Introduction to Real Analysis

George Voutsadakis¹

¹Mathematics and Computer Science Lake Superior State University

LSSU Math 421

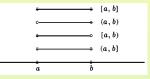
- Intervals
- Closed Sets
- Open Sets, Neighborhoods
- Finite and Infinite Sets
- Heine-Borel Covering Theorem

Subsection 1

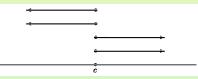
Intervals

Intervals in ${\ensuremath{\mathbb R}}$

- $\bullet\,$ There are nine kinds of subsets of ${\rm I\!R}$ that are called intervals.
 - First, there are [*a*, *b*], (*a*, *b*), [*a*, *b*), (*a*, *b*].



• Next, for each real number c there are the four "half-lines" $\{x \in \mathbb{R} : x \leq c\}, \{x \in \mathbb{R} : x < c\}, \{x \in \mathbb{R} : x \geq c\}$, and $\{x \in \mathbb{R} : x > c\}$.



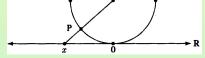
• Finally, \mathbb{R} itself is regarded as an interval (extending indefinitely in both directions).

The Symbols $\pm\infty$

Definition (The Symbols $\pm \infty$)

For every real number x, we write $x < +\infty$ and $x > -\infty$, or, concisely, $-\infty < x < +\infty$. We think of $+\infty$ (read "plus infinity") as a symbol that stands to the right of every point of the real line, and $-\infty$ ("minus infinity") as a symbol that stands to the left of every point of the line. Finally, we write $-\infty < +\infty$.

- A new set ℝ ∪ {-∞, +∞} has been created, by adjoining to ℝ two new elements and specifying the order relations between the new elements -∞ and +∞ and the old ones (those in ℝ).
- A natural correspondence between real numbers x and points P of a semicircle presents the "points at ±∞" as the endpoints of the semicircle:



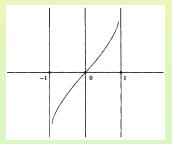
George Voutsadakis (LSSU)

Another Illustration of the Extension

A computationally simpler explanation uses the function
 f: (-1,1) → ℝ, defined by

$$f(x) = \frac{x}{1 - |x|}$$

It is an order-preserving bijection.



• It can be extended (in an order-preserving way) to the closed interval [-1,1] by assigning the values $\pm\infty$ to the endpoints ±1 .

Formal Definition of Intervals

Definition (Unbounded Intervals)

For any real number c, we write

$$\begin{array}{lll} [c,+\infty) &=& \{x \in \mathbb{R} : c \leq x < +\infty\} = \{x \in \mathbb{R} : x \geq c\} \\ (c,+\infty) &=& \{x \in \mathbb{R} : c < x < +\infty\} = \{x \in \mathbb{R} : x > c\} \\ (-\infty,c] &=& \{x \in \mathbb{R} : -\infty < x \leq c\} = \{x \in \mathbb{R} : x \leq c\} \\ (-\infty,c) &=& \{x \in \mathbb{R} : -\infty < x < c\} = \{x \in \mathbb{R} : x < c\} \\ -\infty,+\infty) &=& \{x \in \mathbb{R} : -\infty < x < +\infty\} = \mathbb{R}. \end{array}$$

• When $+\infty$ or $-\infty$ (neither of which is a real number) is used as an "endpoint" of an interval of \mathbb{R} , it is always absent from the interval.

Definition (Intervals)

(-

An **interval** of \mathbb{R} is a subset of \mathbb{R} of one of the following 9 types: $[a, b], (a, b), [a, b), (a, b], [c, +\infty), (c, +\infty), (-\infty, c], (-\infty, c), (-\infty, +\infty)$ $= \mathbb{R}$, where a, b, c are real numbers and $a \leq b$. In particular, the empty set $\emptyset = (a, a) = [a, a) = (a, a]$ and singletons $\{a\} = [a, a]$ qualify as intervals.

Convexity

• The intervals of $\mathbb R$ are characterized by **convexity**:

Theorem

Let A be a nonempty subset of \mathbb{R} . The following conditions are equivalent:

- (a) A is an interval;
- (b) For every pair of points in A, the segment joining them is contained in A; i.e., for all $x, y \in A$, $x \leq y \Rightarrow [x, y] \subseteq A$.
 - (a) \Rightarrow (b) is obvious.
 - (b)⇒(a): There are four cases, according as A is bounded above (or not) and bounded below (or not).
 - A bounded below, but not bounded above: Let a = inf A. We will show that A = (a, +∞) or A = [a, +∞). It suffices to show that (a, +∞) ⊆ A ⊆ [a, +∞). The second inclusion is immediate from the definition of a. Assuming r ∈ (a, +∞), we have to show that r ∈ A. Since r > a = GLBA, there exists x ∈ A, such that a < x < r. Since A is not bounded above, there exists y ∈ A, such that y > r. Thus x < r < y with x, y ∈ A, so r ∈ [x, y] ⊆ A, by the hypothesis.
 2.-4. Similar arguments.

Intersection of a Family of Intervals

Corollary

If S is any set of intervals and $J = \bigcap S$ is their intersection, then J is an interval (possibly empty).

• By definition, J is the set of all real numbers common to all of the intervals belonging to S, i.e.,

$$J = \{r \in \mathbb{R} : r \in I, \text{ for every } I \in S\}.$$

Assuming J nonempty, it will suffice to verify convexity. Suppose $x, y \in J, x < y$. Then $x, y \in I$, for every $I \in S$. By the theorem, $[x, y] \subset I$, for all $I \in S$, and, therefore, $[x, y] \subset J$.

Subsection 2

Closed Sets

Qualitative Differences Between Types of Intervals

- The most important subsets of ${\mathbb R}$ for calculus are the intervals.
- There are differences among intervals, some important, others not:
 - The difference between (0,1) and (0,5) is only a matter of scale; otherwise, the inequalities defining them are qualitatively the same.
 - The intervals (0,1) and $(0,+\infty)$ are different in kind, since one is bounded and the other not.
 - By contrast, the intervals I = (0, 1) and J = [0, 1] prove to have dramatically different properties.
 - The crux is that the endpoints 0, 1 of *I* can be approximated as closely as we like by points of *I* but they are not themselves points of *I*. More precisely, the endpoints of *I*, though not in *I*, are limits of convergent sequences whose terms are in *I*.
 - On the other hand, if a convergent sequence has its terms in *J* then its limit must also be in *J*.

Closed Sets of ${\ensuremath{\mathbb R}}$

Definition (Closed Sets)

A set A of real numbers is said to be a **closed subset** of \mathbb{R} (or to be a **closed set** in \mathbb{R}) if, whenever a convergent sequence has all of its terms in A, the limit of the sequence must also be in A, i.e., if $x_n \to x$ and $x_n \in A$, for all n, then necessarily $x \in A$. (One cannot "escape" from a closed set by means of a convergent sequence!) In symbols,

$$\left. \begin{array}{c} (\forall n)(x_n \in A) \\ x \in \mathbb{R} \\ x_n \to x \end{array} \right\} \Rightarrow x \in A.$$

• Note that the empty subset \emptyset of \mathbb{R} is closed.

Examples of Closed Sets

- \mathbb{R} is a closed subset of \mathbb{R} (there is nowhere else for the limit to go!).
- Every singleton $\{a\}$, for $a \in \mathbb{R}$, is closed (the constant sequence $x_n = a$ converges to a).
- For every real number c, the intervals $[c, +\infty)$ and $(-\infty, c]$ are closed sets.

If $x_n \to x$ and $x_n \ge c$, for all n, then $x \ge c$.

Caution: These are closed sets and they are intervals, but they are not closed intervals. The term "closed interval" is reserved for intervals of the form [a, b].

Some Properties of Closed Sets

Lemma

If A is closed in \mathbb{R} , $x_n \to x$ in \mathbb{R} , and $x_n \in A$ frequently, then $x \in A$.

• By assumption, there is a subsequence (x_{n_k}) with $x_{n_k} \in A$, for all k. Since $x_{n_k} \to x$, $x \in A$, by the definition of a closed set.

Theorem

- (i) \emptyset and \mathbb{R} are closed sets in \mathbb{R} .
- (ii) If A and B are closed sets in \mathbb{R} , then so is their union $A \cup B$.
- (iii) If S is any set of closed sets in \mathbb{R} , then $\bigcap S$ is also a closed set.

(i) Both have been noted.

- (ii) Suppose x_n ∈ A ∪ B, for all n and x_n → x. If x_n ∈ A frequently, then x ∈ A by the lemma. The alternative is that x_n ∈ B ultimately, in which case x ∈ B, again by the lemma. Either way, x ∈ A ∪ B.
 (iii) Let B = ∩ S = {x ∈ ℝ : x ∈ A, for all A ∈ S}. Suppose x_n → x and
 - $x_n \in B$, for all *n*. For each $A \in S$, $x_n \in A$, for all *n*, whence $x \in A$. Thus $x \in A$, for all $A \in S$, and, therefore, $x \in \bigcap S = B$.

Some Applications of the Properties

Every closed interval

$$[a,b] = (-\infty,b] \cap [a,+\infty)$$

is a closed set.

It is the intersection of two closed sets.

• If A_1, \ldots, A_r is a finite list of closed sets in \mathbb{R} , then their union $A_1 \cup \cdots \cup A_r$ is also a closed set.

By Induction on r.

• Every finite subset $A = \{a_1, \ldots, a_r\}$ of \mathbb{R} is a closed set.

 $A = \{a_1\} \cup \cdots \cup \{a_r\}$ is closed since each singleton is closed and a finite union of closed sets is also closed.

Set of all Limits

- If A is a closed set, we know where the limits of its convergent sequences are.
- On the other hand, the set A = (0, 1] contains a convergent sequence - for example $x_n = \frac{1}{n}$ - whose limit is not in A.
- For an arbitrary subset A of \mathbb{R} we may contemplate the set \overline{A} of all real numbers that are limits of sequences whose terms are in A.
- Regardless of the status of A , \overline{A} is always a closed set.

Characterizing the Set of all Limits

Theorem

Let A be any subset of ${\rm I\!R}$ and let

$$\overline{A} = \{x \in \mathbb{R} : a_n o x \text{ for some sequence } (a_n) \text{ in } A\}.$$

Then \overline{A} is the smallest closed set containing A, i.e.,

- (1) $\overline{A} \supseteq A$,
- (2) \overline{A} is a closed set,

(3) if B is a closed set with
$$B \supseteq A$$
, then $B \supseteq \overline{A}$.

Moreover,

- (4) A is closed $\Leftrightarrow \overline{A} = A$;
- (5) \overline{A} is the set of all real numbers that can be approximated as closely as we like by elements of A, i.e.,

$$x \in \overline{A} \Leftrightarrow (orall \epsilon > 0) (\exists a \in A) (|x - a| < \epsilon).$$

Proof of the Theorem

- (1) If $a \in A$, let $a_n = a$, for all n. Then $a_n \to a$, and so $a \in \overline{A}$.
- (3) Assuming B is a closed set with A ⊆ B, we have to show that A ⊆ B. Let x ∈ A, say a_n → x, with a_n ∈ A, for all n. Then a_n ∈ B, for all n (because A ⊆ B), therefore x ∈ B (because B is closed).
- (4) To say that A is closed means that $\overline{A} \subseteq A$. Since $A \subseteq \overline{A}$ automatically, the condition $\overline{A} \subseteq A$ is equivalent to $\overline{A} = A$.
- (5) (⇐): For each positive integer n let \(\epsilon = \frac{1}{n}\) and choose \(a_n \in A\), such that \(|x a_n| < \frac{1}{n}\). Then \(a_n \rightarrow x\) so \(x \in \overline{A}\).
 (⇒): Let \(x \in \overline{A}\), say \(a_n \rightarrow x\), with \(a_n \in A\), for all n. If \(\epsilon > 0\), then \(|x a_n| < \epsilon\), for some n (in fact, ultimately!).
- (2) Assuming x_n → x, with x_n ∈ A, for all n, we have to show that x ∈ A. We apply the criterion of (5): If ε > 0, choose n so that |x x_n| < ε/2; for this n, choose a ∈ A, so that |x_n a| < ε/2. Then |x a| < ε by the triangle inequality.

Closure of a Set

Definition (Closure)

 \overline{A} is called the **closure** of A in \mathbb{R} . Alternatively, the points of \overline{A} are said to be **adherent** to A, and \overline{A} is called the **adherence** of A.

Subsection 3

Open Sets, Neighborhoods

Complement of \overline{A}

 According to the preceding theorem, the meaning of x ∈ A is that for every ε > 0 the interval (x − ε, x + ε) intersects A, i.e.,

$$(\forall \epsilon > 0)((x - \epsilon, x + \epsilon) \cap A \neq \emptyset).$$

 The meaning of x ∉ A is the negation of the preceding condition: there exists an ε > 0, for which the interval (x − ε, x + ε) is disjoint from A, i.e.,

$$(\exists \epsilon > 0)((x - \epsilon, x + \epsilon) \cap A = \emptyset),$$

or, denoting by $A^c = \mathbb{R} - A$, the **complement** of A in \mathbb{R} ,

$$(\exists \epsilon > 0)((x - \epsilon, x + \epsilon) \subseteq A^c).$$

Not only does x belong to A^c , but there is a little "buffer zone" about x that remains in A^c - informally, all points "sufficiently close to x" are in A^c .

Interior Points

Definition (Interior Point)

A point $x \in \mathbb{R}$ is said to be **interior** to a subset A of \mathbb{R} if there exists an r > 0, such that $(x - r, x + r) \subseteq A$, i.e., such that $|y - x| < r \Rightarrow y \in A$. If x is interior to A, one also says that A is a **neighborhood** of x. The set of all interior points of A (there may not be any!) is called the **interior of** A, denoted A° :

 $A^{\circ} = \{x \in \mathbb{R} : x \text{ is interior to } A\}.$

Thus, A° is the set of all points of A of which A is a neighborhood.

- Example: Q has no interior points (i.e., it has empty interior), because every open interval contains an irrational number.
- Example: Assuming a < b, the point a belongs to [a, b) but not to its interior; the interior of [a, b] is (a, b).

Relation Between Closure and Interior

Theorem

If A is any subset of \mathbb{R} , then $x \notin \overline{A} \Leftrightarrow x \in (A^c)^{\circ}$. Thus, $(\overline{A})^c = (A^c)^{\circ}$.

- Thus, the passage from A to its closure \overline{A} is the composite of three operations:
 - take complement,
 - then take interior,
 - then take complement again.
- More precisely, we have

$$\overline{A} = ((A^c)^\circ)^c$$
 and $A^\circ = (\overline{A^c})^c.$

Open Sets

- In general, $A \subseteq \overline{A}$. Equality is a special event (A closed).
- In general, $A^{\circ} \subseteq A$. Again, equality is a special event:

Definition (Open Set)

A subset A of \mathbb{R} is called an **open set** if every point of A is an interior point, i.e.,

$$(\forall x \in A)(\exists \epsilon > 0)((x - \epsilon, x + \epsilon) \subseteq A).$$

Equivalently, A is a neighborhood of each of its points.

- Intuitively, for every point of an open set *A*, there is a buffer zone about the point whose size may depend on the point that is also contained in *A*.
- To say that A is open means that A ⊆ A°; Since A ⊇ A° automatically, an equivalent condition is that A = A°, i.e., A is equal to its interior.

Characterization of Open Sets

Theorem

For a subset A of \mathbb{R} ,

- (i) A is open $\Leftrightarrow A^c$ is closed;
- (ii) A is closed $\Leftrightarrow A^c$ is open.

(i) In general, $A^{\circ} = (\overline{A^{c}})^{c}$, so the following conditions are equivalent:

- A open,
- $A = A^{\circ}$, • $A = (\overline{A^c})^c$,
- $A^c = \overline{A^c}$,
- A^c closed.
- (ii) Apply (i) with A replaced by A^c .

Two Corollaries

Corollary

For every subset A of \mathbb{R} , A° is the largest open subset of A.

Since A° = (A^c)^c is the complement of a closed set, it is open. On the other hand, if U is any open set with U ⊆ A, then U ⊆ A°: If x ∈ U, then x is interior to U, so it is obviously interior to A as well.

Corollary

Let $A \subseteq \mathbb{R}$, $x \in \mathbb{R}$. The following conditions are equivalent:

- (a) A is a neighborhood of x;
- (b) There exists an open set U, such that $x \in U \subseteq A$.
 - (a) \Rightarrow (b): $U = A^{\circ}$ fills the bill.
 - (b)⇒(a): Since x ∈ U and U is open, U is a neighborhood of x. Therefore so is its superset A.

Properties of Open Sets

Theorem

(i) \emptyset and \mathbbm{R} are open sets in \mathbbm{R} .

- (ii) If A and B are open sets in \mathbb{R} , then so is their intersection $A \cap B$.
- (iii) If S is any set of open sets in \mathbb{R} , then $\bigcup S$ is also an open set.
 - (i) $\emptyset = \mathbb{R}^c$ and $\mathbb{R} = \emptyset^c$ are complements of closed sets and so are open.
- (ii) Assuming x ∈ A ∩ B, we have to show that x is interior to A ∩ B. Since x ∈ A and A is open, there is an r > 0, with (x − r, x + r) ⊆ A. Similarly, there is an s > 0, with (x − s, x + s) ⊆ B. If t is the smaller of r and s, then (x − t, x + t) ⊆ A ∩ B, so x is interior to A ∩ B.
 (iii) Let B = US. If x ∈ B, then x ∈ A, for some A ∈ S. By assumption, A is open, so there is an r > 0, with (x − r, x + r) ⊆ A. Since A ⊆ B, it follows that (x − r, x + r) ⊆ B, thus x is interior to B.
 - Note that the proof of Part (ii) shows that if A and B are neighborhoods of x, then so is A ∩ B.

Subsection 4

Finite and Infinite Sets

Finite and Infinite Sets

Definition (Finite and Infinite Sets)

A nonempty set A is said to be **finite** if there exist a positive integer r and a surjection $\{1, \ldots, r\} \rightarrow A$.

Convention: The empty set \emptyset is finite.

A set is said to be **infinite** if it is not finite.

- If $\sigma : \{1, \ldots, r\} \to A$ is a surjection and one writes $x_i = \sigma(i)$, for $i = 1, \ldots, r$, then $A = \sigma(\{1, \ldots, r\}) = \{x_1, \ldots, x_r\}$.
- We also say that x_1, \ldots, x_r is a finite list of elements.
- Example: For each positive integer r, the set $\{1, \ldots, r\}$ is finite. The identity mapping $\{1, \ldots, r\} \rightarrow \{1, \ldots, r\}$ is a surjection.
- Example: The set ℙ of all positive integers is infinite.
 We show that there does not exist a surjection {1,..., r} → ℙ for any r. Assuming r ∈ ℙ and φ : {1,..., r} → ℙ. Let n = 1 + φ(1) + ... + φ(r). Then φ(i) < n, for all i = 1,..., r, whence n is not in the range of φ.

Properties of Finite Sets

Theorem

If $f : X \to Y$ is any function and A is a finite subset of X, then f(A) is a finite subset of Y.

• If $\sigma : \{1, \ldots, r\} \to A$ is surjective, then $i \mapsto f(\sigma(i))$ is a surjection $\{1, \ldots, r\} \to f(A)$.

Theorem

If A_1, \ldots, A_m is a finite list of finite subsets of a set, then $A_1 \cup \cdots \cup A_m$ is also finite.

• For each j = 1, ..., m, there is a positive integer r_j and a surjection $\sigma_j : \{1, ..., r_j\} \rightarrow A_j$. Let $r = r_1 + \cdots + r_m$. We will construct a surjection $\sigma : \{1, ..., r\} \rightarrow A_1 \cup \cdots \cup A_m$. The elements of $\{1, ..., r\}$ can be organized, in ascending order, as a union of m subsets:

Properties of Finite Sets (Cont'd)

$$\{1, \dots, r\} = \{1, \dots, r_1\} \cup \{r_1 + 1, \dots, r_1 + r_2\} \cup \cdots \\ \cup \{r_1 + \dots + r_{m-1} + 1, \dots, r_1 + \dots + r_{m-1} + r_m\} \\ = B_1 \cup B_2 \cup \dots \cup B_m,$$

where the sets B_j are pairwise disjoint. For each j = 1, ..., m the formula $\theta_j(i) = r_1 + \cdots + r_{j-1} + i$ defines a bijection $\theta_j : \{1, ..., r_j\} \to B_j$. Define $\sigma : \{1, ..., r\} \to A_1 \cup \cdots \cup A_m$ as follows: If $k \in \{1, ..., r\}$ then $k \in B_j$, for a unique $j \in \{1, ..., m\}$, so $k = \theta_j(i)$ for a unique $i \in \{1, ..., r_j\}$. Define $\sigma(k) = \sigma_j(i) = \sigma_j(\theta_j^{-1}(k))$. In other words, σ is the unique mapping on $\{1, ..., r\}$ that agrees with $\sigma_j \circ \theta_j^{-1}$ on B_j . It remains to show that σ is surjective:

$$\sigma(\{1,\ldots,r\}) = \sigma(B_1 \cup \cdots \cup B_m)$$

= $\sigma(B_1) \cup \cdots \cup \sigma(B_m)$
= $\sigma_1(\theta_1^{-1}(B_1)) \cup \cdots \cup \sigma_m(\theta_m^{-1}(B_m))$
= $\sigma_1(\{1,\ldots,r_1\}) \cup \cdots \cup \sigma_m(\{1,\ldots,r_m\})$
= $A_1 \cup \cdots \cup A_m$.

Finding Increasing Sequences

Lemma

If $A \subseteq \mathbb{P}$ and A is infinite, then there exists a strictly increasing mapping $\varphi : \mathbb{P} \to A$. In particular, φ is injective and $\varphi(n) \ge n$, for all $n \in \mathbb{P}$.

- Apart from notation, it is the same to show that there exists a sequence (a_n) in A such that $m < n \Rightarrow a_m < a_n$. Define a_n recursively as follows: Since A is not finite, it is nonempty. Let a_1 be the smallest element of A. Then $A \neq \{a_1\}$ (because $\{a_1\}$ is finite and A is not), so $A \{a_1\} \neq \emptyset$. Let a_2 be the smallest element of $A \{a_1\}$. Then $a_2 > a_1$ and $A \neq \{a_1, a_2\}$ (because $\{a_1, a_2\}$ is finite), so $A \{a_1, a_2\}$ has a smallest element a_3 , and $a_3 > a_2$. Assuming a_1, \ldots, a_n already defined, let a_{n+1} be the smallest element of $A \{a_1, \ldots, a_n\}$. The function $\varphi : \mathbb{P} \to A$ defined by $\varphi(n) = a_n$ is strictly increasing. By induction, $\varphi(n) \ge n$, for all n:
 - For, $\varphi(1) \geq 1$;
 - If $\varphi(k) \ge k$, then $\varphi(k+1) > \varphi(k) \ge k$, therefore, $\varphi(k+1) \ge k+1$.

Finite Subsets of Finite Sets

Theorem

Every subset of a finite set is finite.

Suppose F is finite and B ⊆ F. By assumption, there exists a surjection σ : {1,...,r} → F, for some positive integer r. Let A = σ⁻¹(B) be the inverse image of B under σ. Then σ(A) = B (because σ is surjective). So it will suffice to show that A is finite. We have A ⊆ {1,...,r}. If A were infinite, by the lemma, there would exist a mapping φ : ℙ → A, such that φ(n) ≥ n, for all n ∈ ℙ. But then n ≤ φ(n) ≤ r, for all n, which is absurd for n = r + 1.

Consequences for Infinite Sets

Corollary

Every superset of an infinite set is infinite.

Suppose B ⊇ A. By the theorem, B finite implies A finite. By the contrapositive, A not finite implies B not finite.

Corollary

- If $\varphi : \mathbb{P} \to A$ is injective, then A is infinite.
 - If B = φ(P) is the range of φ, then φ defines a bijection P → B. Let ψ : B → P be the inverse of this bijection. Since ψ(B) = P and P is infinite, B cannot be finite. But B ⊆ A, so A cannot be finite either.

Characterization of Infinite Sets

• The property appearing in the last Corollary characterizes infinite sets:

Theorem

A set A is infinite if and only if there exists an injection $\mathbb{P} \to A$.

• The "if" part is the Corollary.

Conversely, assuming A infinite, we have to produce a sequence (a_n) in A, such that $m \neq n \Rightarrow a_m \neq a_n$: "Construct" a_n recursively as follows: Since A is infinite, it is nonempty. Choose $a_1 \in A$. Then $A \neq \{a_1\}$ (because $\{a_1\}$ is finite), so $A - \{a_1\} \neq \emptyset$. Choose $a_2 \in A - \{a_1\}$. Assuming a_1, \ldots, a_n already chosen, $A \neq \{a_1, \ldots, a_n\}$. Choose $a_{n+1} \in A - \{a_1, \ldots, a_n\}$.

Subsection 5

Heine-Borel Covering Theorem

Coverings, Open Covering and Subcoverings

Definition (Covering)

Let $A \subseteq \mathbb{R}$ and let \mathcal{C} be a set of subsets of \mathbb{R} .

If each point of A belongs to some set in C, we say that C is a covering of A (or that C covers A). In symbols,

 $(\forall x \in A)(\exists C \in C)(x \in C).$

More concisely, $A \subseteq \bigcup C$.

- If, moreover, every set in C is an open subset of \mathbb{R} , then C is said to be an **open covering** of A.
- If a covering C of A consists of only a finite number of sets, it is called a **finite covering**.
- If C is a covering of A and if D ⊆ C is such that D is also a covering of A, then D is referred to as a subcovering (it is a subset of C and still a covering of A).

Examples

- Suppose A consists of the terms of a convergent sequence and its limit, i.e., A = {x} ∪ {x_n : n ∈ ℙ}, where x_n → x. If C is an open covering of A, then A is covered by finitely many of the sets in C: The limit x belongs to one of the sets in C, say x ∈ U ∈ C. Since U is open, there is an ε > 0, with (x − ε, x + ε) ⊆ U. It follows that x_n ∈ U ultimately, say for n > N. Each of the terms x_i, i = 1,..., N, belongs to some U_i ∈ C, so A is covered by the sets U, U₁,..., U_N. In the preceding terminology, every open covering of A admits a finite subcovering.
- Let A be the open interval (2,5) and let C be the set of all open intervals (2 + ¹/_n, 5 ¹/_n), n ∈ P. Then C is an open covering of A, but no finite set of elements of C can cover A.

Each element of C is a proper subset of A. Moreover, among any finite set of elements of C, one of them contains all the others. Thus, C is an open covering of A that admits no finite subcovering.

Heine-Borel Theorem

Theorem (Heine-Borel Theorem)

If [a, b] is a closed interval in \mathbb{R} and \mathcal{C} is an open covering of [a, b], then [a, b] is covered by a finite number of the sets in \mathcal{C} .

Let S be the set of all x ∈ [a, b], such that the closed interval [a, x] is covered by finitely many sets of C. At least a ∈ S, because [a, a] = {a} and a belongs to some set in C. We will show that b ∈ S. At any rate, S is nonempty and bounded. Let

$$m = \sup S$$
.

Since $S \subseteq [a, b]$, we have $a \le m \le b$. The strategy of the proof is to show that:

(1) $m \in S$; (2) m = b.

Proof of the Heine-Borel Theorem

(1) Since m ∈ [a, b] ⊆ ∪ C, there is a V ∈ C, such that m ∈ V. Since V is open, [m − ε, m + ε] ⊆ V, for some ε > 0. Note that we can take ε to be as small as we like. Since m − ε < m and m is the least upper bound of S, there exists x ∈ S, with m − ε < x ≤ m. From x ∈ S, we know that the interval [a, x] is covered by finitely many sets in C, say [a, x] ⊆ U₁ ∪ · · · ∪ U_r. On the other hand, [x, m] ⊆ [m − ε, m + ε] ⊆ V, so [a, m] = [a, x] ∪ [x, m] is covered by the sets V, U₁, . . . , U_r of C. This proves that m ∈ S,

and a little more: $[a, m + \epsilon] \subseteq V \cup U_1 \cup \cdots \cup U_r$, whence $m + \epsilon > b$, because $m + \epsilon \leq b$ would imply that $m + \epsilon \in S$, contrary to the fact that every element of S is $\leq m$.

(2) The preceding argument shows that b - m < e and the argument is valid with e replaced by any positive number smaller than e. It follows that b - m ≤ 0. Thus b ≤ m. Since, already m ≤ b, we get b = m ∈ S.

Compact Sets

Definition (Compact Set)

A subset A of \mathbb{R} is said to be **compact** if every open covering of A admits a finite subcovering.

Theorem (Characterization of Compact Sets)

For a subset A of \mathbb{R} , the following conditions are equivalent:

- (a) A is compact;
- (b) A is bounded and closed.
 - (a)⇒(b): Suppose A is compact. The open intervals (-n, n), n ∈ P, have union R, so they certainly cover A. By hypothesis, a finite number of them suffice to cover A, which means that A ⊆ (-m, m), for some m. Consequently A is bounded. To show that A is closed, we need only show that A ⊆ A, equivalently, A^c ⊆ (A)^c. Assuming x ∉ A, we show that x ∉ A.

Compact Sets (Cont'd)

- Assuming $x \notin A$, we show that $x \notin \overline{A}$. We must find a neighborhood V of x such that $V \cap A = \emptyset$. If $a \in A$, then $x \neq a$ (because $x \notin A$), so there exist open intervals U_a , V_a , such that $a \in U_a$, $x \in V_a$ and $U_a \cap V_a = \emptyset$. As a varies over A, the sets U_a form an open covering of A. Suppose $A \subseteq U_{a_1} \cup \cdots \cup U_{a_r}$. Let $U = U_{a_1} \cup \cdots \cup U_{a_r}$ and $V = V_{a_1} \cap \cdots \cap V_{a_r}$. Then $A \subseteq U$ and V is a neighborhood of x. If $y \in U_{a_j}$, then $y \notin V_{a_j}$, whence $y \notin V$. It follows that $V \cap U = \emptyset$ (V misses every term in the formula for U, so it misses their union), and, consequently, $V \cap A = \emptyset$.
- (b)⇒(a): Assume that A is bounded and closed and that C is an open covering of A. By hypothesis, the set V = ℝ A is open and A is contained in some closed interval, say A ⊆ [a, b]. We apply the Heine-Borel theorem to [a, b]: The points of [a, b] that are in A are covered by C and what is left, [a, b] A, is contained in V. We thus have an open covering of [a, b]: the sets in C, helped out by V. It follows that [a, b] ⊆ V ∪ U₁ ∪ · · · ∪ U_r for suitable U₁, ..., U_r in C.

Compact Sets (Finishing the Proof)

• We showed $[a, b] \subseteq V \cup U_1 \cup \cdots \cup U_r$ for suitable U_1, \ldots, U_r in C. The set A is contained in [a, b] but is disjoint from V, so $A \subseteq U_1 \cup \cdots \cup U_r$ is the desired finite subcovering.

Corollary

Every nonempty compact set $A \subseteq \mathbb{R}$ has a largest element and a smallest element.

 By the theorem, A is bounded and closed. Let M = sup A and choose a sequence (x_n) in A such that x_n → M. Then M ∈ A (because A is closed) and M is obviously the largest element of A. Similarly, inf A belongs to A and is its smallest element.