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Subsection 1

Intervals
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Special Subsets of R Intervals

Intervals in R

@ There are nine kinds of subsets of R that are called intervals.
o First, there are [a, b], (a, b), [a, b), (a, b].

s < [a,b)

—s (a,b)
—_— [a,b)

= (a,b)

@ 3
o Next, for each real number ¢ there are the four “half-lines”

{xeR:x<c},{xeR:x<c}, {xeR:x>c}, and
{xeR:x>c}.

of

o Finally, R itself is regarded as an interval (extending indefinitely in
both directions).
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Special Subsets of R Intervals

The Symbols +o00

Definition (The Symbols +00)

For every real number x, we write x < 400 and x > —o0, or, concisely,
—00 < x < +00. We think of +00 (read “plus infinity") as a symbol that
stands to the right of every point of the real line, and —co (“minus
infinity" ) as a symbol that stands to the left of every point of the line.
Finally, we write —oco < +o0.

o A new set R U {—00, 400} has been created, by adjoining to R two
new elements and specifying the order relations between the new
elements —oo and 400 and the old ones (those in R).

o A natural correspondence between real numbers x and points P of a
semicircle presents the “points at 00" as the endpoints of the

semicircle:
P
R
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Special Subsets of R Intervals

Another lllustration of the Extension

@ A computationally simpler explanation uses the function
f:(—1,1) — R, defined by

f(x) = 1_| B

It is an order-preserving bijection.

o It can be extended (in an order-preserving way) to the closed interval
[—1,1] by assigning the values 0o to the endpoints +1.
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Special Subsets of R Intervals

Formal Definition of Intervals

Definition (Unbounded Intervals)

For any real number ¢, we write

[c,+0) = {xeR:c<x<+oo}={xeR:x>c}
(c,+0) = {x€eR:c<x<+4o}={xeR:x>c}
(—o0,c] = {xeR:-oco<x<c}={xeR:x<c}
(—o0,c) = {xeR:—o<x<c}={xeR:x<c}
(—00,+0) = {x€R:—-0<x< 400} =R.

® When 400 or —oo (neither of which is a real number) is used as an
“endpoint” of an interval of R, it is always absent from the interval.

Definition (Intervals)

An interval of R is a subset of R of one of the following 9 types:
[aa b]a (aa b)v [aa b)v (av b]v [Ca -|-OO) 9 (Ca +OO), (—OO, C]a (—OO, C)a (—OO, +OO)
= IR, where a, b, ¢ are real numbers and a < b. In particular, the empty set
() = (a,a) = [a,a) = (a, a] and singletons {a} = [a, a] qualify as intervals.

George Voutsadakis (LSSU) Real Analysis August 2014 7/43



Special Subsets of R Intervals

Convexity

@ The intervals of R are characterized by convexity:
Theorem

Let A be a nonempty subset of R. The following conditions are equivalent:
(a) Alis an interval;
(b) For every pair of points in A, the segment joining them is contained in A;
e, forall x,y € A, x<y=[x,y] C A
o (a)=(b) is obvious.
o (b)=-(a): There are four cases, according as A is bounded above (or
not) and bounded below (or not).
1. A bounded below, but not bounded above: Let a = inf A. We will
show that A = (a,+00) or A = [a, +00). It suffices to show that
(a,+00) C A C [a,+00). The second inclusion is immediate from the
definition of a. Assuming r € (a,+c0), we have to show that r € A.
Since r > a = GLBA, there exists x € A, such that a < x < r. Since A
is not bounded above, there exists y € A, such that y > r. Thus
x < r <y with x,y € A so r € [x,y] C A, by the hypothesis.
2.-4. Similar arguments.
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Special Subsets of R Intervals

Intersection of a Family of Intervals

Corollary

If S is any set of intervals and J = (S is their intersection, then J is an
interval (possibly empty).

@ By definition, J is the set of all real numbers common to all of the
intervals belonging to S, i.e.,

J={reR:relforevery | € S}.

Assuming J nonempty, it will suffice to verify convexity. Suppose
x,y € J, x<y. Then x,y € I, for every | € S. By the theorem,
[x,y] € I, for all I € S, and, therefore, [x,y] C J.
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Special Subsets of R Closed Sets

Subsection 2

Closed Sets
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Special Subsets of R Closed Sets

Qualitative Differences Between Types of Intervals

@ The most important subsets of R for calculus are the intervals.
@ There are differences among intervals, some important, others not:

o The difference between (0,1) and (0,5) is only a matter of scale;
otherwise, the inequalities defining them are qualitatively the same.
o The intervals (0,1) and (0, +c0) are different in kind, since one is
bounded and the other not.
o By contrast, the intervals | = (0,1) and J = [0, 1] prove to have
dramatically different properties.
@ The crux is that the endpoints 0, 1 of / can be approximated as closely
as we like by points of / but they are not themselves points of /. More

precisely, the endpoints of /, though not in /, are limits of convergent
sequences whose terms are in /.

@ On the other hand, if a convergent sequence has its terms in J then its
limit must also be in J.
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Special Subsets of R Closed Sets

Closed Sets of R

Definition (Closed Sets)

A set A of real numbers is said to be a closed subset of R (or to be a
closed set in R) if, whenever a convergent sequence has all of its terms in
A, the limit of the sequence must also be in A, i.e., if x, — x and x, € A,
for all n, then necessarily x € A. (One cannot “escape” from a closed set
by means of a convergent sequence!) In symbols,

(Vn)(x, € A)
x€eR = x € A.
Xp — X

o Note that the empty subset ) of R is closed.
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Special Subsets of R Closed Sets

Examples of Closed Sets

o R is a closed subset of R (there is nowhere else for the limit to go!).

o Every singleton {a}, for a € R, is closed (the constant sequence
X, = a converges to a).

o For every real number c, the intervals [c, +00) and (—o0, c] are
closed sets.

If x, — x and x, > ¢, for all n, then x > c.

Caution: These are closed sets and they are intervals, but they are
not closed intervals. The term ‘“closed interval” is reserved for
intervals of the form [a, b].
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Special Subsets of R Closed Sets

Some Properties of Closed Sets

If Ais closed in R, x, — x in R, and x, € A frequently, then x € A.

o By assumption, there is a subsequence (x,,) with x,, € A, for all k.
Since x,, — x, x € A, by the definition of a closed set.

Theorem

(i) @ and R are closed sets in R.

) If A and B are closed sets in R, then so is their union AU B.

) If S is any set of closed sets in R, then (S is also a closed set.
(1) Both have been noted.

) Suppose x, € AU B, for all n and x, — x. If x, € A frequently, then
x € A by the lemma. The alternative is that x, € B ultimately, in
which case x € B, again by the lemma. Either way, x € AU B.

(i) Let B=NS={x€R:xeAforall Ac S}. Suppose x, — x and
X, € B, for all n. For each A € S, x, € A, for all n, whence x € A.
Thus x € A, for all A € S, and, therefore, x € (S = B.
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Special Subsets of R Closed Sets

Some Applications of the Properties

o Every closed interval
[aa b] = (—OO, b] N [3, +OO)

is a closed set.
It is the intersection of two closed sets.

o If A1,..., A, is a finite list of closed sets in R, then their union
A1 U---UA, is also a closed set.

By Induction on r.
o Every finite subset A= {a;,...,a,} of R is a closed set.

A={a;}U---U{a,} is closed since each singleton is closed and a
finite union of closed sets is also closed.
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Special Subsets of R Closed Sets

Set of all Limits

o If Ais a closed set, we know where the limits of its convergent
sequences are.

@ On the other hand, the set A = (0, 1] contains a convergent sequence
- for example x, = % - whose limit is not in A.

@ For an arbitrary subset A of R we may contemplate the set A of all
real numbers that are limits of sequences whose terms are in A.

o Regardless of the status of A, A is always a closed set.
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Special Subsets of R Closed Sets

Characterizing the Set of all Limits

Theorem
Let A be any subset of R and let
A={x€R:a, — x for some sequence (a,) in A}.
Then A is the smallest closed set containing A, i.e.,
(1) ADA,
(2) Alis a closed set,

(3) if B is a closed set with B D A, then B D A.
Moreover,

(4) Alis closed < A = A;

(5) Ais the set of all real numbers that can be approximated as closely as
we like by elements of A, i.e.,

x € A& (Ve >0)(Jac A)(|x — a| < e).
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Special Subsets of R Closed Sets

Proof of the Theorem

(1) If a€ A, let a, = a, for all n. Then a, — a, and so a € A.

(3) Assuming B is a closed set with A C B, we have to show that AC B.
Let x € A, say a, — x, with a, € A, for all n. Then a, € B, for all n
(because A C B), therefore x € B (because B is closed).

(4) To say that A is closed means that AC A. Since AC A
automatically, the condition A C A is equivalent to A = A.

(5) («): For each positive integer n let € :_% and choose a, € A, such
that [x — a,| < 1. Then a, —» x so x € A.

(=): Let x € A, say a, — x, with a, € A, for all n. If € > 0, then
|x — an| < ¢, for some n (in fact, ultimately!).

(2) Assuming x, — x, with x,, € A, for all n, we have to show that x € A.
We apply the criterion of (5): If € > 0, choose n so that [x — x,| < 5;
for this n, choose a € A, so that |x, —a| < 5. Then |x —a| < ¢ by
the triangle inequality.
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Special Subsets of R Closed Sets

Closure of a Set

Definition (Closure)

Ais called the closure of A in R. _
Alternatively, the points of A are said to be adherent to A, and A is called

the adherence of A.
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Special Subsets of R Open Sets, Neighborhoods

Subsection 3

Open Sets, Neighborhoods

George Voutsadakis (LSSU) Real Analysis August 2014 20 / 43



Special Subsets of R Open Sets, Neighborhoods

Complement of A

@ According to the preceding theorem, the meaning of x € A is that for
every € > 0 the interval (x — €,x + €) intersects A, i.e.,

(Ve > 0)((x —e,x +€)NA#D).

o The meaning of x & A is the negation of the preceding condition:
there exists an € > 0, for which the interval (x — ¢, x + €) is disjoint
from A, i.e.,

(Fe>0)((x —e,x+e)NA=10),

or, denoting by A = R — A, the complement of A in R,
(Je > 0)((x — e, x +€) C A°).

Not only does x belong to A€, but there is a little “buffer zone”
about x that remains in A€ - informally, all points “sufficiently close
to x” are in A°.
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Special Subsets of R | Open Sets, Neighborhoods

Interior Points

Definition (Interior Point)

A point x € R is said to be interior to a subset A of R if there exists an
r >0, such that (x —r,x+r) C A, i.e., such that |y — x| < r =y € A.
If x is interior to A, one also says that A is a neighborhood of x.
The set of all interior points of A (there may not be any!) is called the
interior of A, denoted A°:

A° ={x € R : x is interior to A}.
Thus, A° is the set of all points of A of which A is a neighborhood.

o Example: Q has no interior points (i.e., it has empty interior),
because every open interval contains an irrational number.

o Example: Assuming a < b, the point a belongs to [a, b) but not to its
interior; the interior of [a, b] is (a, b).
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Special Subsets of R Open Sets, Neighborhoods

Relation Between Closure and Interior

If Ais any subset of R, then x € A < x € (A)°. Thus, (A)€ = (A°)°.

o Thus, the passage from A to its closure A is the composite of three
operations:

o take complement,
o then take interior,
o then take complement again.

@ More precisely, we have

A=((A)) and A° = (A
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Special Subsets of R | Open Sets, Neighborhoods

Open Sets

o In general, A C A. Equality is a special event (A closed).

o In general, A° C A. Again, equality is a special event:

Definition (Open Set)
A subset A of R is called an open set if every point of A is an interior
point, i.e.,

(Vx € A)(Fe > 0)((x — €,x +€) C A).
Equivalently, A is a neighborhood of each of its points.

o Intuitively, for every point of an open set A, there is a buffer zone
about the point - whose size may depend on the point - that is also
contained in A.

@ To say that A is open means that A C A°; Since A D A°
automatically, an equivalent condition is that A = A°, i.e., A is equal
to its interior.
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Special Subsets of R Open Sets, Neighborhoods

Characterization of Open Sets

Theorem
For a subset A of R,

(1) Ais open < A€ is closed,;
(i) A's closed < A€ is open.

(1) In general, A° = (A°)¢, so the following conditions are equivalent:
o A open,

A= A°,

A= (A,

A€ = Ac,

A€ closed.

(i) Apply (i) with A replaced by A°.

o
o
9
9
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Special Subsets of R | Open Sets, Neighborhoods

Two Corollaries

Corollary

For every subset A of R, A° is the largest open subset of A.

@ Since A° = (A°)€ is the complement of a closed set, it is open. On
the other hand, if U is any open set with U C A, then U C A°: If
x € U, then x is interior to U, so it is obviously interior to A as well.

Corollary

Let A C R, x € R. The following conditions are equivalent:
(a) A'is a neighborhood of x;
(b) There exists an open set U, such that x € U C A.

o (a)=(b): U = A° fills the bill.

o (b)=(a): Since x € U and U is open, U is a neighborhood of x.
Therefore so is its superset A.
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Special Subsets of R | Open Sets, Neighborhoods

Properties of Open Sets

Theorem

(i) 0 and R are open sets in R.
(i1) If A and B are open sets in R, then so is their intersection AN B.
(ii) If S is any set of open sets in R, then | JS is also an open set.

(i) @ =Re and R = () are complements of closed sets and so are open.
(i) Assuming x € AN B, we have to show that x is interior to AN B.
Since x € A and A is open, there is an r > 0, with (x —r,x+r) C A.
Similarly, there is an s > 0, with (x —s,x+s) C B. If t is the smaller
of rand s, then (x — t,x+ t) C AN B, so x is interior to AN B.
(i) Let B=S. If x € B, then x € A, for some A € S. By assumption,
A is open, so there is an r > 0, with (x — r,x +r) C A. Since A C B,
it follows that (x — r,x 4+ r) C B, thus x is interior to B.
o Note that the proof of Part (ii) shows that if A and B are
neighborhoods of x, then so is AN B.
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Subsection 4

Finite and Infinite Sets
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Special Subsets of R Finite and Infinite Sets

Finite and Infinite Sets

Definition (Finite and Infinite Sets)

A nonempty set A is said to be finite if there exist a positive integer r and
a surjection {1,...,r} — A.

Convention: The empty set () is finite.

A set is said to be infinite if it is not finite.

o Ifo:{1,...,r} — Alis a surjection and one writes x; = o (i), for
i=1,...,r,then A=0o({1,...,r}) = {x1,..., x}.
o We also say that xi,...,x, is a finite list of elements.

o Example: For each positive integer r, the set {1,...,r} is finite.
The identity mapping {1,...,r} — {1,...,r} is a surjection.

@ Example: The set IP of all positive integers is infinite.
We show that there does not exist a surjection {1,...,r} — P for
any r. Assuming r e Pand p: {1,...,r} - P. Let n=1+ p(1)+
-4 @(r). Then (i) < n, forall i =1,...,r, whence n is not in the
range of ¢.
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Special Subsets of R Finite and Infinite Sets

Properties of Finite Sets

Theorem
If f: X — Y is any function and A is a finite subset of X, then f(A) is a
finite subset of Y.
o Ifo:{1,...,r} — Alis surjective, then i — f(o(i)) is a surjection
{1,...,r} = f(A).

Theorem

If A1,...,An is a finite list of finite subsets of a set, then Ay U---U A, is
also finite.
® For each j =1,...,m, there is a positive integer r; and a surjection
oj:{1l,...,r} = Aj. Let r=r + -+ ry,. We will construct a

surjection o : {1,...,r} - Ay U---UAp. The elements of {1,...,r}
can be organized, in ascending order, as a union of m subsets:
George Voutsadakis (LSSU)
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Special Subsets of R Finite and Infinite Sets

Properties of Finite Sets (Cont'd)
{1,...,r} =

{1,....n}U{n+1,....n+nrntU---
U{rl—i-‘“+rm_1+1,...,r1—i-“‘—i-rm_l—i-rm}
= BiUByU:---UBy,

where the sets B; are pairwise disjoint. For each j =1,..., m the formula
0j(i) = ri+--- 4 ri—1 + i defines a bijection 6; : {1,...,r;} — B;. Define
o:{1l,...,r} > AiU---UAp, as follows: If k € {1,...,r} then k € B,
for a unique j € {1,..., m}, so k = 6;(i) for a unique i € {1,...,r}.
Define o(k) = 0;(i) = aj(ej_l(k)). In other words, o is the unique
mapping on {1,...,r} that agrees with ;o 01-_1 on B;. It remains to show
that o is surjective:

o{1,...,r}) = o(BiU---UBp)
o(B)U---Ua(Bm)
01(67(B1)) U+ - Uom(8," (Bm))
o1({1,...,nP)U---Uon({1,...,rm})
= AjU---UAn.
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Special Subsets of R Finite and Infinite Sets

Finding Increasing Sequences

If AC P and A is infinite, then there exists a strictly increasing mapping
¢ : P — A. In particular, ¢ is injective and ¢(n) > n, for all n € P.

@ Apart from notation, it is the same to show that there exists a
sequence (a,) in A such that m < n= a,, < a,. Define a, recursively
as follows: Since A is not finite, it is nonempty. Let a; be the smallest
element of A. Then A # {a;} (because {a;} is finite and A is not),
so A—{a1} # 0. Let ap be the smallest element of A— {a;}. Then
ar > ay and A # {a1, a»} (because {a1, ap} is finite), so A — {a1, a>}
has a smallest element a3, and a3 > a>. Assuming a, ..., a, already
defined, let a,4+1 be the smallest element of A — {a1,...,a,}. The
function ¢ : P — A defined by ¢(n) = a, is strictly increasing. By
induction, ¢(n) > n, for all n:

o For, p(1) > 1;
o If p(k) > k, then o(k + 1) > (k) > k, therefore, p(k +1) > k + 1.
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Special Subsets of R Finite and Infinite Sets

Finite Subsets of Finite Sets

Theorem

Every subset of a finite set is finite.

o Suppose F is finite and B C F. By assumption, there exists a
surjection o : {1,...,r} — F, for some positive integer r. Let
A = 07 1(B) be the inverse image of B under o. Then o(A) = B
(because o is surjective). So it will suffice to show that A is finite.
We have A C {1,...,r}. If A were infinite, by the lemma, there
would exist a mapping ¢ : P — A, such that ¢(n) > n, for all n € P.
But then n < (n) < r, for all n, which is absurd for n = r + 1.
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Special Subsets of R Finite and Infinite Sets

Consequences for Infinite Sets

Corollary

Every superset of an infinite set is infinite.

@ Suppose B D A. By the theorem, B finite implies A finite. By the
contrapositive, A not finite implies B not finite.

Corollary

If ¢ : IP — A is injective, then A is infinite.

o If B = ¢(P) is the range of ¢, then ¢ defines a bijection P — B. Let
1 : B — P be the inverse of this bijection. Since ¢¥)(B) =P and P is
infinite, B cannot be finite. But B C A, so A cannot be finite either.
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Special Subsets of R Finite and Infinite Sets

Characterization of Infinite Sets

o The property appearing in the last Corollary characterizes infinite sets:

Theorem

A set A is infinite if and only if there exists an injection P — A.

o The "“if" part is the Corollary.

Conversely, assuming A infinite, we have to produce a sequence (a,)
in A, such that m # n = a,, # a,: “Construct” a, recursively as
follows: Since A is infinite, it is nonempty. Choose a; € A. Then

A # {a1} (because {a1} is finite), so A— {a1} # (. Choose

ap € A—{a1}. Assuming ai,...,a, already chosen,
A#{a1,...,an}. Choose apy1 € A—{a1,...,an}
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Subsection 5

Heine-Borel Covering Theorem
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Special Subsets of R Heine-Borel Covering Theorem

Coverings, Open Covering and Subcoverings

Definition (Covering)

Let AC R and let C be a set of subsets of R.
@ If each point of A belongs to some set in C, we say that C is a
covering of A (or that C covers A). In symbols,

(Vx € A)(3C € C)(x € C).

More concisely, A C [JC.
o If, moreover, every set in C is an open subset of R, then C is said to be

an open covering of A.
o If a covering C of A consists of only a finite number of sets, it is called

a finite covering.
o If C is a covering of A and if D C C is such that D is also a covering

of A, then D is referred to as a subcovering (it is a subset of C and

still a covering of A).

George Voutsadakis (LSSU) Real Analysis August 2014 37 /43



Special Subsets of R Heine-Borel Covering Theorem

Examples

o Suppose A consists of the terms of a convergent sequence and its
limit, i.e., A= {x} U{x,: n e P}, where x, — x. If C is an open
covering of A, then A is covered by finitely many of the sets in C:
The limit x belongs to one of the sets in C, say x € U € C. Since U is
open, there is an € > 0, with (x — €, x +€) C U. It follows that
Xp € U ultimately, say for n > N. Each of the terms x;, i =1,..., N,
belongs to some U; € C, so A is covered by the sets U, U, ..., Uy.

In the preceding terminology, every open covering of A admits a finite
subcovering.

o Let A be the open interval (2,5) and let C be the set of all open
intervals (2+ 1,5 — 1) n e P. Then C is an open covering of A, but
no finite set of elements of C can cover A.

Each element of C is a proper subset of A. Moreover, among any
finite set of elements of C, one of them contains all the others. Thus,

C is an open covering of A that admits no finite subcovering.
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Heine-Borel Theorem

Theorem (Heine-Borel Theorem)

If [a, b] is a closed interval in R and C is an open covering of [a, b], then
[a, b] is covered by a finite number of the sets in C.

o Let S be the set of all x € [a, b], such that the closed interval [a, x] is
covered by finitely many sets of C. At least a € S, because
[a,a] = {a} and a belongs to some set in C. We will show that b € S.
At any rate, S is nonempty and bounded. Let

m=supS.
Since S C [a, b], we have a < m < b. The strategy of the proof is to
show that:
(1) meS;
(2) m=b.
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Proof of the Heine-Borel Theorem

(1) Since m € [a,b] C |JC, thereis a V € C, such that m € V. Since V

is open, [m — e, m+ €] C V, for some ¢ > 0. Note that we can take €
to be as small as we like. Since m — e < m and m is the least upper
bound of S, there exists x € S, with m—e < x < m. From x € S, we
know that the interval [a, x] is covered by finitely many sets in C, say
[a,x] C Uy U---U U,. On the other hand, [x,m] C [m — ¢, m + €]

C V, so [a,m] = [a,x] U [x, m] is covered by the sets V, Uy, ..., U, of
C. This proves that m € S,

and a little more: [a,m+¢ C VU U U---U U,, whence m+ ¢ > b,
because m + € < b would imply that m+ € € S, contrary to the fact
that every element of S is < m.

The preceding argument shows that b — m < € and the argument is
valid with € replaced by any positive number smaller than e. It follows
that b— m < 0. Thus b < m. Since, already m < b, we get
b=mEeS.
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Compact Sets

Definition (Compact Set)

A subset A of R is said to be compact if every open covering of A admits
a finite subcovering.

Theorem (Characterization of Compact Sets)

For a subset A of R, the following conditions are equivalent:
(a) Ais compact;
(b) A'is bounded and closed.

o (a)=(b): Suppose A is compact. The open intervals (—n, n), n € P,
have union R, so they certainly cover A. By hypothesis, a finite
number of them suffice to cover A, which means that A C (—m, m),
for some m. Consequently A is bounded. To show that A is closed,
we need only show that A C A, equivalently, A° C (A)€. Assuming
x & A, we show that x ¢ A.
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Compact Sets (Cont'd)

o Assuming x & A, we show that x ¢ A. We must find a neighborhood
V of x such that VN A=0. If a € A, then x # a (because x ¢ A),
so there exist open intervals U,, V,, such that a € U,, x € V, and
U, NV, = 0. As a varies over A, the sets U, form an open covering
of A. Suppose AC Uy U---UU,,. Let U= U, U---U U, and
V=V,N---NV,. Then AC U and V is a neighborhood of x. If
y € Uy, then y & V., whence y ¢ V. It follows that VN U =0 (V
misses every term in the formula for U, so it misses their union), and,
consequently, VN A = ().

o (b)=(a): Assume that A is bounded and closed and that C is an
open covering of A. By hypothesis, the set V =R — A is open and A
is contained in some closed interval, say A C [a, b]. We apply the
Heine-Borel theorem to [a, b]: The points of [a, b] that are in A are
covered by C and what is left, [a, b] — A, is contained in V. We thus
have an open covering of [a, b]: the sets in C, helped out by V. It
follows that [a,b] C VU Uy U --- U U, for suitable Uy, ..., U, in C.
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Compact Sets (Finishing the Proof)

o We showed [a,b] C VU Uy U---U U, for suitable Uy, ..., U, in C.
The set A is contained in [a, b] but is disjoint from V/, so
AC Uy U---U U, is the desired finite subcovering.

Corollary

Every nonempty compact set A C R has a largest element and a smallest
element.
@ By the theorem, A is bounded and closed. Let M = sup A and choose
a sequence (x,) in A such that x, — M. Then M € A (because A is
closed) and M is obviously the largest element of A. Similarly, inf A
belongs to A and is its smallest element.
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