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Bounded Sequences

Definition (Bounded Sequence)

A sequence (xn) of real numbers is said to be bounded if the set
{xn : n ∈ P} is bounded.
A sequence that is not bounded is said to be unbounded.

A sequence (xn) in R is bounded if and only if there exists a positive
real number K such that |xn| ≤ K , for all n.

If a ≤ xn ≤ b, for all n, and if K = |a|+ |b|, then |a| ≤ K and
|b| ≤ K , whence −K ≤ −|a| ≤ a ≤ xn ≤ b ≤ |b| ≤ K . Therefore,
|xn| ≤ K .
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Boundedness of Sum and Product

Example: Every constant sequence (xn = x , for all n) is bounded.

Example: The sequence xn = (−1)n is bounded.

Example: The sequence xn = n is unbounded: For every real number
K , there exists, by the Archimedean property, a positive integer n,
such that n = n · 1 > K , whence the set of all xn is not bounded
above.

Theorem

If (xn) and (yn) are bounded sequences in R, then the sequences (xn + yn)
and (xnyn) are also bounded.

If |xn| ≤ K and |yn| ≤ K ′, then |xn + yn| ≤ |xn|+ |yn| ≤ K + K ′ and
|xnyn| = |xn||yn| ≤ KK ′.
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Subsection 2
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Ultimately, Frequently

Definition (Ultimately, Frequently)

Let (xn) be a sequence in a set X and let A be a subset of X .

(i) We say that xn ∈ A ultimately if xn belongs to A from some index
onward, i.e., there is an index N, such that xn ∈ A, for all n ≥ N.
Symbolically,

∃N(n ≥ N ⇒ xn ∈ A).

(Equivalently, ∃N(n > N ⇒ xn ∈ A), because n > N means the same
thing as n ≥ N + 1.)

(ii) We say that xn ∈ A frequently if, for every index N, there is an index
n ≥ N, for which xn ∈ A. Symbolically,

(∀N)(∃n ≥ N)(xn ∈ A).

(Equivalently, (∀N)(∃n > N)(xn ∈ A).)
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Examples

Example: Let xn = 1
n
, let ǫ > 0 and let A = (0, ǫ). Then xn ∈ A

ultimately.

Choose an index N such that 1
N
< ǫ. Then n ≥ N implies 1

n
≤ 1

N
< ǫ.

Example: For each positive integer n, let Sn be a statement (which
may be either true or false). Let

A = {n ∈ P : Sn is true}.

We say that:

Sn is true frequently if n ∈ A frequently;
Sn is true ultimately if n ∈ A ultimately.

The following illustrate the usage:

n2 − 5n + 6 > 0 ultimately (in fact, for n ≥ 4).
n is frequently divisible by 5 (in fact, for n = 5, n = 10, n = 15, etc.).
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Relation Between Ultimately and Frequently

Theorem

Let (xn) be a sequence in a set X and let A be a subset of X . One and
only one of the following conditions holds:

(1) xn ∈ A ultimately;

(2) xn 6∈ A frequently.

To say that (1) is false means that, for every index N, the implication

n ≥ N ⇒ xn ∈ A

is false. So there must exist an index n ≥ N for which xn 6∈ A. This is
precisely the meaning of (2).

Example: If (xn) is a sequence in R, then either xn < 5 ultimately, or
xn ≥ 5 frequently, but not both.
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Null Sequences

Definition (Null Sequence)

A sequence (xn) in R is said to be null if, for every positive real number ǫ,
|xn| < ǫ ultimately.

Example: The sequence ( 1
n
) is null.

The concept of null sequence can be expressed as follows:

Given any ǫ > 0 (no matter how small), the distance from |xn| to the
origin is ultimately smaller than ǫ (in this sense, xn “approaches” 0).

A more informal way to express the same concept:

xn is arbitrarily small provided n is sufficiently large.

“arbitrarily small” is understood to suggest that the degree of
smallness is specified in advance, before any indices are selected;
“sufficiently large” is understood in the sense of “ultimately” (not
merely “frequently”).
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Properties of Null Sequences

Theorem

Let (xn) and (yn) be null sequences and let c ∈ R. Then:

(1) (xn) is bounded.

(2) (cxn) is null.

(3) (xn + yn) is null.

(4) If (bn) is a bounded sequence then (bnxn) is null.

(5) If (zn) is such that |zn| ≤ |xn| ultimately, then (zn) is also null.

(1) Let ǫ = 1. There exists an index N, such that |xn| < 1, for all n > N.
If K is the largest of the numbers 1, |x1|, |x2|, . . . , |xN |, then |xn| ≤ K ,
for every positive integer n. Thus (xn) is bounded.

(2) For ǫ

|c| > 0, there exists N, such that |xn| <
ǫ

|c| , for all n > N. Thus,

|cxn| < ǫ, for all n > N, showing that (cxn) is null.
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Proof of the Theorem on Null Sequences

(3) Let ǫ > 0. Since (xn) is null, there is an index N1 such that n ≥ N1

implies |xn| <
ǫ

2 . Similarly, there is an index N2 such that n ≥ N2

implies that |yn| <
ǫ

2 . If N is the larger of N1 and N2, then n ≥ N

implies that |xn + yn| ≤ |xn|+ |yn| <
ǫ

2 +
ǫ

2 = ǫ. This proves that
(xn + yn) is null.

(4) Let K be a positive real number such that |bn| ≤ K , for all n. Given
any ǫ > 0, choose an index N such that n ≥ N implies |xn| <

ǫ

K
.

Then n ≥ N implies |bnxn| = |bn||xn| ≤ K |xn| < ǫ. Thus, (bnxn) is
null.

Note that (2) is also a special case of (4).

(5) By assumption, there is an index N1, such that n ≥ N1 implies
|zn| ≤ |xn|. Given any ǫ > 0, choose an index N2, such that n ≥ N2

implies |xn| < ǫ. If N = max {N1,N2}, then n ≥ N implies
|zn| ≤ |xn| < ǫ. Thus, (zn) is null.
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An Additional Theorem

Theorem

If an ↑ a or an ↓ a, then the sequence (an − a) is null.

If an ↓ a, then an − a = an + (−a) ↓ a + (−a) = 0. In particular,
an − a ≥ 0 and inf (an − a) = 0. Given any ǫ > 0, choose an index N

such that aN − a < ǫ. Then n ≥ N implies |an − a| = an − a

≤ aN − a < ǫ. Thus, (an − a) is null.

For an ↑ a, we apply the preceding case to −an ↓ −a.

Example: If |x | < 1, then the sequence (xn) is null.

Writing c = |x |, we have cn ↓ 0. Thus, the sequence (|xn|) = (cn) is
null. Therefore, (xn) is null.

Example: Fix x ∈ R and let xn = x , for all n. The constant sequence
(xn) is null if and only if x = 0.

The condition “|xn| < ǫ ultimately” means |x | < ǫ. If this happens for
every ǫ > 0, then x = 0.
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Convergent Sequences

Definition (Convergent Sequence)

A sequence (an) in R is said to be convergent in R if there exists a real
number a, such that the sequence (an − a) is null, and divergent if no
such number exists.

Such a number a (if it exists) is unique:

Suppose that both (an − a) and (an − b) are null. Let xn = (an − b)−
(an − a) = a− b. Being the difference of null sequences, (xn) is null.
But the constant (a − b) is null if and only if a − b = 0, i.e., a = b.

Definition (Limit)

Let (an) be a convergent sequence, such that (an − a) is null. Then the
number a is called the limit of the convergent sequence (an), and the
sequence is said to converge to a. This is expressed by writing
lim
n→∞

an = a, an → a as n → ∞, or, more concisely, lim an = a or an → a.
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Examples

If an ↑ a or an ↓ a, then an → a. Thus, every bounded monotone
sequence is convergent.

an → 0 iff (an) is null.

Since an − 0 = an, this is immediate from the definition.

an → a iff an − a → 0.

This follows from the previous remark.

xn → 0 iff |x | < 1.

If |x | < 1, then xn → 0 since (|xn|) is decreasing and bounded below.
If |x | > 1, then |xn| = |x |n > 1, for all n, whence (xn) is not null.

If |x | < 1 and an = 1 + x + x2 + · · ·+ xn−1, then an → 1
1−x

.

an −
1

1− x
=

1− xn

1− x
−

1

1− x
=

−1

1− x
· xn.

This is a constant multiple of a null sequence. Hence it is null.
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Properties of Convergent Sequences

Theorem (Convergent Sequences)

Let (an), (bn) be convergent sequences in R, say an → a and bn → b, and
let c ∈ R. Then:

(1) (an) is bounded.

(2) can → ca.

(3) an + bn → a + b.

(4) anbn → ab.

(5) |an| → |a|.

(6) If b 6= 0, then |bn| is ultimately bounded away from 0, in the sense
that there exists an r > 0 (for example, r = 1

2 |b|) such that |bn| ≥ r

ultimately.

(7) If b and the bn are all nonzero, then an
bn

→ a
b
.

(8) If an ≤ bn, for all n, then a ≤ b.
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Proof of the Theorem

(1) (an − a) is null. So it is bounded. Since an = (an − a) + a, (an) is the
sum of two bounded sequences.

(2) can − ca = c(an − a) is a scalar multiple of a null sequence. So it is
null.

(3) (an + bn)− (a + b) = (an − a) + (bn − b) is the sum of two null
sequences. Therefore it is null.

(4) anbn − ab = an(bn − b) + (an − a)b. Since (an) is bounded and
(bn − b), (an − a) are null, it follows that (anbn − ab) is null.

(5) ||an| − |a|| < |an − a|, where (an − a) is null. So (|an| − |a|) is null.
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Proof of the Theorem (Cont’d)

(6) Let r = 1
2 |b| and choose an integer N such that n ≥ N implies

|bn − b| ≤ r . Then, for all n ≥ N, 2r = |b| = |(b − bn) + bn| ≤
|b − bn|+ |bn| ≤ r + |bn| whence |bn| ≥ r .

(7) From (6), it follows that the sequence

(

1

bn

)

is bounded. Thus

1

bn
−

1

b
=

1

bnb
(b − bn) is the product of a bounded sequence and a

null sequence. Therefore it is null. This implies that
1

bn
→

1

b
. Hence

an

bn
= an

1

bn
→ a

1

b
=

a

b
.

(8) Let cn = bn − an and c = b − a. Then cn ≥ 0 and cn → c . Our
problem is to show that c ≥ 0. By (5), |cn| → |c |, i.e., cn → |c |.
Since cn → c , c = |c | ≥ 0 by the uniqueness of limits.
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Suprema and Infima as Limits of Sequences

Theorem

If A ⊆ R is nonempty and bounded above, and if M = supA, then there
exists a sequence (xn) in A such that xn → M.

For each positive integer n, choose xn ∈ A so that M −
1

n
< xn ≤ M.

Then lim (M −
1

n
) ≤ lim xn ≤ limM, whence lim xn = M.

Similarly, if A ⊆ R is nonempty and bounded below, then inf A is the
limit of a sequence in A.
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Subsection 5

Subsequences, Bolzano-Weierstraß Theorem
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Subsequences

Given a sequence (xn), there are various ways of forming
“subsequences”:

Take every other term x1, x3, x5, . . .;
Take all of the terms from some index onward x6, x7, x8, . . .;
Take all terms for which the index is a prime number x2, x3, x5, x7, . . ..

One is free to discard any terms, as long as infinitely many remain.

Definition (Subsequence)

Let (xn) be any sequence. Choose a strictly increasing sequence of positive
integers n1 < n2 < n3 < · · · and define yk = xnk , k = 1, 2, 3, . . .. One calls
(yk) a subsequence of (xn). This is also expressed by saying that
xn1 , xn2 , xn3 , . . . is a subsequence of x1, x2, x3, . . ., or that (xnk ) is a
subsequence of (xn).

Forming a subsequence amounts to choosing a sequence of indices,
the essential thing being that the chosen indices must form a strictly
increasing sequence.
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Some Remarks

Let (nk) be a strictly increasing sequence of positive integers
n1 < n2 < n3 < · · ·. For every positive integer N, there exists a
positive integer k , such that nk > N (whence nj > N, for all j ≥ k).

It suffices to show that nk ≥ k , for all positive integers k . This is
obvious for k = 1. Assuming inductively that nk ≥ k , we have
nk+1 ≥ nk + 1 ≥ k + 1.

A sequence (xn) in a set X can be thought of as a function
f : P → X , where f (n) = xn. A subsequence of (xn) is obtained by
specifying a strictly increasing function σ : P → P and taking the
composite function f ◦ σ:

P X✲f

P

✻
σ f ◦ σ

�
�
�✒

Writing nk = σ(k), we have (f ◦ σ)(k) = f (σ(k)) = f (nk) = xnk .
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One More Remark

An application of the preceding remark: If (yk) is a subsequence of
(xn), then every subsequence of (yk) is also a subsequence of (xn).

The essence lies in the fact that, if σ : P → P and τ : P → P are
strictly increasing, then so is σ ◦ τ : P → P.
In detail, suppose that f : P → X defines the sequence (xn), i.e.,
f (n) = xn, and that σ : P → P defines the subsequence (yk), i.e.,
yk = f (σ(k)). Write g = f ◦ σ. Then g : P → X , with g(k) = yk .

Suppose (zi) is a subsequence of (yk), say
defined by τ : P → P, so that zi = g(τ(i)).
Then g ◦ τ = (f ◦σ) ◦ τ = f ◦ (σ ◦ τ), so (zi)
is defined by the strictly increasing function
σ ◦ τ : P → P.

P X✲f

P

✻
σ f ◦ σ

�
�
�✒

P

✻
τ

f ◦ (σ ◦ τ)

✁
✁
✁
✁
✁
✁
✁
✁✕
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Properties of Subsequences

Theorem

Let (an) be a sequence in R and let (ank ) be a subsequence of (an).

(1) If (an) is bounded, then so is (ank ).

(2) If (an) is null, then so is (ank ).

(3) If (an) is convergent, then so is (ank ); more precisely, if an → a as
n → ∞, then also ank → a as k → ∞.

(4) If an ↑ a, then also ank ↑ a, and similarly for decreasing sequences.

(1) If |an| ≤ K , for all n, then, in particular, |ank | ≤ K , for all k .

(2) Write bk = ank , k = 1, 2, 3, . . .. Let ǫ > 0. By assumption, there is an
index N, such that |an| < ǫ, for all n ≥ N. Choose k so that nk ≥ N.
Then j ≥ k implies nj ≥ nk ≥ N, which implies |anj | < ǫ. Thus, (bk)
is null.
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Properties of Subsequences (Cont’d)

(3) By assumption, (an − a) is null, whence its subsequence (ank − a) is
also null and, consequently, ank → a.

(4) If an ↑ a, the subsequence (ank ) is certainly increasing and bounded
above (by a). Writing b = sup {ank : k ∈ P}, we know that b ≤ a

and we have to show that b = a. Given any positive integer n, there
is a k such that nk > n. Therefore, an ≤ ank ≤ b. Thus, an ≤ b, for
every positive integer n, whence a ≤ b.

If an ↓ a, then −an ↑ −a, therefore −ank ↑ −a and, consequently,
ank ↓ a.

George Voutsadakis (LSSU) Real Analysis August 2014 27 / 41



Sequences of Real Numbers, Convergence Subsequences, Bolzano-Weierstraß Theorem

Frequently and Subsequences

Theorem

Let (xn) be a sequence and let (P) be a property that a term xn may or
may not have. Then the following conditions are equivalent:

(a) xn has property (P) frequently;

(b) There exists a subsequence (xnk ) of (xn) such that every xnk has
property (P).

Let A = {n ∈ P : xn has property (P)}.
(a)⇒(b) By assumption, n ∈ A frequently. Choose n1 ∈ A. Choose n2 ∈ A, so

that n2 > n1. Choose n3 ∈ A, so that n3 > n2 and so on. The
subsequence xn1 , xn2 , xn3 , . . . has the desired property.

(b)⇒(a) By assumption, nk ∈ A, for all k . Given any index N , the claim is that
A contains an integer n ≥ N . Indeed, nk > N , for some k .

Example: Suppose we are trying to show that |an − a| < ǫ ultimately.
The alternative is that |an − a| ≥ ǫ frequently, i.e., |ank − a| ≥ ǫ, for
some subsequence (ank ).
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Monotone Subsequences

Theorem

Every sequence in R has a monotone subsequence.

Assuming (an) is any sequence of real numbers, we seek a
subsequence (ank ) that is either increasing or decreasing. Call a
positive integer n a peak point for the sequence if an ≥ ak for all
k ≥ n. Think of the sequence as a function f : P → R, f (n) = an.
For n to be a peak point means that no point of the graph of f from
n onward is higher than (n, an). There are two possibilities:
(1) n is frequently a peak point: If n1 < n2 < n3 < · · · are peak points,

then the subsequence (ank ) is decreasing: For, an1 ≥ an2 (because n1 is
a peak point), an2 ≥ an3 (because n2 is a peak point), etc.

(2) From some index N onward, n is not a peak point: Let n1 = N . Since
n1 is not a peak point, there is an index n2 > n1, such that an2 > an1 .
But n2 is not a peak point either. So there is an n3 > n2, such that
an3 > an2 . Continuing in this way, we obtain an increasing subsequence
of (an).
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Bolzano-Weierstraß Theorem

Bolzano-Weierstraß Theorem

Every bounded sequence in R has a convergent subsequence.

Let (an) be a bounded sequence of real numbers. By the preceding
theorem, (an) has a monotone subsequence (ank ). Suppose, for
example, that (ank ) is increasing. It is also bounded, so ank ↑ a for a
suitable real number a and ank → a.

Corollary (Closed Interval Version)

In a closed interval [a, b], every sequence has a subsequence that
converges to a point of the interval.

Suppose xn ∈ [a, b], n = 1, 2, 3, . . .. By the theorem, some
subsequence is convergent to a point of R, say xnk → x . Since
a ≤ xnk ≤ b, for all k , it follows that a ≤ x ≤ b. Thus, x ∈ [a, b].
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Subsection 6

Cauchy’s Criterion for Convergence
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Cauchy’s Criterion

The criterion for a monotone sequence to converge is that it be
bounded.

Cauchy’s criterion for convergence applies to sequences that are not
necessarily monotone:

Theorem (Cauchy’s Criterion)

For a sequence (an) in R, the following conditions are equivalent:

(a) (an) is convergent;

(b) For every ǫ > 0, there is an index N , such that |am − an| < ǫ, whenever
m, n ≥ N , in symbols,

(∀ǫ > 0)(∃N)(m, n ≥ N ⇒ |am − an| < ǫ).

(a)⇒(b): Say an → a. If ǫ > 0, then |an − a| < ǫ

2 ultimately, say for
n ≥ N. If both m, n ≥ N, then, by the triangle inequality,
|am − an| = |(am − a) + (a − an)| ≤ |am − a|+ |a − an| <

ǫ

2 +
ǫ

2 = ǫ.
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Cauchy’s Criterion (Cont’d)

(b)⇒(a): Assuming (b), we show, first, that the sequence (an) is
bounded. Choose an index M, such that |am − an| < 1, for all
m, n ≥ M. Then, for all n ≥ M,

|an| = |(an − aM) + aM | ≤ |an − aM |+ |aM | < 1 + |aM |,

whence the sequence (an) is bounded. Explicitly,
if r = max {|a1|, |a2|, . . . , |aM−1|, 1 + |aM |}, then |an| ≤ r , for all n.
By the Bolzano-Weierstraß Theorem, (an) has a convergent
subsequence, say ank → a. We will show that an → a.

Let ǫ > 0. By hypothesis, there is an index N, such that m, n ≥ N

imply |am − an| <
ǫ

2 . Since ank → a, there is an index K , such that
k ≥ K implies |ank − a| < ǫ

2 . Choose an index k ≥ K , such that
nk ≥ N. Then, for all n ≥ N,

|an − a| = |(an − ank ) + (ank − a)| ≤ |an − ank |+ |ank − a| <
ǫ

2
+

ǫ

2
.

Thus, the sequence (an − a) is null, so an → a.
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Subsection 7

lim sup and lim inf of a Bounded Sequence
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Bounded Sequences

For a monotone sequence to be convergent it has to be bounded.

For a bounded sequence, which condition ensures convergence?

Let (an) be a bounded sequence in R, say |an| ≤ K , for all n.

For each n, let An be the set of all terms from n onward,

An = {an, an+1, an+2, . . .} = {ak : k ≥ n}

An is bounded, indeed An ⊆ [−K ,K ], and we may define

bn = supAn = sup
k≥n

ak , cn = inf An = inf
k≥n

ak .

This produces two sequences (bn) and (cn), with cn ≤ bn, for all n.

The sequences are bounded: −K ≤ cn ≤ bn ≤ K , for all n.

Moreover, (cn) is increasing and (bn) is decreasing: Since An ⊇ An+1,

cn = inf An ≤ inf An+1 = cn+1 and bn = supAn ≥ supAn+1 = bn+1.

Thus, with the notation c = sup cn = sup {cn : n ∈ P},
b = inf bn = inf {bn : n ∈ P}, we have cn ↑ c and bn ↓ b.
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Limit Superior and Limit Inferior

Definition (Limit Superior and Limit Inferior)

With the above notations, b is called the limit superior of the bounded
sequence (an), written

lim sup an = b = inf
n≥1

bn = inf
n≥1

(sup
k≥n

ak)

and c is called the limit inferior of the sequence (an), written

lim inf an = c = sup
n≥1

cn = sup
n≥1

( inf
k≥n

ak).

Example:
(i) For the sequence 1,−1, 1,−1, . . ., An = {−1, 1}, for all n, so bn = 1

and cn = −1, for all n, therefore b = 1 and c = −1.
(ii) For the sequence 1,−1, 1, 1, 1, . . ., An = {1}, for n ≥ 3, so

bn = cn = 1, for n ≥ 3, therefore b = c = 1.
(iii) For the sequence 1

2 ,
2
3 ,

1
3 ,

3
4 ,

1
4 ,

4
5 , . . . ,

1
k
,

k
k+1 , . . ., bn = 1 and cn = 0, for

all n, therefore, b = 1 and c = 0.
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Relation Between the Limits

Theorem

For every bounded sequence (an) in R, lim inf an ≤ lim sup an.

In the preceding notations, the problem is to show that c ≤ b. Since
cn → c and bn → b and cn ≤ bn, for all n, it follows that c ≤ b.

Another way to see this: If m and n are any two positive integers and
p = max {m, n}, then m ≤ p and n ≤ p, whence cm ≤ cp ≤ bp ≤ bn.
This shows that each cm is a lower bound for all the bn, so
cm ≤ GLBbn = b. Then b is an upper bound for all the cm, so
c = LUBcm ≤ b.

George Voutsadakis (LSSU) Real Analysis August 2014 37 / 41



Sequences of Real Numbers, Convergence lim sup and lim inf of a Bounded Sequence

Criterion for Convergence

Theorem

For a sequence (an) in R, the following conditions are equivalent:

(a) (an) is convergent;

(b) (an) is bounded and lim inf an = lim sup an.

For such a sequence, lim an = lim inf an = lim sup an.

(a)⇒(b): If an → a, then (an) is bounded and our problem is to show
that c = b = a. Let ǫ > 0. Choose an index N, such that
|an − a| ≤ ǫ, for all n ≥ N. Then, for all n ≥ N, −ǫ ≤ an − a ≤ ǫ, i.e.,
a − ǫ ≤ an ≤ a + ǫ. This shows that AN ⊆ [a − ǫ, a + ǫ].
Consequently a− ǫ ≤ cN ≤ bN ≤ a+ ǫ. But cN ≤ c ≤ b ≤ bN . Thus,
a − ǫ ≤ c ≤ b ≤ a+ ǫ. In particular, a − 1

n
≤ c ≤ b ≤ a+ 1

n
, for

every positive integer n. Since 1
n
→ 0, it follows that a ≤ c ≤ b ≤ a,

i.e., a = c = b.
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Criterion for Convergence (Cont’d)

(b)⇒(a): Assuming (an) is bounded, define b and c by

c = sup cn = sup {cn : n ∈ P}, b = inf bn = inf {bn : n ∈ P}.

Let ǫ > 0. Since b = GLBbn and b + ǫ > b, b + ǫ cannot be a lower
bound for the bn. Thus, b + ǫ is not ≤ every bn, i.e., b + ǫ > bN , for
some N. Hence, b + ǫ > sup {an : n ≥ N}. Then n ≥ N implies
an < b + ǫ. We have shown that (∀ǫ > 0)(an < b + ǫ ultimately).

A similar argument shows that (∀ǫ > 0)(c − ǫ < an ultimately).

Combining, we have (∀ǫ > 0)(c − ǫ < an < b + ǫ ultimately). It
follows that, if c = b and a denotes the common value of c and b,
then (∀ǫ > 0)(|an − a| < ǫ ultimately), i.e., an → a.

Remark: For any bounded sequence (an), bn ↑ b and −cn ↑ −c ,
whence bn − cn ↑ b − c . Thus, the theorem says:

A sequence (an) in R is convergent if and only if it is bounded and
bn − cn ↑ 0.
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Limits of Subsequences

We showed that every bounded sequence (an) has a convergent
subsequence: In fact, there are subsequences converging to c and to
b, and these numbers are, respectively, the smallest and largest
possible limits for convergent subsequences.

Theorem

Let (an) be a bounded sequence in R and let

S = {x ∈ R : ank → x , for some subsequence (ank )}.

Let c = lim inf an and b = lim sup an. Then {c , b} ⊆ S ⊆ [c , b]. Thus, c
is the smallest element of S and b is the largest.

The first inclusion asserts that each of c and b is the limit of a
suitable subsequence of (an): Let ǫ > 0. We showed that an < b + ǫ

ultimately. Also, an > b − ǫ frequently, since the alternative
an ≤ b − ǫ ultimately, say for n ≥ N, would imply that
bN ≤ b − ǫ < b, contrary to b ≤ bN .
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Limits of Subsequences (Cont’d)

Thus, we get (∀ǫ > 0)(b − ǫ < an < b + ǫ frequently).

With ǫ = 1, choose n1, such that b − 1 < an1 < b + 1.
With ǫ = 1

2 , choose n2 > n1, sch that b − 1
2 < an2 < b + 1

2 .
Continuing, construct (ank ), such that |ank − b| < 1

k
, for all k .

Then ank → b, whence b ∈ S .

The proof that c ∈ S is similar.

To prove the second inclusion, assuming ank → x , we have to show
that c ≤ x ≤ b. Given any ǫ > 0, an < b + ǫ, for all sufficiently large
n. Therefore ank < b + ǫ, for all sufficiently large k . This implies that
x ≤ b + ǫ. Since ǫ > 0 is arbitrary, x ≤ b.

The proof that c ≤ x is similar.
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