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Continuity Functions, Direct Images, Inverse Images

Subsection 1

Functions, Direct Images, Inverse Images

George Voutsadakis (LSSU) Real Analysis August 2014 3 / 34



Continuity Functions, Direct Images, Inverse Images

Image of a Set Under a Function

A function f : X → Y acts on points of X to produce points of Y .

It is useful to let f also act on subsets of X to produce subsets of Y
and vice versa (even if f does not have an inverse function).

If A is a subset of X we can let f act on all of the elements of A.
This action results in a set of elements of Y , i.e., a subset of Y ,
denoted f (A) and called the image (or direct image) of A under f .
In symbols,

f (A) = {y ∈ Y : y = f (x), for some x ∈ A} = {f (x) : x ∈ A}.

Note that, if A is a singleton, say A = {a}, then f (A) is also a
singleton: f ({a}) = {f (a)}.
More generally, if x1, . . . , xn is any finite list of elements of X , then

f ({x1, . . . , xn}) = {f (x1), . . . , f (xn)}.
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Continuity Functions, Direct Images, Inverse Images

Inverse Image of a Set Under a Function

In the reverse direction (from Y to X ), if B is a subset of Y , we
consider the elements x of X that are mapped by f into B , i.e., such
that f (x) ∈ B .

The set of all such elements x (there may not be any!) forms a
subset of X (possibly empty), called the inverse image of B under f
and denoted f −1(B). In symbols,

f −1(B) = {x ∈ X : f (x) ∈ B}.

Example: Let f : R → R be the function f (x) = x2. Then:

f ({2}) = {4}, f ({−2, 2}) = {4},
f −1({4}) = {−2, 2},
f ([0, 2]) = [0, 4] = f ([−1, 2]),
f −1([0, 4]) = [−2, 2],
f ([0,+∞)) = [0,+∞).
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Continuity Functions, Direct Images, Inverse Images

Examples of Image and Inverse Image of a Set

Example: Let f be the sine function, i.e., define f : R → R by
f (x) = sin x . Then:

f (π) = 0,
f −1({0}) = {nπ : n ∈ Z},
f −1({π}) = ∅,
f ([−π

2 ,
π

2 ]) = [−1, 1] = f (R),

f −1([0, 1]) =
⋃

n∈Z
[2nπ, (2n + 1)π].
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Continuity Functions, Direct Images, Inverse Images

Properties of Images and Inverse Images

Theorem

Let f : X → Y be any function.

(1) For subsets A1,A2 of X , A1 ⊆ A2 ⇒ f (A1) ⊆ f (A2);

(1’) For subsets B1,B2 of Y , B1 ⊆ B2 ⇒ f −1(B1) ⊆ f −1(B2);

(2) f (A1 ∪ A2) = f (A1) ∪ f (A2), for all subsets A1,A2 of X ;

(2’) f −1(B1 ∪ B2) = f −1(B1) ∪ f −1(B2), for all subsets B1,B2 of Y ;

(3) f (f −1(B)) ⊆ B , for every subset B of Y ;

(3’) f −1(f (A)) ⊇ A, for every subset A of X ;

(4’) f −1(B1 ∩ B2) = f −1(B1) ∩ f −1(B2), for all subsets B1,B2 of Y ;

(5’) f −1(Y − B) = X − f −1(B), for every subset B of Y .

There are no (4) and (5) since the obvious formulas that come to
mind are, in general, false.
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Continuity Functions, Direct Images, Inverse Images

Proof of the Theorem

(1) Assuming y ∈ f (A1), we have to show that y ∈ f (A2). By assumption,
y = f (x), for some x ∈ A1. But A1 ⊆ A2, so x also belongs to A2, thus,
y = f (x) ∈ f (A2).

(1’) If x ∈ f −1(B1), then f (x) ∈ B1 ⊆ B2, so f (x) ∈ B2, i.e., x ∈ f −1(B2).

(2) For a point y in Y , y ∈ f (A1 ∪ A2) ⇔ y = f (x), for some x in A1 ∪ A2,
⇔ y = f (x), for some x in A1 or in A2, ⇔ y ∈ f (A1) or y ∈ f (A2)
⇔ y ∈ f (A1) ∪ f (A2).

(2’) For a point x in X , x ∈ f −1(B1 ∪ B2) ⇔ f (x) ∈ B1 ∪ B2 ⇔ f (x) ∈ B1 or
f (x) ∈ B2 ⇔ x ∈ f −1(B1) or x ∈ f −1(B2) ⇔ x ∈ f −1(B1) ∪ f −1(B2).

(3) If x ∈ f −1(B), then f (x) ∈ B. Thus, f (f −1(B)) ⊆ B.

(3’) If x ∈ A, then f (x) ∈ f (A), so x ∈ f −1(f (A)). Thus, A ⊆ f −1(f (A)).

(4’) For x in X , x ∈ f −1(B1 ∩ B2) ⇔ f (x) ∈ B1 ∩ B2 ⇔ f (x) ∈ B1 and
f (x) ∈ B2 ⇔ x ∈ f −1(B1) and x ∈ f −1(B2) ⇔ x ∈ f −1(B1) ∩ f −1(B2).

(5’) For a point x in X , x ∈ f −1(Y − B) ⇔ f (x) ∈ Y − B ⇔ f (x) 6∈ B

⇔ x 6∈ f −1(B) ⇔ x ∈ X − f −1(B).
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Continuity Continuity at a Point

Subsection 2

Continuity at a Point
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Continuity Continuity at a Point

Continuity at a Point

Definition (Continuity at a Point)

Let f : S → R , where S is a subset of R, and let a ∈ S . In other words, a
is a point of the domain of a real-valued function of a real variable. We
say that f is continuous at a if it has the following property:

xn ∈ S , xn → a ⇒ f (xn) → f (a).

I.e., if (xn) is any sequence in S converging to the point a of S , then
(f (xn)) converges to f (a).
If f is not continuous at a, it is said to be discontinuous at a.

Example: The identity function idR : R → R is continuous at every
a ∈ R.

Example: If f : R → R is a constant function, say f (x) = c , for all
x ∈ R, then f is continuous at every a ∈ R.
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Continuity Continuity at a Point

More Examples on the Continuity at a Point

Example: The function f : R → R defined by

f (x) =

{

1, for x > 0
0, for x ≤ 0

is discontinuous at a = 0.

Consider the sequence xn = 1
n
.

Example: The function f : R → R defined by

f (x) =

{

1, if x ∈ Q

0, if x 6∈ Q
is discontinuous at every a ∈ R.

If a is rational, consider xn = a+ 1
n

√
2.

If a is irrational, let xn be a rational number with a < xn < a + 1
n
.
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Continuity Continuity at a Point

Delta-Epsilon Characterization of Continuity

Theorem

Let a ∈ S ⊆ R and f : S → R. The following conditions on f are
equivalent:

(a) f is continuous at a;

(b) For every ǫ > 0, there exists a δ > 0, such that x ∈ S ,
|x − a| < δ ⇒ |f (x) − f (a)| < ǫ.

(b)⇒(a): Let xn ∈ S , xn → a. We have to show that f (xn) → f (a).
Let ǫ > 0. We want N, such that n ≥ N ⇒ |f (xn)− f (a)| < ǫ.
Choose δ > 0 as in (b), then choose N, so that n ≥ N ⇒ |xn − a| < δ

(possible because xn → a). By (b), n ≥ N ⇒ |f (xn)− f (a)| < ǫ.

¬(b)⇒¬(a): Assume not (b). There exists an ǫ > 0, such that, for
every δ > 0, the implication in (b) fails. Thus, for all δ > 0, exists
x ∈ S , such that |x − a| < δ and |f (x)− f (a)| > ǫ. For each n ∈ P,
choose xn ∈ S so that |xn − a| < 1

n
and |f (xn)− f (a)| > ǫ. Then (xn)

in S converges to a, but (f (xn)) does not converge to f (a).
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Continuity Continuity at a Point

Characterization of Continuity in R

Theorem

If f : R → R and a ∈ R, the following conditions are equivalent:

(a) f is continuous at a;

(b) For every neighborhood V of f (a), f −1(V ) is a neighborhood of a.

(a)⇒(b): Let V be a neighborhood of f (a). Then, there is an ǫ > 0,
such that (f (a)− ǫ, f (a) + ǫ) ⊆ V . Since f is continuous, by the
preceding theorem, there exists a δ > 0, such that |x − a| < δ ⇒
|f (x)− f (a)| < ǫ. I.e., x ∈ (a− δ, a+ δ) ⇒ f (x) ∈ (f (a)− ǫ, f (a)+ ǫ).
Thus, f ((a − δ, a + δ)) ⊆ (f (a)− ǫ, f (a) + ǫ) ⊆ V , whence
(a − δ, a + δ) ⊆ f −1(V ), i.e., f −1(V ) is a neighborhood of a.

(b)⇒(a): We verify the criterion: Given any ǫ > 0, we seek a δ > 0.
Since V = (f (a)− ǫ, f (a) + ǫ) is a neighborhood of f (a), by
hypothesis f −1(V ) is a neighborhood of a. So there exists a δ > 0,
such that (a − δ, a + δ) ⊆ f −1(V ). This inclusion means that
x ∈ (a − δ, a + δ) ⇒ f (x) ∈ V , i.e., |x − a| < δ ⇒ |f (x)− f (a)| < ǫ.

George Voutsadakis (LSSU) Real Analysis August 2014 13 / 34



Continuity Algebra of Continuity

Subsection 3

Algebra of Continuity
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Continuity Algebra of Continuity

Algebraic Combinations of Continuous Functions

Theorem

Suppose a ∈ S ⊆ R and f : S → R, g : S → R and c be any real number.
If f and g are continuous at a, then so are the functions f + g , fg and cf .

The functions in question are defined on S by the formulas
(f + g)(x) = f (x) + g(x), (fg)(x) = f (x)g(x) and (cf )(x) = cf (x).
If xn ∈ S and xn → a, then f (xn) → f (a) and g(xn) → g(a), by the
assumptions on f and g . Therefore

(f + g)(xn) = f (xn) + g(xn) → f (a) + g(a) = (f + g)(a).

This shows that f + g is continuous at a.

The proofs for fg and cf are similar.

Note cf is the special case of fg when g is the constant function
equal to c .
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Continuity Algebra of Continuity

Polynomial Functions and Quotient Rule

Corollary (Polynomial Functions)

Every polynomial function p : R → R is continuous at every point of R.

Say p(x) = a0 + a1x + a2x
2 + · · ·+ arx

r , x ∈ R, where the
coefficients a0, a1, . . . , ar are fixed real numbers. If u : R → R is the
identity function u(x) = x , then p is a linear combination of powers
of u: p = a0 · 1 + a1u + a2u

2 + · · ·+ aru
r . Since u is continuous, so

are its powers. Therefore, so is any linear combination of them.

Theorem (Quotient Rule)

Assume that f and g are continuous at a and that g is not zero at any
point of S . Then f

g
is also continuous at a.

f
g
: S → R is given by ( f

g
)(x) = f (x)

g(x) , x ∈ S . Note that f
g
is defined

on the subset T = {x ∈ S : g(x) 6= 0} of S . In the present case,

T = S . If xn ∈ S and xn → a, then ( f
g
)(xn) =

f (xn)
g(xn)

→ f (a)
g(a) = ( f

g
)(a).
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Continuity Algebra of Continuity

Rational Functions

Suppose p : R → R and q : R → R are polynomial functions, q not
the zero polynomial. Let F = {x ∈ R : q(x) = 0}, which is a finite
set (possibly empty):

By the factor theorem of elementary algebra, q(c) = 0 if and only if
the linear polynomial x − c is a factor of q, i.e., q(x) = (x − c)q1(x),
for a suitable polynomial q1 and for all x ∈ R. Thus, every root of q
splits off a linear factor, so the degree of q puts an upper bound on
the number of roots.

Let r = p
q
be the quotient function (called a rational function),

defined on the set S = R− F by the formula r(x) = p(x)
q(x) , x ∈ S . If

f = p ↾ S and g = q ↾ S are the restrictions of p and q to S , it is
clear that f and g are continuous at every point of S , whence so is
r = f

g
.
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Continuity Continuous Functions

Subsection 4

Continuous Functions
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Continuity Continuous Functions

Continuous Functions

Definition (Continuous Function)

Suppose f : S → R, where S is a subset of R. f is said to be a
continuous function (or continuous mapping) if it is continuous at
every a ∈ S .

Example: The polynomial and rational functions discussed in the
preceding section are important examples of continuous functions.

Example: An example not covered by these is the function x 7→ |x |.
Example: The function f : [0,∞) → R defined by f (x) =

√
x is

continuous.

For a sequence (xn) in [0,∞), (xn) is null if and only if (
√
xn) is null.

This assures continuity at 0.
If x > 0 and xn → x , we substitute xn for y in the inequality
|y − x | = |(√y −√

x)(
√
y +

√
x)| ≥ |√y −√

x |√x , which holds for
all x > 0, y > 0.
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Continuity Continuous Functions

Algebraic Properties and Mapping Open/Closed Sets

Theorem

Let S be a nonempty subset of R.

If f : S → R, g : S → R are continuous functions and c is any real
number, then the functions f + g , fg and cf are also continuous.

If, moreover, g is not zero at any point of S , then f
g
is also

continuous.

The proof follows by the theorems on continuity at a point.

Theorem

For a function f : R → R, the following conditions are equivalent:

(a) f is continuous;

(b) U open ⇒ f −1(U) open;

(c) A closed ⇒ f −1(A) closed.
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Continuity Continuous Functions

Proof of the Theorem

(a)⇒(c): Suppose f is continuous at every point of R. Let A be a
closed subset of R. Assuming xn ∈ f −1(A) and xn → x ∈ R, we have
to show that x ∈ f −1(A). Since f is continuous, f (xn) → f (x). But
f (xn) ∈ A and A is closed, so f (x) ∈ A, i.e., x ∈ f −1(A).

(c)⇒(b): If U is an open set, its complement Uc is closed. Thus
f −1(Uc) is closed by (c). Then f −1(Uc) = (f −1(U))c shows that
f −1(U) is the complement of a closed set, whence f −1(U) is open.

(b)⇒(a): Given any a ∈ R, we have to show that f is continuous at a.
Let ǫ > 0. We seek δ > 0, such that |x − a| < δ ⇒ |f (x)− f (a)| < ǫ,
i.e., x ∈ (a − δ, a + δ) ⇒ f (x) ∈ (f (a)− ǫ, f (a) + ǫ). Equivalently,
(a − δ, a + δ) ⊆ f −1((f (a)− ǫ, f (a) + ǫ)). The interval
U = (f (a)− ǫ, f (a) + ǫ) is an open set, so f −1(U) is open by (b).
Obviously, f (a) ∈ U, so a ∈ f −1(U). Thus, f −1(U) is a neighborhood
of a. Therefore, there exists δ > 0, such that (a− δ, a+ δ) ⊆ f −1(U).
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Continuity One-Sided Continuity

Subsection 5

One-Sided Continuity
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Continuity One-Sided Continuity

One-Sided Behavior

In discussing functions f defined on an interval [a, b], behavior at the
endpoints requires some special treatment (for example, the point a
can only be approached from the right).

Another reason for considering “one-sided” behavior is that
“two-sided” behavior can be discussed by breaking it up into
“left-behavior” and “right-behavior”.

Example: The function f whose graph is shown on the right has a
tangent line problem at the origin:

As x approaches 0 from the right, the
slope of the chord joining (0, 0) and
(x , f (x)) approaches 1. For x approach-
ing 0 from the left, the slope of the chord
approaches −1. The function fails to
have a well-defined “slope” at (0, 0) be-
cause the “left slope” and “right slope”
are different.
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Continuity One-Sided Continuity

Right and Left Neighborhoods

Definition (Right and Left Neighborhood)

Let a ∈ N ⊆ R.

We say that N is a right neighborhood of a if there exists an r > 0,
such that [a, a + r ] ⊆ N.

If there exists an s > 0, such that [a − s, a] ⊆ N, then N is called a
left neighborhood of a.

Thus N is a neighborhood of a in the previous sense if and only if it is
both a left neighborhood and a right neighborhood of a.

Example: If a < b, then [a, b] is a right neighborhood of a, a left
neighborhood of b, and a neighborhood of each point x ∈ (a, b).

If M and N are right neighborhoods of a, then so is M ∩ N.

If M is a right neighborhood of a and M ⊆ N, then N is also a right
neighborhood of a.
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Continuity One-Sided Continuity

Right and Left Continuity

Definition (Right and Left Continuous)

Let a ∈ S ⊆ R, f : S → R. We say that f is right continuous at a if:

(i) S is a right neighborhood of a;

(ii) If (xn) is a sequence in S , such that xn > a and xn → a, then
f (xn) → f (a), in symbols,

xn ∈ S , xn > a, xn → a ⇒ f (xn) → f (a).

Left continuity is defined dually, i.e., with “right” replaced by “left”
and “xn > a” by “xn < a”.

Suppose a ∈ S ⊆ R, f : S → R. Let T = −S = {−x : x ∈ S}, and
define g : T → R by g(x) = f (−x). Then f is left continuous at a if
and only if g is right continuous at −a.
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Continuity One-Sided Continuity

Characterization of Right Continuity

Theorem

Suppose f : S → R and S is a right neighborhood of a. The following
conditions on f are equivalent:

(a) f is right continuous at a;

(b) For every ǫ > 0, there exists a δ > 0, such that
a < x < a + δ ⇒ |f (x)− f (a)| < ǫ;

(c) V a neighborhood of f (a) ⇒ f −1(V ) is a right neighborhood of a.

(a)⇒(b): We prove ¬(b)⇒ ¬(a). Condition (b) says that for every
ǫ > 0, there exists a “successful” δ > 0. Its negation asserts that
there exists an ǫ0 > 0, for which every δ > 0 “fails”. In particular, for
each n ∈ P, δ = 1

n
fails, so there exists a point xn ∈ S , with

a < xn < a + 1
n
, such that |f (xn)− f (a)| ≥ ǫ0. Then xn > a and

xn → a but (f (xn)) does not converge to f (a), so f is not right
continuous at a.
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Continuity One-Sided Continuity

Characterization of Right Continuity (Cont’d)

(b)⇒(c): If V is a neighborhood of f (a), there is an ǫ > 0, such that
(f (a)− ǫ, f (a) + ǫ) ⊆ V . Choose δ > 0 as in (b). By the implication
in (b), f ((a, a + δ)) ⊆ (f (a)− ǫ, f (a) + ǫ) ⊆ V . Also f (a) ∈ V , so
f ([a, a + δ)) ⊆ V . Thus, [a, a + δ) ⊆ f −1(V ), whence f −1(V ) is a
right neighborhood of a.

(c)⇒(a): Assuming xn ∈ S , xn > a, xn → a, we have to show that
f (xn) → f (a). Let ǫ > 0. We must show that |f (xn)− f (a)| < ǫ

ultimately. Since V = (f (a)− ǫ, f (a) + ǫ) is a neighborhood of f (a),
by hypothesis f −1(V ) is a right neighborhood of a, so there is a
δ > 0, such that [a, a + δ) ⊆ f −1(V ). Ultimately xn ∈ [a, a + δ),
whence f (xn) ∈ V , i.e., |f (xn)− f (a)| < ǫ.
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Continuity One-Sided Continuity

Continuity and One-Sided Continuity

Theorem

If a ∈ S ⊆ R and f : S → R, the following conditions are equivalent:

(a) f is both left and right continuous at a;

(b) S is a neighborhood of a and f is continuous at a.

(a)⇒(b): By the definition of “one-sided continuity”, S is both a left
and right neighborhood of a, hence is a neighborhood of a. If V is a
neighborhood of f (a), then f −1(V ) is both a left neighborhood and a
right neighborhood of a. So it is a neighborhood of a. In particular, if
ǫ > 0 and V = (f (a)− ǫ, f (a) + ǫ), then there exists a δ > 0, such
that (a − δ, a + δ) ⊆ f −1(V ), i.e., |x − a| < δ ⇒ |f (x)− f (a)| < ǫ.
Thus, f is continuous at a.

(b)⇒(a): By assumption, S is a neighborhood of a, and xn ∈ S ,
xn → a imply f (xn) → f (a). In particular, S is a right neighborhood
of a and xn ∈ S , xn > a, xn → a imply f (xn) → f (a). Thus, f is right
continuous at a. Similarly, f is left continuous at a.
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Continuity One-Sided Continuity

Continuity and One-Sided Continuity on [a, b]

Corollary

If f : [a, b] → R, a < b, then the following conditions are equivalent:

(a) f is continuous;

(b) f is right continuous at a, left continuous at b, and both left and
right continuous at each point of the open interval (a, b).

In Part (b):

The first statement means that f is continuous at a;
The second statement means that f is continuous at b;
The third statement mean that f is continuous at every point of (a, b).

Thus, (b) holds if and only if f is continuous (on [a, b]).
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Continuity Composition

Subsection 6

Composition

George Voutsadakis (LSSU) Real Analysis August 2014 30 / 34



Continuity Composition

Composition of Functions

The composition of functions - one function followed by another - is
familiar from calculus.

We are given functions f : X → Y and g : Y → Z , where the final
set for f is the initial set for g :

X Z✲
g ◦ f

Y

f
�
�
�✒

g
❅
❅
❅❘

For x ∈ X , the correspondence

x
f7→ f (x)

g7→ g(f (x))

produces a function X → Z , called the composite of g and f and
denoted g ◦ f (verbalized “g circle f ”). The defining formula for
g ◦ f : X → Z is

(g ◦ f )(x) = g(f (x)), for all x ∈ X .
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Continuity Composition

Examples

The simplest situation of all is where X = Y = Z . E.g., if f : R → R

and g : R → R are the functions f (x) = x2 + 5 and g(y) = y3, then

(g ◦ f )(x) = g(f (x)) = (f (x))3 = (x2 + 5)3.

Thus h = g ◦ f is the function h(x) = (x2 + 5)3, for all x ∈ R.

More general is the case when f : X → Y , g : U → V and f (X ) ⊆ U.
If x ∈ X , then f (x) ∈ f (X ) ⊆ U, so g(f (x)) makes sense. Thus,
g ◦ f : X → V can be defined by the same formula

(g ◦ f )(x) = g(f (x)), for all x ∈ X .
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Continuity Composition

Composition and Continuity

Theorem (Composition and Continuity)

Suppose f : S → R, g : T → R, where S and T are subsets of R, such
that f (S) ⊆ T , and let a ∈ S . If f is continuous at a, and g is continuous
at f (a), then g ◦ f is continuous at a.

If xn ∈ S , xn → a then f (xn) → f (a) (because f is continuous at a).
Thus, g(f (xn)) → g(f (a)) (because g is continuous at f (a)), i.e.,
(g ◦ f )(xn) → (g ◦ f )(a).

Corollary

Suppose f : S → R, g : T → R, where S and T are subsets of R, such
that f (S) ⊆ T . If f and g are continuous functions, then so is g ◦ f .

Note, it suffices that f be continuous and that g be continuous at
every point of the range f (S) of f .
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Composition: Most General Case

Given two functions f : X → Y and g : U → V , consider

A = {x ∈ X : f (x) ∈ U}.

A function g ◦ f : A → V can be defined by the formula

(g ◦ f )(x) = g(f (x)), for all x ∈ A.

In principle, one can compose any two functions, but the result may
be disappointing.

Example: If f and g are the functions

f : R → R, f (x) = 0, for all x ∈ R,
g : R− {0} → R, g(x) = 1

x
, for all x 6= 0.

The formula for g ◦ f is (g ◦ f )(x) = g(f (x)) = 1
f (x) =

1
0 . However,

the domain of g ◦ f is the empty set.
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