Introduction to Real Analysis

George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science
Lake Superior State University

LSSU Math 421

(1) Continuous Functions on an Interval

- Intermediate Value Theorem
- n-th Roots
- Continuous Functions on a Closed Interval
- Monotonic Continuous Functions
- Inverse Function Theorem
- Uniform Continuity

Subsection 1

Intermediate Value Theorem

Zero Values in a Closed Interval

Lemma

If $f:[a, b] \rightarrow \mathbb{R}$ is a continuous function such that $f(a) f(b)<0$, then there exists a point $c \in(a, b)$ such that $f(c)=0$.

- We can suppose $f(a)>0$ and $f(b)<0$ (otherwise consider $-f$). The idea is that there are points x in $[a, b]$ (for example, $x=a$) for which $f(x) \geq 0$, and b is not one of them. The "last" such point x is a likely candidate for c.
The set $A=\{x \in[a, b]: f(x) \geq 0\}$ is nonempty (because $a \in A$) and bounded. It is also closed: If $x_{n} \in A$ and $x_{n} \rightarrow x$, then $x \in[a, b]$ and $f\left(x_{n}\right) \rightarrow f(x)$ by the continuity of f. Since $f\left(x_{n}\right) \geq 0$ for all n, $f(x) \geq 0$. Thus $x \in A$.
Let c be the largest element of A. In particular, $f(c) \geq 0$, whence $c \neq b$, and, thus, $c<b$. If $c<x<b$, then $x \notin A$ (all elements of A are $\leq c$), so $f(x)<0$. Choose a sequence $\left(x_{n}\right)$, with $c<x_{n}<b$ and $x_{n} \rightarrow c$. Then $f(c)=\lim f\left(x_{n}\right) \leq 0$, and, therefore, $f(c)=0$.

Intermediate Value Theorem

Theorem. (Intermediate Value Theorem)

If I is an internal in \mathbb{R} and $f: I \rightarrow \mathbb{R}$ is continuous, then $f(I)$ is also an interval.

- Assuming $r, s \in f(I), r<s$, it will suffice to show that $[r, s] \subseteq f(I)$. Let $r<k<s$. We seek $c \in I$, such that $f(c)=k$. (The theorem says that, if r and s are values of f, then so is every number between r and s.) By assumption, $r=f(a)$ and $s=f(b)$, for suitable points a, b of I. Since $r \neq s$, also $a \neq b$. Let J be the closed interval with endpoints a and b. Since I is an interval, $J \subseteq I$. Define $g: J \rightarrow \mathbb{R}$ by the formula $g(x)=f(x)-k, x \in J$. Since f is continuous, so is g. Note that $g(a)=f(a)-k=r-k<0, g(b)=f(b)-k=s-k>0$. By the lemma, there exists a point $c \in J$, such that $g(c)=0$. Thus $c \in I$ and $f(c)-k=0$, whence $k=f(c) \in f(I)$.

Consequences of the Theorem

Corollary

Let I be an interval in \mathbb{R} and $f: I \rightarrow \mathbb{R}$ continuous on I. If f is not zero at any point of I, then either $f(x)>0$, for all $x \in I$, or $f(x)<0$, for all $x \in I$.

- The alternative is that $f(a)<0$ and $f(b)>0$ for suitable points a, b of I. Then $0 \in f(I)$ by the theorem, contrary to the hypothesis on f.

Corollary

If $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous and I is any interval in \mathbb{R}, then $f(I)$ is also an interval.

- Apply the theorem to $f \Gamma_{I}: I \rightarrow \mathbb{R}$ (the restriction of f to I).

Subsection 2

n-th Roots

Bijectivity of $f(x)=x^{n}$ on $[0,+\infty)$

- The Dedekind cut technique used to construct square roots, can be adapted to higher-order roots, but the Intermediate Value Theorem provides an efficient shortcut:

Theorem

If n is a positive integer and $f:[0,+\infty) \rightarrow[0,+\infty)$ is the function defined by $f(x)=x^{n}$, then f is bijective.

- We have proved, based on the order axioms of an ordered field, that $f(a)=f(b) \Rightarrow a=b$. So f is injective. Write $I=[0,+\infty)$. Then $f: I \rightarrow I$ and it remains to show that f is surjective, i.e., that $f(I)=I$:
Since f is continuous, its range $f(I)$ is an interval. From $f(0)=0$ we have $0 \in f(I)$. An easy induction argument shows that $f(k) \geq k$, for every positive integer k. It follows that $[0, k] \subseteq f(I)$ for all $k \in \mathbb{P}$, whence (Archimedes) $[0,+\infty) \subseteq f(I)$. Thus, $I \subseteq f(I) \subseteq I$.

n-th Roots

Definition (n-th Root)

If $x \geq 0$ and n is a positive integer, the unique $y \geq 0$ such that $y^{n}=x$ is called the n-th root of x, written $\sqrt[n]{x}\left(\right.$ or $\left.x^{1 / n}\right)$.

Corollary

If n is an odd positive integer and $g: \mathbb{R} \rightarrow \mathbb{R}$ is the function defined by $g(x)=x^{n}$, then g is bijective.

- We know that $g(\mathbb{R})$ is an interval, and $g(\mathbb{R})$ contains $[0,+\infty)$, by the preceding theorem. Since $g(-x)=-g(x)$ (because n is odd), we get that $g(\mathbb{R})$ also contains $(-\infty, 0]$, and, thus, is equal to \mathbb{R}. Injectivity follows from the theorem since x and $g(x)$ have the same sign.

Definition (n-th Root)

If $x \in \mathbb{R}$ and $n \in \mathbb{P}$ is odd, the unique real number y such that $y^{n}=x$ is called the n-th root of x, written $\sqrt[n]{x}\left(\right.$ or $\left.x^{1 / n}\right)$. Of course, when $x \geq 0$, this is consistent with the preceding definition.

Subsection 3

Continuous Functions on a Closed Interval

Continuous Image of Closed Interval

Theorem

If $f:[a, b] \rightarrow \mathbb{R}$ is continuous, then the range of f is a closed interval.

- Write $I=[a, b]$. We know that $f(I)$ is an interval. We need only show that $f(I)$ is: (i) bounded; (ii) a closed set.
(i) The claim is that $\{|f(x)|: x \in I\}$ is bounded above. Assume to the contrary. For each positive integer n, choose $x_{n} \in I$, such that $\left|f\left(x_{n}\right)\right|>n$. It is clear that no subsequence of $\left(f\left(x_{n}\right)\right)$ is bounded. However, $\left(x_{n}\right)$ is bounded, so it has a convergent subsequence (Bolzano-Weierstraß), say $x_{n_{k}} \rightarrow x$. Then, since I is closed, $x \in I$, and $f\left(x_{n_{k}}\right) \rightarrow f(x)$. In particular, $\left(f\left(x_{n_{k}}\right)\right)$ is bounded, a contradiction.
(ii) Suppose $y_{n} \in f(I), y_{n} \rightarrow y$. We have to show that $y \in f(I)$. Say $y_{n}=f\left(x_{n}\right), x_{n} \in I$. Passing to a subsequence, we can suppose $x_{n} \rightarrow x \in \mathbb{R}$. As in the proof of (i), $x \in I$ and $f\left(x_{n}\right) \rightarrow f(x)$, i.e., $y_{n} \rightarrow f(x)$, But $y_{n} \rightarrow y$, so $y=f(x) \in f(I)$.

Consequences of Closed Image

Corollary (Weierstraß)

If $f:[a, b] \rightarrow \mathbb{R}$ is continuous, then f takes on a smallest value and a largest value.

- By the theorem, $f([a, b])=[m, M]$, for suitable m and M. Thus, if $m=f(c)$ and $M=f(d)$, then $f(c) \leq f(x) \leq f(d)$ for all $x \in[a, b]$.
- The continuous function $(0,1] \rightarrow \mathbb{R}$ defined by $x \mapsto x$ is >0 at every point of its domain, but it has values as near to 0 as we like. On a closed interval, that cannot happen:

Corollary

If $f:[a, b] \rightarrow \mathbb{R}$ is continuous and $f(x)>0$ for all $x \in[a, b]$, then there exists an $m>0$ such that $f(x) \geq m$, for all $x \in[a, b]$.

- By the theorem, $f([a, b])=[m, M]$, for some m and M. If $m=f(c)$ and $M=f(d)$, we have $f(x) \geq m=f(c)>0$, for all $x \in[a, b]$.

Bounded and Unbounded Functions

Definition (Bounded and Unbounded Functions)

A real-valued function $f: X \rightarrow \mathbb{R}$ is said to be bounded if its range $f(X)$ is a bounded subset of \mathbb{R}, i.e., if there exists a real number $M>0$ such that $|f(x)| \leq M$, for all $x \in X$.
f is said to be unbounded if it is not bounded.

- Example: Every continuous real-valued function on a closed interval is bounded.
- Example: The continuous function $f:(0,1] \rightarrow \mathbb{R}$ defined by $f(x)=\frac{1}{x}$ is unbounded.

Subsection 4

Monotonic Continuous Functions

Increasing and Decreasing Functions

Definition (Increasing and Decreasing Functions)

Let $S \subseteq \mathbb{R}$ (in the most important examples, S is an interval). A function $f: S \rightarrow \mathbb{R}$ is said to be:

- increasing, if $x<y \Rightarrow f(x) \leq f(y)$,
- strictly increasing, if $x<y \Rightarrow f(x)<f(y)$,
- decreasing, if $x<y \Rightarrow f(x) \geq f(y)$,
- strictly decreasing, if $x<y \Rightarrow f(x)>f(y)$,
where it is understood that x and y are in the domain S of f. If f is either increasing or decreasing, it is said to be monotone. A function is strictly monotone if it is strictly increasing or strictly decreasing.

Examples

- Let n be a positive integer. The function $f:[0,+\infty) \rightarrow[0,+\infty)$, $f(x)=x^{n}$ is strictly increasing.
- The function $g: \mathbb{R} \rightarrow \mathbb{R}, g(x)=x^{2 n-1}$ is also strictly increasing.
- The function $\mathbb{R} \rightarrow \mathbb{R}$ defined by $x \mapsto x^{2}$ is neither increasing nor decreasing.
- The function $(0,+\infty) \rightarrow(0,+\infty)$ defined by $x \mapsto \frac{1}{x}$ is strictly decreasing.
- Every constant function is increasing and decreasing, but not strictly. Conversely, if a function is both increasing and decreasing, then it is a constant function.
- The functions log : $0,+\infty) \rightarrow \mathbb{R}$ and $\exp : \mathbb{R} \rightarrow(0,+\infty)$ are both strictly increasing (here the base is e).

Continuity, Injectivity and Monotonicity in Closed Interval

- If $f: S \rightarrow \mathbb{R}$ is strictly monotone, it is obvious that f is injective.

Theorem

If $f:[a, b] \rightarrow \mathbb{R}$ is continuous and injective, then f is strictly monotone.

- If $a=b$, there is nothing to prove. If $a<b$, then $f(a) \neq f(b)$, by injectivity. We suppose $f(a)<f(b)$ (if not, consider $-f$). We show that f is then strictly increasing.
Claim: If $a<x<b$ then $f(a)<f(x)<f(b)$.
Assume to the contrary that $f(x) \leq f(a)$ or $f(x) \geq f(b)$, i.e., by injectivity, $f(x)<f(a)$ or $f(x)>f(b)$.
- In the first case, $f(x)<f(a)<f(b)$. Thus $k=f(a)$ is intermediate to the values of $f \upharpoonright_{[x, b]}$ at the endpoints of $[x, b]$. The IVT yields a point $t \in(x, b)$ with $f(t)=k=f(a)$, contrary to injectivity.
- In the second case, $f(a)<f(b)<f(x)$. An application of the IVT to $f\left\lceil_{[a, x]}\right.$ yields a point $t \in(a, x)$, with $f(t)=f(b)$, again contradicting injectivity.

Continuity, Injectivity and Monotonicity (Cont'd)

- Assuming now that $a<c<d<b$, we have to show that $f(c)<f(d)$.
- If $a=c$ and $d=b$, there is nothing to prove.
- If $a=c<d<b$, then $f(c)<f(d)$ by the claim.
- If $a<c<d=b$, we proceed similarly.
- If $a<c<d<b$, then $f(a)<f(c)<f(b)$ by the claim applied to $a<c<b$. But then $f(c)<f(d)<f(b)$ by the claim applied to $c<d<b$ and the function $f\lceil[c, b]$.

Continuity, Injectivity and Monotonicity in an Interval

Corollary

If I is an interval and $f: I \rightarrow \mathbb{R}$ is continuous and injective, then f is strictly monotone.

- If I is a singleton there is nothing to prove. Otherwise, let $r, s \in I$, with $r<s$. Since f is injective, $f(r) \neq f(s)$. We can suppose $f(r)<f(s)$ (if not, consider $-f$).
Claim: We assert that f is strictly increasing.
Given $c, d \in I, c<d$, we must show that $f(c)<f(d)$. Let $J=[a, b]$ be a closed subinterval of I that contains all four points r, s, c, d. For example, $a=\min \{r, c\}, b=\max \{s, d\}$ will do. From the theorem, we know that $f \upharpoonright j$ is either strictly increasing or strictly decreasing. Since $f(r)<f(s)$, it must be the former, whence $f(c)<f(d)$.

Subsection 5

Inverse Function Theorem

Continuity of the Inverse

Lemma

If $f:[a, b] \rightarrow[c, d]$ is bijective and continuous then the inverse function $f^{-1}:[c, d] \rightarrow[a, b]$ is also continuous.

- Assuming $y_{n} \rightarrow y$ in $[c, d]$, we must show that $f^{-1}\left(y_{n}\right) \rightarrow f^{-1}(y)$. Let $x_{n}=f^{-1}\left(y_{n}\right), x=f^{-1}(y)$ and assume to the contrary that $\left(x_{n}\right)$ does not converge to x. Then, there exists an $\epsilon>0$, such that $\left|x_{n}-x\right| \geq \epsilon$ frequently. Passing to a subsequence, we can suppose that $\left|x_{n}-x\right| \geq \epsilon$, for all n. Since (x_{n}) is bounded, some subsequence is convergent (Bolzano-Weierstraß), say $x_{n_{k}} \rightarrow t$. Then $t \in[a, b]$ and $f\left(x_{n_{k}}\right) \rightarrow f(t)$ by continuity. But $f\left(x_{n_{k}}\right)=y_{n_{k}} \rightarrow y$, so $y=f(t)$, $t=f^{-1}(y)=x$. Thus, $x_{n_{k}} \rightarrow x$, contrary to $\left|x_{n_{k}}-x\right| \geq \epsilon$, for all k.

The Inverse Function Theorem

Theorem (Inverse Function Theorem)

Let I be an interval in $\mathbb{R}, f: I \rightarrow \mathbb{R}$ continuous and injective. Let $J=f(I)$ (an interval), so that $f: I \rightarrow J$ is continuous and bijective. Then $f^{-1}: J \rightarrow I$ is also continuous.

- By the preceding Corollary, we know that f is monotone. We can suppose that f is increasing (if not, consider $-f$). Suppose $y_{n} \rightarrow y$ in J. Writing $x_{n}=f^{-1}\left(y_{n}\right), x=f^{-1}(y)$, we have to show that $x_{n} \rightarrow x$. The set $A=\{y\} \cup\left\{y_{n}: n \in \mathbb{P}\right\}$ is compact. So it has a smallest element c and a largest element d. Then $A \subseteq[c, d] \subseteq J$. Say $c=f(a), d=f(b)$. Since f is increasing, $a \leq b$ and $f([a, b])=$ $[f(a), f(b)]=[c, d]$, so $x_{n} \rightarrow x$ follows from applying the lemma to the restriction $f{ }_{[a, b]:}[a, b] \rightarrow[c, d]$.
- Example: If $n \in \mathbb{P}$ and $I=[0,+\infty)$, then the function $I \rightarrow I$, $x \mapsto \sqrt[n]{x}$ is continuous: It is the inverse of a continuous bijection. If n is odd, then the function $\mathbb{R} \rightarrow \mathbb{R}, x \mapsto \sqrt[n]{x}$ is continuous.

Subsection 6

Uniform Continuity

Uniform Continuity Theorem

Theorem

Suppose $f:[a, b] \rightarrow \mathbb{R}$ is continuous. Given any $\epsilon>0$, there exists a $\delta>0$, such that $x, y \in[a, b],|x-y|<\delta \Rightarrow|f(x)-f(y)|<\epsilon$.

- This is not just a restatement of the definition of continuity; there is a subtle difference:
- To say that $f: S \rightarrow \mathbb{R}$ is continuous means that for each $y \in S$ and $\epsilon>0$, there is a $\delta>0$ (depending in general on both y and ϵ) such that $x \in S,|x-y|<\delta \Rightarrow|f(x)-f(y)|<\epsilon$.
- The theorem ensures that when the domain of f is a closed interval, the choice of δ can be made to depend on ϵ alone. Informally speaking, δ works "uniformly well" at all points of the domain.

Proof of the Uniform Continuity Theorem

Theorem

Suppose $f:[a, b] \rightarrow \mathbb{R}$ is continuous. Given any $\epsilon>0$, there exists a $\delta>0$, such that $x, y \in[a, b],|x-y|<\delta \Rightarrow|f(x)-f(y)|<\epsilon$.

- Let $\epsilon>0$. We seek a $\delta>0$, for which the stated implication is valid. Assume to the contrary that no such δ exists. In particular, for each $n \in \mathbb{P}$, the choice $\delta=\frac{1}{n}$ fails to validate the implication, so there is a pair of points x_{n}, y_{n} in $[a, b]$, such that $\left|x_{n}-y_{n}\right|<\frac{1}{n}$, but $\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right| \geq \epsilon$. For a suitable subsequence, $x_{n_{k}} \rightarrow x \in[a, b]$ (Bolzano-Weierstraß). Then $y_{n_{k}}=x_{n_{k}}-\left(x_{n_{k}}-y_{n_{k}}\right)$ and $x_{n_{k}}-y_{n_{k}} \rightarrow 0$ show that also $y_{n_{k}} \rightarrow x$. By continuity, $f\left(x_{n_{k}}\right) \rightarrow f(x)$ and $f\left(y_{n_{k}}\right) \rightarrow f(x)$, so $f\left(x_{n_{k}}\right)-f\left(y_{n_{k}}\right) \rightarrow 0$, contrary to $\left|f\left(x_{n_{k}}\right)-f\left(y_{n_{k}}\right)\right| \geq \epsilon$.

Uniformly Continuous Functions

Definition (Uniformly Continuous Function)

Let S be a subset of \mathbb{R}. A function $f: S \rightarrow \mathbb{R}$ is said to be uniformly continuous (on S) if, for every $\epsilon>0$, there exists a $\delta>0$, such that

$$
x, y \in S, \quad|x-y|<\delta \Rightarrow|f(x)-f(y)|<\epsilon
$$

- Uniform continuity implies continuity, but the converse is false:
- Example: The function $f:(0,2] \rightarrow \mathbb{R}$ defined by $f(x)=\frac{1}{x}$ is continuous but not uniformly continuous. Looking at the graph of f, we see that "the nearer y is to 0 , the steeper the "slope" of the graph". This suggests that for a particular ϵ, the nearer y is to 0 , the smaller δ will have to be taken.
Formal Argument: Assume f is uniformly continuous. In particular, for $\epsilon=1$, there is a $\delta>0$ (which we can suppose to be <1) for which $x, y \in(0,2],|x-y| \leq \delta \Rightarrow\left|\frac{1}{x}-\frac{1}{y}\right|<1$, i.e., $|x-y|<x y$. Thus, $x, y \in(0,2],|x-y|=\delta \Rightarrow \delta<x y$. If $y_{n}=\frac{1}{n}$ and $x_{n}=\delta+\frac{1}{n}$, then $\left|x_{n}-y_{n}\right|=\delta<x_{n} y_{n} \rightarrow 0$, which is absurd.

