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Bounded Sequences

Definition (Bounded Sequence)

A sequence (xp) of real numbers is said to be bounded if the set
{xn : n € P} is bounded.

A sequence that is not bounded is said to be unbounded.

o A sequence (x,) in R is bounded if and only if there exists a positive
real number K such that |x,| < K, for all n.

If a < x, <b, for all n, and if K = |a| + |b]|, then |a] < K and

|b] < K, whence —K < —|a|] < a < x, < b<|b| <K. Therefore,
Ixn| < K.
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Boundedness of Sum and Product

o Example: Every constant sequence (x, = x, for all n) is bounded.
o Example: The sequence x, = (—1)" is bounded.

o Example: The sequence x, = n is unbounded: For every real number
K, there exists, by the Archimedean property, a positive integer n,
such that n = n-1 > K, whence the set of all x, is not bounded
above.

Theorem
If (x,) and (yn) are bounded sequences in R, then the sequences (x, + y,)
and (x,yn,) are also bounded.

o If [xn| < K and |y,| < K’, then |x, + yn| < [Xn| + |yn| < K+ K’ and
[XnYnl = [Xnllyn| < KK,
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Ultimately, Frequently

Definition (Ultimately, Frequently)
Let (x,) be a sequence in a set X and let A be a subset of X.

(1) We say that x, € A ultimately if x, belongs to A from some index
onward, i.e., there is an index N, such that x, € A, for all n > N.
Symbolically,

dN(n > N = x, € A).

(Equivalently, 3N(n > N = x, € A), because n > N means the same
thingas n> N+ 1))

(1) We say that x, € A frequently if, for every index N, there is an index
n > N, for which x, € A. Symbolically,

(VN)(3n > N)(x, € A).

(Equivalently, (YN)(3n > N)(x, € A).)
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Examples

o Example: Let x, = 1, let € > 0 and let A= (0,¢). Then x, € A
ultimately.
Choose an index N such that % < €. Then n > N implies % < % < e.

o Example: For each positive integer n, let S, be a statement (which
may be either true or false). Let

A={neP:S5,is true}.

We say that:

o S, is true frequently if n € A frequently;
o S, is true ultimately if n € A ultimately.

The following illustrate the usage:

o n?> —5n+ 6> 0 ultimately (in fact, for n > 4).
o n is frequently divisible by 5 (in fact, for n =5, n = 10, n = 15, etc.).
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Relation Between Ultimately and Frequently

Theorem

Let (xn) be a sequence in a set X and let A be a subset of X. One and
only one of the following conditions holds:

(1) x, € A ultimately;
(2) xn & A frequently.

o To say that (1) is false means that, for every index N, the implication

n>N=x,€A

is false. So there must exist an index n > N for which x, € A. This is
precisely the meaning of (2).

o Example: If (x,) is a sequence in R, then either x, < 5 ultimately, or
Xp > 5 frequently, but not both.
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Null Sequences

Definition (Null Sequence)

A sequence (x,) in R is said to be null if, for every positive real number e,
|xn| < € ultimately.

1

@ Example: The sequence () is null.

@ The concept of null sequence can be expressed as follows:
Given any € > 0 (no matter how small), the distance from |x,| to the
origin is ultimately smaller than € (in this sense, x, “approaches” 0).
@ A more informal way to express the same concept:

Xp is arbitrarily small provided n is sufficiently large.

o “arbitrarily small” is understood to suggest that the degree of
smallness is specified in advance, before any indices are selected;

o “sufficiently large” is understood in the sense of “ultimately” (not
merely “frequently”).
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Properties of Null Sequences

Theorem

Let (x») and (y,) be null sequences and let ¢ € R. Then:
1) (xn) is bounded.
2

(
(2)
(3)
(4) If (bp) is a bounded sequence then (b,x,) is null.
(5)

5) If (z,) is such that |z,| < |x,| ultimately, then (z,) is also null.

(cxn) is null.

(Xn + yn) is null.

(1) Let e =1. There exists an index N, such that |x,| < 1, for all n > N.
If K is the largest of the numbers 1, [x1|, [x2], ..., [xn], then |[x,| < K,

for every positive integer n. Thus (x,) is bounded.
€

(2) For 7] > 0, there exists N, such that |xn| < 15, for all n > N. Thus,

Il
|exn| < €, for all n > N, showing that (cx,) is null.
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Proof of the Theorem on Null Sequences

(3) Let € > 0. Since (xp) is null, there is an index Ny such that n > N;
implies |x,| < 5. Similarly, there is an index Na such that n > N
implies that |y,| < 5. If N is the larger of Ny and Ny, then n > N
implies that [x, + ya| < |xa| + |ya| < § + 5 = €. This proves that
(Xn + yn) is null.

(4) Let K be a positive real number such that |b,| < K, for all n. Given
any € > 0, choose an index N such that n > N implies |x,| < .
Then n > N implies |byxn| = |bp||xn| < K|xs| < €. Thus, (bpxy) is
null.

Note that (2) is also a special case of (4).

(5) By assumption, there is an index Ny, such that n > Nj implies
|zn| < |xn|. Given any € > 0, choose an index Ny, such that n > N,
implies |xp| < €. If N = max{Ni, N»}, then n > N implies
|zn| < |xn| < €. Thus, (z,) is null.
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An Additional Theorem

If a, 1 aor a, | a, then the sequence (a, — a) is null.

o Ifa, | a, then a, —a=a,+ (—a) | a+ (—a) =0. In particular,
ap, —a >0 and inf(a, —a) =0. Given any € > 0, choose an index N
such that ay —a <e. Then n > N implies |a, — a| = a, — a
<ay—a<e Thus, (a, — a) is null.
For a, 1 a, we apply the preceding case to —a, | —a.

o Example: If [x| < 1, then the sequence (x") is null.
Writing ¢ = |x|, we have ¢” | 0. Thus, the sequence (|x"|) = (c") is
null. Therefore, (x") is null.

@ Example: Fix x € R and let x, = x, for all n. The constant sequence
(xn) is null if and only if x = 0.
The condition “|x,| < € ultimately” means |x| < e. If this happens for
every € > 0, then x = 0.
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Convergent Sequences

Definition (Convergent Sequence)

A sequence (a,) in R is said to be convergent in R if there exists a real
number a, such that the sequence (a, — a) is null, and divergent if no
such number exists.

@ Such a number a (if it exists) is unique:
Suppose that both (a, — a) and (a, — b) are null. Let x, = (a, — b)—
(an — a) = a — b. Being the difference of null sequences, (x,) is null.
But the constant (a — b) is null if and only if a— b =0, i.e,, a= b.

Definition (Limit)

Let (a,) be a convergent sequence, such that (a, — a) is null. Then the
number a is called the limit of the convergent sequence (a,), and the
sequence is said to converge to a. This is expressed by writing

lim a, = a, a, — a as n — oo, or, more concisely, lima, = a or a, — a.
n—o0
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Examples

o Ifa, Taora,| a, then a, — a. Thus, every bounded monotone
sequence is convergent.

@ a, — 0iff (a,) is null.

Since a, — 0 = a,, this is immediate from the definition.
@ a, —»aiffa,—a—0.

This follows from the previous remark.
o x" — 0iff x| < 1.

If x| < 1, then x, — 0 since (|x"|) is decreasing and bounded below.

If x| > 1, then |x"| = |x|" > 1, for all n, whence (x,) is not null.
o If|x| <land a,=1+x+x*>+---+x""1 then a, = 1.

1 1—x" 1 -1

T1-x 1-x 1-x 1-x
This is a constant multiple of a null sequence. Hence it is null.

n

an -x".
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Properties of Convergent Sequences

Theorem (Convergent Sequences)

Let (an), (bn) be convergent sequences in R, say a, — a and b, — b, and
let c € R. Then:

) (an) is bounded.
(2) cap — ca.
(3) an+ b, — a+b.
(4) apbp, — ab.
(5) lan| = 1al-
(6) If b#0, then |by,| is ultimately bounded away from 0, in the sense

that there exists an r > 0 (for example, r = £|b) such that |b,| > r
ultimately.

(7) If b and the by, are all nonzero, then 3¢ — 3.
(8) If a, < by, for all n, then a < b.
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Proof of the Theorem

(1) (an—a) is null. So it is bounded. Since a, = (a, — a) + a, (ay) is the
sum of two bounded sequences.

(2) can — ca = c(a, — a) is a scalar multiple of a null sequence. So it is
null.

(3) (an+ bn) — (a+ b) = (an — a) + (bn, — b) is the sum of two null
sequences. Therefore it is null.

(4) anbp — ab = ap(b, — b) + (a, — a)b. Since (a,) is bounded and
(by, — b), (a, — a) are null, it follows that (a,b, — ab) is null.

(5) |lan| = |a|| < |an — a|, where (a, — a) is null. So (|a,| — |a]) is null.
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Proof of the Theorem (Cont'd)

(6) Let r = 3|b| and choose an integer N such that n > N implies
|bp — b| < r. Then, for all n > N, 2r = |b| = |(b — bn) + bn| <
|b — bp| + |bn| < r + |bp| whence |by| > r.

1
(7) From (6), it follows that the sequence (b_) is bounded. Thus
n

1 1 1

b b = b,,b(b — b,) is the product of a bounded s:quenie and a
null sequence. Therefore it is null. This implies that b — b Hence
a, 11 !

a
b a"b_,, —ap =

(8) Let ¢, =b,—apnand c=b—a. Then ¢, >0 and ¢, — c. Our
problem is to show that ¢ > 0. By (5), |ca| — ||, i.e., cn — |c].
Since ¢, — ¢, ¢ = |[c| > 0 by the uniqueness of limits.
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Convergent Sequences

Suprema and Infima as Limits of Sequences

Theorem

If AC R is nonempty and bounded above, and if M = sup A, then there
exists a sequence (x,) in A such that x, — M.

L 1
o For each positive integer n, choose x, € A so that M — — < x, < M.
n

1
Then lim (M — ;) < limx, < lim M, whence lim x, = M.

@ Similarly, if A C R is nonempty and bounded below, then inf A is the
limit of a sequence in A.
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Subsequences

o Given a sequence (x,), there are various ways of forming
“subsequences” :
o Take every other term xi, x3, X5, - - -;
o Take all of the terms from some index onward xg, x7, Xg, - . -;
o Take all terms for which the index is a prime number x;, x3, X5, X7, - . ..

One is free to discard any terms, as long as infinitely many remain.

Definition (Subsequence)
Let (x,) be any sequence. Choose a strictly increasing sequence of positive
integers ny < np < n3 < --- and define yy = x,,,, k =1,2,3,.... One calls
(vx) a subsequence of (x,). This is also expressed by saying that

Xny s Xy, Xng, - - - 1S @ subsequence of xi, X2, X3, ..., or that (xp, ) is a
subsequence of (xp).

@ Forming a subsequence amounts to choosing a sequence of indices,
the essential thing being that the chosen indices must form a strictly
increasing sequence.
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Some Remarks

o Let (nk) be a strictly increasing sequence of positive integers
ny < ny < n3 < ---. For every positive integer N, there exists a
positive integer k, such that ny > N (whence n; > N, for all j > k).
It suffices to show that ny > k, for all positive integers k. This is
obvious for k = 1. Assuming inductively that n, > k, we have
Ngt1 > ne+1>k+ 1.

o A sequence (x,) in a set X can be thought of as a function
f: P — X, where f(n) = x,. A subsequence of (x,) is obtained by
specifying a strictly increasing function o : P — IP and taking the
composite function f o o:

p—f+x

P
Writing ny = o(k), we have (f o 0)(k) = f(o(k)) = f(nk) = xp,.
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One More Remark

o An application of the preceding remark: If (yy) is a subsequence of
(xn), then every subsequence of (yy) is also a subsequence of (x,).
The essence lies in the fact that, if c : P - P and 7: P — P are
strictly increasing, then soisco7: P — P.

In detail, suppose that f : P — X defines the sequence (x,), i.e.,
f(n) = x,, and that o : P — P defines the subsequence (yx), i.e.,
yk = f(o(k)). Write g =foo. Then g: P — X, with g(k) = yx.

Suppose (zj) is a subsequence of (yx), say Pt x

defined by 7 : P — P, so that z; = g(7(i)). \
Then goT = (foo)or =fo(ooT), so (z) o /oa
is defined by the strictly increasing function

coT:P — P. I? fo(oor)
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Properties of Subsequences

Theorem

Let (a,) be a sequence in R and let (a,,) be a subsequence of (a,).
(1) If (an) is bounded, then so is (ap,).
(2) If (an) is null, then so is (ap,).

(3) If (an) is convergent, then so is (ay, ); more precisely, if a, — a as
n — 0o, then also a, — a as k — oo.

(4) If a, T a, then also ap, T a, and similarly for decreasing sequences.

(1) If |ap| < K, for all n, then, in particular, |a,, | < K, for all k.

(2) Write by = an,, k =1,2,3,.... Let € > 0. By assumption, there is an
index N, such that |a,| < ¢, for all n > N. Choose k so that nx > N.
Then j > k implies nj > ny > N, which implies |a,| < e. Thus, (bx)
is null.
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Properties of Subsequences (Cont'd)

(3) By assumption, (a, — a) is null, whence its subsequence (a,, — a) is
also null and, consequently, a,, — a.

(4) If ap 1 a, the subsequence (ap, ) is certainly increasing and bounded
above (by a). Writing b = sup {a,, : k € P}, we know that b < a
and we have to show that b = a. Given any positive integer n, there
is a k such that ny > n. Therefore, a, < a, < b. Thus, a, < b, for
every positive integer n, whence a < b.

If a, | a, then —a, T —a, therefore —a, 1 —a and, consequently,
an, | a.
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Frequently and Subsequences

Theorem

Let (x,) be a sequence and let (P) be a property that a term x, may or
may not have. Then the following conditions are equivalent:

(a) xn has property (P) frequently;

(b) There exists a subsequence (xp,, ) of (x,) such that every x,, has
property (P).

o Let A= {n € P : x, has property (P)}.

(a)=(b) By assumption, n € A frequently. Choose n; € A. Choose n, € A, so
that n, > n;. Choose n3 € A, so that n3 > n, and so on. The
subsequence Xp,, Xn,, Xns, - - - has the desired property.

(b)=>(a) By assumption, nx € A, for all k. Given any index N, the claim is that
A contains an integer n > N. Indeed, ny > N, for some k.

o Example: Suppose we are trying to show that |a, — a| < € ultimately.
The alternative is that |a, — a| > € frequently, i.e., |a,, — a| > ¢, for
some subsequence (ap, ).
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Monotone Subsequences

Every sequence in R has a monotone subsequence.

o Assuming (a,) is any sequence of real numbers, we seek a
subsequence (ap, ) that is either increasing or decreasing. Call a
positive integer n a peak point for the sequence if a, > aj for all
k > n. Think of the sequence as a function f : P — R, f(n) = ap.
For n to be a peak point means that no point of the graph of f from
n onward is higher than (n, a,). There are two possibilities:

(1) nis frequently a peak point: If ny < mp < n3 < --- are peak points,
then the subsequence (ap,) is decreasing: For, ap, > a,, (because n; is
a peak point), a,, > a,, (because n, is a peak point), etc.

(2) From some index N onward, n is not a peak point: Let n; = N. Since
ny is not a peak point, there is an index ny > nq, such that a,, > ap,.
But n; is not a peak point either. So there is an n3 > n,, such that

an, > an,. Continuing in this way, we obtain an increasing subsequence
of (an).
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Bolzano-Weierstrall Theorem

Bolzano-WeierstraB Theorem

Every bounded sequence in R has a convergent subsequence.

o Let (a,) be a bounded sequence of real numbers. By the preceding
theorem, (a,) has a monotone subsequence (ap, ). Suppose, for
example, that (ap, ) is increasing. It is also bounded, so a,, 1 a for a
suitable real number a and a,, — a.

Corollary (Closed Interval Version)
In a closed interval [a, b], every sequence has a subsequence that
converges to a point of the interval.

o Suppose x, € [a,b],n=1,2,3,.... By the theorem, some
subsequence is convergent to a point of R, say x,, — x. Since
a < xp, < b, for all k, it follows that a < x < b. Thus, x € [a, b].
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Cauchy's Criterion

@ The criterion for a monotone sequence to converge is that it be
bounded.

@ Cauchy's criterion for convergence applies to sequences that are not
necessarily monotone:

Theorem (Cauchy's Criterion)
For a sequence (a,) in R, the following conditions are equivalent:
(a) (an) is convergent;

(b) For every € > 0, there is an index N, such that |a, — a,| < €, whenever
m,n > N, in symbols,

(Ve > 0)(EN)(m,n > N = |am — an| < €).

o (a)=(b): Say a, — a. If ¢ >0, then |a, — a| < 5 ultimately, say for
n> N. If both m,n > N, then, by the triangle inequality,
lam — an| = |(am —a) + (a—an)| < |am—a| +|a—an| <5+ 5 =¢
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Cauchy'’s Criterion (Cont'd)

o (b)=(a): Assuming (b), we show, first, that the sequence (a,) is
bounded. Choose an index M, such that |a, — a,| < 1, for all
m,n > M. Then, for all n > M,

|an| = |(an — am) + am| < |an — am| + |am| < 1+ |am|,

whence the sequence (a,,) is bounded. Explicitly,

if r = max{|ai|,|az|,...,lam-1|,1 + |am|}, then |a,| < r, for all n.
By the Bolzano-WeierstraB Theorem, (a,) has a convergent
subsequence, say a, — a. We will show that a, — a.

Let € > 0. By hypothesis, there is an index N, such that m,n > N
imply |am — ap| < 5. Since an, — a, there is an index K, such that
k > K implies |a, — a| < 5. Choose an index k > K, such that
n, > N. Then, for all n > N,

€
|an — al = |(an — an,) + (an = 3)| < |an — an | + |an, —a] < 5 +
Thus, the sequence (a, — a) is null, so a, — a.

€

2
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Bounded Sequences

o
o
o
9

©

4

For a monotone sequence to be convergent it has to be bounded.
For a bounded sequence, which condition ensures convergence?
Let (an) be a bounded sequence in R, say |a,| < K, for all n.
For each n, let A,, be the set of all terms from n onward,

An = {anaan+laan+27 oo } = {ak : k > n}
A, is bounded, indeed A, C [—K, K], and we may define

b, =supA, =supax, c,=IinfA, = inf a.
k>n k=n

This produces two sequences (b,) and (c,), with ¢, < by, for all n.
The sequences are bounded: —K < ¢, < b, < K, for all n.

Moreover, (c,) is increasing and (b,) is decreasing: Since A, 2O Anpt1,
ch=infA, <infA,11 = che1 and b, =sup A, > supApt1 = bpia.

Thus, with the notation ¢ = sup ¢, = sup {c, : n € P},
b = inf b, = inf{b, : n € P}, we have ¢, T c and b, | b.
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Limit Superior and Limit Inferior

Definition (Limit Superior and Limit Inferior)

With the above notations, b is called the limit superior of the bounded
sequence (ap), written
limsupa, = b= inf b, = inf (supa
e n>1 " n>1 (kzi,), k)
and c is called the limit inferior of the sequence (a,), written

liminf a, = ¢ = sup ¢, = sup (inf a).

n>1 n>1 k=n
o Example:
(i) For the sequence 1,—1,1,—1,..., A, ={-1,1}, forall n, so b, =1
and ¢, = —1, for all n, therefore b=1 and ¢ = —1.

(ii) For the sequence 1,-1,1,1,1,..., A, = {1}, for n > 3, so
b, = ¢, =1, for n > 3, therefore b = c = 1.

(ii1) For the sequence %, %, %, %, %, ‘g‘, cee %, kLH’ ..., bp=1and ¢, =0, for
all n, therefore, b=1 and ¢ = 0.
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Relation Between the Limits

Theorem
For every bounded sequence (a,) in R, liminfa, < limsup a,.

@ In the preceding notations, the problem is to show that ¢ < b. Since
¢, — c and b, — b and ¢, < b, for all n, it follows that ¢ < b.

@ Another way to see this: If m and n are any two positive integers and
p = max{m, n}, then m < p and n < p, whence ¢, < ¢, < b, < bp,.
This shows that each ¢, is a lower bound for all the b,, so
¢m < GLBb, = b. Then b is an upper bound for all the ¢, so
¢ =LUB¢, < b.
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Criterion for Convergence

Theorem

For a sequence (a,) in R, the following conditions are equivalent:
(a) (an) is convergent;
(b) (an) is bounded and liminf a, = limsup a,.

For such a sequence, lim a, = liminf a, = limsup a,.

o (a)=(b): If a, — a, then (a,) is bounded and our problem is to show
that c = b = a. Let € > 0. Choose an index N, such that
|an —a| <€ foralln> N. Then, foralln > N, —e < a,—a<e, ie,
a—e<ap,<a+e. Thisshows that Ay C [a—¢,a+¢].
Consequently a—e < cy < by <a+e Butcy <c<b< by. Thus,
a—e<c<b<a+e. Inparticular, a—%gcg bga—i—%, for

every positive integer n. Since % — 0, it follows that a < ¢ < b < 3,
i.e, a=c=b.
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Criterion for Convergence (Cont'd)

o (b)=-(a): Assuming (a,) is bounded, define b and ¢ by
c=supcy, =sup{c,:n€P}, b=infb,=inf{b,: ncP}

Let € > 0. Since b = GLBb,, and b+ ¢ > b, b+ ¢ cannot be a lower
bound for the b,. Thus, b+ € is not < every b,, i.e., b+ € > by, for
some N. Hence, b+ € > sup{a, : n > N}. Then n > N implies
ap < b+ e. We have shown that (Ve > 0)(a, < b+ € ultimately).
A similar argument shows that (Ve > 0)(c — € < a,, ultimately).
Combining, we have (Ve > 0)(c — € < a, < b+ € ultimately). It
follows that, if ¢ = b and a denotes the common value of ¢ and b,
then (Ve > 0)(]a, — a| < € ultimately), i.e., a, — a.

o Remark: For any bounded sequence (a,), b, T b and —c, T —c,
whence b, — ¢, 1T b — c. Thus, the theorem says:
A sequence (ap) in R is convergent if and only if it is bounded and
b, — ¢, T 0.
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Limits of Subsequences

o We showed that every bounded sequence (a,) has a convergent
subsequence: In fact, there are subsequences converging to ¢ and to
b, and these numbers are, respectively, the smallest and largest
possible limits for convergent subsequences.

Theorem

Let (a,) be a bounded sequence in R and let
S={xe€R:a, — x, for some subsequence (a,,)}.

Let ¢ =liminfa, and b =limsupa,. Then {c,b} CS C [c,b]. Thus, ¢
is the smallest element of S and b is the largest.

@ The first inclusion asserts that each of ¢ and b is the limit of a
suitable subsequence of (a,): Let € > 0. We showed that a, < b+ ¢
ultimately. Also, a, > b — € frequently, since the alternative
ap < b — e ultimately, say for n > N, would imply that
by < b—¢€ < b, contrary to b < by.
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Limits of Subsequences (Cont'd)

Thus, we get (Ve > 0)(b — € < a, < b+ ¢ frequently).

o With e =1, choose nj, such that b—1 < a,,1 < b+1.
o With e = % choose np > ny, sch that b — 1 5 < ap < b—|— i
o Continuing, construct (an, ), such that |a,, — b| < %, for aII k.

Then a,, — b, whence b € S.
The proof that ¢ € S is similar.

o To prove the second inclusion, assuming a, — x, we have to show
that ¢ < x < b. Given any € > 0, a, < b + ¢, for all sufficiently large
n. Therefore a, < b+ ¢, for all sufficiently large k. This implies that
x < b+ €. Since € > 0 is arbitrary, x < b.

The proof that ¢ < x is similar.
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