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Continuous Functions on an Interval Intermediate Value Theorem

Zero Values in a Closed Interval

Lemma

If f : [a, b] → R is a continuous function such that f (a)f (b) < 0, then
there exists a point c ∈ (a, b) such that f (c) = 0.

We can suppose f (a) > 0 and f (b) < 0 (otherwise consider −f ). The
idea is that there are points x in [a, b] (for example, x = a) for which
f (x) ≥ 0, and b is not one of them. The “last” such point x is a
likely candidate for c .
The set A = {x ∈ [a, b] : f (x) ≥ 0} is nonempty (because a ∈ A) and
bounded. It is also closed: If xn ∈ A and xn → x , then x ∈ [a, b] and
f (xn) → f (x) by the continuity of f . Since f (xn) ≥ 0 for all n,
f (x) ≥ 0. Thus x ∈ A.
Let c be the largest element of A. In particular, f (c) ≥ 0, whence
c 6= b, and, thus, c < b. If c < x < b, then x 6∈ A (all elements of A
are ≤ c), so f (x) < 0. Choose a sequence (xn), with c < xn < b and
xn → c . Then f (c) = lim f (xn) ≤ 0, and, therefore, f (c) = 0.
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Continuous Functions on an Interval Intermediate Value Theorem

Intermediate Value Theorem

Theorem. (Intermediate Value Theorem)

If I is an internal in R and f : I → R is continuous, then f (I ) is also an
interval.

Assuming r , s ∈ f (I ), r < s, it will suffice to show that [r , s] ⊆ f (I ).
Let r < k < s. We seek c ∈ I , such that f (c) = k . (The theorem
says that, if r and s are values of f , then so is every number between
r and s.) By assumption, r = f (a) and s = f (b), for suitable points
a, b of I . Since r 6= s, also a 6= b. Let J be the closed interval with
endpoints a and b. Since I is an interval, J ⊆ I . Define g : J → R by
the formula g(x) = f (x)− k , x ∈ J. Since f is continuous, so is g .
Note that g(a) = f (a)− k = r − k < 0, g(b) = f (b)− k = s− k > 0.
By the lemma, there exists a point c ∈ J, such that g(c) = 0. Thus
c ∈ I and f (c)− k = 0, whence k = f (c) ∈ f (I ).
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Continuous Functions on an Interval Intermediate Value Theorem

Consequences of the Theorem

Corollary

Let I be an interval in R and f : I → R continuous on I . If f is not zero
at any point of I , then either f (x) > 0, for all x ∈ I , or f (x) < 0, for all
x ∈ I .

The alternative is that f (a) < 0 and f (b) > 0 for suitable points a, b
of I . Then 0 ∈ f (I ) by the theorem, contrary to the hypothesis on f .

Corollary

If f : R → R is continuous and I is any interval in R, then f (I ) is also an
interval.

Apply the theorem to f ↾I : I → R (the restriction of f to I ).
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Continuous Functions on an Interval n-th Roots

Bijectivity of f (x) = x
n on [0,+∞)

The Dedekind cut technique used to construct square roots, can be
adapted to higher-order roots, but the Intermediate Value Theorem
provides an efficient shortcut:

Theorem

If n is a positive integer and f : [0,+∞) → [0,+∞) is the function defined
by f (x) = xn, then f is bijective.

We have proved, based on the order axioms of an ordered field, that
f (a) = f (b) ⇒ a = b. So f is injective. Write I = [0,+∞). Then
f : I → I and it remains to show that f is surjective, i.e., that
f (I ) = I :

Since f is continuous, its range f (I ) is an interval. From f (0) = 0 we
have 0 ∈ f (I ). An easy induction argument shows that f (k) ≥ k , for
every positive integer k . It follows that [0, k] ⊆ f (I ) for all k ∈ P,
whence (Archimedes) [0,+∞) ⊆ f (I ). Thus, I ⊆ f (I ) ⊆ I .
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Continuous Functions on an Interval n-th Roots

n-th Roots

Definition (n-th Root)

If x ≥ 0 and n is a positive integer, the unique y ≥ 0 such that yn = x is
called the n-th root of x , written n

√
x (or x1/n).

Corollary

If n is an odd positive integer and g : R → R is the function defined by
g(x) = xn, then g is bijective.

We know that g(R) is an interval, and g(R) contains [0,+∞), by the
preceding theorem. Since g(−x) = −g(x) (because n is odd), we get
that g(R) also contains (−∞, 0], and, thus, is equal to R. Injectivity
follows from the theorem since x and g(x) have the same sign.

Definition (n-th Root)

If x ∈ R and n ∈ P is odd, the unique real number y such that yn = x is
called the n-th root of x , written n

√
x (or x1/n). Of course, when x ≥ 0,

this is consistent with the preceding definition.
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Continuous Functions on an Interval Continuous Functions on a Closed Interval

Subsection 3
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Continuous Functions on an Interval Continuous Functions on a Closed Interval

Continuous Image of Closed Interval

Theorem

If f : [a, b] → R is continuous, then the range of f is a closed interval.

Write I = [a, b]. We know that f (I ) is an interval. We need only
show that f (I ) is: (i) bounded; (ii) a closed set.

(i) The claim is that {|f (x)| : x ∈ I} is bounded above. Assume to the
contrary. For each positive integer n, choose xn ∈ I , such that
|f (xn)| > n. It is clear that no subsequence of (f (xn)) is bounded.
However, (xn) is bounded, so it has a convergent subsequence
(Bolzano-Weierstraß), say xnk → x . Then, since I is closed, x ∈ I , and
f (xnk ) → f (x). In particular, (f (xnk )) is bounded, a contradiction.

(ii) Suppose yn ∈ f (I ), yn → y . We have to show that y ∈ f (I ). Say
yn = f (xn), xn ∈ I . Passing to a subsequence, we can suppose
xn → x ∈ R. As in the proof of (i), x ∈ I and f (xn) → f (x), i.e.,
yn → f (x), But yn → y , so y = f (x) ∈ f (I ).
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Continuous Functions on an Interval Continuous Functions on a Closed Interval

Consequences of Closed Image

Corollary (Weierstraß)

If f : [a, b] → R is continuous, then f takes on a smallest value and a
largest value.

By the theorem, f ([a, b]) = [m,M], for suitable m and M. Thus, if
m = f (c) and M = f (d), then f (c) ≤ f (x) ≤ f (d) for all x ∈ [a, b].

The continuous function (0, 1] → R defined by x 7→ x is > 0 at every
point of its domain, but it has values as near to 0 as we like. On a
closed interval, that cannot happen:

Corollary

If f : [a, b] → R is continuous and f (x) > 0 for all x ∈ [a, b], then there
exists an m > 0 such that f (x) ≥ m, for all x ∈ [a, b].

By the theorem, f ([a, b]) = [m,M], for some m and M. If m = f (c)
and M = f (d), we have f (x) ≥ m = f (c) > 0, for all x ∈ [a, b].
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Continuous Functions on an Interval Continuous Functions on a Closed Interval

Bounded and Unbounded Functions

Definition (Bounded and Unbounded Functions)

A real-valued function f : X → R is said to be bounded if its range f (X )
is a bounded subset of R, i.e., if there exists a real number M > 0 such
that |f (x)| ≤ M, for all x ∈ X .
f is said to be unbounded if it is not bounded.

Example: Every continuous real-valued function on a closed interval is
bounded.

Example: The continuous function f : (0, 1] → R defined by

f (x) =
1

x
is unbounded.
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Continuous Functions on an Interval Monotonic Continuous Functions

Subsection 4

Monotonic Continuous Functions
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Continuous Functions on an Interval Monotonic Continuous Functions

Increasing and Decreasing Functions

Definition (Increasing and Decreasing Functions)

Let S ⊆ R (in the most important examples, S is an interval). A function
f : S → R is said to be:

increasing, if x < y ⇒ f (x) ≤ f (y),

strictly increasing, if x < y ⇒ f (x) < f (y),

decreasing, if x < y ⇒ f (x) ≥ f (y),

strictly decreasing, if x < y ⇒ f (x) > f (y),

where it is understood that x and y are in the domain S of f .
If f is either increasing or decreasing, it is said to be monotone.
A function is strictly monotone if it is strictly increasing or strictly
decreasing.
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Continuous Functions on an Interval Monotonic Continuous Functions

Examples

Let n be a positive integer. The function f : [0,+∞) → [0,+∞),
f (x) = xn is strictly increasing.

The function g : R → R, g(x) = x2n−1 is also strictly increasing.

The function R → R defined by x 7→ x2 is neither increasing nor
decreasing.

The function (0,+∞) → (0,+∞) defined by x 7→ 1
x
is strictly

decreasing.

Every constant function is increasing and decreasing, but not strictly.
Conversely, if a function is both increasing and decreasing, then it is a
constant function.

The functions log : (0,+∞) → R and exp : R → (0,+∞) are both
strictly increasing (here the base is e).
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Continuous Functions on an Interval Monotonic Continuous Functions

Continuity, Injectivity and Monotonicity in Closed Interval

If f : S → R is strictly monotone, it is obvious that f is injective.

Theorem

If f : [a, b] → R is continuous and injective, then f is strictly monotone.

If a = b, there is nothing to prove. If a < b, then f (a) 6= f (b), by
injectivity. We suppose f (a) < f (b) (if not, consider −f ). We show
that f is then strictly increasing.

Claim: If a < x < b then f (a) < f (x) < f (b).
Assume to the contrary that f (x) ≤ f (a) or f (x) ≥ f (b), i.e., by
injectivity, f (x) < f (a) or f (x) > f (b).

In the first case, f (x) < f (a) < f (b). Thus k = f (a) is intermediate to
the values of f ↾[x,b] at the endpoints of [x , b]. The IVT yields a point
t ∈ (x , b) with f (t) = k = f (a), contrary to injectivity.
In the second case, f (a) < f (b) < f (x). An application of the IVT to
f ↾[a,x] yields a point t ∈ (a, x), with f (t) = f (b), again contradicting
injectivity.
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Continuous Functions on an Interval Monotonic Continuous Functions

Continuity, Injectivity and Monotonicity (Cont’d)

Assuming now that a < c < d < b, we have to show that
f (c) < f (d).

If a = c and d = b, there is nothing to prove.
If a = c < d < b, then f (c) < f (d) by the claim.
If a < c < d = b, we proceed similarly.
If a < c < d < b, then f (a) < f (c) < f (b) by the claim applied to
a < c < b. But then f (c) < f (d) < f (b) by the claim applied to
c < d < b and the function f ↾[c,b].
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Continuous Functions on an Interval Monotonic Continuous Functions

Continuity, Injectivity and Monotonicity in an Interval

Corollary

If I is an interval and f : I → R is continuous and injective, then f is
strictly monotone.

If I is a singleton there is nothing to prove. Otherwise, let r , s ∈ I ,
with r < s. Since f is injective, f (r) 6= f (s). We can suppose
f (r) < f (s) (if not, consider −f ).

Claim: We assert that f is strictly increasing.
Given c , d ∈ I , c < d , we must show that f (c) < f (d). Let J = [a, b]
be a closed subinterval of I that contains all four points r , s, c , d . For
example, a = min {r , c}, b = max {s, d} will do. From the theorem,
we know that f ↾J is either strictly increasing or strictly decreasing.
Since f (r) < f (s), it must be the former, whence f (c) < f (d).

George Voutsadakis (LSSU) Real Analysis August 2014 19 / 26



Continuous Functions on an Interval Inverse Function Theorem

Subsection 5

Inverse Function Theorem
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Continuous Functions on an Interval Inverse Function Theorem

Continuity of the Inverse

Lemma

If f : [a, b] → [c , d ] is bijective and continuous then the inverse function
f −1 : [c , d ] → [a, b] is also continuous.

Assuming yn → y in [c , d ], we must show that f −1(yn) → f −1(y).
Let xn = f −1(yn), x = f −1(y) and assume to the contrary that (xn)
does not converge to x . Then, there exists an ǫ > 0, such that
|xn − x | ≥ ǫ frequently. Passing to a subsequence, we can suppose
that |xn − x | ≥ ǫ, for all n. Since (xn) is bounded, some subsequence
is convergent (Bolzano-Weierstraß), say xnk → t. Then t ∈ [a, b] and
f (xnk ) → f (t) by continuity. But f (xnk ) = ynk → y , so y = f (t),
t = f −1(y) = x . Thus, xnk → x , contrary to |xnk − x | ≥ ǫ, for all k .
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Continuous Functions on an Interval Inverse Function Theorem

The Inverse Function Theorem

Theorem (Inverse Function Theorem)

Let I be an interval in R, f : I → R continuous and injective. Let
J = f (I ) (an interval), so that f : I → J is continuous and bijective. Then
f −1 : J → I is also continuous.

By the preceding Corollary, we know that f is monotone. We can
suppose that f is increasing (if not, consider −f ). Suppose yn → y in
J. Writing xn = f −1(yn), x = f −1(y), we have to show that xn → x .
The set A = {y} ∪ {yn : n ∈ P} is compact. So it has a smallest
element c and a largest element d . Then A ⊆ [c , d ] ⊆ J. Say
c = f (a), d = f (b). Since f is increasing, a ≤ b and f ([a, b]) =
[f (a), f (b)] = [c , d ], so xn → x follows from applying the lemma to
the restriction f ↾[a,b]: [a, b] → [c , d ].

Example: If n ∈ P and I = [0,+∞), then the function I → I ,
x 7→ n

√
x is continuous: It is the inverse of a continuous bijection.

If n is odd, then the function R → R, x 7→ n
√
x is continuous.
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Continuous Functions on an Interval Uniform Continuity

Subsection 6

Uniform Continuity
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Continuous Functions on an Interval Uniform Continuity

Uniform Continuity Theorem

Theorem

Suppose f : [a, b] → R is continuous. Given any ǫ > 0, there exists a
δ > 0, such that x , y ∈ [a, b], |x − y | < δ ⇒ |f (x)− f (y)| < ǫ.

This is not just a restatement of the definition of continuity; there is
a subtle difference:

To say that f : S → R is continuous means that for each y ∈ S and
ǫ > 0, there is a δ > 0 (depending in general on both y and ǫ) such
that x ∈ S , |x − y | < δ ⇒ |f (x)− f (y)| < ǫ.
The theorem ensures that when the domain of f is a closed interval,
the choice of δ can be made to depend on ǫ alone.
Informally speaking, δ works “uniformly well” at all points of the
domain.
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Continuous Functions on an Interval Uniform Continuity

Proof of the Uniform Continuity Theorem

Theorem

Suppose f : [a, b] → R is continuous. Given any ǫ > 0, there exists a
δ > 0, such that x , y ∈ [a, b], |x − y | < δ ⇒ |f (x)− f (y)| < ǫ.

Let ǫ > 0. We seek a δ > 0, for which the stated implication is valid.
Assume to the contrary that no such δ exists. In particular, for each
n ∈ P, the choice δ = 1

n
fails to validate the implication, so there is a

pair of points xn, yn in [a, b], such that |xn − yn| < 1
n
, but

|f (xn)− f (yn)| ≥ ǫ. For a suitable subsequence, xnk → x ∈ [a, b]
(Bolzano-Weierstraß). Then ynk = xnk − (xnk − ynk ) and
xnk − ynk → 0 show that also ynk → x . By continuity, f (xnk ) → f (x)
and f (ynk ) → f (x), so f (xnk )− f (ynk ) → 0, contrary to
|f (xnk )− f (ynk )| ≥ ǫ.
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Continuous Functions on an Interval Uniform Continuity

Uniformly Continuous Functions

Definition (Uniformly Continuous Function)

Let S be a subset of R. A function f : S → R is said to be uniformly

continuous (on S) if, for every ǫ > 0, there exists a δ > 0, such that

x , y ∈ S , |x − y | < δ ⇒ |f (x)− f (y)| < ǫ.

Uniform continuity implies continuity, but the converse is false:

Example: The function f : (0, 2] → R defined by f (x) = 1
x
is

continuous but not uniformly continuous. Looking at the graph of f ,
we see that “the nearer y is to 0, the steeper the “slope” of the
graph”. This suggests that for a particular ǫ, the nearer y is to 0 , the
smaller δ will have to be taken.

Formal Argument: Assume f is uniformly continuous. In particular,
for ǫ = 1, there is a δ > 0 (which we can suppose to be < 1) for
which x , y ∈ (0, 2], |x − y | ≤ δ ⇒ | 1

x
− 1

y
| < 1, i.e., |x − y | < xy .

Thus, x , y ∈ (0, 2], |x − y | = δ ⇒ δ < xy . If yn = 1
n
and xn = δ + 1

n
,

then |xn − yn| = δ < xnyn → 0, which is absurd.
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