Introduction to Real Analysis

George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science
Lake Superior State University

LSSU Math 421

(1) Continuity

- Functions, Direct Images, Inverse Images
- Continuity at a Point
- Algebra of Continuity
- Continuous Functions
- One-Sided Continuity
- Composition

Subsection 1

Functions, Direct Images, Inverse Images

Image of a Set Under a Function

- A function $f: X \rightarrow Y$ acts on points of X to produce points of Y.
- It is useful to let f also act on subsets of X to produce subsets of Y and vice versa (even if f does not have an inverse function).
- If A is a subset of X we can let f act on all of the elements of A. This action results in a set of elements of Y, i.e., a subset of Y, denoted $f(A)$ and called the image (or direct image) of A under f. In symbols,

$$
f(A)=\{y \in Y: y=f(x), \text { for some } x \in A\}=\{f(x): x \in A\} .
$$

- Note that, if A is a singleton, say $A=\{a\}$, then $f(A)$ is also a singleton: $f(\{a\})=\{f(a)\}$.
- More generally, if x_{1}, \ldots, x_{n} is any finite list of elements of X, then

$$
f\left(\left\{x_{1}, \ldots, x_{n}\right\}\right)=\left\{f\left(x_{1}\right), \ldots, f\left(x_{n}\right)\right\} .
$$

Inverse Image of a Set Under a Function

- In the reverse direction (from Y to X), if B is a subset of Y, we consider the elements x of X that are mapped by f into B, i.e., such that $f(x) \in B$.
- The set of all such elements x (there may not be any!) forms a subset of X (possibly empty), called the inverse image of B under f and denoted $f^{-1}(B)$. In symbols,

$$
f^{-1}(B)=\{x \in X: f(x) \in B\}
$$

- Example: Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the function $f(x)=x^{2}$. Then:
- $f(\{2\})=\{4\}, f(\{-2,2\})=\{4\}$,
- $f^{-1}(\{4\})=\{-2,2\}$,
- $f([0,2])=[0,4]=f([-1,2])$,
- $f^{-1}([0,4])=[-2,2]$,
- $f([0,+\infty))=[0,+\infty)$.

Examples of Image and Inverse Image of a Set

- Example: Let f be the sine function, i.e., define $f: \mathbb{R} \rightarrow \mathbb{R}$ by $f(x)=\sin x$. Then:
- $f(\pi)=0$,
- $f^{-1}(\{0\})=\{n \pi: n \in \mathbb{Z}\}$,
- $f^{-1}(\{\pi\})=\emptyset$,
- $f\left(\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]\right)=[-1,1]=f(\mathbb{R})$,
- $f^{-1}([0,1])=\bigcup_{n \in \mathbb{Z}}[2 n \pi,(2 n+1) \pi]$.

Properties of Images and Inverse Images

Theorem

Let $f: X \rightarrow Y$ be any function.
(1) For subsets A_{1}, A_{2} of $X, A_{1} \subseteq A_{2} \Rightarrow f\left(A_{1}\right) \subseteq f\left(A_{2}\right)$;
(1') For subsets B_{1}, B_{2} of $Y, B_{1} \subseteq B_{2} \Rightarrow f^{-1}\left(B_{1}\right) \subseteq f^{-1}\left(B_{2}\right)$;
(2) $f\left(A_{1} \cup A_{2}\right)=f\left(A_{1}\right) \cup f\left(A_{2}\right)$, for all subsets A_{1}, A_{2} of X;
(2') $f^{-1}\left(B_{1} \cup B_{2}\right)=f^{-1}\left(B_{1}\right) \cup f^{-1}\left(B_{2}\right)$, for all subsets B_{1}, B_{2} of Y;
(3) $f\left(f^{-1}(B)\right) \subseteq B$, for every subset B of Y;
(3') $f^{-1}(f(A)) \supseteq A$, for every subset A of X;
(4') $f^{-1}\left(B_{1} \cap B_{2}\right)=f^{-1}\left(B_{1}\right) \cap f^{-1}\left(B_{2}\right)$, for all subsets B_{1}, B_{2} of Y;
(5') $f^{-1}(Y-B)=X-f^{-1}(B)$, for every subset B of Y.

- There are no (4) and (5) since the obvious formulas that come to mind are, in general, false.

Proof of the Theorem

(1) Assuming $y \in f\left(A_{1}\right)$, we have to show that $y \in f\left(A_{2}\right)$. By assumption, $y=f(x)$, for some $x \in A_{1}$. But $A_{1} \subseteq A_{2}$, so x also belongs to A_{2}, thus, $y=f(x) \in f\left(A_{2}\right)$.
(1') If $x \in f^{-1}\left(B_{1}\right)$, then $f(x) \in B_{1} \subseteq B_{2}$, so $f(x) \in B_{2}$, i.e., $x \in f^{-1}\left(B_{2}\right)$.
(2) For a point y in $Y, y \in f\left(A_{1} \cup A_{2}\right) \Leftrightarrow y=f(x)$, for some x in $A_{1} \cup A_{2}$, $\Leftrightarrow y=f(x)$, for some x in A_{1} or in $A_{2}, \Leftrightarrow y \in f\left(A_{1}\right)$ or $y \in f\left(A_{2}\right)$ $\Leftrightarrow y \in f\left(A_{1}\right) \cup f\left(A_{2}\right)$.
(2') For a point x in $X, x \in f^{-1}\left(B_{1} \cup B_{2}\right) \Leftrightarrow f(x) \in B_{1} \cup B_{2} \Leftrightarrow f(x) \in B_{1}$ or $f(x) \in B_{2} \Leftrightarrow x \in f^{-1}\left(B_{1}\right)$ or $x \in f^{-1}\left(B_{2}\right) \Leftrightarrow x \in f^{-1}\left(B_{1}\right) \cup f^{-1}\left(B_{2}\right)$.
(3) If $x \in f^{-1}(B)$, then $f(x) \in B$. Thus, $f\left(f^{-1}(B)\right) \subseteq B$.
(3') If $x \in A$, then $f(x) \in f(A)$, so $x \in f^{-1}(f(A))$. Thus, $A \subseteq f^{-1}(f(A))$.
(4') For x in $X, x \in f^{-1}\left(B_{1} \cap B_{2}\right) \Leftrightarrow f(x) \in B_{1} \cap B_{2} \Leftrightarrow f(x) \in B_{1}$ and $f(x) \in B_{2} \Leftrightarrow x \in f^{-1}\left(B_{1}\right)$ and $x \in f^{-1}\left(B_{2}\right) \Leftrightarrow x \in f^{-1}\left(B_{1}\right) \cap f^{-1}\left(B_{2}\right)$.
(5') For a point x in $X, x \in f^{-1}(Y-B) \Leftrightarrow f(x) \in Y-B \Leftrightarrow f(x) \notin B$ $\Leftrightarrow x \notin f^{-1}(B) \Leftrightarrow x \in X-f^{-1}(B)$.

Subsection 2

Continuity at a Point

Continuity at a Point

Definition (Continuity at a Point)

Let $f: S \rightarrow R$, where S is a subset of \mathbb{R}, and let $a \in S$. In other words, a is a point of the domain of a real-valued function of a real variable. We say that f is continuous at a if it has the following property:

$$
x_{n} \in S, x_{n} \rightarrow a \Rightarrow f\left(x_{n}\right) \rightarrow f(a)
$$

I.e., if $\left(x_{n}\right)$ is any sequence in S converging to the point a of S, then $\left(f\left(x_{n}\right)\right)$ converges to $f(a)$.
If f is not continuous at a, it is said to be discontinuous at a.

- Example: The identity function $\mathrm{id}_{\mathbb{R}}: \mathbb{R} \rightarrow \mathbb{R}$ is continuous at every $a \in \mathbb{R}$.
- Example: If $f: \mathbb{R} \rightarrow \mathbb{R}$ is a constant function, say $f(x)=c$, for all $x \in \mathbb{R}$, then f is continuous at every $a \in \mathbb{R}$.

More Examples on the Continuity at a Point

- Example: The function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=\left\{\begin{array}{ll}1, & \text { for } x>0 \\ 0, & \text { for } x \leq 0\end{array}\right.$ is discontinuous at $a=0$.
Consider the sequence $x_{n}=\frac{1}{n}$.
- Example: The function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=\left\{\begin{array}{ll}1, & \text { if } x \in \mathbb{Q} \\ 0, & \text { if } x \notin \mathbb{Q}\end{array}\right.$ is discontinuous at every $a \in \mathbb{R}$.
- If a is rational, consider $x_{n}=a+\frac{1}{n} \sqrt{2}$.
- If a is irrational, let x_{n} be a rational number with $a<x_{n}<a+\frac{1}{n}$.

Delta-Epsilon Characterization of Continuity

Theorem

Let $a \in S \subseteq \mathbb{R}$ and $f: S \rightarrow \mathbb{R}$. The following conditions on f are equivalent:
(a) f is continuous at a;
(b) For every $\epsilon>0$, there exists a $\delta>0$, such that $x \in S$, $|x-a|<\delta \Rightarrow|f(x)-f(a)|<\epsilon$.

- (b) \Rightarrow (a): Let $x_{n} \in S, x_{n} \rightarrow a$. We have to show that $f\left(x_{n}\right) \rightarrow f(a)$. Let $\epsilon>0$. We want N, such that $n \geq N \Rightarrow\left|f\left(x_{n}\right)-f(a)\right|<\epsilon$. Choose $\delta>0$ as in (b), then choose N, so that $n \geq N \Rightarrow\left|x_{n}-a\right|<\delta$ (possible because $x_{n} \rightarrow a$). By (b), $n \geq N \Rightarrow\left|f\left(x_{n}\right)-f(a)\right|<\epsilon$.
- \neg (b) $\Rightarrow \neg$ (a): Assume not (b). There exists an $\epsilon>0$, such that, for every $\delta>0$, the implication in (b) fails. Thus, for all $\delta>0$, exists $x \in S$, such that $|x-a|<\delta$ and $|f(x)-f(a)|>\epsilon$. For each $n \in \mathbb{P}$, choose $x_{n} \in S$ so that $\left|x_{n}-a\right|<\frac{1}{n}$ and $\left|f\left(x_{n}\right)-f(a)\right|>\epsilon$. Then $\left(x_{n}\right)$ in S converges to a, but $\left(f\left(x_{n}\right)\right)$ does not converge to $f(a)$.

Characterization of Continuity in \mathbb{R}

Theorem

If $f: \mathbb{R} \rightarrow \mathbb{R}$ and $a \in \mathbb{R}$, the following conditions are equivalent:
(a) f is continuous at a;
(b) For every neighborhood V of $f(a), f^{-1}(V)$ is a neighborhood of a.

- $(\mathrm{a}) \Rightarrow(\mathrm{b})$: Let V be a neighborhood of $f(a)$. Then, there is an $\epsilon>0$, such that $(f(a)-\epsilon, f(a)+\epsilon) \subseteq V$. Since f is continuous, by the preceding theorem, there exists a $\delta>0$, such that $|x-a|<\delta \Rightarrow$ $|f(x)-f(a)|<\epsilon$. I.e., $x \in(a-\delta, a+\delta) \Rightarrow f(x) \in(f(a)-\epsilon, f(a)+\epsilon)$.
Thus, $f((a-\delta, a+\delta)) \subseteq(f(a)-\epsilon, f(a)+\epsilon) \subseteq V$, whence $(a-\delta, a+\delta) \subseteq f^{-1}(V)$, i.e., $f^{-1}(V)$ is a neighborhood of a.
- $(\mathrm{b}) \Rightarrow(\mathrm{a})$: We verify the criterion: Given any $\epsilon>0$, we seek a $\delta>0$.

Since $V=(f(a)-\epsilon, f(a)+\epsilon)$ is a neighborhood of $f(a)$, by hypothesis $f^{-1}(V)$ is a neighborhood of a. So there exists a $\delta>0$, such that $(a-\delta, a+\delta) \subseteq f^{-1}(V)$. This inclusion means that $x \in(a-\delta, a+\delta) \Rightarrow f(x) \in V$, i.e., $|x-a|<\delta \Rightarrow|f(x)-f(a)|<\epsilon$.

Subsection 3

Algebra of Continuity

Algebraic Combinations of Continuous Functions

Theorem

Suppose $a \in S \subseteq \mathbb{R}$ and $f: S \rightarrow \mathbb{R}, g: S \rightarrow \mathbb{R}$ and c be any real number. If f and g are continuous at a, then so are the functions $f+g, f g$ and $c f$.

- The functions in question are defined on S by the formulas $(f+g)(x)=f(x)+g(x),(f g)(x)=f(x) g(x)$ and $(c f)(x)=c f(x)$. If $x_{n} \in S$ and $x_{n} \rightarrow a$, then $f\left(x_{n}\right) \rightarrow f(a)$ and $g\left(x_{n}\right) \rightarrow g(a)$, by the assumptions on f and g. Therefore

$$
(f+g)\left(x_{n}\right)=f\left(x_{n}\right)+g\left(x_{n}\right) \rightarrow f(a)+g(a)=(f+g)(a) .
$$

This shows that $f+g$ is continuous at a.
The proofs for $f g$ and $c f$ are similar.

- Note $c f$ is the special case of $f g$ when g is the constant function equal to c.

Polynomial Functions and Quotient Rule

Corollary (Polynomial Functions)

Every polynomial function $p: \mathbb{R} \rightarrow \mathbb{R}$ is continuous at every point of \mathbb{R}.

- Say $p(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{r} x^{r}, x \in \mathbb{R}$, where the coefficients $a_{0}, a_{1}, \ldots, a_{r}$ are fixed real numbers. If $u: \mathbb{R} \rightarrow \mathbb{R}$ is the identity function $u(x)=x$, then p is a linear combination of powers of $u: p=a_{0} \cdot 1+a_{1} u+a_{2} u^{2}+\cdots+a_{r} u^{r}$. Since u is continuous, so are its powers. Therefore, so is any linear combination of them.

Theorem (Quotient Rule)

Assume that f and g are continuous at a and that g is not zero at any point of S. Then $\frac{f}{g}$ is also continuous at a.

- $\frac{f}{g}: S \rightarrow \mathbb{R}$ is given by $\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}, x \in S$. Note that $\frac{f}{g}$ is defined on the subset $T=\{x \in S: g(x) \neq 0\}$ of S. In the present case, $T=S$. If $x_{n} \in S$ and $x_{n} \rightarrow a$, then $\left(\frac{f}{g}\right)\left(x_{n}\right)=\frac{f\left(x_{n}\right)}{g\left(x_{n}\right)} \rightarrow \frac{f(a)}{g(a)}=\left(\frac{f}{g}\right)(a)$.

Rational Functions

- Suppose $p: \mathbb{R} \rightarrow \mathbb{R}$ and $q: \mathbb{R} \rightarrow \mathbb{R}$ are polynomial functions, q not the zero polynomial. Let $F=\{x \in \mathbb{R}: q(x)=0\}$, which is a finite set (possibly empty):
By the factor theorem of elementary algebra, $q(c)=0$ if and only if the linear polynomial $x-c$ is a factor of q, i.e., $q(x)=(x-c) q_{1}(x)$, for a suitable polynomial q_{1} and for all $x \in \mathbb{R}$. Thus, every root of q splits off a linear factor, so the degree of q puts an upper bound on the number of roots.
Let $r=\frac{p}{q}$ be the quotient function (called a rational function), defined on the set $S=\mathbb{R}-F$ by the formula $r(x)=\frac{p(x)}{q(x)}, x \in S$. If $f=p \upharpoonright S$ and $g=q \upharpoonright S$ are the restrictions of p and q to S, it is clear that f and g are continuous at every point of S, whence so is $r=\frac{f}{g}$.

Subsection 4

Continuous Functions

Continuous Functions

Definition (Continuous Function)

Suppose $f: S \rightarrow \mathbb{R}$, where S is a subset of \mathbb{R}. f is said to be a continuous function (or continuous mapping) if it is continuous at every $a \in S$.

- Example: The polynomial and rational functions discussed in the preceding section are important examples of continuous functions.
- Example: An example not covered by these is the function $x \mapsto|x|$.
- Example: The function $f:[0, \infty) \rightarrow \mathbb{R}$ defined by $f(x)=\sqrt{x}$ is continuous.
For a sequence $\left(x_{n}\right)$ in $[0, \infty),\left(x_{n}\right)$ is null if and only if $\left(\sqrt{x_{n}}\right)$ is null.
This assures continuity at 0 .
If $x>0$ and $x_{n} \rightarrow x$, we substitute x_{n} for y in the inequality $|y-x|=|(\sqrt{y}-\sqrt{x})(\sqrt{y}+\sqrt{x})| \geq|\sqrt{y}-\sqrt{x}| \sqrt{x}$, which holds for all $x>0, y>0$.

Algebraic Properties and Mapping Open/Closed Sets

Theorem

Let S be a nonempty subset of \mathbb{R}.

- If $f: S \rightarrow \mathbb{R}, g: S \rightarrow \mathbb{R}$ are continuous functions and c is any real number, then the functions $f+g, f g$ and $c f$ are also continuous.
- If, moreover, g is not zero at any point of S, then $\frac{f}{g}$ is also continuous.
- The proof follows by the theorems on continuity at a point.

Theorem

For a function $f: \mathbb{R} \rightarrow \mathbb{R}$, the following conditions are equivalent:
(a) f is continuous;
(b) U open $\Rightarrow f^{-1}(U)$ open;
(c) A closed $\Rightarrow f^{-1}(A)$ closed.

Proof of the Theorem

- $(\mathrm{a}) \Rightarrow(\mathrm{c})$: Suppose f is continuous at every point of \mathbb{R}. Let A be a closed subset of \mathbb{R}. Assuming $x_{n} \in f^{-1}(A)$ and $x_{n} \rightarrow x \in \mathbb{R}$, we have to show that $x \in f^{-1}(A)$. Since f is continuous, $f\left(x_{n}\right) \rightarrow f(x)$. But $f\left(x_{n}\right) \in A$ and A is closed, so $f(x) \in A$, i.e., $x \in f^{-1}(A)$.
- (c) $\Rightarrow(\mathrm{b})$: If U is an open set, its complement U^{C} is closed. Thus $f^{-1}\left(U^{c}\right)$ is closed by (c). Then $f^{-1}\left(U^{c}\right)=\left(f^{-1}(U)\right)^{c}$ shows that $f^{-1}(U)$ is the complement of a closed set, whence $f^{-1}(U)$ is open.
- (b) $\Rightarrow(\mathrm{a})$: Given any $a \in \mathbb{R}$, we have to show that f is continuous at a. Let $\epsilon>0$. We seek $\delta>0$, such that $|x-a|<\delta \Rightarrow|f(x)-f(a)|<\epsilon$, i.e., $x \in(a-\delta, a+\delta) \Rightarrow f(x) \in(f(a)-\epsilon, f(a)+\epsilon)$. Equivalently, $(a-\delta, a+\delta) \subseteq f^{-1}((f(a)-\epsilon, f(a)+\epsilon))$. The interval $U=(f(a)-\epsilon, f(a)+\epsilon)$ is an open set, so $f^{-1}(U)$ is open by (b).
Obviously, $f(a) \in U$, so $a \in f^{-1}(U)$. Thus, $f^{-1}(U)$ is a neighborhood of a. Therefore, there exists $\delta>0$, such that $(a-\delta, a+\delta) \subseteq f^{-1}(U)$.

Subsection 5

One-Sided Continuity

One-Sided Behavior

- In discussing functions f defined on an interval $[a, b]$, behavior at the endpoints requires some special treatment (for example, the point a can only be approached from the right).
- Another reason for considering "one-sided" behavior is that "two-sided" behavior can be discussed by breaking it up into "left-behavior" and "right-behavior".
- Example: The function f whose graph is shown on the right has a tangent line problem at the origin:
As x approaches 0 from the right, the $y=-x$ slope of the chord joining $(0,0)$ and $(x, f(x))$ approaches 1 . For x approaching 0 from the left, the slope of the chord approaches -1 . The function fails to have a well-defined "slope" at $(0,0)$ because the "left slope" and "right slope" are different.

Right and Left Neighborhoods

Definition (Right and Left Neighborhood)

Let $a \in N \subseteq \mathbb{R}$.

- We say that N is a right neighborhood of a if there exists an $r>0$, such that $[a, a+r] \subseteq N$.
- If there exists an $s>0$, such that $[a-s, a] \subseteq N$, then N is called a left neighborhood of a.
Thus N is a neighborhood of a in the previous sense if and only if it is both a left neighborhood and a right neighborhood of a.
- Example: If $a<b$, then $[a, b]$ is a right neighborhood of a, a left neighborhood of b, and a neighborhood of each point $x \in(a, b)$.
- If M and N are right neighborhoods of a, then so is $M \cap N$.
- If M is a right neighborhood of a and $M \subseteq N$, then N is also a right neighborhood of a.

Right and Left Continuity

Definition (Right and Left Continuous)

Let $a \in S \subseteq \mathbb{R}, f: S \rightarrow \mathbb{R}$. We say that f is right continuous at a if:
(i) S is a right neighborhood of a;
(ii) If $\left(x_{n}\right)$ is a sequence in S, such that $x_{n}>a$ and $x_{n} \rightarrow a$, then $f\left(x_{n}\right) \rightarrow f(a)$, in symbols,

$$
x_{n} \in S, x_{n}>a, x_{n} \rightarrow a \Rightarrow f\left(x_{n}\right) \rightarrow f(a)
$$

- Left continuity is defined dually, i.e., with "right" replaced by "left" and " $x_{n}>a$ " by " $x_{n}<a$ ".
- Suppose $a \in S \subseteq \mathbb{R}, f: S \rightarrow \mathbb{R}$. Let $T=-S=\{-x: x \in S\}$, and define $g: T \rightarrow \mathbb{R}$ by $g(x)=f(-x)$. Then f is left continuous at a if and only if g is right continuous at $-a$.

Characterization of Right Continuity

Theorem

Suppose $f: S \rightarrow \mathbb{R}$ and S is a right neighborhood of a. The following conditions on f are equivalent:
(a) f is right continuous at a;
(b) For every $\epsilon>0$, there exists a $\delta>0$, such that

$$
a<x<a+\delta \Rightarrow|f(x)-f(a)|<\epsilon
$$

(c) V a neighborhood of $f(a) \Rightarrow f^{-1}(V)$ is a right neighborhood of a.

- $(\mathrm{a}) \Rightarrow(\mathrm{b})$: We prove $\neg(\mathrm{b}) \Rightarrow \neg(\mathrm{a})$. Condition (b) says that for every $\epsilon>0$, there exists a "successful" $\delta>0$. Its negation asserts that there exists an $\epsilon_{0}>0$, for which every $\delta>0$ "fails". In particular, for each $n \in \mathbb{P}, \delta=\frac{1}{n}$ fails, so there exists a point $x_{n} \in S$, with $a<x_{n}<a+\frac{1}{n}$, such that $\left|f\left(x_{n}\right)-f(a)\right| \geq \epsilon_{0}$. Then $x_{n}>a$ and $x_{n} \rightarrow a$ but $\left(f\left(x_{n}\right)\right)$ does not converge to $f(a)$, so f is not right continuous at a.

Characterization of Right Continuity (Cont'd)

- (b) $\Rightarrow(\mathrm{c})$: If V is a neighborhood of $f(a)$, there is an $\epsilon>0$, such that $(f(a)-\epsilon, f(a)+\epsilon) \subseteq V$. Choose $\delta>0$ as in (b). By the implication in $(b), f((a, a+\delta)) \subseteq(f(a)-\epsilon, f(a)+\epsilon) \subseteq V$. Also $f(a) \in V$, so $f([a, a+\delta)) \subseteq V$. Thus, $[a, a+\delta) \subseteq f^{-1}(V)$, whence $f^{-1}(V)$ is a right neighborhood of a.
- (c) \Rightarrow (a): Assuming $x_{n} \in S, x_{n}>a, x_{n} \rightarrow a$, we have to show that $f\left(x_{n}\right) \rightarrow f(a)$. Let $\epsilon>0$. We must show that $\left|f\left(x_{n}\right)-f(a)\right|<\epsilon$ ultimately. Since $V=(f(a)-\epsilon, f(a)+\epsilon)$ is a neighborhood of $f(a)$, by hypothesis $f^{-1}(V)$ is a right neighborhood of a, so there is a $\delta>0$, such that $[a, a+\delta) \subseteq f^{-1}(V)$. Ultimately $x_{n} \in[a, a+\delta)$, whence $f\left(x_{n}\right) \in V$, i.e., $\left|f\left(x_{n}\right)-f(a)\right|<\epsilon$.

Continuity and One-Sided Continuity

Theorem

If $a \in S \subseteq \mathbb{R}$ and $f: S \rightarrow \mathbb{R}$, the following conditions are equivalent:
(a) f is both left and right continuous at a;
(b) S is a neighborhood of a and f is continuous at a.

- $(\mathrm{a}) \Rightarrow(\mathrm{b})$: By the definition of "one-sided continuity", S is both a left and right neighborhood of a, hence is a neighborhood of a. If V is a neighborhood of $f(a)$, then $f^{-1}(V)$ is both a left neighborhood and a right neighborhood of a. So it is a neighborhood of a. In particular, if $\epsilon>0$ and $V=(f(a)-\epsilon, f(a)+\epsilon)$, then there exists a $\delta>0$, such that $(a-\delta, a+\delta) \subseteq f^{-1}(V)$, i.e., $|x-a|<\delta \Rightarrow|f(x)-f(a)|<\epsilon$. Thus, f is continuous at a.
- (b) $\Rightarrow\left(\right.$ a): By assumption, S is a neighborhood of a, and $x_{n} \in S$, $x_{n} \rightarrow$ a imply $f\left(x_{n}\right) \rightarrow f(a)$. In particular, S is a right neighborhood of a and $x_{n} \in S, x_{n}>a, x_{n} \rightarrow a$ imply $f\left(x_{n}\right) \rightarrow f(a)$. Thus, f is right continuous at a. Similarly, f is left continuous at a.

Continuity and One-Sided Continuity on $[a, b]$

Corollary

If $f:[a, b] \rightarrow \mathbb{R}, a<b$, then the following conditions are equivalent:
(a) f is continuous;
(b) f is right continuous at a, left continuous at b, and both left and right continuous at each point of the open interval (a, b).

- In Part (b):
- The first statement means that f is continuous at a;
- The second statement means that f is continuous at b;
- The third statement mean that f is continuous at every point of (a, b).

Thus, (b) holds if and only if f is continuous (on $[a, b]$).

Subsection 6

Composition

Composition of Functions

- The composition of functions - one function followed by another - is familiar from calculus.
- We are given functions $f: X \rightarrow Y$ and $g: Y \rightarrow Z$, where the final set for f is the initial set for g :

For $x \in X$, the correspondence

$$
x \stackrel{f}{\mapsto} f(x) \stackrel{g}{\mapsto} g(f(x))
$$

produces a function $X \rightarrow Z$, called the composite of g and f and denoted $g \circ f$ (verbalized " g circle f "). The defining formula for $g \circ f: X \rightarrow Z$ is

$$
(g \circ f)(x)=g(f(x)), \text { for all } x \in X
$$

Examples

- The simplest situation of all is where $X=Y=Z$. E.g., if $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ are the functions $f(x)=x^{2}+5$ and $g(y)=y^{3}$, then

$$
(g \circ f)(x)=g(f(x))=(f(x))^{3}=\left(x^{2}+5\right)^{3}
$$

Thus $h=g \circ f$ is the function $h(x)=\left(x^{2}+5\right)^{3}$, for all $x \in \mathbb{R}$.

- More general is the case when $f: X \rightarrow Y, g: U \rightarrow V$ and $f(X) \subseteq U$. If $x \in X$, then $f(x) \in f(X) \subseteq U$, so $g(f(x))$ makes sense. Thus, $g \circ f: X \rightarrow V$ can be defined by the same formula

$$
(g \circ f)(x)=g(f(x)), \text { for all } x \in X
$$

Composition and Continuity

Theorem (Composition and Continuity)

Suppose $f: S \rightarrow \mathbb{R}, g: T \rightarrow \mathbb{R}$, where S and T are subsets of \mathbb{R}, such that $f(S) \subseteq T$, and let $a \in S$. If f is continuous at a, and g is continuous at $f(a)$, then $g \circ f$ is continuous at a.

- If $x_{n} \in S, x_{n} \rightarrow a$ then $f\left(x_{n}\right) \rightarrow f(a)$ (because f is continuous at a). Thus, $g\left(f\left(x_{n}\right)\right) \rightarrow g(f(a))$ (because g is continuous at $\left.f(a)\right)$, i.e., $(g \circ f)\left(x_{n}\right) \rightarrow(g \circ f)(a)$.

Corollary

Suppose $f: S \rightarrow \mathbb{R}, g: T \rightarrow \mathbb{R}$, where S and T are subsets of \mathbb{R}, such that $f(S) \subseteq T$. If f and g are continuous functions, then so is $g \circ f$.

- Note, it suffices that f be continuous and that g be continuous at every point of the range $f(S)$ of f.

Composition: Most General Case

- Given two functions $f: X \rightarrow Y$ and $g: U \rightarrow V$, consider

$$
A=\{x \in X: f(x) \in U\} .
$$

A function $g \circ f: A \rightarrow V$ can be defined by the formula

$$
(g \circ f)(x)=g(f(x)), \text { for all } x \in A
$$

- In principle, one can compose any two functions, but the result may be disappointing.
- Example: If f and g are the functions

$$
\begin{array}{ll}
f: \mathbb{R} \rightarrow \mathbb{R}, & f(x)=0, \text { for all } x \in \mathbb{R} \\
g: \mathbb{R}-\{0\} \rightarrow \mathbb{R}, & g(x)=\frac{1}{x}, \text { for all } x \neq 0
\end{array}
$$

The formula for $g \circ f$ is $(g \circ f)(x)=g(f(x))=\frac{1}{f(x)}=\frac{1}{0}$. However, the domain of $g \circ f$ is the empty set.

