Introduction to Real Analysis

George Voutsadakis¹

¹Mathematics and Computer Science Lake Superior State University

LSSU Math 421

D Sequences of Real Numbers, Convergence

- Bounded Sequences
- Ultimately, Frequently
- Null Sequences
- Convergent Sequences
- Subsequences, Bolzano-Weierstraß Theorem
- Cauchy's Criterion for Convergence
- lim sup and lim inf of a Bounded Sequence

Subsection 1

Bounded Sequences

Bounded Sequences

Definition (Bounded Sequence)

A sequence (x_n) of real numbers is said to be **bounded** if the set $\{x_n : n \in \mathbb{P}\}$ is bounded.

A sequence that is not bounded is said to be **unbounded**.

• A sequence (x_n) in \mathbb{R} is bounded if and only if there exists a positive real number K such that $|x_n| \leq K$, for all n.

If $a \le x_n \le b$, for all *n*, and if K = |a| + |b|, then $|a| \le K$ and $|b| \le K$, whence $-K \le -|a| \le a \le x_n \le b \le |b| \le K$. Therefore, $|x_n| \le K$.

Boundedness of Sum and Product

- Example: Every constant sequence $(x_n = x, \text{ for all } n)$ is bounded.
- Example: The sequence $x_n = (-1)^n$ is bounded.
- Example: The sequence $x_n = n$ is unbounded: For every real number K, there exists, by the Archimedean property, a positive integer n, such that $n = n \cdot 1 > K$, whence the set of all x_n is not bounded above.

Theorem

If (x_n) and (y_n) are bounded sequences in \mathbb{R} , then the sequences $(x_n + y_n)$ and $(x_n y_n)$ are also bounded.

• If $|x_n| \leq K$ and $|y_n| \leq K'$, then $|x_n + y_n| \leq |x_n| + |y_n| \leq K + K'$ and $|x_ny_n| = |x_n||y_n| \leq KK'$.

Subsection 2

Ultimately, Frequently

Ultimately, Frequently

Definition (Ultimately, Frequently)

Let (x_n) be a sequence in a set X and let A be a subset of X.

(i) We say that $x_n \in A$ ultimately if x_n belongs to A from some index onward, i.e., there is an index N, such that $x_n \in A$, for all $n \ge N$. Symbolically,

$$\exists N(n \geq N \Rightarrow x_n \in A).$$

(Equivalently, $\exists N(n > N \Rightarrow x_n \in A)$, because n > N means the same thing as $n \ge N + 1$.)

(ii) We say that $x_n \in A$ frequently if, for every index N, there is an index $n \ge N$, for which $x_n \in A$. Symbolically,

 $(\forall N)(\exists n \geq N)(x_n \in A).$

(Equivalently, $(\forall N)(\exists n > N)(x_n \in A)$.)

Examples

• Example: Let $x_n = \frac{1}{n}$, let $\epsilon > 0$ and let $A = (0, \epsilon)$. Then $x_n \in A$ ultimately.

Choose an index N such that $\frac{1}{N} < \epsilon$. Then $n \ge N$ implies $\frac{1}{n} \le \frac{1}{N} < \epsilon$.

• Example: For each positive integer n, let S_n be a statement (which may be either true or false). Let

$$A = \{n \in \mathbb{P} : S_n \text{ is true}\}.$$

We say that:

- S_n is true frequently if $n \in A$ frequently;
- S_n is **true ultimately** if $n \in A$ ultimately.

The following illustrate the usage:

- $n^2 5n + 6 > 0$ ultimately (in fact, for $n \ge 4$).
- *n* is frequently divisible by 5 (in fact, for n = 5, n = 10, n = 15, etc.).

Relation Between Ultimately and Frequently

Theorem

Let (x_n) be a sequence in a set X and let A be a subset of X. One and only one of the following conditions holds:

- (1) $x_n \in A$ ultimately;
- (2) $x_n \notin A$ frequently.

• To say that (1) is false means that, for every index N, the implication

$$n \ge N \Rightarrow x_n \in A$$

is false. So there must exist an index $n \ge N$ for which $x_n \notin A$. This is precisely the meaning of (2).

• Example: If (x_n) is a sequence in \mathbb{R} , then either $x_n < 5$ ultimately, or $x_n \ge 5$ frequently, but not both.

Subsection 3

Null Sequences

Null Sequences

Definition (Null Sequence)

A sequence (x_n) in \mathbb{R} is said to be **null** if, for every positive real number ϵ , $|x_n| < \epsilon$ ultimately.

- Example: The sequence $(\frac{1}{n})$ is null.
- The concept of null sequence can be expressed as follows:
 Given any ε > 0 (no matter how small), the distance from |x_n| to the origin is ultimately smaller than ε (in this sense, x_n "approaches" 0).
- A more informal way to express the same concept:
 - x_n is arbitrarily small provided *n* is sufficiently large.
 - "arbitrarily small" is understood to suggest that the degree of smallness is specified in advance, before any indices are selected;
 - "sufficiently large" is understood in the sense of "ultimately" (not merely "frequently").

Properties of Null Sequences

Theorem

- Let (x_n) and (y_n) be null sequences and let $c \in \mathbb{R}$. Then:
- (1) (x_n) is bounded.
- (2) (cx_n) is null.
- (3) $(x_n + y_n)$ is null.
- (4) If (b_n) is a bounded sequence then $(b_n x_n)$ is null.
- (5) If (z_n) is such that $|z_n| \le |x_n|$ ultimately, then (z_n) is also null.
- (1) Let $\epsilon = 1$. There exists an index N, such that $|x_n| < 1$, for all n > N. If K is the largest of the numbers $1, |x_1|, |x_2|, \ldots, |x_N|$, then $|x_n| \le K$, for every positive integer n. Thus (x_n) is bounded.
- (2) For $\frac{\epsilon}{|c|} > 0$, there exists N, such that $|x_n| < \frac{\epsilon}{|c|}$, for all n > N. Thus, $|cx_n| < \epsilon$, for all n > N, showing that (cx_n) is null.

Proof of the Theorem on Null Sequences

- (3) Let $\epsilon > 0$. Since (x_n) is null, there is an index N_1 such that $n \ge N_1$ implies $|x_n| < \frac{\epsilon}{2}$. Similarly, there is an index N_2 such that $n \ge N_2$ implies that $|y_n| < \frac{\epsilon}{2}$. If N is the larger of N_1 and N_2 , then $n \ge N$ implies that $|x_n + y_n| \le |x_n| + |y_n| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$. This proves that $(x_n + y_n)$ is null.
- (4) Let K be a positive real number such that $|b_n| \leq K$, for all n. Given any $\epsilon > 0$, choose an index N such that $n \geq N$ implies $|x_n| < \frac{\epsilon}{K}$. Then $n \geq N$ implies $|b_n x_n| = |b_n| |x_n| \leq K |x_n| < \epsilon$. Thus, $(b_n x_n)$ is null.

Note that (2) is also a special case of (4).

(5) By assumption, there is an index N₁, such that n ≥ N₁ implies |z_n| ≤ |x_n|. Given any ε > 0, choose an index N₂, such that n ≥ N₂ implies |x_n| < ε. If N = max {N₁, N₂}, then n ≥ N implies |z_n| ≤ |x_n| < ε. Thus, (z_n) is null.

An Additional Theorem

Theorem

If $a_n \uparrow a$ or $a_n \downarrow a$, then the sequence $(a_n - a)$ is null.

- If a_n ↓ a, then a_n a = a_n + (-a) ↓ a + (-a) = 0. In particular, a_n - a ≥ 0 and inf (a_n - a) = 0. Given any ε > 0, choose an index N such that a_N - a < ε. Then n ≥ N implies |a_n - a| = a_n - a ≤ a_N - a < ε. Thus, (a_n - a) is null.
 For a_n ↑ a, we apply the preceding case to -a_n ↓ -a.
- Example: If |x| < 1, then the sequence (xⁿ) is null.
 Writing c = |x|, we have cⁿ ↓ 0. Thus, the sequence (|xⁿ|) = (cⁿ) is null. Therefore, (xⁿ) is null.
- Example: Fix x ∈ ℝ and let x_n = x, for all n. The constant sequence (x_n) is null if and only if x = 0. The condition "|x_n| < ε ultimately" means |x| < ε. If this happens for every ε > 0, then x = 0.

Subsection 4

Convergent Sequences

Convergent Sequences

Definition (Convergent Sequence)

A sequence (a_n) in \mathbb{R} is said to be **convergent** in \mathbb{R} if there exists a real number *a*, such that the sequence $(a_n - a)$ is null, and **divergent** if no such number exists.

Definition (Limit)

Let (a_n) be a convergent sequence, such that $(a_n - a)$ is null. Then the number *a* is called the **limit** of the convergent sequence (a_n) , and the sequence is said to **converge** to *a*. This is expressed by writing

 $\lim_{n\to\infty}a_n=a, a_n\to a \text{ as } n\to\infty, \text{ or, more concisely, } \lim a_n=a \text{ or } a_n\to a.$

Examples

- If a_n ↑ a or a_n ↓ a, then a_n → a. Thus, every bounded monotone sequence is convergent.
- $a_n \rightarrow 0$ iff (a_n) is null.

Since $a_n - 0 = a_n$, this is immediate from the definition.

•
$$a_n \rightarrow a$$
 iff $a_n - a \rightarrow 0$.

This follows from the previous remark.

•
$$x^n \to 0$$
 iff $|x| < 1$.

If |x| < 1, then $x_n \to 0$ since $(|x^n|)$ is decreasing and bounded below. If |x| > 1, then $|x^n| = |x|^n > 1$, for all *n*, whence (x_n) is not null.

• If
$$|x| < 1$$
 and $a_n = 1 + x + x^2 + \dots + x^{n-1}$, then $a_n \to \frac{1}{1-x}$.

$$a_n - \frac{1}{1-x} = \frac{1-x^n}{1-x} - \frac{1}{1-x} = \frac{-1}{1-x} \cdot x^n.$$

This is a constant multiple of a null sequence. Hence it is null.

Properties of Convergent Sequences

Theorem (Convergent Sequences)

Let (a_n) , (b_n) be convergent sequences in \mathbb{R} , say $a_n \to a$ and $b_n \to b$, and let $c \in \mathbb{R}$. Then:

- (1) (a_n) is bounded.
- (2) $ca_n \rightarrow ca$.
- $(3) a_n + b_n \rightarrow a + b.$
- (4) $a_n b_n \rightarrow ab$.
- (5) $|a_n| \rightarrow |a|$.
- (6) If $b \neq 0$, then $|b_n|$ is ultimately bounded away from 0, in the sense that there exists an r > 0 (for example, $r = \frac{1}{2}|b|$) such that $|b_n| \ge r$ ultimately.
- (7) If b and the b_n are all nonzero, then $\frac{a_n}{b_n} \rightarrow \frac{a}{b}$.
- (8) If $a_n \leq b_n$, for all n, then $a \leq b$.

Proof of the Theorem

- (1) $(a_n a)$ is null. So it is bounded. Since $a_n = (a_n a) + a$, (a_n) is the sum of two bounded sequences.
- (2) $ca_n ca = c(a_n a)$ is a scalar multiple of a null sequence. So it is null.
- (3) $(a_n + b_n) (a + b) = (a_n a) + (b_n b)$ is the sum of two null sequences. Therefore it is null.
- (4) a_nb_n ab = a_n(b_n b) + (a_n a)b. Since (a_n) is bounded and (b_n b), (a_n a) are null, it follows that (a_nb_n ab) is null.
 (5) ||a_n| |a|| < |a_n a|, where (a_n a) is null. So (|a_n| |a|) is null.

Proof of the Theorem (Cont'd)

(6) Let $r = \frac{1}{2}|b|$ and choose an integer N such that $n \ge N$ implies $|b_n - b| \le r$. Then, for all $n \ge N$, $2r = |b| = |(b - b_n) + b_n| \le r$ $|b - b_n| + |b_n| \le r + |b_n|$ whence $|b_n| \ge r$. (7) From (6), it follows that the sequence $\left(\frac{1}{h_{r}}\right)$ is bounded. Thus $\frac{1}{b} - \frac{1}{b} = \frac{1}{b \cdot b} (b - b_n)$ is the product of a bounded sequence and a null sequence. Therefore it is null. This implies that $\frac{1}{b} \rightarrow \frac{1}{b}$. Hence $\frac{a_n}{b_n} = a_n \frac{1}{b_n} \rightarrow a \frac{1}{b} = \frac{a}{b}.$ (8) Let $c_n = b_n - a_n$ and c = b - a. Then $c_n \ge 0$ and $c_n \rightarrow c$. Our problem is to show that $c \ge 0$. By (5), $|c_n| \to |c|$, i.e., $c_n \to |c|$. Since $c_n \rightarrow c$, $c = |c| \ge 0$ by the uniqueness of limits.

Suprema and Infima as Limits of Sequences

Theorem

If $A \subseteq \mathbb{R}$ is nonempty and bounded above, and if $M = \sup A$, then there exists a sequence (x_n) in A such that $x_n \to M$.

- For each positive integer *n*, choose $x_n \in A$ so that $M \frac{1}{n} < x_n \leq M$. Then $\lim (M - \frac{1}{n}) \leq \lim x_n \leq \lim M$, whence $\lim x_n = M$.
- Similarly, if A ⊆ ℝ is nonempty and bounded below, then inf A is the limit of a sequence in A.

Subsection 5

Subsequences, Bolzano-Weierstraß Theorem

Subsequences

- Given a sequence (*x_n*), there are various ways of forming "subsequences":
 - Take every other term x_1, x_3, x_5, \ldots ;
 - Take all of the terms from some index onward x_6, x_7, x_8, \ldots ;
 - Take all terms for which the index is a prime number $x_2, x_3, x_5, x_7, \ldots$

One is free to discard any terms, as long as infinitely many remain.

Definition (Subsequence)

Let (x_n) be any sequence. Choose a strictly increasing sequence of positive integers $n_1 < n_2 < n_3 < \cdots$ and define $y_k = x_{n_k}$, $k = 1, 2, 3, \ldots$ One calls (y_k) a **subsequence** of (x_n) . This is also expressed by saying that $x_{n_1}, x_{n_2}, x_{n_3}, \ldots$ is a subsequence of x_1, x_2, x_3, \ldots , or that (x_{n_k}) is a subsequence of (x_n) .

• Forming a subsequence amounts to choosing a sequence of indices, the essential thing being that the chosen indices must form a strictly increasing sequence.

George Voutsadakis (LSSU)

Some Remarks

- Let (n_k) be a strictly increasing sequence of positive integers n₁ < n₂ < n₃ < ···. For every positive integer N, there exists a positive integer k, such that n_k > N (whence n_j > N, for all j ≥ k). It suffices to show that n_k ≥ k, for all positive integers k. This is obvious for k = 1. Assuming inductively that n_k ≥ k, we have n_{k+1} ≥ n_k + 1 ≥ k + 1.
- A sequence (x_n) in a set X can be thought of as a function
 f : ℙ → X, where f(n) = x_n. A subsequence of (x_n) is obtained by
 specifying a strictly increasing function σ : ℙ → ℙ and taking the
 composite function f ∘ σ:

$$\begin{array}{c}
\mathbb{P} \xrightarrow{f} X \\
\sigma & f \circ \sigma \\
\mathbb{P}
\end{array}$$

Writing $n_k = \sigma(k)$, we have $(f \circ \sigma)(k) = f(\sigma(k)) = f(n_k) = x_{n_k}$.

One More Remark

• An application of the preceding remark: If (y_k) is a subsequence of (x_n) , then every subsequence of (y_k) is also a subsequence of (x_n) . The essence lies in the fact that, if $\sigma : \mathbb{P} \to \mathbb{P}$ and $\tau : \mathbb{P} \to \mathbb{P}$ are strictly increasing, then so is $\sigma \circ \tau : \mathbb{P} \to \mathbb{P}$. In detail, suppose that $f : \mathbb{P} \to X$ defines the sequence (x_n) , i.e., $f(n) = x_n$, and that $\sigma : \mathbb{P} \to \mathbb{P}$ defines the subsequence (y_k) , i.e., $y_k = f(\sigma(k))$. Write $g = f \circ \sigma$. Then $g : \mathbb{P} \to X$, with $g(k) = y_k$. Suppose (z_i) is a subsequence of (y_k) , say defined by $\tau : \mathbb{P} \to \mathbb{P}$, so that $z_i = g(\tau(i))$. Then $g \circ \tau = (f \circ \sigma) \circ \tau = f \circ (\sigma \circ \tau)$, so (z_i) is defined by the strictly increasing function $f \circ (\sigma \circ \tau)$ $\sigma \circ \tau : \mathbb{P} \to \mathbb{P}$

Properties of Subsequences

Theorem

Let (a_n) be a sequence in \mathbb{R} and let (a_{n_k}) be a subsequence of (a_n) .

- (1) If (a_n) is bounded, then so is (a_{n_k}) .
- (2) If (a_n) is null, then so is (a_{n_k}) .
- (3) If (a_n) is convergent, then so is (a_{n_k}) ; more precisely, if $a_n \to a$ as $n \to \infty$, then also $a_{n_k} \to a$ as $k \to \infty$.
- (4) If $a_n \uparrow a$, then also $a_{n_k} \uparrow a$, and similarly for decreasing sequences.
- (1) If $|a_n| \leq K$, for all *n*, then, in particular, $|a_{n_k}| \leq K$, for all *k*.
- (2) Write $b_k = a_{n_k}$, k = 1, 2, 3, ... Let $\epsilon > 0$. By assumption, there is an index N, such that $|a_n| < \epsilon$, for all $n \ge N$. Choose k so that $n_k \ge N$. Then $j \ge k$ implies $n_j \ge n_k \ge N$, which implies $|a_{n_j}| < \epsilon$. Thus, (b_k) is null.

Properties of Subsequences (Cont'd)

- (3) By assumption, $(a_n a)$ is null, whence its subsequence $(a_{n_k} a)$ is also null and, consequently, $a_{n_k} \rightarrow a$.
- (4) If $a_n \uparrow a$, the subsequence (a_{n_k}) is certainly increasing and bounded above (by a). Writing $b = \sup \{a_{n_k} : k \in \mathbb{P}\}$, we know that $b \le a$ and we have to show that b = a. Given any positive integer n, there is a k such that $n_k > n$. Therefore, $a_n \le a_{n_k} \le b$. Thus, $a_n \le b$, for every positive integer n, whence $a \le b$.
 - If $a_n \downarrow a$, then $-a_n \uparrow -a$, therefore $-a_{n_k} \uparrow -a$ and, consequently, $a_{n_k} \downarrow a$.

Frequently and Subsequences

Theorem

Let (x_n) be a sequence and let (P) be a property that a term x_n may or may not have. Then the following conditions are equivalent:

- (a) x_n has property (P) frequently;
- (b) There exists a subsequence (x_{n_k}) of (x_n) such that every x_{n_k} has property (P).
- Let A = {n ∈ ℙ : x_n has property (P)}.
 (a)⇒(b) By assumption, n ∈ A frequently. Choose n₁ ∈ A. Choose n₂ ∈ A, so that n₂ > n₁. Choose n₃ ∈ A, so that n₃ > n₂ and so on. The subsequence x_{n1}, x_{n2}, x_{n3},... has the desired property.
 (b)⇒(a) By assumption, n_k ∈ A, for all k. Given any index N, the claim is that A contains an integer n ≥ N. Indeed, n_k > N, for some k.
 Example: Suppose we are trying to show that |a_n a| < ε ultimately. The alternative is that |a_n a| ≥ ε frequently, i.e., |a_{nk} a| ≥ ε, for

some subsequence (a_{n_k}) .

Monotone Subsequences

Theorem

Every sequence in \mathbb{R} has a monotone subsequence.

- Assuming (a_n) is any sequence of real numbers, we seek a subsequence (a_{n_k}) that is either increasing or decreasing. Call a positive integer n a peak point for the sequence if $a_n \ge a_k$ for all $k \ge n$. Think of the sequence as a function $f : \mathbb{P} \to \mathbb{R}$, $f(n) = a_n$. For n to be a peak point means that no point of the graph of f from n onward is higher than (n, a_n) . There are two possibilities:
 - (1) *n* is frequently a peak point: If $n_1 < n_2 < n_3 < \cdots$ are peak points, then the subsequence (a_{n_k}) is decreasing: For, $a_{n_1} \ge a_{n_2}$ (because n_1 is a peak point), $a_{n_2} \ge a_{n_3}$ (because n_2 is a peak point), etc.
 - (2) From some index N onward, n is not a peak point: Let $n_1 = N$. Since n_1 is not a peak point, there is an index $n_2 > n_1$, such that $a_{n_2} > a_{n_1}$. But n_2 is not a peak point either. So there is an $n_3 > n_2$, such that $a_{n_3} > a_{n_2}$. Continuing in this way, we obtain an increasing subsequence of (a_n) .

Bolzano-Weierstraß Theorem

Bolzano-Weierstraß Theorem

Every bounded sequence in \mathbb{R} has a convergent subsequence.

• Let (a_n) be a bounded sequence of real numbers. By the preceding theorem, (a_n) has a monotone subsequence (a_{n_k}) . Suppose, for example, that (a_{n_k}) is increasing. It is also bounded, so $a_{n_k} \uparrow a$ for a suitable real number a and $a_{n_k} \to a$.

Corollary (Closed Interval Version)

In a closed interval [a, b], every sequence has a subsequence that converges to a point of the interval.

Suppose x_n ∈ [a, b], n = 1, 2, 3, By the theorem, some subsequence is convergent to a point of ℝ, say x_{nk} → x. Since a ≤ x_{nk} ≤ b, for all k, it follows that a ≤ x ≤ b. Thus, x ∈ [a, b].

Subsection 6

Cauchy's Criterion for Convergence

Cauchy's Criterion

- The criterion for a monotone sequence to converge is that it be bounded.
- Cauchy's criterion for convergence applies to sequences that are not necessarily monotone:

Theorem (Cauchy's Criterion)

For a sequence (a_n) in \mathbb{R} , the following conditions are equivalent:

(a) (a_n) is convergent;

(b) For every $\epsilon > 0$, there is an index N, such that $|a_m - a_n| < \epsilon$, whenever $m, n \ge N$, in symbols,

$$(\forall \epsilon > 0)(\exists N)(m, n \ge N \Rightarrow |a_m - a_n| < \epsilon).$$

• (a) \Rightarrow (b): Say $a_n \rightarrow a$. If $\epsilon > 0$, then $|a_n - a| < \frac{\epsilon}{2}$ ultimately, say for $n \ge N$. If both $m, n \ge N$, then, by the triangle inequality, $|a_m - a_n| = |(a_m - a) + (a - a_n)| \le |a_m - a| + |a - a_n| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$.

Cauchy's Criterion (Cont'd)

(b)⇒(a): Assuming (b), we show, first, that the sequence (a_n) is bounded. Choose an index M, such that |a_m - a_n| < 1, for all m, n ≥ M. Then, for all n ≥ M,

$$|a_n| = |(a_n - a_M) + a_M| \le |a_n - a_M| + |a_M| < 1 + |a_M|,$$

whence the sequence (a_n) is bounded. Explicitly, if $r = \max \{|a_1|, |a_2|, \dots, |a_{M-1}|, 1 + |a_M|\}$, then $|a_n| \le r$, for all n. By the Bolzano-Weierstraß Theorem, (a_n) has a convergent subsequence, say $a_{n_k} \to a$. We will show that $a_n \to a$. Let $\epsilon > 0$. By hypothesis, there is an index N, such that $m, n \ge N$ imply $|a_m - a_n| < \frac{\epsilon}{2}$. Since $a_{n_k} \to a$, there is an index K, such that $k \ge K$ implies $|a_{n_k} - a| < \frac{\epsilon}{2}$. Choose an index $k \ge K$, such that $n_k \ge N$. Then, for all $n \ge N$,

$$|a_n - a| = |(a_n - a_{n_k}) + (a_{n_k} - a)| \le |a_n - a_{n_k}| + |a_{n_k} - a| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2}.$$

Thus, the sequence $(a_n - a)$ is null, so $a_n \to a$.

Subsection 7

lim sup and lim inf of a Bounded Sequence

Bounded Sequences

- For a monotone sequence to be convergent it has to be bounded.
- For a bounded sequence, which condition ensures convergence?
- Let (a_n) be a bounded sequence in \mathbb{R} , say $|a_n| \leq K$, for all n.
- For each n, let A_n be the set of all terms from n onward,

$$A_n = \{a_n, a_{n+1}, a_{n+2}, \ldots\} = \{a_k : k \ge n\}$$

• A_n is bounded, indeed $A_n \subseteq [-K, K]$, and we may define

$$b_n = \sup A_n = \sup_{k \ge n} a_k, \quad c_n = \inf A_n = \inf_{k \ge n} a_k.$$

- This produces two sequences (b_n) and (c_n) , with $c_n \leq b_n$, for all n.
- The sequences are bounded: $-K \le c_n \le b_n \le K$, for all n.
- Moreover, (c_n) is increasing and (b_n) is decreasing: Since $A_n \supseteq A_{n+1}$,

 $c_n = \inf A_n \leq \inf A_{n+1} = c_{n+1}$ and $b_n = \sup A_n \geq \sup A_{n+1} = b_{n+1}$.

• Thus, with the notation $c = \sup c_n = \sup \{c_n : n \in \mathbb{P}\},\ b = \inf b_n = \inf \{b_n : n \in \mathbb{P}\}$, we have $c_n \uparrow c$ and $b_n \downarrow b$.

Limit Superior and Limit Inferior

Definition (Limit Superior and Limit Inferior)

With the above notations, b is called the **limit superior** of the bounded sequence (a_n) , written

$$\limsup a_n = b = \inf_{n \ge 1} b_n = \inf_{n \ge 1} (\sup_{k \ge n} a_k)$$

and c is called the **limit inferior** of the sequence (a_n) , written

$$\liminf a_n = c = \sup_{n \ge 1} c_n = \sup_{n \ge 1} (\inf_{k \ge n} a_k).$$

Example: (i) For the sequence 1, -1, 1, -1, ..., A_n = {-1, 1}, for all n, so b_n = 1 and c_n = -1, for all n, therefore b = 1 and c = -1. (ii) For the sequence 1, -1, 1, 1, 1, ..., A_n = {1}, for n ≥ 3, so b_n = c_n = 1, for n ≥ 3, therefore b = c = 1. (iii) For the sequence ¹/₂, ²/₃, ¹/₃, ³/₄, ¹/₄, ⁴/₅, ..., ¹/_k, ^k/_{k+1}, ..., b_n = 1 and c_n = 0, for all n, therefore, b = 1 and c = 0.

Relation Between the Limits

Theorem

For every bounded sequence (a_n) in \mathbb{R} , lim inf $a_n \leq \lim a_n$.

- In the preceding notations, the problem is to show that $c \leq b$. Since $c_n \rightarrow c$ and $b_n \rightarrow b$ and $c_n \leq b_n$, for all *n*, it follows that $c \leq b$.
- Another way to see this: If *m* and *n* are any two positive integers and $p = \max\{m, n\}$, then $m \le p$ and $n \le p$, whence $c_m \le c_p \le b_p \le b_n$. This shows that each c_m is a lower bound for all the b_n , so $c_m \le \text{GLB}b_n = b$. Then *b* is an upper bound for all the c_m , so $c = \text{LUB}c_m \le b$.

Criterion for Convergence

Theorem

For a sequence (a_n) in \mathbb{R} , the following conditions are equivalent:

- (a) (a_n) is convergent;
- (b) (a_n) is bounded and limit $a_n = \limsup a_n$.

For such a sequence, $\lim a_n = \lim \inf a_n = \limsup a_n$.

(a)⇒(b): If a_n → a, then (a_n) is bounded and our problem is to show that c = b = a. Let ε > 0. Choose an index N, such that |a_n - a| ≤ ε, for all n ≥ N. Then, for all n ≥ N, -ε ≤ a_n - a ≤ ε, i.e., a - ε ≤ a_n ≤ a + ε. This shows that A_N ⊆ [a - ε, a + ε]. Consequently a - ε ≤ c_N ≤ b_N ≤ a + ε. But c_N ≤ c ≤ b ≤ b_N. Thus, a - ε ≤ c ≤ b ≤ a + ε. In particular, a - 1/n ≤ c ≤ b ≤ a + 1/n, for every positive integer n. Since 1/n → 0, it follows that a ≤ c ≤ b ≤ a, i.e., a = c = b.

Criterion for Convergence (Cont'd)

• (b) \Rightarrow (a): Assuming (a_n) is bounded, define b and c by

 $c = \sup c_n = \sup \{c_n : n \in \mathbb{P}\}, \quad b = \inf b_n = \inf \{b_n : n \in \mathbb{P}\}.$

Let $\epsilon > 0$. Since $b = \text{GLB}b_n$ and $b + \epsilon > b$, $b + \epsilon$ cannot be a lower bound for the b_n . Thus, $b + \epsilon$ is not \leq every b_n , i.e., $b + \epsilon > b_N$, for some N. Hence, $b + \epsilon > \sup \{a_n : n \geq N\}$. Then $n \geq N$ implies $a_n < b + \epsilon$. We have shown that $(\forall \epsilon > 0)(a_n < b + \epsilon \text{ ultimately})$. A similar argument shows that $(\forall \epsilon > 0)(c - \epsilon < a_n \text{ ultimately})$. Combining, we have $(\forall \epsilon > 0)(c - \epsilon < a_n < b + \epsilon \text{ ultimately})$. It follows that, if c = b and a denotes the common value of c and b, then $(\forall \epsilon > 0)(|a_n - a| < \epsilon \text{ ultimately})$, i.e., $a_n \rightarrow a$.

Remark: For any bounded sequence (a_n), b_n ↑ b and -c_n ↑ -c, whence b_n - c_n ↑ b - c. Thus, the theorem says:
 A sequence (a_n) in ℝ is convergent if and only if it is bounded and

 $b_n - c_n \uparrow 0.$

Limits of Subsequences

 We showed that every bounded sequence (a_n) has a convergent subsequence: In fact, there are subsequences converging to c and to b, and these numbers are, respectively, the smallest and largest possible limits for convergent subsequences.

Theorem

Let (a_n) be a bounded sequence in \mathbb{R} and let

 $S = \{x \in \mathbb{R} : a_{n_k} \to x, \text{ for some subsequence } (a_{n_k})\}.$

Let $c = \liminf a_n$ and $b = \limsup a_n$. Then $\{c, b\} \subseteq S \subseteq [c, b]$. Thus, c is the smallest element of S and b is the largest.

The first inclusion asserts that each of c and b is the limit of a suitable subsequence of (a_n): Let ε > 0. We showed that a_n < b + ε ultimately. Also, a_n > b - ε frequently, since the alternative a_n ≤ b - ε ultimately, say for n ≥ N, would imply that b_N ≤ b - ε < b, contrary to b ≤ b_N.

Limits of Subsequences (Cont'd)

Thus, we get $(\forall \epsilon > 0)(b - \epsilon < a_n < b + \epsilon \text{ frequently}).$

- With $\epsilon = 1$, choose n_1 , such that $b 1 < a_{n_1} < b + 1$.
- With $\epsilon = \frac{1}{2}$, choose $n_2 > n_1$, sch that $b \frac{1}{2} < a_{n_2} < b + \frac{1}{2}$.
- Continuing, construct (a_{n_k}) , such that $|a_{n_k} b| < \frac{1}{k}$, for all k.

Then $a_{n_k} \rightarrow b$, whence $b \in S$.

The proof that $c \in S$ is similar.

To prove the second inclusion, assuming a_{nk} → x, we have to show that c ≤ x ≤ b. Given any ε > 0, a_n < b + ε, for all sufficiently large n. Therefore a_{nk} < b + ε, for all sufficiently large k. This implies that x ≤ b + ε. Since ε > 0 is arbitrary, x ≤ b.

The proof that $c \leq x$ is similar.