Introduction to Real Analysis

George Voutsadakis¹

¹Mathematics and Computer Science Lake Superior State University

LSSU Math 421

- Functions, Direct Images, Inverse Images
- Continuity at a Point
- Algebra of Continuity
- Continuous Functions
- One-Sided Continuity
- Composition

Subsection 1

Functions, Direct Images, Inverse Images

Image of a Set Under a Function

- A function $f : X \to Y$ acts on points of X to produce points of Y.
- It is useful to let f also act on subsets of X to produce subsets of Y and vice versa (even if f does not have an inverse function).
- If A is a subset of X we can let f act on all of the elements of A. This action results in a set of elements of Y, i.e., a subset of Y, denoted f(A) and called the image (or direct image) of A under f. In symbols,

$$f(A) = \{y \in Y : y = f(x), \text{ for some } x \in A\} = \{f(x) : x \in A\}.$$

- Note that, if A is a singleton, say A = {a}, then f(A) is also a singleton: f({a}) = {f(a)}.
- More generally, if x_1, \ldots, x_n is any finite list of elements of X, then

$$f({x_1,...,x_n}) = {f(x_1),...,f(x_n)}.$$

Inverse Image of a Set Under a Function

- In the reverse direction (from Y to X), if B is a subset of Y, we consider the elements x of X that are mapped by f into B, i.e., such that f(x) ∈ B.
- The set of all such elements x (there may not be any!) forms a subset of X (possibly empty), called the inverse image of B under f and denoted f⁻¹(B). In symbols,

$$f^{-1}(B) = \{x \in X : f(x) \in B\}.$$

• Example: Let $f : \mathbb{R} \to \mathbb{R}$ be the function $f(x) = x^2$. Then:

•
$$f(\{2\}) = \{4\}, f(\{-2,2\}) = \{4\},$$

•
$$f^{-1}(\{4\}) = \{-2, 2\},$$

•
$$f([0,2]) = [0,4] = f([-1,2]),$$

•
$$f^{-1}([0,4]) = [-2,2],$$

•
$$f([0, +\infty)) = [0, +\infty).$$

Examples of Image and Inverse Image of a Set

• Example: Let f be the sine function, i.e., define $f : \mathbb{R} \to \mathbb{R}$ by $f(x) = \sin x$. Then:

•
$$f(\pi) = 0,$$

• $f^{-1}(\{0\}) = \{n\pi : n \in \mathbb{Z}\},$
• $f^{-1}(\{\pi\}) = \emptyset,$
• $f([-\frac{\pi}{2}, \frac{\pi}{2}]) = [-1, 1] = f(\mathbb{R}),$
• $f^{-1}([0, 1]) = \bigcup_{n \in \mathbb{Z}} [2n\pi, (2n+1)\pi]$

·].

Properties of Images and Inverse Images

Theorem

Let $f : X \to Y$ be any function.

- (1) For subsets A_1, A_2 of $X, A_1 \subseteq A_2 \Rightarrow f(A_1) \subseteq f(A_2)$;
- (1) For subsets B_1, B_2 of $Y, B_1 \subseteq B_2 \Rightarrow f^{-1}(B_1) \subseteq f^{-1}(B_2)$;
- (2) $f(A_1 \cup A_2) = f(A_1) \cup f(A_2)$, for all subsets A_1, A_2 of X;
- (2) $f^{-1}(B_1 \cup B_2) = f^{-1}(B_1) \cup f^{-1}(B_2)$, for all subsets B_1, B_2 of Y;
- (3) $f(f^{-1}(B)) \subseteq B$, for every subset B of Y;
- (3) $f^{-1}(f(A)) \supseteq A$, for every subset A of X;
- (4') $f^{-1}(B_1 \cap B_2) = f^{-1}(B_1) \cap f^{-1}(B_2)$, for all subsets B_1, B_2 of Y;
- (5') $f^{-1}(Y B) = X f^{-1}(B)$, for every subset B of Y.
 - There are no (4) and (5) since the obvious formulas that come to mind are, in general, false.

Proof of the Theorem

- (1) Assuming $y \in f(A_1)$, we have to show that $y \in f(A_2)$. By assumption, y = f(x), for some $x \in A_1$. But $A_1 \subseteq A_2$, so x also belongs to A_2 , thus, $y = f(x) \in f(A_2)$.
- (1) If $x \in f^{-1}(B_1)$, then $f(x) \in B_1 \subseteq B_2$, so $f(x) \in B_2$, i.e., $x \in f^{-1}(B_2)$.
- (2) For a point y in Y, $y \in f(A_1 \cup A_2) \Leftrightarrow y = f(x)$, for some x in $A_1 \cup A_2$, $\Leftrightarrow y = f(x)$, for some x in A_1 or in A_2 , $\Leftrightarrow y \in f(A_1)$ or $y \in f(A_2)$ $\Leftrightarrow y \in f(A_1) \cup f(A_2)$.
- (2') For a point x in X, $x \in f^{-1}(B_1 \cup B_2) \Leftrightarrow f(x) \in B_1 \cup B_2 \Leftrightarrow f(x) \in B_1$ or $f(x) \in B_2 \Leftrightarrow x \in f^{-1}(B_1)$ or $x \in f^{-1}(B_2) \Leftrightarrow x \in f^{-1}(B_1) \cup f^{-1}(B_2)$.
- (3) If $x \in f^{-1}(B)$, then $f(x) \in B$. Thus, $f(f^{-1}(B)) \subseteq B$.
- (3) If $x \in A$, then $f(x) \in f(A)$, so $x \in f^{-1}(f(A))$. Thus, $A \subseteq f^{-1}(f(A))$.
- (4') For x in X, $x \in f^{-1}(B_1 \cap B_2) \Leftrightarrow f(x) \in B_1 \cap B_2 \Leftrightarrow f(x) \in B_1$ and $f(x) \in B_2 \Leftrightarrow x \in f^{-1}(B_1)$ and $x \in f^{-1}(B_2) \Leftrightarrow x \in f^{-1}(B_1) \cap f^{-1}(B_2)$.
- (5') For a point x in X, $x \in f^{-1}(Y B) \Leftrightarrow f(x) \in Y B \Leftrightarrow f(x) \notin B$ $\Leftrightarrow x \notin f^{-1}(B) \Leftrightarrow x \in X - f^{-1}(B).$

Subsection 2

Continuity at a Point

Continuity at a Point

Definition (Continuity at a Point)

Let $f: S \to R$, where S is a subset of \mathbb{R} , and let $a \in S$. In other words, a is a point of the domain of a real-valued function of a real variable. We say that f is **continuous at** a if it has the following property:

$$x_n \in S, x_n \rightarrow a \Rightarrow f(x_n) \rightarrow f(a).$$

I.e., if (x_n) is any sequence in S converging to the point a of S, then $(f(x_n))$ converges to f(a).

If f is not continuous at a, it is said to be **discontinuous at** a.

- Example: The identity function $id_{\mathbb{R}}: \mathbb{R} \to \mathbb{R}$ is continuous at every $a \in \mathbb{R}$.
- Example: If $f : \mathbb{R} \to \mathbb{R}$ is a constant function, say f(x) = c, for all $x \in \mathbb{R}$, then f is continuous at every $a \in \mathbb{R}$.

More Examples on the Continuity at a Point

- Example: The function f : R → R defined by f(x) = {
 1, for x > 0
 0, for x ≤ 0
 is discontinuous at a = 0.
 Consider the sequence x_n = 1/n.
 Example: The function f : R → R defined by f(x) = {
 1, if x ∈ Q
 0, if x ∉ Q
 is discontinuous at every a ∈ R.

 If a is rational, consider x_n = a + 1/n√2.
 - If a is irrational, let x_n be a rational number with $a < x_n < a + \frac{1}{n}$.

Delta-Epsilon Characterization of Continuity

Theorem

Let $a \in S \subseteq \mathbb{R}$ and $f : S \to \mathbb{R}$. The following conditions on f are equivalent:

- (a) f is continuous at a;
- (b) For every $\epsilon > 0$, there exists a $\delta > 0$, such that $x \in S$, $|x - a| < \delta \Rightarrow |f(x) - f(a)| < \epsilon$.
 - (b)⇒(a): Let x_n ∈ S, x_n → a. We have to show that f(x_n) → f(a). Let ε > 0. We want N, such that n ≥ N ⇒ |f(x_n) f(a)| < ε. Choose δ > 0 as in (b), then choose N, so that n ≥ N ⇒ |x_n a| < δ (possible because x_n → a). By (b), n ≥ N ⇒ |f(x_n) f(a)| < ε.
 ¬(b)⇒¬(a): Assume not (b). There exists an ε > 0, such that, for every δ > 0, the implication in (b) fails. Thus, for all δ > 0, exists x ∈ S, such that |x a| < δ and |f(x) f(a)| > ε. For each n ∈ P, choose x_n ∈ S so that |x_n a| < ¹/_n and |f(x_n) f(a)| > ε. Then (x_n) in S converges to a, but (f(x_n)) does not converge to f(a).

Characterization of Continuity in ${\mathbb R}$

Theorem

- If $f:\mathbb{R}\to\mathbb{R}$ and $a\in\mathbb{R}$, the following conditions are equivalent:
- (a) f is continuous at a;
- (b) For every neighborhood V of f(a), $f^{-1}(V)$ is a neighborhood of a.
 - (a) \Rightarrow (b): Let V be a neighborhood of f(a). Then, there is an $\epsilon > 0$, such that $(f(a) - \epsilon, f(a) + \epsilon) \subseteq V$. Since f is continuous, by the preceding theorem, there exists a $\delta > 0$, such that $|x - a| < \delta \Rightarrow$ $|f(x) - f(a)| < \epsilon$. I.e., $x \in (a - \delta, a + \delta) \Rightarrow f(x) \in (f(a) - \epsilon, f(a) + \epsilon)$. Thus, $f((a - \delta, a + \delta)) \subset (f(a) - \epsilon, f(a) + \epsilon) \subset V$, whence $(a - \delta, a + \delta) \subseteq f^{-1}(V)$, i.e., $f^{-1}(V)$ is a neighborhood of a. • (b) \Rightarrow (a): We verify the criterion: Given any $\epsilon > 0$, we seek a $\delta > 0$. Since $V = (f(a) - \epsilon, f(a) + \epsilon)$ is a neighborhood of f(a), by hypothesis $f^{-1}(V)$ is a neighborhood of a. So there exists a $\delta > 0$, such that $(a - \delta, a + \delta) \subseteq f^{-1}(V)$. This inclusion means that $x \in (a - \delta, a + \delta) \Rightarrow f(x) \in V$, i.e., $|x - a| < \delta \Rightarrow |f(x) - f(a)| < \epsilon$.

Subsection 3

Algebra of Continuity

Algebraic Combinations of Continuous Functions

Theorem

Suppose $a \in S \subseteq \mathbb{R}$ and $f : S \to \mathbb{R}$, $g : S \to \mathbb{R}$ and c be any real number. If f and g are continuous at a, then so are the functions f + g, fg and cf.

• The functions in question are defined on S by the formulas (f + g)(x) = f(x) + g(x), (fg)(x) = f(x)g(x) and (cf)(x) = cf(x). If $x_n \in S$ and $x_n \to a$, then $f(x_n) \to f(a)$ and $g(x_n) \to g(a)$, by the assumptions on f and g. Therefore

 $(f+g)(x_n) = f(x_n) + g(x_n) \rightarrow f(a) + g(a) = (f+g)(a).$

This shows that f + g is continuous at a.

The proofs for fg and cf are similar.

• Note *cf* is the special case of *fg* when *g* is the constant function equal to *c*.

Polynomial Functions and Quotient Rule

Corollary (Polynomial Functions)

Every polynomial function $p : \mathbb{R} \to \mathbb{R}$ is continuous at every point of \mathbb{R} .

Say p(x) = a₀ + a₁x + a₂x² + ··· + a_rx^r, x ∈ ℝ, where the coefficients a₀, a₁, ..., a_r are fixed real numbers. If u : ℝ → ℝ is the identity function u(x) = x, then p is a linear combination of powers of u: p = a₀ · 1 + a₁u + a₂u² + ··· + a_ru^r. Since u is continuous, so are its powers. Therefore, so is any linear combination of them.

Theorem (Quotient Rule)

Assume that f and g are continuous at a and that g is not zero at any point of S. Then $\frac{f}{g}$ is also continuous at a.

•
$$\frac{f}{g}: S \to \mathbb{R}$$
 is given by $(\frac{f}{g})(x) = \frac{f(x)}{g(x)}, x \in S$. Note that $\frac{f}{g}$ is defined
on the subset $T = \{x \in S : g(x) \neq 0\}$ of S. In the present case,
 $T = S$. If $x_n \in S$ and $x_n \to a$, then $(\frac{f}{g})(x_n) = \frac{f(x_n)}{g(x_n)} \to \frac{f(a)}{g(a)} = (\frac{f}{g})(a)$.

Rational Functions

Suppose p: ℝ → ℝ and q: ℝ → ℝ are polynomial functions, q not the zero polynomial. Let F = {x ∈ ℝ : q(x) = 0}, which is a finite set (possibly empty):

By the factor theorem of elementary algebra, q(c) = 0 if and only if the linear polynomial x - c is a factor of q, i.e., $q(x) = (x - c)q_1(x)$, for a suitable polynomial q_1 and for all $x \in \mathbb{R}$. Thus, every root of qsplits off a linear factor, so the degree of q puts an upper bound on the number of roots.

Let $r = \frac{p}{q}$ be the quotient function (called a **rational function**), defined on the set $S = \mathbb{R} - F$ by the formula $r(x) = \frac{p(x)}{q(x)}, x \in S$. If $f = p \upharpoonright S$ and $g = q \upharpoonright S$ are the restrictions of p and q to S, it is clear that f and g are continuous at every point of S, whence so is $r = \frac{f}{g}$.

Subsection 4

Continuous Functions

Continuous Functions

Definition (Continuous Function)

Suppose $f : S \to \mathbb{R}$, where S is a subset of \mathbb{R} . f is said to be a **continuous function** (or **continuous mapping**) if it is continuous at every $a \in S$.

- Example: The polynomial and rational functions discussed in the preceding section are important examples of continuous functions.
- Example: An example not covered by these is the function $x \mapsto |x|$.
- Example: The function $f : [0, \infty) \to \mathbb{R}$ defined by $f(x) = \sqrt{x}$ is continuous.

For a sequence (x_n) in $[0, \infty)$, (x_n) is null if and only if $(\sqrt{x_n})$ is null. This assures continuity at 0.

If x > 0 and $x_n \to x$, we substitute x_n for y in the inequality $|y - x| = |(\sqrt{y} - \sqrt{x})(\sqrt{y} + \sqrt{x})| \ge |\sqrt{y} - \sqrt{x}|\sqrt{x}$, which holds for all x > 0, y > 0.

Algebraic Properties and Mapping Open/Closed Sets

Theorem

Let S be a nonempty subset of \mathbb{R} .

- If $f : S \to \mathbb{R}$, $g : S \to \mathbb{R}$ are continuous functions and c is any real number, then the functions f + g, fg and cf are also continuous.
- If, moreover, g is not zero at any point of S, then $\frac{f}{g}$ is also continuous.
- The proof follows by the theorems on continuity at a point.

Theorem

For a function $f : \mathbb{R} \to \mathbb{R}$, the following conditions are equivalent:

- (a) f is continuous;
- (b) U open $\Rightarrow f^{-1}(U)$ open;
- (c) A closed $\Rightarrow f^{-1}(A)$ closed.

Proof of the Theorem

- (a)⇒(c): Suppose f is continuous at every point of ℝ. Let A be a closed subset of ℝ. Assuming x_n ∈ f⁻¹(A) and x_n → x ∈ ℝ, we have to show that x ∈ f⁻¹(A). Since f is continuous, f(x_n) → f(x). But f(x_n) ∈ A and A is closed, so f(x) ∈ A, i.e., x ∈ f⁻¹(A).
- (c) \Rightarrow (b): If U is an open set, its complement U^c is closed. Thus $f^{-1}(U^c)$ is closed by (c). Then $f^{-1}(U^c) = (f^{-1}(U))^c$ shows that $f^{-1}(U)$ is the complement of a closed set, whence $f^{-1}(U)$ is open.
- (b)⇒(a): Given any a ∈ ℝ, we have to show that f is continuous at a. Let ε > 0. We seek δ > 0, such that |x - a| < δ ⇒ |f(x) - f(a)| < ε, i.e., x ∈ (a - δ, a + δ) ⇒ f(x) ∈ (f(a) - ε, f(a) + ε). Equivalently, (a - δ, a + δ) ⊆ f⁻¹((f(a) - ε, f(a) + ε)). The interval U = (f(a) - ε, f(a) + ε) is an open set, so f⁻¹(U) is open by (b). Obviously, f(a) ∈ U, so a ∈ f⁻¹(U). Thus, f⁻¹(U) is a neighborhood of a. Therefore, there exists δ > 0, such that (a - δ, a + δ) ⊆ f⁻¹(U).

Subsection 5

One-Sided Continuity

One-Sided Behavior

- In discussing functions f defined on an interval [a, b], behavior at the endpoints requires some special treatment (for example, the point a can only be approached from the right).
- Another reason for considering "one-sided" behavior is that "two-sided" behavior can be discussed by breaking it up into "left-behavior" and "right-behavior".
- Example: The function f whose graph is shown on the right has a tangent line problem at the origin:

As x approaches 0 from the right, the slope of the chord joining (0,0) and (x, f(x)) approaches 1. For x approaching 0 from the left, the slope of the chord approaches -1. The function fails to have a well-defined "slope" at (0,0) because the "left slope" and "right slope" are different.

Right and Left Neighborhoods

Definition (Right and Left Neighborhood)

Let $a \in N \subseteq \mathbb{R}$.

- We say that N is a right neighborhood of a if there exists an r > 0, such that [a, a + r] ⊆ N.
- If there exists an s > 0, such that [a s, a] ⊆ N, then N is called a left neighborhood of a.

Thus N is a neighborhood of a in the previous sense if and only if it is both a left neighborhood and a right neighborhood of a.

- Example: If a < b, then [a, b] is a right neighborhood of a, a left neighborhood of b, and a neighborhood of each point x ∈ (a, b).
- If M and N are right neighborhoods of a, then so is $M \cap N$.
- If M is a right neighborhood of a and M ⊆ N, then N is also a right neighborhood of a.

Right and Left Continuity

Definition (Right and Left Continuous)

Let $a \in S \subseteq \mathbb{R}$, $f : S \to \mathbb{R}$. We say that f is **right continuous** at a if:

(i) S is a right neighborhood of a;

(ii) If (x_n) is a sequence in S, such that $x_n > a$ and $x_n \to a$, then $f(x_n) \to f(a)$, in symbols,

$$x_n \in S, x_n > a, x_n \to a \Rightarrow f(x_n) \to f(a).$$

- Left continuity is defined dually, i.e., with "right" replaced by "left" and " $x_n > a$ " by " $x_n < a$ ".
- Suppose $a \in S \subseteq \mathbb{R}$, $f : S \to \mathbb{R}$. Let $T = -S = \{-x : x \in S\}$, and define $g : T \to \mathbb{R}$ by g(x) = f(-x). Then f is left continuous at a if and only if g is right continuous at -a.

Characterization of Right Continuity

Theorem

Suppose $f : S \to \mathbb{R}$ and S is a right neighborhood of a. The following conditions on f are equivalent:

- (a) f is right continuous at a;
- (b) For every $\epsilon > 0$, there exists a $\delta > 0$, such that $a < x < a + \delta \Rightarrow |f(x) f(a)| < \epsilon$;

(c) V a neighborhood of $f(a) \Rightarrow f^{-1}(V)$ is a right neighborhood of a.

(a)⇒(b): We prove ¬(b)⇒ ¬(a). Condition (b) says that for every ε > 0, there exists a "successful" δ > 0. Its negation asserts that there exists an ε₀ > 0, for which every δ > 0 "fails". In particular, for each n ∈ ℙ, δ = 1/n fails, so there exists a point x_n ∈ S, with a < x_n < a + 1/n, such that |f(x_n) - f(a)| ≥ ε₀. Then x_n > a and x_n → a but (f(x_n)) does not converge to f(a), so f is not right continuous at a.

George Voutsadakis (LSSU)

Characterization of Right Continuity (Cont'd)

- (b)⇒(c): If V is a neighborhood of f(a), there is an ε > 0, such that (f(a) ε, f(a) + ε) ⊆ V. Choose δ > 0 as in (b). By the implication in (b), f((a, a + δ)) ⊆ (f(a) ε, f(a) + ε) ⊆ V. Also f(a) ∈ V, so f([a, a + δ)) ⊆ V. Thus, [a, a + δ) ⊆ f⁻¹(V), whence f⁻¹(V) is a right neighborhood of a.
- (c) \Rightarrow (a): Assuming $x_n \in S$, $x_n > a$, $x_n \to a$, we have to show that $f(x_n) \to f(a)$. Let $\epsilon > 0$. We must show that $|f(x_n) f(a)| < \epsilon$ ultimately. Since $V = (f(a) \epsilon, f(a) + \epsilon)$ is a neighborhood of f(a), by hypothesis $f^{-1}(V)$ is a right neighborhood of a, so there is a $\delta > 0$, such that $[a, a + \delta) \subseteq f^{-1}(V)$. Ultimately $x_n \in [a, a + \delta)$, whence $f(x_n) \in V$, i.e., $|f(x_n) f(a)| < \epsilon$.

Continuity and One-Sided Continuity

Theorem

- If $a \in S \subseteq \mathbb{R}$ and $f : S \to \mathbb{R}$, the following conditions are equivalent:
- (a) f is both left and right continuous at a;
- (b) S is a neighborhood of a and f is continuous at a.
 - (a)⇒(b): By the definition of "one-sided continuity", S is both a left and right neighborhood of a, hence is a neighborhood of a. If V is a neighborhood of f(a), then f⁻¹(V) is both a left neighborhood and a right neighborhood of a. So it is a neighborhood of a. In particular, if ε > 0 and V = (f(a) ε, f(a) + ε), then there exists a δ > 0, such that (a δ, a + δ) ⊆ f⁻¹(V), i.e., |x a| < δ ⇒ |f(x) f(a)| < ε. Thus, f is continuous at a.
 - (b)⇒(a): By assumption, S is a neighborhood of a, and x_n ∈ S, x_n → a imply f(x_n) → f(a). In particular, S is a right neighborhood of a and x_n ∈ S, x_n > a, x_n → a imply f(x_n) → f(a). Thus, f is right continuous at a. Similarly, f is left continuous at a.

Continuity and One-Sided Continuity on [a, b]

Corollary

- If $f : [a, b] \rightarrow \mathbb{R}$, a < b, then the following conditions are equivalent:
- (a) f is continuous;
- (b) f is right continuous at a, left continuous at b, and both left and right continuous at each point of the open interval (a, b).
 - In Part (b):
 - The first statement means that f is continuous at a;
 - The second statement means that f is continuous at b;
 - The third statement mean that f is continuous at every point of (a, b).

Thus, (b) holds if and only if f is continuous (on [a, b]).

Subsection 6

Composition

Composition of Functions

- The composition of functions one function followed by another is familiar from calculus.
- We are given functions f : X → Y and g : Y → Z, where the final set for f is the initial set for g:

For $x \in X$, the correspondence

$$x \stackrel{f}{\mapsto} f(x) \stackrel{g}{\mapsto} g(f(x))$$

produces a function $X \to Z$, called the **composite** of g and f and denoted $g \circ f$ (verbalized "g circle f"). The defining formula for $g \circ f : X \to Z$ is $(g \circ f)(x) = g(f(x))$, for all $x \in X$.

Examples

• The simplest situation of all is where X = Y = Z. E.g., if $f : \mathbb{R} \to \mathbb{R}$ and $g : \mathbb{R} \to \mathbb{R}$ are the functions $f(x) = x^2 + 5$ and $g(y) = y^3$, then

$$(g \circ f)(x) = g(f(x)) = (f(x))^3 = (x^2 + 5)^3$$

Thus $h = g \circ f$ is the function $h(x) = (x^2 + 5)^3$, for all $x \in \mathbb{R}$.

More general is the case when f : X → Y, g : U → V and f(X) ⊆ U.
 If x ∈ X, then f(x) ∈ f(X) ⊆ U, so g(f(x)) makes sense. Thus, g ∘ f : X → V can be defined by the same formula

$$(g \circ f)(x) = g(f(x)), \text{ for all } x \in X.$$

Composition and Continuity

Theorem (Composition and Continuity)

Suppose $f : S \to \mathbb{R}$, $g : T \to \mathbb{R}$, where S and T are subsets of \mathbb{R} , such that $f(S) \subseteq T$, and let $a \in S$. If f is continuous at a, and g is continuous at f(a), then $g \circ f$ is continuous at a.

• If $x_n \in S$, $x_n \to a$ then $f(x_n) \to f(a)$ (because f is continuous at a). Thus, $g(f(x_n)) \to g(f(a))$ (because g is continuous at f(a)), i.e., $(g \circ f)(x_n) \to (g \circ f)(a)$.

Corollary

Suppose $f : S \to \mathbb{R}$, $g : T \to \mathbb{R}$, where S and T are subsets of \mathbb{R} , such that $f(S) \subseteq T$. If f and g are continuous functions, then so is $g \circ f$.

• Note, it suffices that f be continuous and that g be continuous at every point of the range f(S) of f.

Composition: Most General Case

• Given two functions $f: X \to Y$ and $g: U \to V$, consider

$$A = \{x \in X : f(x) \in U\}.$$

A function $g \circ f : A \rightarrow V$ can be defined by the formula

$$(g \circ f)(x) = g(f(x)), \text{ for all } x \in A.$$

- In principle, one can compose any two functions, but the result may be disappointing.
- Example: If f and g are the functions

$$f: \mathbb{R} \to \mathbb{R}, \qquad f(x) = 0, \text{ for all } x \in \mathbb{R}, \\ g: \mathbb{R} - \{0\} \to \mathbb{R}, \quad g(x) = \frac{1}{x}, \text{ for all } x \neq 0.$$

The formula for $g \circ f$ is $(g \circ f)(x) = g(f(x)) = \frac{1}{f(x)} = \frac{1}{0}$. However, the domain of $g \circ f$ is the empty set.