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Special Subsets of R Intervals

Intervals in R

There are nine kinds of subsets of R that are called intervals.
First, there are [a, b], (a, b), [a, b), (a, b].

Next, for each real number c there are the four “half-lines”
{x ∈ R : x ≤ c}, {x ∈ R : x < c}, {x ∈ R : x ≥ c}, and
{x ∈ R : x > c}.

Finally, R itself is regarded as an interval (extending indefinitely in
both directions).

George Voutsadakis (LSSU) Real Analysis August 2014 4 / 43



Special Subsets of R Intervals

The Symbols ±∞

Definition (The Symbols ±∞)

For every real number x , we write x < +∞ and x > −∞, or, concisely,
−∞ < x < +∞. We think of +∞ (read “plus infinity”) as a symbol that
stands to the right of every point of the real line, and −∞ (“minus
infinity”) as a symbol that stands to the left of every point of the line.
Finally, we write −∞ < +∞.

A new set R ∪ {−∞,+∞} has been created, by adjoining to R two
new elements and specifying the order relations between the new
elements −∞ and +∞ and the old ones (those in R).

A natural correspondence between real numbers x and points P of a
semicircle presents the “points at ±∞” as the endpoints of the
semicircle:
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Special Subsets of R Intervals

Another Illustration of the Extension

A computationally simpler explanation uses the function
f : (−1, 1) → R, defined by

f (x) =
x

1− |x |
.

It is an order-preserving bijection.

It can be extended (in an order-preserving way) to the closed interval
[−1, 1] by assigning the values ±∞ to the endpoints ±1.
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Special Subsets of R Intervals

Formal Definition of Intervals

Definition (Unbounded Intervals)

For any real number c , we write

[c ,+∞) = {x ∈ R : c ≤ x < +∞} = {x ∈ R : x ≥ c}
(c ,+∞) = {x ∈ R : c < x < +∞} = {x ∈ R : x > c}
(−∞, c] = {x ∈ R : −∞ < x ≤ c} = {x ∈ R : x ≤ c}
(−∞, c) = {x ∈ R : −∞ < x < c} = {x ∈ R : x < c}

(−∞,+∞) = {x ∈ R : −∞ < x < +∞} = R.

When +∞ or −∞ (neither of which is a real number) is used as an
“endpoint” of an interval of R, it is always absent from the interval.

Definition (Intervals)

An interval of R is a subset of R of one of the following 9 types:
[a, b], (a, b), [a, b), (a, b], [c ,+∞) , (c ,+∞), (−∞, c], (−∞, c), (−∞,+∞)
= R, where a, b, c are real numbers and a ≤ b. In particular, the empty set
∅ = (a, a) = [a, a) = (a, a] and singletons {a} = [a, a] qualify as intervals.
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Special Subsets of R Intervals

Convexity

The intervals of R are characterized by convexity:

Theorem

Let A be a nonempty subset of R. The following conditions are equivalent:
(a) A is an interval;

(b) For every pair of points in A, the segment joining them is contained in A;
i.e., for all x , y ∈ A, x ≤ y ⇒ [x , y ] ⊆ A.

(a)⇒(b) is obvious.
(b)⇒(a): There are four cases, according as A is bounded above (or
not) and bounded below (or not).
1. A bounded below, but not bounded above: Let a = inf A. We will

show that A = (a,+∞) or A = [a,+∞). It suffices to show that
(a,+∞) ⊆ A ⊆ [a,+∞). The second inclusion is immediate from the
definition of a. Assuming r ∈ (a,+∞), we have to show that r ∈ A.
Since r > a = GLBA, there exists x ∈ A, such that a < x < r . Since A

is not bounded above, there exists y ∈ A, such that y > r . Thus
x < r < y with x , y ∈ A, so r ∈ [x , y ] ⊆ A, by the hypothesis.

2.-4. Similar arguments.
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Special Subsets of R Intervals

Intersection of a Family of Intervals

Corollary

If S is any set of intervals and J =
⋂

S is their intersection, then J is an
interval (possibly empty).

By definition, J is the set of all real numbers common to all of the
intervals belonging to S, i.e.,

J = {r ∈ R : r ∈ I , for every I ∈ S}.

Assuming J nonempty, it will suffice to verify convexity. Suppose
x , y ∈ J, x ≤ y . Then x , y ∈ I , for every I ∈ S. By the theorem,
[x , y ] ⊆ I , for all I ∈ S, and, therefore, [x , y ] ⊆ J.
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Special Subsets of R Closed Sets

Subsection 2

Closed Sets
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Special Subsets of R Closed Sets

Qualitative Differences Between Types of Intervals

The most important subsets of R for calculus are the intervals.

There are differences among intervals, some important, others not:

The difference between (0, 1) and (0, 5) is only a matter of scale;
otherwise, the inequalities defining them are qualitatively the same.
The intervals (0, 1) and (0,+∞) are different in kind, since one is
bounded and the other not.
By contrast, the intervals I = (0, 1) and J = [0, 1] prove to have
dramatically different properties.

The crux is that the endpoints 0, 1 of I can be approximated as closely

as we like by points of I but they are not themselves points of I . More

precisely, the endpoints of I , though not in I , are limits of convergent

sequences whose terms are in I .

On the other hand, if a convergent sequence has its terms in J then its

limit must also be in J.

George Voutsadakis (LSSU) Real Analysis August 2014 11 / 43



Special Subsets of R Closed Sets

Closed Sets of R

Definition (Closed Sets)

A set A of real numbers is said to be a closed subset of R (or to be a
closed set in R) if, whenever a convergent sequence has all of its terms in
A, the limit of the sequence must also be in A, i.e., if xn → x and xn ∈ A,
for all n, then necessarily x ∈ A. (One cannot “escape” from a closed set
by means of a convergent sequence!) In symbols,

(∀n)(xn ∈ A)
x ∈ R

xn → x







⇒ x ∈ A.

Note that the empty subset ∅ of R is closed.
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Special Subsets of R Closed Sets

Examples of Closed Sets

R is a closed subset of R (there is nowhere else for the limit to go!).

Every singleton {a}, for a ∈ R, is closed (the constant sequence
xn = a converges to a).

For every real number c , the intervals [c ,+∞) and (−∞, c] are
closed sets.

If xn → x and xn ≥ c , for all n, then x ≥ c .

Caution: These are closed sets and they are intervals, but they are
not closed intervals. The term “closed interval” is reserved for
intervals of the form [a, b].
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Special Subsets of R Closed Sets

Some Properties of Closed Sets

Lemma

If A is closed in R, xn → x in R, and xn ∈ A frequently, then x ∈ A.

By assumption, there is a subsequence (xnk ) with xnk ∈ A, for all k .
Since xnk → x , x ∈ A, by the definition of a closed set.

Theorem
(i) ∅ and R are closed sets in R.

(ii) If A and B are closed sets in R, then so is their union A ∪ B.

(iii) If S is any set of closed sets in R, then
⋂

S is also a closed set.

(i) Both have been noted.

(ii) Suppose xn ∈ A ∪ B , for all n and xn → x . If xn ∈ A frequently, then
x ∈ A by the lemma. The alternative is that xn ∈ B ultimately, in
which case x ∈ B , again by the lemma. Either way, x ∈ A ∪ B .

(iii) Let B =
⋂

S = {x ∈ R : x ∈ A, for all A ∈ S}. Suppose xn → x and
xn ∈ B , for all n. For each A ∈ S, xn ∈ A, for all n, whence x ∈ A.
Thus x ∈ A, for all A ∈ S, and, therefore, x ∈

⋂

S = B .
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Special Subsets of R Closed Sets

Some Applications of the Properties

Every closed interval

[a, b] = (−∞, b] ∩ [a,+∞)

is a closed set.

It is the intersection of two closed sets.

If A1, . . . ,Ar is a finite list of closed sets in R, then their union
A1 ∪ · · · ∪ Ar is also a closed set.

By Induction on r .

Every finite subset A = {a1, . . . , ar} of R is a closed set.

A = {a1} ∪ · · · ∪ {ar} is closed since each singleton is closed and a
finite union of closed sets is also closed.
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Special Subsets of R Closed Sets

Set of all Limits

If A is a closed set, we know where the limits of its convergent
sequences are.

On the other hand, the set A = (0, 1] contains a convergent sequence
- for example xn = 1

n
- whose limit is not in A.

For an arbitrary subset A of R we may contemplate the set A of all
real numbers that are limits of sequences whose terms are in A.

Regardless of the status of A , A is always a closed set.
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Special Subsets of R Closed Sets

Characterizing the Set of all Limits

Theorem

Let A be any subset of R and let

A = {x ∈ R : an → x for some sequence (an) in A}.

Then A is the smallest closed set containing A, i.e.,

(1) A ⊇ A,

(2) A is a closed set,

(3) if B is a closed set with B ⊇ A, then B ⊇ A.

Moreover,

(4) A is closed ⇔ A = A;

(5) A is the set of all real numbers that can be approximated as closely as
we like by elements of A, i.e.,

x ∈ A ⇔ (∀ǫ > 0)(∃a ∈ A)(|x − a| < ǫ).
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Special Subsets of R Closed Sets

Proof of the Theorem

(1) If a ∈ A, let an = a, for all n. Then an → a, and so a ∈ A.

(3) Assuming B is a closed set with A ⊆ B , we have to show that A ⊆ B .
Let x ∈ A, say an → x , with an ∈ A, for all n. Then an ∈ B , for all n
(because A ⊆ B), therefore x ∈ B (because B is closed).

(4) To say that A is closed means that A ⊆ A. Since A ⊆ A

automatically, the condition A ⊆ A is equivalent to A = A.

(5) (⇐): For each positive integer n let ǫ = 1
n
and choose an ∈ A, such

that |x − an| <
1
n
. Then an → x so x ∈ A.

(⇒): Let x ∈ A, say an → x , with an ∈ A, for all n. If ǫ > 0, then
|x − an| < ǫ, for some n (in fact, ultimately!).

(2) Assuming xn → x , with xn ∈ A, for all n, we have to show that x ∈ A.
We apply the criterion of (5): If ǫ > 0, choose n so that |x − xn| <

ǫ

2 ;
for this n, choose a ∈ A, so that |xn − a| < ǫ

2 . Then |x − a| < ǫ by
the triangle inequality.
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Special Subsets of R Closed Sets

Closure of a Set

Definition (Closure)

A is called the closure of A in R.
Alternatively, the points of A are said to be adherent to A, and A is called
the adherence of A.
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Special Subsets of R Open Sets, Neighborhoods

Subsection 3

Open Sets, Neighborhoods
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Special Subsets of R Open Sets, Neighborhoods

Complement of A

According to the preceding theorem, the meaning of x ∈ A is that for
every ǫ > 0 the interval (x − ǫ, x + ǫ) intersects A, i.e.,

(∀ǫ > 0)((x − ǫ, x + ǫ) ∩ A 6= ∅).

The meaning of x 6∈ A is the negation of the preceding condition:
there exists an ǫ > 0, for which the interval (x − ǫ, x + ǫ) is disjoint
from A, i.e.,

(∃ǫ > 0)((x − ǫ, x + ǫ) ∩ A = ∅),

or, denoting by Ac = R− A, the complement of A in R,

(∃ǫ > 0)((x − ǫ, x + ǫ) ⊆ Ac).

Not only does x belong to Ac , but there is a little “buffer zone”
about x that remains in Ac - informally, all points “sufficiently close
to x” are in Ac .
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Special Subsets of R Open Sets, Neighborhoods

Interior Points

Definition (Interior Point)

A point x ∈ R is said to be interior to a subset A of R if there exists an
r > 0, such that (x − r , x + r) ⊆ A, i.e., such that |y − x | < r ⇒ y ∈ A.
If x is interior to A, one also says that A is a neighborhood of x .
The set of all interior points of A (there may not be any!) is called the
interior of A, denoted A◦:

A◦ = {x ∈ R : x is interior to A}.

Thus, A◦ is the set of all points of A of which A is a neighborhood.

Example: Q has no interior points (i.e., it has empty interior),
because every open interval contains an irrational number.

Example: Assuming a < b, the point a belongs to [a, b) but not to its
interior; the interior of [a, b] is (a, b).
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Special Subsets of R Open Sets, Neighborhoods

Relation Between Closure and Interior

Theorem

If A is any subset of R, then x 6∈ A ⇔ x ∈ (Ac)◦. Thus, (A)c = (Ac)◦.

Thus, the passage from A to its closure A is the composite of three
operations:

take complement,
then take interior,
then take complement again.

More precisely, we have

A = ((Ac )◦)c and A◦ = (Ac)c .
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Special Subsets of R Open Sets, Neighborhoods

Open Sets

In general, A ⊆ A. Equality is a special event (A closed).

In general, A◦ ⊆ A. Again, equality is a special event:

Definition (Open Set)

A subset A of R is called an open set if every point of A is an interior
point, i.e.,

(∀x ∈ A)(∃ǫ > 0)((x − ǫ, x + ǫ) ⊆ A).

Equivalently, A is a neighborhood of each of its points.

Intuitively, for every point of an open set A, there is a buffer zone
about the point - whose size may depend on the point - that is also
contained in A.

To say that A is open means that A ⊆ A◦; Since A ⊇ A◦

automatically, an equivalent condition is that A = A◦, i.e., A is equal
to its interior.
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Special Subsets of R Open Sets, Neighborhoods

Characterization of Open Sets

Theorem

For a subset A of R,

(i) A is open ⇔ Ac is closed;

(ii) A is closed ⇔ Ac is open.

(i) In general, A◦ = (Ac)c , so the following conditions are equivalent:

A open,
A = A◦,
A = (Ac)c ,
Ac = Ac ,
Ac closed.

(ii) Apply (i) with A replaced by Ac .
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Special Subsets of R Open Sets, Neighborhoods

Two Corollaries

Corollary

For every subset A of R, A◦ is the largest open subset of A.

Since A◦ = (Ac)c is the complement of a closed set, it is open. On
the other hand, if U is any open set with U ⊆ A, then U ⊆ A◦: If
x ∈ U, then x is interior to U, so it is obviously interior to A as well.

Corollary

Let A ⊆ R, x ∈ R. The following conditions are equivalent:

(a) A is a neighborhood of x ;

(b) There exists an open set U , such that x ∈ U ⊆ A.

(a)⇒(b): U = A◦ fills the bill.

(b)⇒(a): Since x ∈ U and U is open, U is a neighborhood of x .
Therefore so is its superset A.
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Special Subsets of R Open Sets, Neighborhoods

Properties of Open Sets

Theorem

(i) ∅ and R are open sets in R.

(ii) If A and B are open sets in R, then so is their intersection A ∩ B .

(iii) If S is any set of open sets in R, then
⋃

S is also an open set.

(i) ∅ = Rc and R = ∅c are complements of closed sets and so are open.

(ii) Assuming x ∈ A ∩ B , we have to show that x is interior to A ∩ B .
Since x ∈ A and A is open, there is an r > 0, with (x − r , x + r) ⊆ A.
Similarly, there is an s > 0, with (x − s, x + s) ⊆ B . If t is the smaller
of r and s, then (x − t, x + t) ⊆ A ∩ B , so x is interior to A ∩ B .

(iii) Let B =
⋃

S. If x ∈ B , then x ∈ A, for some A ∈ S. By assumption,
A is open, so there is an r > 0, with (x − r , x + r) ⊆ A. Since A ⊆ B ,
it follows that (x − r , x + r) ⊆ B , thus x is interior to B .

Note that the proof of Part (ii) shows that if A and B are
neighborhoods of x , then so is A ∩ B .
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Special Subsets of R Finite and Infinite Sets

Subsection 4

Finite and Infinite Sets
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Special Subsets of R Finite and Infinite Sets

Finite and Infinite Sets

Definition (Finite and Infinite Sets)

A nonempty set A is said to be finite if there exist a positive integer r and
a surjection {1, . . . , r} → A.
Convention: The empty set ∅ is finite.
A set is said to be infinite if it is not finite.

If σ : {1, . . . , r} → A is a surjection and one writes xi = σ(i), for
i = 1, . . . , r , then A = σ({1, . . . , r}) = {x1, . . . , xr}.
We also say that x1, . . . , xr is a finite list of elements.

Example: For each positive integer r , the set {1, . . . , r} is finite.

The identity mapping {1, . . . , r} → {1, . . . , r} is a surjection.

Example: The set P of all positive integers is infinite.

We show that there does not exist a surjection {1, . . . , r} → P for
any r . Assuming r ∈ P and ϕ : {1, . . . , r} → P. Let n = 1 + ϕ(1)+
· · ·+ ϕ(r). Then ϕ(i) < n, for all i = 1, . . . , r , whence n is not in the
range of ϕ.
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Special Subsets of R Finite and Infinite Sets

Properties of Finite Sets

Theorem

If f : X → Y is any function and A is a finite subset of X , then f (A) is a
finite subset of Y .

If σ : {1, . . . , r} → A is surjective, then i 7→ f (σ(i)) is a surjection
{1, . . . , r} → f (A).

Theorem

If A1, . . . ,Am is a finite list of finite subsets of a set, then A1 ∪ · · · ∪ Am is
also finite.

For each j = 1, . . . ,m, there is a positive integer rj and a surjection
σj : {1, . . . , rj} → Aj . Let r = r1 + · · ·+ rm. We will construct a
surjection σ : {1, . . . , r} → A1 ∪ · · · ∪ Am. The elements of {1, . . . , r}
can be organized, in ascending order, as a union of m subsets:
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Special Subsets of R Finite and Infinite Sets

Properties of Finite Sets (Cont’d)

{1, . . . , r} = {1, . . . , r1} ∪ {r1 + 1, . . . , r1 + r2} ∪ · · ·
∪{r1 + · · · + rm−1 + 1, . . . , r1 + · · · + rm−1 + rm}

= B1 ∪ B2 ∪ · · · ∪ Bm,

where the sets Bj are pairwise disjoint. For each j = 1, . . . ,m the formula
θj(i) = r1 + · · ·+ rj−1 + i defines a bijection θj : {1, . . . , rj} → Bj . Define
σ : {1, . . . , r} → A1 ∪ · · · ∪ Am as follows: If k ∈ {1, . . . , r} then k ∈ Bj ,
for a unique j ∈ {1, . . . ,m}, so k = θj(i) for a unique i ∈ {1, . . . , rj}.
Define σ(k) = σj(i) = σj(θ

−1
j (k)). In other words, σ is the unique

mapping on {1, . . . , r} that agrees with σj ◦ θ
−1
j on Bj . It remains to show

that σ is surjective:
σ({1, . . . , r}) = σ(B1 ∪ · · · ∪ Bm)

= σ(B1) ∪ · · · ∪ σ(Bm)

= σ1(θ
−1
1 (B1)) ∪ · · · ∪ σm(θ

−1
m (Bm))

= σ1({1, . . . , r1}) ∪ · · · ∪ σm({1, . . . , rm})
= A1 ∪ · · · ∪ Am.
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Special Subsets of R Finite and Infinite Sets

Finding Increasing Sequences

Lemma

If A ⊆ P and A is infinite, then there exists a strictly increasing mapping
ϕ : P → A. In particular, ϕ is injective and ϕ(n) ≥ n, for all n ∈ P.

Apart from notation, it is the same to show that there exists a
sequence (an) in A such that m < n ⇒ am < an. Define an recursively
as follows: Since A is not finite, it is nonempty. Let a1 be the smallest
element of A. Then A 6= {a1} (because {a1} is finite and A is not),
so A− {a1} 6= ∅. Let a2 be the smallest element of A− {a1}. Then
a2 > a1 and A 6= {a1, a2} (because {a1, a2} is finite), so A− {a1, a2}
has a smallest element a3, and a3 > a2. Assuming a1, . . . , an already
defined, let an+1 be the smallest element of A− {a1, . . . , an}. The
function ϕ : P → A defined by ϕ(n) = an is strictly increasing. By
induction, ϕ(n) ≥ n, for all n:

For, ϕ(1) ≥ 1;
If ϕ(k) ≥ k , then ϕ(k + 1) > ϕ(k) ≥ k , therefore, ϕ(k + 1) ≥ k + 1.
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Special Subsets of R Finite and Infinite Sets

Finite Subsets of Finite Sets

Theorem

Every subset of a finite set is finite.

Suppose F is finite and B ⊆ F . By assumption, there exists a
surjection σ : {1, . . . , r} → F , for some positive integer r . Let
A = σ−1(B) be the inverse image of B under σ. Then σ(A) = B

(because σ is surjective). So it will suffice to show that A is finite.
We have A ⊆ {1, . . . , r}. If A were infinite, by the lemma, there
would exist a mapping ϕ : P → A, such that ϕ(n) ≥ n, for all n ∈ P.
But then n ≤ ϕ(n) ≤ r , for all n, which is absurd for n = r + 1.
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Special Subsets of R Finite and Infinite Sets

Consequences for Infinite Sets

Corollary

Every superset of an infinite set is infinite.

Suppose B ⊇ A. By the theorem, B finite implies A finite. By the
contrapositive, A not finite implies B not finite.

Corollary

If ϕ : P → A is injective, then A is infinite.

If B = ϕ(P) is the range of ϕ, then ϕ defines a bijection P → B . Let
ψ : B → P be the inverse of this bijection. Since ψ(B) = P and P is
infinite, B cannot be finite. But B ⊆ A, so A cannot be finite either.
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Special Subsets of R Finite and Infinite Sets

Characterization of Infinite Sets

The property appearing in the last Corollary characterizes infinite sets:

Theorem

A set A is infinite if and only if there exists an injection P → A.

The “if” part is the Corollary.

Conversely, assuming A infinite, we have to produce a sequence (an)
in A, such that m 6= n ⇒ am 6= an: “Construct” an recursively as
follows: Since A is infinite, it is nonempty. Choose a1 ∈ A. Then
A 6= {a1} (because {a1} is finite), so A− {a1} 6= ∅. Choose
a2 ∈ A− {a1}. Assuming a1, . . . , an already chosen,
A 6= {a1, . . . , an}. Choose an+1 ∈ A− {a1, . . . , an}.
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Special Subsets of R Heine-Borel Covering Theorem

Subsection 5

Heine-Borel Covering Theorem
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Special Subsets of R Heine-Borel Covering Theorem

Coverings, Open Covering and Subcoverings

Definition (Covering)

Let A ⊆ R and let C be a set of subsets of R.

If each point of A belongs to some set in C, we say that C is a
covering of A (or that C covers A). In symbols,

(∀x ∈ A)(∃C ∈ C)(x ∈ C ).

More concisely, A ⊆
⋃

C.
If, moreover, every set in C is an open subset of R, then C is said to be
an open covering of A.
If a covering C of A consists of only a finite number of sets, it is called
a finite covering.

If C is a covering of A and if D ⊆ C is such that D is also a covering
of A, then D is referred to as a subcovering (it is a subset of C and
still a covering of A).
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Examples

Suppose A consists of the terms of a convergent sequence and its
limit, i.e., A = {x} ∪ {xn : n ∈ P}, where xn → x . If C is an open
covering of A, then A is covered by finitely many of the sets in C:

The limit x belongs to one of the sets in C, say x ∈ U ∈ C. Since U is
open, there is an ǫ > 0, with (x − ǫ, x + ǫ) ⊆ U. It follows that
xn ∈ U ultimately, say for n > N. Each of the terms xi , i = 1, . . . ,N,
belongs to some Ui ∈ C, so A is covered by the sets U,U1, . . . ,UN .

In the preceding terminology, every open covering of A admits a finite
subcovering.

Let A be the open interval (2, 5) and let C be the set of all open
intervals (2 + 1

n
, 5− 1

n
), n ∈ P. Then C is an open covering of A, but

no finite set of elements of C can cover A.

Each element of C is a proper subset of A. Moreover, among any
finite set of elements of C, one of them contains all the others. Thus,
C is an open covering of A that admits no finite subcovering.
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Heine-Borel Theorem

Theorem (Heine-Borel Theorem)

If [a, b] is a closed interval in R and C is an open covering of [a, b], then
[a, b] is covered by a finite number of the sets in C.

Let S be the set of all x ∈ [a, b], such that the closed interval [a, x ] is
covered by finitely many sets of C. At least a ∈ S , because
[a, a] = {a} and a belongs to some set in C. We will show that b ∈ S .
At any rate, S is nonempty and bounded. Let

m = supS .

Since S ⊆ [a, b], we have a ≤ m ≤ b. The strategy of the proof is to
show that:

(1) m ∈ S ;
(2) m = b.
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Proof of the Heine-Borel Theorem

(1) Since m ∈ [a, b] ⊆
⋃

C, there is a V ∈ C, such that m ∈ V . Since V

is open, [m − ǫ,m + ǫ] ⊆ V , for some ǫ > 0. Note that we can take ǫ
to be as small as we like. Since m − ǫ < m and m is the least upper
bound of S , there exists x ∈ S , with m− ǫ < x ≤ m. From x ∈ S , we
know that the interval [a, x ] is covered by finitely many sets in C, say
[a, x ] ⊆ U1 ∪ · · · ∪ Ur . On the other hand, [x ,m] ⊆ [m − ǫ,m + ǫ]
⊆ V , so [a,m] = [a, x ] ∪ [x ,m] is covered by the sets V ,U1, . . . ,Ur of
C. This proves that m ∈ S ,

and a little more: [a,m + ǫ] ⊆ V ∪ U1 ∪ · · · ∪ Ur , whence m + ǫ > b,
because m + ǫ ≤ b would imply that m + ǫ ∈ S , contrary to the fact
that every element of S is ≤ m.

(2) The preceding argument shows that b −m < ǫ and the argument is
valid with ǫ replaced by any positive number smaller than ǫ. It follows
that b −m ≤ 0. Thus b ≤ m. Since, already m ≤ b, we get
b = m ∈ S .
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Compact Sets

Definition (Compact Set)

A subset A of R is said to be compact if every open covering of A admits
a finite subcovering.

Theorem (Characterization of Compact Sets)

For a subset A of R, the following conditions are equivalent:

(a) A is compact;

(b) A is bounded and closed.

(a)⇒(b): Suppose A is compact. The open intervals (−n, n), n ∈ P,
have union R, so they certainly cover A. By hypothesis, a finite
number of them suffice to cover A, which means that A ⊆ (−m,m),
for some m. Consequently A is bounded. To show that A is closed,
we need only show that A ⊆ A, equivalently, Ac ⊆ (A)c . Assuming
x 6∈ A, we show that x 6∈ A.
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Compact Sets (Cont’d)

Assuming x 6∈ A, we show that x 6∈ A. We must find a neighborhood
V of x such that V ∩ A = ∅. If a ∈ A, then x 6= a (because x 6∈ A),
so there exist open intervals Ua,Va, such that a ∈ Ua, x ∈ Va and
Ua ∩ Va = ∅. As a varies over A, the sets Ua form an open covering
of A. Suppose A ⊆ Ua1 ∪ · · · ∪ Uar . Let U = Ua1 ∪ · · · ∪ Uar and
V = Va1 ∩ · · · ∩ Var . Then A ⊆ U and V is a neighborhood of x . If
y ∈ Uaj , then y 6∈ Vaj , whence y 6∈ V . It follows that V ∩ U = ∅ (V
misses every term in the formula for U, so it misses their union), and,
consequently, V ∩ A = ∅.
(b)⇒(a): Assume that A is bounded and closed and that C is an
open covering of A. By hypothesis, the set V = R− A is open and A

is contained in some closed interval, say A ⊆ [a, b]. We apply the
Heine-Borel theorem to [a, b]: The points of [a, b] that are in A are
covered by C and what is left, [a, b]− A, is contained in V . We thus
have an open covering of [a, b]: the sets in C, helped out by V . It
follows that [a, b] ⊆ V ∪ U1 ∪ · · · ∪ Ur for suitable U1, . . . ,Ur in C.

George Voutsadakis (LSSU) Real Analysis August 2014 42 / 43



Special Subsets of R Heine-Borel Covering Theorem

Compact Sets (Finishing the Proof)

We showed [a, b] ⊆ V ∪ U1 ∪ · · · ∪ Ur for suitable U1, . . . ,Ur in C.
The set A is contained in [a, b] but is disjoint from V , so
A ⊆ U1 ∪ · · · ∪ Ur is the desired finite subcovering.

Corollary

Every nonempty compact set A ⊆ R has a largest element and a smallest
element.

By the theorem, A is bounded and closed. Let M = supA and choose
a sequence (xn) in A such that xn → M. Then M ∈ A (because A is
closed) and M is obviously the largest element of A. Similarly, inf A
belongs to A and is its smallest element.
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