Introduction to Real Analysis

George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science
Lake Superior State University

LSSU Math 421

(1) Sequences of Real Numbers, Convergence

- Bounded Sequences
- Ultimately, Frequently
- Null Sequences
- Convergent Sequences
- Subsequences, Bolzano-Weierstraß Theorem
- Cauchy's Criterion for Convergence
- limsup and liminf of a Bounded Sequence

Subsection 1

Bounded Sequences

Bounded Sequences

Definition (Bounded Sequence)

A sequence $\left(x_{n}\right)$ of real numbers is said to be bounded if the set $\left\{x_{n}: n \in \mathbb{P}\right\}$ is bounded.
A sequence that is not bounded is said to be unbounded.

- A sequence $\left(x_{n}\right)$ in \mathbb{R} is bounded if and only if there exists a positive real number K such that $\left|x_{n}\right| \leq K$, for all n.
If $a \leq x_{n} \leq b$, for all n, and if $K=|a|+|b|$, then $|a| \leq K$ and $|b| \leq K$, whence $-K \leq-|a| \leq a \leq x_{n} \leq b \leq|b| \leq K$. Therefore, $\left|x_{n}\right| \leq K$.

Boundedness of Sum and Product

- Example: Every constant sequence $\left(x_{n}=x\right.$, for all n) is bounded.
- Example: The sequence $x_{n}=(-1)^{n}$ is bounded.
- Example: The sequence $x_{n}=n$ is unbounded: For every real number K, there exists, by the Archimedean property, a positive integer n, such that $n=n \cdot 1>K$, whence the set of all x_{n} is not bounded above.

Theorem

If $\left(x_{n}\right)$ and $\left(y_{n}\right)$ are bounded sequences in \mathbb{R}, then the sequences $\left(x_{n}+y_{n}\right)$ and $\left(x_{n} y_{n}\right)$ are also bounded.

- If $\left|x_{n}\right| \leq K$ and $\left|y_{n}\right| \leq K^{\prime}$, then $\left|x_{n}+y_{n}\right| \leq\left|x_{n}\right|+\left|y_{n}\right| \leq K+K^{\prime}$ and

$$
\left|x_{n} y_{n}\right|=\left|x_{n}\right|\left|y_{n}\right| \leq K K^{\prime} .
$$

Subsection 2

Ultimately, Frequently

Ultimately, Frequently

Definition (Ultimately, Frequently)

Let $\left(x_{n}\right)$ be a sequence in a set X and let A be a subset of X.
(i) We say that $x_{n} \in A$ ultimately if x_{n} belongs to A from some index onward, i.e., there is an index N, such that $x_{n} \in A$, for all $n \geq N$. Symbolically,

$$
\exists N\left(n \geq N \Rightarrow x_{n} \in A\right)
$$

(Equivalently, $\exists N\left(n>N \Rightarrow x_{n} \in A\right.$), because $n>N$ means the same thing as $n \geq N+1$.)
(ii) We say that $x_{n} \in A$ frequently if, for every index N, there is an index $n \geq N$, for which $x_{n} \in A$. Symbolically,

$$
(\forall N)(\exists n \geq N)\left(x_{n} \in A\right)
$$

(Equivalently, $(\forall N)(\exists n>N)\left(x_{n} \in A\right)$.)

Examples

- Example: Let $x_{n}=\frac{1}{n}$, let $\epsilon>0$ and let $A=(0, \epsilon)$. Then $x_{n} \in A$ ultimately.
Choose an index N such that $\frac{1}{N}<\epsilon$. Then $n \geq N$ implies $\frac{1}{n} \leq \frac{1}{N}<\epsilon$.
- Example: For each positive integer n, let S_{n} be a statement (which may be either true or false). Let

$$
A=\left\{n \in \mathbb{P}: S_{n} \text { is true }\right\}
$$

We say that:

- S_{n} is true frequently if $n \in A$ frequently;
- S_{n} is true ultimately if $n \in A$ ultimately.

The following illustrate the usage:

- $n^{2}-5 n+6>0$ ultimately (in fact, for $n \geq 4$).
- n is frequently divisible by 5 (in fact, for $n=5, n=10, n=15$, etc.).

Relation Between Ultimately and Frequently

Theorem

Let $\left(x_{n}\right)$ be a sequence in a set X and let A be a subset of X. One and only one of the following conditions holds:
(1) $x_{n} \in A$ ultimately;
(2) $x_{n} \notin A$ frequently.

- To say that (1) is false means that, for every index N, the implication

$$
n \geq N \Rightarrow x_{n} \in A
$$

is false. So there must exist an index $n \geq N$ for which $x_{n} \notin A$. This is precisely the meaning of (2).

- Example: If $\left(x_{n}\right)$ is a sequence in \mathbb{R}, then either $x_{n}<5$ ultimately, or $x_{n} \geq 5$ frequently, but not both.

Subsection 3

Null Sequences

Null Sequences

Definition (Null Sequence)

A sequence $\left(x_{n}\right)$ in \mathbb{R} is said to be null if, for every positive real number ϵ, $\left|x_{n}\right|<\epsilon$ ultimately.

- Example: The sequence $\left(\frac{1}{n}\right)$ is null.
- The concept of null sequence can be expressed as follows:

Given any $\epsilon>0$ (no matter how small), the distance from $\left|x_{n}\right|$ to the origin is ultimately smaller than ϵ (in this sense, x_{n} "approaches" 0).

- A more informal way to express the same concept:
x_{n} is arbitrarily small provided n is sufficiently large.
- "arbitrarily small" is understood to suggest that the degree of smallness is specified in advance, before any indices are selected;
- "sufficiently large" is understood in the sense of "ultimately" (not merely "frequently").

Properties of Null Sequences

Theorem

Let $\left(x_{n}\right)$ and $\left(y_{n}\right)$ be null sequences and let $c \in \mathbb{R}$. Then:
(1) $\left(x_{n}\right)$ is bounded.
(2) $\left(c x_{n}\right)$ is null.
(3) $\left(x_{n}+y_{n}\right)$ is null.
(4) If $\left(b_{n}\right)$ is a bounded sequence then $\left(b_{n} x_{n}\right)$ is null.
(5) If $\left(z_{n}\right)$ is such that $\left|z_{n}\right| \leq\left|x_{n}\right|$ ultimately, then $\left(z_{n}\right)$ is also null.
(1) Let $\epsilon=1$. There exists an index N, such that $\left|x_{n}\right|<1$, for all $n>N$. If K is the largest of the numbers $1,\left|x_{1}\right|,\left|x_{2}\right|, \ldots,\left|x_{N}\right|$, then $\left|x_{n}\right| \leq K$, for every positive integer n. Thus $\left(x_{n}\right)$ is bounded.
(2) For $\frac{\epsilon}{|c|}>0$, there exists N, such that $\left|x_{n}\right|<\frac{\epsilon}{|c|}$, for all $n>N$. Thus, $\left|c x_{n}\right|<\epsilon$, for all $n>N$, showing that $\left(c x_{n}\right)$ is null.

Proof of the Theorem on Null Sequences

(3) Let $\epsilon>0$. Since (x_{n}) is null, there is an index N_{1} such that $n \geq N_{1}$ implies $\left|x_{n}\right|<\frac{\epsilon}{2}$. Similarly, there is an index N_{2} such that $n \geq N_{2}$ implies that $\left|y_{n}\right|<\frac{\epsilon}{2}$. If N is the larger of N_{1} and N_{2}, then $n \geq N$ implies that $\left|x_{n}+y_{n}\right| \leq\left|x_{n}\right|+\left|y_{n}\right|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon$. This proves that $\left(x_{n}+y_{n}\right)$ is null.
(4) Let K be a positive real number such that $\left|b_{n}\right| \leq K$, for all n. Given any $\epsilon>0$, choose an index N such that $n \geq N$ implies $\left|x_{n}\right|<\frac{\epsilon}{K}$. Then $n \geq N$ implies $\left|b_{n} x_{n}\right|=\left|b_{n}\right|\left|x_{n}\right| \leq K\left|x_{n}\right|<\epsilon$. Thus, $\left(b_{n} x_{n}\right)$ is null.
Note that (2) is also a special case of (4).
(5) By assumption, there is an index N_{1}, such that $n \geq N_{1}$ implies $\left|z_{n}\right| \leq\left|x_{n}\right|$. Given any $\epsilon>0$, choose an index N_{2}, such that $n \geq N_{2}$ implies $\left|x_{n}\right|<\epsilon$. If $N=\max \left\{N_{1}, N_{2}\right\}$, then $n \geq N$ implies $\left|z_{n}\right| \leq\left|x_{n}\right|<\epsilon$. Thus, $\left(z_{n}\right)$ is null.

An Additional Theorem

Theorem

If $a_{n} \uparrow a$ or $a_{n} \downarrow a$, then the sequence $\left(a_{n}-a\right)$ is null.

- If $a_{n} \downarrow a$, then $a_{n}-a=a_{n}+(-a) \downarrow a+(-a)=0$. In particular, $a_{n}-a \geq 0$ and $\inf \left(a_{n}-a\right)=0$. Given any $\epsilon>0$, choose an index N such that $a_{N}-a<\epsilon$. Then $n \geq N$ implies $\left|a_{n}-a\right|=a_{n}-a$ $\leq a_{N}-a<\epsilon$. Thus, $\left(a_{n}-a\right)$ is null.
For $a_{n} \uparrow a$, we apply the preceding case to $-a_{n} \downarrow-a$.
- Example: If $|x|<1$, then the sequence $\left(x^{n}\right)$ is null. Writing $c=|x|$, we have $c^{n} \downarrow 0$. Thus, the sequence $\left(\left|x^{n}\right|\right)=\left(c^{n}\right)$ is null. Therefore, $\left(x^{n}\right)$ is null.
- Example: Fix $x \in \mathbb{R}$ and let $x_{n}=x$, for all n. The constant sequence $\left(x_{n}\right)$ is null if and only if $x=0$.
The condition " $\left|x_{n}\right|<\epsilon$ ultimately" means $|x|<\epsilon$. If this happens for every $\epsilon>0$, then $x=0$.

Subsection 4

Convergent Sequences

Convergent Sequences

Definition (Convergent Sequence)

A sequence $\left(a_{n}\right)$ in \mathbb{R} is said to be convergent in \mathbb{R} if there exists a real number a, such that the sequence $\left(a_{n}-a\right)$ is null, and divergent if no such number exists.

- Such a number a (if it exists) is unique:

Suppose that both $\left(a_{n}-a\right)$ and $\left(a_{n}-b\right)$ are null. Let $x_{n}=\left(a_{n}-b\right)-$ $\left(a_{n}-a\right)=a-b$. Being the difference of null sequences, $\left(x_{n}\right)$ is null.
But the constant $(a-b)$ is null if and only if $a-b=0$, i.e., $a=b$.

Definition (Limit)

Let $\left(a_{n}\right)$ be a convergent sequence, such that $\left(a_{n}-a\right)$ is null. Then the number a is called the limit of the convergent sequence $\left(a_{n}\right)$, and the sequence is said to converge to a. This is expressed by writing $\lim _{n \rightarrow \infty} a_{n}=a, a_{n} \rightarrow a$ as $n \rightarrow \infty$, or, more concisely, $\lim a_{n}=a$ or $a_{n} \rightarrow a$.

Examples

- If $a_{n} \uparrow a$ or $a_{n} \downarrow a$, then $a_{n} \rightarrow a$. Thus, every bounded monotone sequence is convergent.
- $a_{n} \rightarrow 0$ iff $\left(a_{n}\right)$ is null.

Since $a_{n}-0=a_{n}$, this is immediate from the definition.

- $a_{n} \rightarrow a$ iff $a_{n}-a \rightarrow 0$.

This follows from the previous remark.

- $x^{n} \rightarrow 0$ iff $|x|<1$.

If $|x|<1$, then $x_{n} \rightarrow 0$ since $\left(\left|x^{n}\right|\right)$ is decreasing and bounded below.
If $|x|>1$, then $\left|x^{n}\right|=|x|^{n}>1$, for all n, whence $\left(x_{n}\right)$ is not null.

- If $|x|<1$ and $a_{n}=1+x+x^{2}+\cdots+x^{n-1}$, then $a_{n} \rightarrow \frac{1}{1-x}$.

$$
a_{n}-\frac{1}{1-x}=\frac{1-x^{n}}{1-x}-\frac{1}{1-x}=\frac{-1}{1-x} \cdot x^{n} .
$$

This is a constant multiple of a null sequence. Hence it is null.

Properties of Convergent Sequences

Theorem (Convergent Sequences)

Let $\left(a_{n}\right),\left(b_{n}\right)$ be convergent sequences in \mathbb{R}, say $a_{n} \rightarrow a$ and $b_{n} \rightarrow b$, and let $c \in \mathbb{R}$. Then:
(1) $\left(a_{n}\right)$ is bounded.
(2) $c a_{n} \rightarrow c a$.
(3) $a_{n}+b_{n} \rightarrow a+b$.
(4) $a_{n} b_{n} \rightarrow a b$.
(5) $\left|a_{n}\right| \rightarrow|a|$.
(6) If $b \neq 0$, then $\left|b_{n}\right|$ is ultimately bounded away from 0 , in the sense that there exists an $r>0$ (for example, $\left.r=\frac{1}{2}|b|\right)$ such that $\left|b_{n}\right| \geq r$ ultimately.
(7) If b and the b_{n} are all nonzero, then $\frac{a_{n}}{b_{n}} \rightarrow \frac{a}{b}$.
(8) If $a_{n} \leq b_{n}$, for all n, then $a \leq b$.

Proof of the Theorem

(1) $\left(a_{n}-a\right)$ is null. So it is bounded. Since $a_{n}=\left(a_{n}-a\right)+a,\left(a_{n}\right)$ is the sum of two bounded sequences.
(2) $c a_{n}-c a=c\left(a_{n}-a\right)$ is a scalar multiple of a null sequence. So it is null.
(3) $\left(a_{n}+b_{n}\right)-(a+b)=\left(a_{n}-a\right)+\left(b_{n}-b\right)$ is the sum of two null sequences. Therefore it is null.
(4) $a_{n} b_{n}-a b=a_{n}\left(b_{n}-b\right)+\left(a_{n}-a\right) b$. Since $\left(a_{n}\right)$ is bounded and $\left(b_{n}-b\right),\left(a_{n}-a\right)$ are null, it follows that $\left(a_{n} b_{n}-a b\right)$ is null.
(5) $\left|\left|a_{n}\right|-|a|\right|<\left|a_{n}-a\right|$, where $\left(a_{n}-a\right)$ is null. So $\left(\left|a_{n}\right|-|a|\right)$ is null.

Proof of the Theorem (Cont'd)

(6) Let $r=\frac{1}{2}|b|$ and choose an integer N such that $n \geq N$ implies $\left|b_{n}-b\right| \leq r$. Then, for all $n \geq N, 2 r=|b|=\left|\left(b-b_{n}\right)+b_{n}\right| \leq$ $\left|b-b_{n}\right|+\left|b_{n}\right| \leq r+\left|b_{n}\right|$ whence $\left|b_{n}\right| \geq r$.
(7) From (6), it follows that the sequence $\left(\frac{1}{b_{n}}\right)$ is bounded. Thus $\frac{1}{b_{n}}-\frac{1}{b}=\frac{1}{b_{n} b}\left(b-b_{n}\right)$ is the product of a bounded sequence and a null sequence. Therefore it is null. This implies that $\frac{1}{b_{n}} \rightarrow \frac{1}{b}$. Hence $\frac{a_{n}}{b_{n}}=a_{n} \frac{1}{b_{n}} \rightarrow a \frac{1}{b}=\frac{a}{b}$.
(8) Let $c_{n}=b_{n}-a_{n}$ and $c=b-a$. Then $c_{n} \geq 0$ and $c_{n} \rightarrow c$. Our problem is to show that $c \geq 0$. By (5), $\left|c_{n}\right| \rightarrow|c|$, i.e., $c_{n} \rightarrow|c|$. Since $c_{n} \rightarrow c, c=|c| \geq 0$ by the uniqueness of limits.

Suprema and Infima as Limits of Sequences

Theorem

If $A \subseteq \mathbb{R}$ is nonempty and bounded above, and if $M=\sup A$, then there exists a sequence $\left(x_{n}\right)$ in A such that $x_{n} \rightarrow M$.

- For each positive integer n, choose $x_{n} \in A$ so that $M-\frac{1}{n}<x_{n} \leq M$. Then $\lim \left(M-\frac{1}{n}\right) \leq \lim x_{n} \leq \lim M$, whence $\lim x_{n}=M$.
- Similarly, if $A \subseteq \mathbb{R}$ is nonempty and bounded below, then $\inf A$ is the limit of a sequence in A.

Subsection 5

Subsequences, Bolzano-Weierstraß Theorem

Subsequences

- Given a sequence $\left(x_{n}\right)$, there are various ways of forming "subsequences":
- Take every other term $x_{1}, x_{3}, x_{5}, \ldots$;
- Take all of the terms from some index onward $x_{6}, x_{7}, x_{8}, \ldots$;
- Take all terms for which the index is a prime number $x_{2}, x_{3}, x_{5}, x_{7}, \ldots$.

One is free to discard any terms, as long as infinitely many remain.

Definition (Subsequence)

Let $\left(x_{n}\right)$ be any sequence. Choose a strictly increasing sequence of positive integers $n_{1}<n_{2}<n_{3}<\cdots$ and define $y_{k}=x_{n_{k}}, k=1,2,3, \ldots$ One calls $\left(y_{k}\right)$ a subsequence of $\left(x_{n}\right)$. This is also expressed by saying that $x_{n_{1}}, x_{n_{2}}, x_{n_{3}}, \ldots$ is a subsequence of $x_{1}, x_{2}, x_{3}, \ldots$, or that $\left(x_{n_{k}}\right)$ is a subsequence of $\left(x_{n}\right)$.

- Forming a subsequence amounts to choosing a sequence of indices, the essential thing being that the chosen indices must form a strictly increasing sequence.

Some Remarks

- Let $\left(n_{k}\right)$ be a strictly increasing sequence of positive integers $n_{1}<n_{2}<n_{3}<\cdots$. For every positive integer N, there exists a positive integer k, such that $n_{k}>N$ (whence $n_{j}>N$, for all $j \geq k$). It suffices to show that $n_{k} \geq k$, for all positive integers k. This is obvious for $k=1$. Assuming inductively that $n_{k} \geq k$, we have $n_{k+1} \geq n_{k}+1 \geq k+1$.
- A sequence $\left(x_{n}\right)$ in a set X can be thought of as a function $f: \mathbb{P} \rightarrow X$, where $f(n)=x_{n}$. A subsequence of $\left(x_{n}\right)$ is obtained by specifying a strictly increasing function $\sigma: \mathbb{P} \rightarrow \mathbb{P}$ and taking the composite function $f \circ \sigma$:

Writing $n_{k}=\sigma(k)$, we have $(f \circ \sigma)(k)=f(\sigma(k))=f\left(n_{k}\right)=x_{n_{k}}$.

One More Remark

- An application of the preceding remark: If $\left(y_{k}\right)$ is a subsequence of $\left(x_{n}\right)$, then every subsequence of $\left(y_{k}\right)$ is also a subsequence of $\left(x_{n}\right)$. The essence lies in the fact that, if $\sigma: \mathbb{P} \rightarrow \mathbb{P}$ and $\tau: \mathbb{P} \rightarrow \mathbb{P}$ are strictly increasing, then so is $\sigma \circ \tau: \mathbb{P} \rightarrow \mathbb{P}$. In detail, suppose that $f: \mathbb{P} \rightarrow X$ defines the sequence $\left(x_{n}\right)$, i.e., $f(n)=x_{n}$, and that $\sigma: \mathbb{P} \rightarrow \mathbb{P}$ defines the subsequence $\left(y_{k}\right)$, i.e., $y_{k}=f(\sigma(k))$. Write $g=f \circ \sigma$. Then $g: \mathbb{P} \rightarrow X$, with $g(k)=y_{k}$. Suppose $\left(z_{i}\right)$ is a subsequence of $\left(y_{k}\right)$, say defined by $\tau: \mathbb{P} \rightarrow \mathbb{P}$, so that $z_{i}=g(\tau(i))$. Then $g \circ \tau=(f \circ \sigma) \circ \tau=f \circ(\sigma \circ \tau)$, so $\left(z_{i}\right)$ is defined by the strictly increasing function $\sigma \circ \tau: \mathbb{P} \rightarrow \mathbb{P}$.

Properties of Subsequences

Theorem

Let $\left(a_{n}\right)$ be a sequence in \mathbb{R} and let $\left(a_{n_{k}}\right)$ be a subsequence of $\left(a_{n}\right)$.
(1) If $\left(a_{n}\right)$ is bounded, then so is $\left(a_{n_{k}}\right)$.
(2) If $\left(a_{n}\right)$ is null, then so is $\left(a_{n_{k}}\right)$.
(3) If $\left(a_{n}\right)$ is convergent, then so is $\left(a_{n_{k}}\right)$; more precisely, if $a_{n} \rightarrow a$ as $n \rightarrow \infty$, then also $a_{n_{k}} \rightarrow a$ as $k \rightarrow \infty$.
(4) If $a_{n} \uparrow a$, then also $a_{n_{k}} \uparrow a$, and similarly for decreasing sequences.
(1) If $\left|a_{n}\right| \leq K$, for all n, then, in particular, $\left|a_{n_{k}}\right| \leq K$, for all k.
(2) Write $b_{k}=a_{n_{k}}, k=1,2,3, \ldots$. Let $\epsilon>0$. By assumption, there is an index N, such that $\left|a_{n}\right|<\epsilon$, for all $n \geq N$. Choose k so that $n_{k} \geq N$. Then $j \geq k$ implies $n_{j} \geq n_{k} \geq N$, which implies $\left|a_{n_{j}}\right|<\epsilon$. Thus, (b_{k}) is null.

Properties of Subsequences (Cont'd)

(3) By assumption, $\left(a_{n}-a\right)$ is null, whence its subsequence $\left(a_{n_{k}}-a\right)$ is also null and, consequently, $a_{n_{k}} \rightarrow a$.
(4) If $a_{n} \uparrow a$, the subsequence $\left(a_{n_{k}}\right)$ is certainly increasing and bounded above (by a). Writing $b=\sup \left\{a_{n_{k}}: k \in \mathbb{P}\right\}$, we know that $b \leq a$ and we have to show that $b=a$. Given any positive integer n, there is a k such that $n_{k}>n$. Therefore, $a_{n} \leq a_{n_{k}} \leq b$. Thus, $a_{n} \leq b$, for every positive integer n, whence $a \leq b$.
If $a_{n} \downarrow a$, then $-a_{n} \uparrow-a$, therefore $-a_{n_{k}} \uparrow-a$ and, consequently, $a_{n_{k}} \downarrow a$.

Frequently and Subsequences

Theorem

Let $\left(x_{n}\right)$ be a sequence and let (P) be a property that a term x_{n} may or may not have. Then the following conditions are equivalent:
(a) x_{n} has property (P) frequently;
(b) There exists a subsequence $\left(x_{n_{k}}\right)$ of $\left(x_{n}\right)$ such that every $x_{n_{k}}$ has property (P).

- Let $A=\left\{n \in \mathbb{P}: x_{n}\right.$ has property $\left.(P)\right\}$.
(a) \Rightarrow (b) By assumption, $n \in A$ frequently. Choose $n_{1} \in A$. Choose $n_{2} \in A$, so that $n_{2}>n_{1}$. Choose $n_{3} \in A$, so that $n_{3}>n_{2}$ and so on. The subsequence $x_{n_{1}}, x_{n_{2}}, x_{n_{3}}, \ldots$ has the desired property.
(b) \Rightarrow (a) By assumption, $n_{k} \in A$, for all k. Given any index N, the claim is that A contains an integer $n \geq N$. Indeed, $n_{k}>N$, for some k.
- Example: Suppose we are trying to show that $\left|a_{n}-a\right|<\epsilon$ ultimately. The alternative is that $\left|a_{n}-a\right| \geq \epsilon$ frequently, i.e., $\left|a_{n_{k}}-a\right| \geq \epsilon$, for some subsequence ($a_{n_{k}}$).

Monotone Subsequences

Theorem

Every sequence in \mathbb{R} has a monotone subsequence.

- Assuming $\left(a_{n}\right)$ is any sequence of real numbers, we seek a subsequence $\left(a_{n_{k}}\right)$ that is either increasing or decreasing. Call a positive integer n a peak point for the sequence if $a_{n} \geq a_{k}$ for all $k \geq n$. Think of the sequence as a function $f: \mathbb{P} \rightarrow \mathbb{R}, f(n)=a_{n}$. For n to be a peak point means that no point of the graph of f from n onward is higher than $\left(n, a_{n}\right)$. There are two possibilities:
(1) n is frequently a peak point: If $n_{1}<n_{2}<n_{3}<\cdots$ are peak points, then the subsequence $\left(a_{n_{k}}\right)$ is decreasing: For, $a_{n_{1}} \geq a_{n_{2}}$ (because n_{1} is a peak point), $a_{n_{2}} \geq a_{n_{3}}$ (because n_{2} is a peak point), etc.
(2) From some index N onward, n is not a peak point: Let $n_{1}=N$. Since n_{1} is not a peak point, there is an index $n_{2}>n_{1}$, such that $a_{n_{2}}>a_{n_{1}}$. But n_{2} is not a peak point either. So there is an $n_{3}>n_{2}$, such that $a_{n_{3}}>a_{n_{2}}$. Continuing in this way, we obtain an increasing subsequence of $\left(a_{n}\right)$.

Bolzano-Weierstraß Theorem

Bolzano-Weierstraß Theorem

Every bounded sequence in \mathbb{R} has a convergent subsequence.

- Let $\left(a_{n}\right)$ be a bounded sequence of real numbers. By the preceding theorem, $\left(a_{n}\right)$ has a monotone subsequence $\left(a_{n_{k}}\right)$. Suppose, for example, that $\left(a_{n_{k}}\right)$ is increasing. It is also bounded, so $a_{n_{k}} \uparrow$ a for a suitable real number a and $a_{n_{k}} \rightarrow a$.

Corollary (Closed Interval Version)

In a closed interval $[a, b]$, every sequence has a subsequence that converges to a point of the interval.

- Suppose $x_{n} \in[a, b], n=1,2,3, \ldots$. By the theorem, some subsequence is convergent to a point of \mathbb{R}, say $x_{n_{k}} \rightarrow x$. Since $a \leq x_{n_{k}} \leq b$, for all k, it follows that $a \leq x \leq b$. Thus, $x \in[a, b]$.

Subsection 6

Cauchy's Criterion for Convergence

Cauchy's Criterion

- The criterion for a monotone sequence to converge is that it be bounded.
- Cauchy's criterion for convergence applies to sequences that are not necessarily monotone:

Theorem (Cauchy's Criterion)

For a sequence $\left(a_{n}\right)$ in \mathbb{R}, the following conditions are equivalent:
(a) $\left(a_{n}\right)$ is convergent;
(b) For every $\epsilon>0$, there is an index N, such that $\left|a_{m}-a_{n}\right|<\epsilon$, whenever $m, n \geq N$, in symbols,

$$
(\forall \epsilon>0)(\exists N)\left(m, n \geq N \Rightarrow\left|a_{m}-a_{n}\right|<\epsilon\right) .
$$

- (a) \Rightarrow (b): Say $a_{n} \rightarrow a$. If $\epsilon>0$, then $\left|a_{n}-a\right|<\frac{\epsilon}{2}$ ultimately, say for $n \geq N$. If both $m, n \geq N$, then, by the triangle inequality,

$$
\left|a_{m}-a_{n}\right|=\left|\left(a_{m}-a\right)+\left(a-a_{n}\right)\right| \leq\left|a_{m}-a\right|+\left|a-a_{n}\right|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon
$$

Cauchy's Criterion (Cont'd)

- (b) $\Rightarrow(\mathrm{a})$: Assuming (b), we show, first, that the sequence $\left(a_{n}\right)$ is bounded. Choose an index M, such that $\left|a_{m}-a_{n}\right|<1$, for all $m, n \geq M$. Then, for all $n \geq M$,

$$
\left|a_{n}\right|=\left|\left(a_{n}-a_{M}\right)+a_{M}\right| \leq\left|a_{n}-a_{M}\right|+\left|a_{M}\right|<1+\left|a_{M}\right|,
$$

whence the sequence $\left(a_{n}\right)$ is bounded. Explicitly, if $r=\max \left\{\left|a_{1}\right|,\left|a_{2}\right|, \ldots,\left|a_{M-1}\right|, 1+\left|a_{M}\right|\right\}$, then $\left|a_{n}\right| \leq r$, for all n. By the Bolzano-Weierstraß Theorem, $\left(a_{n}\right)$ has a convergent subsequence, say $a_{n_{k}} \rightarrow a$. We will show that $a_{n} \rightarrow a$.
Let $\epsilon>0$. By hypothesis, there is an index N, such that $m, n \geq N$ imply $\left|a_{m}-a_{n}\right|<\frac{\epsilon}{2}$. Since $a_{n_{k}} \rightarrow a$, there is an index K, such that $k \geq K$ implies $\left|a_{n_{k}}-a\right|<\frac{\epsilon}{2}$. Choose an index $k \geq K$, such that $n_{k} \geq N$. Then, for all $n \geq N$,

$$
\left|a_{n}-a\right|=\left|\left(a_{n}-a_{n_{k}}\right)+\left(a_{n_{k}}-a\right)\right| \leq\left|a_{n}-a_{n_{k}}\right|+\left|a_{n_{k}}-a\right|<\frac{\epsilon}{2}+\frac{\epsilon}{2}
$$

Thus, the sequence $\left(a_{n}-a\right)$ is null, so $a_{n} \rightarrow a$.

Subsection 7

lim sup and lim inf of a Bounded Sequence

Bounded Sequences

- For a monotone sequence to be convergent it has to be bounded.
- For a bounded sequence, which condition ensures convergence?
- Let $\left(a_{n}\right)$ be a bounded sequence in \mathbb{R}, say $\left|a_{n}\right| \leq K$, for all n.
- For each n, let A_{n} be the set of all terms from n onward,

$$
A_{n}=\left\{a_{n}, a_{n+1}, a_{n+2}, \ldots\right\}=\left\{a_{k}: k \geq n\right\}
$$

- A_{n} is bounded, indeed $A_{n} \subseteq[-K, K]$, and we may define

$$
b_{n}=\sup A_{n}=\sup _{k \geq n} a_{k}, \quad c_{n}=\inf A_{n}=\inf _{k \geq n} a_{k} .
$$

- This produces two sequences $\left(b_{n}\right)$ and $\left(c_{n}\right)$, with $c_{n} \leq b_{n}$, for all n.
- The sequences are bounded: $-K \leq c_{n} \leq b_{n} \leq K$, for all n.
- Moreover, $\left(c_{n}\right)$ is increasing and $\left(b_{n}\right)$ is decreasing: Since $A_{n} \supseteq A_{n+1}$,

$$
c_{n}=\inf A_{n} \leq \inf A_{n+1}=c_{n+1} \text { and } b_{n}=\sup A_{n} \geq \sup A_{n+1}=b_{n+1}
$$

- Thus, with the notation $c=\sup c_{n}=\sup \left\{c_{n}: n \in \mathbb{P}\right\}$, $b=\inf b_{n}=\inf \left\{b_{n}: n \in \mathbb{P}\right\}$, we have $c_{n} \uparrow c$ and $b_{n} \downarrow b$.

Limit Superior and Limit Inferior

Definition (Limit Superior and Limit Inferior)

With the above notations, b is called the limit superior of the bounded sequence (a_{n}), written

$$
\lim \sup a_{n}=b=\inf _{n \geq 1} b_{n}=\inf _{n \geq 1}\left(\sup _{k \geq n} a_{k}\right)
$$

and c is called the limit inferior of the sequence $\left(a_{n}\right)$, written

$$
\liminf a_{n}=c=\sup _{n \geq 1} c_{n}=\sup _{n \geq 1}\left(\inf _{k \geq n} a_{k}\right) .
$$

- Example:
(i) For the sequence $1,-1,1,-1, \ldots, A_{n}=\{-1,1\}$, for all n, so $b_{n}=1$ and $c_{n}=-1$, for all n, therefore $b=1$ and $c=-1$.
(ii) For the sequence $1,-1,1,1,1, \ldots, A_{n}=\{1\}$, for $n \geq 3$, so $b_{n}=c_{n}=1$, for $n \geq 3$, therefore $b=c=1$.
(iii) For the sequence $\frac{1}{2}, \frac{2}{3}, \frac{1}{3}, \frac{3}{4}, \frac{1}{4}, \frac{4}{5}, \ldots, \frac{1}{k}, \frac{k}{k+1}, \ldots, b_{n}=1$ and $c_{n}=0$, for all n, therefore, $b=1$ and $c=0$.

Relation Between the Limits

Theorem

For every bounded sequence $\left(a_{n}\right)$ in $\mathbb{R}, \lim \inf a_{n} \leq \limsup a_{n}$.

- In the preceding notations, the problem is to show that $c \leq b$. Since $c_{n} \rightarrow c$ and $b_{n} \rightarrow b$ and $c_{n} \leq b_{n}$, for all n, it follows that $c \leq b$.
- Another way to see this: If m and n are any two positive integers and $p=\max \{m, n\}$, then $m \leq p$ and $n \leq p$, whence $c_{m} \leq c_{p} \leq b_{p} \leq b_{n}$. This shows that each c_{m} is a lower bound for all the b_{n}, so $c_{m} \leq \mathrm{GLB} b_{n}=b$. Then b is an upper bound for all the c_{m}, so $c=\mathrm{LUB} c_{m} \leq b$.

Criterion for Convergence

Theorem

For a sequence $\left(a_{n}\right)$ in \mathbb{R}, the following conditions are equivalent:
(a) $\left(a_{n}\right)$ is convergent;
(b) $\left(a_{n}\right)$ is bounded and $\liminf a_{n}=\lim \sup a_{n}$.

For such a sequence, $\lim a_{n}=\lim \inf a_{n}=\limsup a_{n}$.

- $(\mathrm{a}) \Rightarrow(\mathrm{b})$: If $a_{n} \rightarrow a$, then $\left(a_{n}\right)$ is bounded and our problem is to show that $c=b=a$. Let $\epsilon>0$. Choose an index N, such that $\left|a_{n}-a\right| \leq \epsilon$, for all $n \geq N$. Then, for all $n \geq N,-\epsilon \leq a_{n}-a \leq \epsilon$, i.e., $a-\epsilon \leq a_{n} \leq a+\epsilon$. This shows that $A_{N} \subseteq[a-\epsilon, a+\epsilon]$. Consequently $a-\epsilon \leq c_{N} \leq b_{N} \leq a+\epsilon$. But $c_{N} \leq c \leq b \leq b_{N}$. Thus, $a-\epsilon \leq c \leq b \leq a+\epsilon$. In particular, $a-\frac{1}{n} \leq c \leq b \leq a+\frac{1}{n}$, for every positive integer n. Since $\frac{1}{n} \rightarrow 0$, it follows that $a \leq c \leq b \leq a$, i.e., $a=c=b$.

Criterion for Convergence (Cont'd)

- $(\mathrm{b}) \Rightarrow(\mathrm{a})$: Assuming $\left(a_{n}\right)$ is bounded, define b and c by

$$
c=\sup c_{n}=\sup \left\{c_{n}: n \in \mathbb{P}\right\}, \quad b=\inf b_{n}=\inf \left\{b_{n}: n \in \mathbb{P}\right\}
$$

Let $\epsilon>0$. Since $b=\mathrm{GLB} b_{n}$ and $b+\epsilon>b, b+\epsilon$ cannot be a lower bound for the b_{n}. Thus, $b+\epsilon$ is not \leq every b_{n}, i.e., $b+\epsilon>b_{N}$, for some N. Hence, $b+\epsilon>\sup \left\{a_{n}: n \geq N\right\}$. Then $n \geq N$ implies $a_{n}<b+\epsilon$. We have shown that $(\forall \epsilon>0)\left(a_{n}<b+\epsilon\right.$ ultimately $)$. A similar argument shows that $(\forall \epsilon>0)\left(c-\epsilon<a_{n}\right.$ ultimately). Combining, we have $(\forall \epsilon>0)\left(c-\epsilon<a_{n}<b+\epsilon\right.$ ultimately). It follows that, if $c=b$ and a denotes the common value of c and b, then $(\forall \epsilon>0)\left(\left|a_{n}-a\right|<\epsilon\right.$ ultimately $)$, i.e., $a_{n} \rightarrow a$.

- Remark: For any bounded sequence $\left(a_{n}\right), b_{n} \uparrow b$ and $-c_{n} \uparrow-c$, whence $b_{n}-c_{n} \uparrow b-c$. Thus, the theorem says:
A sequence $\left(a_{n}\right)$ in \mathbb{R} is convergent if and only if it is bounded and $b_{n}-c_{n} \uparrow 0$.

Limits of Subsequences

- We showed that every bounded sequence $\left(a_{n}\right)$ has a convergent subsequence: In fact, there are subsequences converging to c and to b, and these numbers are, respectively, the smallest and largest possible limits for convergent subsequences.

Theorem

Let $\left(a_{n}\right)$ be a bounded sequence in \mathbb{R} and let

$$
S=\left\{x \in \mathbb{R}: a_{n_{k}} \rightarrow x, \text { for some subsequence }\left(a_{n_{k}}\right)\right\}
$$

Let $c=\liminf a_{n}$ and $b=\limsup a_{n}$. Then $\{c, b\} \subseteq S \subseteq[c, b]$. Thus, c is the smallest element of S and b is the largest.

- The first inclusion asserts that each of c and b is the limit of a suitable subsequence of $\left(a_{n}\right)$: Let $\epsilon>0$. We showed that $a_{n}<b+\epsilon$ ultimately. Also, $a_{n}>b-\epsilon$ frequently, since the alternative $a_{n} \leq b-\epsilon$ ultimately, say for $n \geq N$, would imply that $b_{N} \leq b-\epsilon<b$, contrary to $b \leq b_{N}$.

Limits of Subsequences (Cont'd)

Thus, we get $(\forall \epsilon>0)\left(b-\epsilon<a_{n}<b+\epsilon\right.$ frequently).

- With $\epsilon=1$, choose n_{1}, such that $b-1<a_{n_{1}}<b+1$.
- With $\epsilon=\frac{1}{2}$, choose $n_{2}>n_{1}$, sch that $b-\frac{1}{2}<a_{n_{2}}<b+\frac{1}{2}$.
- Continuing, construct ($a_{n_{k}}$), such that $\left|a_{n_{k}}-b\right|<\frac{1}{k}$, for all k.

Then $a_{n_{k}} \rightarrow b$, whence $b \in S$.
The proof that $c \in S$ is similar.

- To prove the second inclusion, assuming $a_{n_{k}} \rightarrow x$, we have to show that $c \leq x \leq b$. Given any $\epsilon>0, a_{n}<b+\epsilon$, for all sufficiently large n. Therefore $a_{n_{k}}<b+\epsilon$, for all sufficiently large k. This implies that $x \leq b+\epsilon$. Since $\epsilon>0$ is arbitrary, $x \leq b$.
The proof that $c \leq x$ is similar.

