then there exists a unique real number γ, such that either
(i) $A=\{x \in \mathbb{R}: x \leq \gamma\}$ and $B=\{x \in \mathbb{R}: x>\gamma\}$, or
(ii) $A=\{x \in \mathbb{R}: x<\gamma\}$ and $B=\{x \in \mathbb{R}: x \geq \gamma\}$.

- Uniqueness: The number γ is uniquely determined by the property of being either the largest element of A or the smallest element of B, according as case (i) or case (ii) holds.

Existence of γ

- Existence: Note that A is bounded above (by any element of B) and B is bounded below (by any element of A). Let $\alpha=\sup A, \beta=\inf B$. If $a \in A$, then $a<b$, for all $b \in B$, whence $a \leq \beta$. Since $a \in A$ is arbitrary, $\alpha \leq \beta$. In fact $\alpha=\beta$, for if $\alpha<\beta$, then any number in the gap between α and β would be too large to belong to A and too small to belong to B, which would contradict $\mathbb{R}=A \cup B$. Write γ for the common value of α and β. By assumption, γ must belong to either A or B.
(i) Case 1: $\gamma \in A$. We have $A \subseteq\{x \in \mathbb{R}: x \leq \gamma\}, B \subseteq\{x \in \mathbb{R}: x>\gamma\}$: The first inclusion follows from $\gamma=\sup A$. The second inclusion follows from $\gamma=\inf B$ and the fact that $\gamma \in B$ is ruled out by $\gamma \in A$. These imply that both inclusions are actually equalities: if $x \leq \gamma$ then necessarily $x \in A$. The alternative $x \in B$ is unacceptable because it would imply $x>\gamma$.
(ii) Case 2: $\gamma \in B$. In this case, a similar argument shows that the other pair of formulas hold.

Subsection 8

Square Roots

Uniqueness of Square Roots

Theorem

Every positive real number has a unique positive square root. That is, if $c \in \mathbb{R}, c>0$, then there exists a unique $x \in \mathbb{R}, x>0$, such that $x^{2}=c$.

- Uniqueness: If x and y are positive real numbers such that $x^{2}=c=y^{2}$, then $0=x^{2}-y^{2}=(x+y)(x-y)$ and $x+y>0$, whence $x-y=0$, i.e., $x=y$.

Existence of Square Roots

- Existence: Given $c \in \mathbb{R}, c>0$, the strategy is to construct a cut (A, B) of \mathbb{R} for which the γ of the preceding theorem satisfies $\gamma^{2}=c$. Let

$$
\begin{gathered}
A=\{x \in \mathbb{R}: x \leq 0\} \cup\left\{x \in \mathbb{R}: x>0 \text { and } x^{2}<c\right\} \\
B=\left\{x \in \mathbb{R}: x>0 \text { and } x^{2} \geq c\right\} .
\end{gathered}
$$

Then $A \neq \emptyset, B \neq \emptyset(c+1 \in B)$ and $A \cup B=\mathbb{R}$. Moreover, if $a \in A$ and $b \in B$, then $a<b$:

- If $a \leq 0$, this is trivial.
- If $a>0$, then $a^{2}<c \leq b^{2}$ implies $a<b$.

In summary, (A, B) is a cut of \mathbb{R}. Let γ be the real number that defines the cut.
Note that A contains numbers >0 :

- If $c>1$ then $\frac{1}{2} \in A$ (because $\frac{1}{4}<1 \leq c$).
- If $0<c<1$, then $c \in A$ (because $c^{2}<c$).

It follows that $\gamma>0$.

Existence (Cont'd)

- Next, we assert that $\gamma \in B$. By the arguments in the preceding section, we need only show that A has no largest element. Assuming $a \in A$, we find a larger element of A.
- If $a \leq 0$, then any positive element of A will do.
- Suppose $a>0$. We know that $a^{2}<c$. It will suffice to find a positive integer n, such that $\left(a+\frac{1}{n}\right)^{2}<c$. The existence of such an n is due to the Archimedean Property applied to $n\left(c-a^{2}\right)>2 a+1 \geq 2 a+\frac{1}{n}$.
We now know that $A=\{x \in \mathbb{R}: x<\gamma\}, B=\{x \in \mathbb{R}: x \geq \gamma\}$. Since $\gamma \in B$, we have $\gamma^{2} \geq c$. It remains only to show that $\gamma^{2} \leq c$, i.e., $\gamma^{2}-c \leq 0$.

By the Archimedean property, choose a positive integer N such that $N \gamma>1$. For every integer $n \geq N$, we have $\frac{1}{n} \leq \frac{1}{N}<\gamma$, so $\gamma-\frac{1}{n}>0$. Since $\gamma-\frac{1}{n}$ belongs to A, it follows that $\left(\gamma-\frac{1}{n}\right)^{2}<c$, whence $\gamma^{2}-c<\frac{2 \gamma}{n}-\frac{1}{n^{2}}<\frac{2 \gamma}{n}$. Thus, $\frac{\gamma^{2}-c}{2 \gamma}<\frac{1}{n}$, for all $n \geq N$, and a fortiori also for $1 \leq n<N$. Consequently, $\frac{\gamma^{2}-c}{2 \gamma} \leq \inf \left\{\frac{1}{n}: n \in \mathbb{P}\right\}=0$. Since $2 \gamma>0$, we conclude that $\gamma^{2}-c \leq 0$.

Definition of Square Root

Definition (Square Root)

If $c \in \mathbb{R}, c>0$, then the unique $x \in \mathbb{R}, x>0$, such that $x^{2}=c$ is called the square root of c and is denoted \sqrt{c}. We also define $\sqrt{0}=0$.

- It follows by the theorem that every nonnegative real number has a unique nonnegative square root.

Subsection 9

Absolute Value

Absolute Value and Basic Properties

Definition (Absolute Value)

The absolute value of a real number a is the nonnegative real number $|a|$ defined as follows:

$$
|a|=\left\{\begin{array}{rc}
a, & \text { if } a \geq 0 \\
-a, & \text { if } a \leq 0
\end{array}\right.
$$

Theorem (Properties of the Absolute Value)

For real numbers a, b, c, x,
(1) $|a| \geq 0$.
(6) $|-a|=|a|$.
(2) $|a|^{2}=a^{2}$.
(7) $|a b|=|a||b|$.
(3) Properties (1) and (2) characterize
(8) $-|a| \leq a \leq|a|$.
$|a|:$ if $x \geq 0$ and $x^{2}=a^{2}$, then
(9) $|x| \leq c \Leftrightarrow-c \leq x \leq c$.
$x=|a|$.
(4) $|a|=0 \Leftrightarrow a=0 ;|a|>0 \Leftrightarrow a \neq 0$.
(10) $|a+b| \leq|a|+|b|$.
(5) $|a|=|b| \Leftrightarrow a^{2}=b^{2} \Leftrightarrow a= \pm b$.

Proof of the Absolute Value Properties

- (1) $|a| \geq 0,(2)|a|^{2}=a^{2}$ and (4) $|a|=0$ iff $a=0$ and $|a|>0$ iff $a \neq 0$ are obvious from the definition of absolute value.
(3) If $x \geq 0$ and $x^{2}=a^{2}$, that is, $x^{2}=|a|^{2}$, then $x=|a|$, by a previous theorem.
- (5) and (6) follow easily from (1)-(3).
(7) If $x=|a||b|$, then $x^{2}=|a|^{2}|b|^{2}=a^{2} b^{2}=(a b)^{2}$, whence $x=|a b|$, by (3).
(8) If $a \geq 0$, then $-|a|=-a \leq 0 \leq a=|a|$. If $a \leq 0$, then $-|a|=-(-a)=a \leq 0 \leq|a|$.
(9) If $-c \leq x \leq c$, then both $-x \leq c$ and $x \leq c$. But $|x|$ is either x or $-x$, so $|x| \leq c$. Conversely, if $|x| \leq c$, then $-c \leq-|x| \leq x \leq|x| \leq c$.
(10) Addition of the inequalities $-|a| \leq a \leq|a|,-|b| \leq b \leq|b|$ yields $-(|a|+|b|) \leq a+b \leq|a|+|b|$. So $|a+b| \leq|a|+|b|$ by (9).
(11) Let $x=|a|-|b|$. Then $|a|=|(a-b)+b| \leq|a-b|+|b|$, whence $x \leq|a-b|$. Interchanging a and b, we have $-x \leq|b-a|=|a-b|$, and, hence, $|x| \leq|a-b|$.

Distance Between Real Numbers

- |a| may be interpreted as the distance from the origin to the point a.
- Example: $| \pm 5|=5$ means that either of the points labeled 5 and -5 has distance 5 from the origin.

Definition (Distance)

For real numbers a, b the distance from a to b is defined to be $|a-b|$. We also write $d(a, b)=|a-b|$. The function $d: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ defined by this formula is called the distance function on \mathbb{R}.

- Example: If $a=-2$ and $b=5$, then $|a-b|=|-2-5|=7$.

