Introduction to Real Analysis

George Voutsadakis¹

¹Mathematics and Computer Science Lake Superior State University

LSSU Math 421

Continuous Functions on an Interval

- Intermediate Value Theorem
- *n*-th Roots
- Ontinuous Functions on a Closed Interval
- Monotonic Continuous Functions
- Inverse Function Theorem
- Uniform Continuity

Intermediate Value Theorem

Zero Values in a Closed Interval

Lemma

If $f : [a, b] \to \mathbb{R}$ is a continuous function such that f(a)f(b) < 0, then there exists a point $c \in (a, b)$ such that f(c) = 0.

We can suppose f(a) > 0 and f(b) < 0 (otherwise consider −f). The idea is that there are points x in [a, b] (for example, x = a) for which f(x) ≥ 0, and b is not one of them. The "last" such point x is a likely candidate for c.

The set $A = \{x \in [a, b] : f(x) \ge 0\}$ is nonempty (because $a \in A$) and bounded. It is also closed: If $x_n \in A$ and $x_n \to x$, then $x \in [a, b]$ and $f(x_n) \to f(x)$ by the continuity of f. Since $f(x_n) \ge 0$ for all n, $f(x) \ge 0$. Thus $x \in A$.

Let c be the largest element of A. In particular, $f(c) \ge 0$, whence $c \ne b$, and, thus, c < b. If c < x < b, then $x \notin A$ (all elements of A are $\le c$), so f(x) < 0. Choose a sequence (x_n) , with $c < x_n < b$ and $x_n \rightarrow c$. Then $f(c) = \lim f(x_n) \le 0$, and, therefore, f(c) = 0.

Intermediate Value Theorem

Theorem. (Intermediate Value Theorem)

If *I* is an internal in \mathbb{R} and $f: I \to \mathbb{R}$ is continuous, then f(I) is also an interval.

• Assuming $r, s \in f(I)$, r < s, it will suffice to show that $[r, s] \subseteq f(I)$. Let r < k < s. We seek $c \in I$, such that f(c) = k. (The theorem says that, if r and s are values of f, then so is every number between r and s.) By assumption, r = f(a) and s = f(b), for suitable points a, b of I. Since $r \neq s$, also $a \neq b$. Let J be the closed interval with endpoints a and b. Since I is an interval, $J \subseteq I$. Define $g : J \to \mathbb{R}$ by the formula $g(x) = f(x) - k, x \in J$. Since f is continuous, so is g. Note that g(a) = f(a) - k = r - k < 0, g(b) = f(b) - k = s - k > 0. By the lemma, there exists a point $c \in J$, such that g(c) = 0. Thus $c \in I$ and f(c) - k = 0, whence $k = f(c) \in f(I)$.

Consequences of the Theorem

Corollary

Let I be an interval in \mathbb{R} and $f: I \to \mathbb{R}$ continuous on I. If f is not zero at any point of I, then either f(x) > 0, for all $x \in I$, or f(x) < 0, for all $x \in I$.

The alternative is that f(a) < 0 and f(b) > 0 for suitable points a, b of I. Then 0 ∈ f(I) by the theorem, contrary to the hypothesis on f.

Corollary

If $f : \mathbb{R} \to \mathbb{R}$ is continuous and I is any interval in \mathbb{R} , then f(I) is also an interval.

• Apply the theorem to $f \upharpoonright_I : I \to \mathbb{R}$ (the restriction of f to I).

n-th Roots

Bijectivity of $f(x) = x^n$ on $[0, +\infty)$

• The Dedekind cut technique used to construct square roots, can be adapted to higher-order roots, but the Intermediate Value Theorem provides an efficient shortcut:

Theorem

If *n* is a positive integer and $f : [0, +\infty) \to [0, +\infty)$ is the function defined by $f(x) = x^n$, then *f* is bijective.

We have proved, based on the order axioms of an ordered field, that f(a) = f(b) ⇒ a = b. So f is injective. Write I = [0, +∞). Then f : I → I and it remains to show that f is surjective, i.e., that f(I) = I:
Since f is continuous, its range f(I) is an interval. From f(0) = 0 we have 0 ∈ f(I). An easy induction argument shows that f(k) ≥ k, for every positive integer k. It follows that [0, k] ⊆ f(I) for all k ∈ P, whence (Archimedes) [0, +∞) ⊆ f(I). Thus, I ⊆ f(I) ⊆ I.

n-th Roots

Definition (*n*-th Root)

If $x \ge 0$ and *n* is a positive integer, the unique $y \ge 0$ such that $y^n = x$ is called the *n*-th root of *x*, written $\sqrt[n]{x}$ (or $x^{1/n}$).

Corollary

If *n* is an odd positive integer and $g : \mathbb{R} \to \mathbb{R}$ is the function defined by $g(x) = x^n$, then g is bijective.

We know that g(ℝ) is an interval, and g(ℝ) contains [0, +∞), by the preceding theorem. Since g(-x) = -g(x) (because n is odd), we get that g(ℝ) also contains (-∞, 0], and, thus, is equal to ℝ. Injectivity follows from the theorem since x and g(x) have the same sign.

Definition (*n*-th Root)

If $x \in \mathbb{R}$ and $n \in \mathbb{P}$ is odd, the unique real number y such that $y^n = x$ is called the *n*-th root of x, written $\sqrt[n]{x}$ (or $x^{1/n}$). Of course, when $x \ge 0$, this is consistent with the preceding definition.

Continuous Functions on a Closed Interval

Continuous Image of Closed Interval

Theorem

If $f : [a, b] \to \mathbb{R}$ is continuous, then the range of f is a closed interval.

- Write I = [a, b]. We know that f(I) is an interval. We need only show that f(I) is: (i) bounded; (ii) a closed set.
 - (i) The claim is that {|f(x)| : x ∈ I} is bounded above. Assume to the contrary. For each positive integer n, choose x_n ∈ I, such that |f(x_n)| > n. It is clear that no subsequence of (f(x_n)) is bounded. However, (x_n) is bounded, so it has a convergent subsequence (Bolzano-Weierstraß), say x_{nk} → x. Then, since I is closed, x ∈ I, and f(x_{nk}) → f(x). In particular, (f(x_{nk})) is bounded, a contradiction.
 (ii) Suppose y_n ∈ f(I), y_n → y. We have to show that y ∈ f(I). Say y_n = f(x_n), x_n ∈ I. Passing to a subsequence, we can suppose x_n → x ∈ ℝ. As in the proof of (i), x ∈ I and f(x_n) → f(x), i.e., y_n → f(x), But y_n → y, so y = f(x) ∈ f(I).

Consequences of Closed Image

Corollary (Weierstraß)

If $f : [a, b] \to \mathbb{R}$ is continuous, then f takes on a smallest value and a largest value.

- By the theorem, f([a, b]) = [m, M], for suitable m and M. Thus, if m = f(c) and M = f(d), then $f(c) \le f(x) \le f(d)$ for all $x \in [a, b]$.
- The continuous function (0,1] → ℝ defined by x → x is > 0 at every point of its domain, but it has values as near to 0 as we like. On a closed interval, that cannot happen:

Corollary

If $f : [a, b] \to \mathbb{R}$ is continuous and f(x) > 0 for all $x \in [a, b]$, then there exists an m > 0 such that $f(x) \ge m$, for all $x \in [a, b]$.

• By the theorem, f([a, b]) = [m, M], for some m and M. If m = f(c) and M = f(d), we have $f(x) \ge m = f(c) > 0$, for all $x \in [a, b]$.

Bounded and Unbounded Functions

Definition (Bounded and Unbounded Functions)

A real-valued function $f : X \to \mathbb{R}$ is said to be **bounded** if its range f(X) is a bounded subset of \mathbb{R} , i.e., if there exists a real number M > 0 such that $|f(x)| \le M$, for all $x \in X$.

f is said to be **unbounded** if it is not bounded.

- Example: Every continuous real-valued function on a closed interval is bounded.
- Example: The continuous function $f : (0,1] \to \mathbb{R}$ defined by $f(x) = \frac{1}{x}$ is unbounded.

Monotonic Continuous Functions

Increasing and Decreasing Functions

Definition (Increasing and Decreasing Functions)

Let $S \subseteq \mathbb{R}$ (in the most important examples, S is an interval). A function $f: S \to \mathbb{R}$ is said to be:

• increasing, if $x < y \Rightarrow f(x) \le f(y)$,

- strictly increasing, if $x < y \Rightarrow f(x) < f(y)$,
- decreasing, if $x < y \Rightarrow f(x) \ge f(y)$,
- strictly decreasing, if $x < y \Rightarrow f(x) > f(y)$,

where it is understood that x and y are in the domain S of f. If f is either increasing or decreasing, it is said to be **monotone**. A function is **strictly monotone** if it is strictly increasing or strictly decreasing.

Examples

- Let *n* be a positive integer. The function $f : [0, +\infty) \to [0, +\infty)$, $f(x) = x^n$ is strictly increasing.
- The function $g: \mathbb{R} \to \mathbb{R}$, $g(x) = x^{2n-1}$ is also strictly increasing.
- The function ℝ → ℝ defined by x → x² is neither increasing nor decreasing.
- The function (0, +∞) → (0, +∞) defined by x → ¹/_x is strictly decreasing.
- Every constant function is increasing and decreasing, but not strictly. Conversely, if a function is both increasing and decreasing, then it is a constant function.
- The functions log : (0, +∞) → ℝ and exp : ℝ → (0, +∞) are both strictly increasing (here the base is e).

Continuity, Injectivity and Monotonicity in Closed Interval

• If $f: S \to \mathbb{R}$ is strictly monotone, it is obvious that f is injective.

Theorem

If $f : [a, b] \rightarrow \mathbb{R}$ is continuous and injective, then f is strictly monotone.

• If a = b, there is nothing to prove. If a < b, then $f(a) \neq f(b)$, by injectivity. We suppose f(a) < f(b) (if not, consider -f). We show that f is then strictly increasing.

Claim: If a < x < b then f(a) < f(x) < f(b). Assume to the contrary that $f(x) \le f(a)$ or $f(x) \ge f(b)$, i.e., by injectivity, f(x) < f(a) or f(x) > f(b).

- In the first case, f(x) < f(a) < f(b). Thus k = f(a) is intermediate to the values of f ↾_[x,b] at the endpoints of [x, b]. The IVT yields a point t ∈ (x, b) with f(t) = k = f(a), contrary to injectivity.
- In the second case, f(a) < f(b) < f(x). An application of the IVT to f ↾_[a,x] yields a point t ∈ (a,x), with f(t) = f(b), again contradicting injectivity.

Continuity, Injectivity and Monotonicity (Cont'd)

- Assuming now that a < c < d < b, we have to show that f(c) < f(d).
 - If a = c and d = b, there is nothing to prove.
 - If a = c < d < b, then f(c) < f(d) by the claim.
 - If a < c < d = b, we proceed similarly.
 - If a < c < d < b, then f(a) < f(c) < f(b) by the claim applied to a < c < b. But then f(c) < f(d) < f(b) by the claim applied to c < d < b and the function $f \upharpoonright_{[c,b]}$.

Continuity, Injectivity and Monotonicity in an Interval

Corollary

If I is an interval and $f: I \to \mathbb{R}$ is continuous and injective, then f is strictly monotone.

• If I is a singleton there is nothing to prove. Otherwise, let $r, s \in I$, with r < s. Since f is injective, $f(r) \neq f(s)$. We can suppose f(r) < f(s) (if not, consider -f).

Claim: We assert that f is strictly increasing. Given $c, d \in I$, c < d, we must show that f(c) < f(d). Let J = [a, b] be a closed subinterval of I that contains all four points r, s, c, d. For example, $a = \min \{r, c\}$, $b = \max \{s, d\}$ will do. From the theorem, we know that $f \upharpoonright_J$ is either strictly increasing or strictly decreasing. Since f(r) < f(s), it must be the former, whence f(c) < f(d).

Inverse Function Theorem

Continuity of the Inverse

Lemma

If $f : [a, b] \rightarrow [c, d]$ is bijective and continuous then the inverse function $f^{-1} : [c, d] \rightarrow [a, b]$ is also continuous.

Assuming y_n → y in [c, d], we must show that f⁻¹(y_n) → f⁻¹(y). Let x_n = f⁻¹(y_n), x = f⁻¹(y) and assume to the contrary that (x_n) does not converge to x. Then, there exists an ε > 0, such that |x_n - x| ≥ ε frequently. Passing to a subsequence, we can suppose that |x_n - x| ≥ ε, for all n. Since (x_n) is bounded, some subsequence is convergent (Bolzano-Weierstraß), say x_{nk} → t. Then t ∈ [a, b] and f(x_{nk}) → f(t) by continuity. But f(x_{nk}) = y_{nk} → y, so y = f(t), t = f⁻¹(y) = x. Thus, x_{nk} → x, contrary to |x_{nk} - x| ≥ ε, for all k.

The Inverse Function Theorem

Theorem (Inverse Function Theorem)

Let I be an interval in \mathbb{R} , $f: I \to \mathbb{R}$ continuous and injective. Let J = f(I) (an interval), so that $f: I \to J$ is continuous and bijective. Then $f^{-1}: J \to I$ is also continuous.

By the preceding Corollary, we know that f is monotone. We can suppose that f is increasing (if not, consider -f). Suppose y_n → y in J. Writing x_n = f⁻¹(y_n), x = f⁻¹(y), we have to show that x_n → x. The set A = {y} ∪ {y_n : n ∈ P} is compact. So it has a smallest element c and a largest element d. Then A ⊆ [c, d] ⊆ J. Say c = f(a), d = f(b). Since f is increasing, a ≤ b and f([a, b]) = [f(a), f(b)] = [c, d], so x_n → x follows from applying the lemma to the restriction f |_[a,b]: [a, b] → [c, d].

• Example: If $n \in \mathbb{P}$ and $I = [0, +\infty)$, then the function $I \to I$, $x \mapsto \sqrt[n]{x}$ is continuous: It is the inverse of a continuous bijection. If *n* is odd, then the function $\mathbb{R} \to \mathbb{R}$, $x \mapsto \sqrt[n]{x}$ is continuous.

Uniform Continuity

Uniform Continuity Theorem

Theorem

Suppose $f : [a, b] \to \mathbb{R}$ is continuous. Given any $\epsilon > 0$, there exists a $\delta > 0$, such that $x, y \in [a, b]$, $|x - y| < \delta \Rightarrow |f(x) - f(y)| < \epsilon$.

- This is not just a restatement of the definition of continuity; there is a subtle difference:
 - To say that f : S → ℝ is continuous means that for each y ∈ S and ε > 0, there is a δ > 0 (depending in general on both y and ε) such that x ∈ S, |x - y| < δ ⇒ |f(x) - f(y)| < ε.

 - The theorem ensures that when the domain of f is a closed interval, the choice of δ can be made to depend on ϵ alone. Informally speaking, δ works "uniformly well" at all points of the domain.

Proof of the Uniform Continuity Theorem

Theorem

Suppose $f : [a, b] \to \mathbb{R}$ is continuous. Given any $\epsilon > 0$, there exists a $\delta > 0$, such that $x, y \in [a, b]$, $|x - y| < \delta \Rightarrow |f(x) - f(y)| < \epsilon$.

• Let $\epsilon > 0$. We seek a $\delta > 0$, for which the stated implication is valid. Assume to the contrary that no such δ exists. In particular, for each $n \in \mathbb{P}$, the choice $\delta = \frac{1}{n}$ fails to validate the implication, so there is a pair of points x_n, y_n in [a, b], such that $|x_n - y_n| < \frac{1}{n}$, but $|f(x_n) - f(y_n)| \ge \epsilon$. For a suitable subsequence, $x_{n_k} \to x \in [a, b]$ (Bolzano-Weierstraß). Then $y_{n_k} = x_{n_k} - (x_{n_k} - y_{n_k})$ and $x_{n_k} - y_{n_k} \to 0$ show that also $y_{n_k} \to x$. By continuity, $f(x_{n_k}) \to f(x)$ and $f(y_{n_k}) \to f(x)$, so $f(x_{n_k}) - f(y_{n_k}) \to 0$, contrary to $|f(x_{n_k}) - f(y_{n_k})| \ge \epsilon$.

Uniformly Continuous Functions

Definition (Uniformly Continuous Function)

Let S be a subset of \mathbb{R} . A function $f : S \to \mathbb{R}$ is said to be **uniformly** continuous (on S) if, for every $\epsilon > 0$, there exists a $\delta > 0$, such that $x, y \in S$, $|x - y| < \delta \Rightarrow |f(x) - f(y)| < \epsilon$.

- Uniform continuity implies continuity, but the converse is false:
- Example: The function f : (0,2] → ℝ defined by f(x) = ¹/_x is continuous but not uniformly continuous. Looking at the graph of f, we see that "the nearer y is to 0, the steeper the "slope" of the graph". This suggests that for a particular ε, the nearer y is to 0, the smaller δ will have to be taken.

Formal Argument: Assume *f* is uniformly continuous. In particular, for $\epsilon = 1$, there is a $\delta > 0$ (which we can suppose to be < 1) for which $x, y \in (0, 2], |x - y| \le \delta \Rightarrow |\frac{1}{x} - \frac{1}{y}| < 1$, i.e., |x - y| < xy. Thus, $x, y \in (0, 2], |x - y| = \delta \Rightarrow \delta < xy$. If $y_n = \frac{1}{n}$ and $x_n = \delta + \frac{1}{n}$, then $|x_n - y_n| = \delta < x_n y_n \rightarrow 0$, which is absurd.