Introduction to Real Analysis

George Voutsadakis¹

¹Mathematics and Computer Science Lake Superior State University

LSSU Math 421

- Deleted Neighborhoods
- Limits
- Limits and Continuity
- ϵ, δ Characterization of Limits
- Algebra of Limits

Deleted Neighborhoods

Deleted Neighborhoods

• The idea of "deleted neighborhood" of a point c is to permit a variable x to approach c without ever having to be equal to c:

Definition (Deleted Neighborhood)

Let S be a subset of \mathbb{R} , c a real number, i.e., $S \subseteq \mathbb{R}$, $c \in \mathbb{R}$ (c need not belong to S, but it might). We say that:

- S is a **deleted right neighborhood** (DRN) of c if there is an r > 0, such that $(c, c + r) \subseteq S$ (that is, $c < x < c + r \Rightarrow x \in S$);
- S is a deleted left neighborhood (DLN) of c if there is an r > 0, such that (c − r, c) ⊆ S (that is, c − r < x < c ⇒ x ∈ S);
- S is a **deleted neighborhood** (DN) of c if there is an r > 0, such that $(c r, c) \cup (c, c + r) \subseteq S$ (that is, $0 < |x c| < r \Rightarrow x \in S$).

Remarks on Deleted Neighborhoods

- (i) S is a deleted neighborhood of c if and only if it is both a deleted left neighborhood and a deleted right neighborhood of c.
- (ii) If S is a deleted neighborhood of c and if $S \subseteq T \subseteq \mathbb{R}$, then T is also a deleted neighborhood of c; In particular, every neighborhood of c is a deleted neighborhood of c and similarly for DRN's and DLN's.
- (iii) If S and T are DRN's of c, then so is $S \cap T$ and similarly for DLN's.
- (iv) S is a DRN of c if and only if $S \cup \{c\}$ is a right neighborhood of c and similarly for DLN's and DN's.

Examples

- If a < b, then the open interval (a, b) is a DRN of a, a DLN of b, and a neighborhood of every internal point.
- The same is true of the intervals [a, b], (a, b] and [a, b).
- If f: [a, b] → ℝ, a < b, and if c ∈ [a, b], then the set [a, b] {c} is a DN of c if c ∈ (a, b); a DRN of c if c = a; and a DLN of c if c = b. The function g: [a, b] {c} → ℝ defined by g(x) = f(x) f(c)/(x c) is familiar from elementary calculus.
- Remarks on the terminology:
 - A "deleted neighborhood" of *c* might contain *c*, in analogy with a "neighborhood" of *c* being permitted to contain points that are far away from *c*.
 - For neighborhoods, the points far from *c* are ignored;
 - For deleted neighborhoods, the presence of *c* if it is present is likewise ignored.
 - Regardless of terminology, the concept of a "deleted neighborhood" should encompass the ordinary neighborhoods of *c*.

Limits

Limits

- Continuity of a function f at a point a means, informally, that f(x) approaches f(a) as x approaches a.
- In the theory of limits, f is permitted to be undefined at a provided that, as x approaches a, f(x) approaches something:

Definition (Limit)

Let $f : S \to \mathbb{R}$, where S is a deleted neighborhood of $c \in \mathbb{R}$. We say that f has a limit at c if there exists a real number L, such that

$$\left.\begin{array}{l} x_n \in S \\ x_n \neq c \\ x_n \rightarrow c \end{array}\right\} \Rightarrow f(x_n) \rightarrow L.$$

- Such a number L is unique and is called the **limit** of f at c, written $\lim_{x\to c} f(x) = L$ or, for emphasis, $\lim_{\substack{x\to c\\ x\neq c}} f(x) = L$.
- The statement that f has a limit at c is also expressed by saying that " $\lim_{x\to c} f(x)$ exists".

Examples

If S is a neighborhood of c and f : S → ℝ is continuous at c, then f has limit f(c) at c:

$$\lim_{x\to c}f(x)=f(c).$$

Indeed, $f(x_n) \to f(c)$, for every sequence (x_n) in S, such that $x_n \to c$ (and in particular for those with $x_n \neq c$, for all n).

• If $f : \mathbb{R} - \{3\} \to \mathbb{R}$ is the function defined by $f(x) = x^2$ for $x \neq 3$, then $\lim_{x\to 3} f(x) = 9$. The same is true for the function $f : \mathbb{R} \to \mathbb{R}$ defined by

$$f(x) = \begin{cases} 2x+3, & \text{if } x < 3\\ x^2, & \text{if } x > 3\\ 1, & \text{if } x = 3 \end{cases}$$

and for $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = \begin{cases} 2x + 3, & \text{if } x \text{ rational} \\ x^2, & \text{if } x \text{ irrational} \end{cases}$

One-Sided Limits

Definition (One-Sided Limit)

Let $f: S \to \mathbb{R}$, where S is a deleted right neighborhood of $c \in \mathbb{R}$. We say that f has a right limit at c if there exists a real number L, such that

$$\left.\begin{array}{l} x_n \in S \\ x_n > c \\ x_n \to c \end{array}\right\} \Rightarrow f(x_n) \to L.$$

- Such a number L is unique and is called the **right limit** of f at c, written $\lim_{x\to c} f(x) = L$ or $\lim_{x\to c^+} f(x) = L$, or, concisely, f(c+) = L. x > c
- The statement that f has a right limit at c is also expressed by saying that "f(c+) exists".
- Left limits (when they exist) are defined similarly: S is assumed to be a DLN of c and we require $x_n < c$. The symbols $\lim_{x \to c} f(x)$, $\lim_{x \to c^-} f(x)$,

f(c-) denote the left limit of f at c (when it exists).

v<c

Examples

- If S is a right neighborhood of c and $f : S \to \mathbb{R}$ is right continuous at c, then f has right limit f(c) at c.
- Similarly with "right" replaced by "left".
- If $f : \mathbb{R} \to \mathbb{R}$ is defined by

$$f(x) = \left\{ egin{array}{ccc} 1, & ext{if } x < 0 \ 2, & ext{if } x = 0 \ 3, & ext{if } x > 0 \end{array}
ight. ,$$

then, at the point 0, f has left limit 1 and right limit 3; f does not have a limit at 0 (applying f to the sequence $x_n = \frac{(-1)^n}{n}$ produces a divergent sequence).

Limits and One-Sided Limits

Theorem

Let $f: S \to \mathbb{R}$, where $S \subseteq \mathbb{R}$, and let $c \in \mathbb{R}$. The following conditions are equivalent:

(a) f has a limit at c;

(b) f(c-) and f(c+) exist and are equal.

When f has a limit L at c, necessarily L = f(c-) = f(c+).

• (a) \Rightarrow (b): By assumption, S is a deleted neighborhood of c, so it is also a DLN and a DRN. If f has limit L at c, then $f(x_n) \rightarrow L$, for every sequence in S with $x_n \rightarrow c$ and $x_n \neq c$. This is true, in particular, when $x_n < c$, for all *n*, and when $x_n > c$, for all *n*. Thus, f(c-) and f(c+) exist and are equal to L.

Limits and One-Sided Limits (Cont'd)

• (b) \Rightarrow (a): By assumption, S is a DLN and a DRN of c, so it is a DN of c. Write L for the common value of f(c-) and f(c+). If (x_n) is a sequence in S, with $x_n \rightarrow c$ and $x_n \neq c$, for all n, then either

(i)
$$x_n < c$$
 ultimately, or

- (ii) $x_n > c$ ultimately, or
- (iii) $x_n < c$ frequently and $x_n > c$ frequently.

In cases (i) and (ii) it is clear that $f(x_n) \to L$. In case (iii), let (x_{n_k}) be the subsequence with $x_{n_k} < c$ and (x_{m_i}) the subsequence with $x_{m_i} > c$. Then $f(x_{n_k}) \to f(c-) = L$ and $f(x_{m_i}) \rightarrow f(c+) = L$, whence $f(x_n) \rightarrow L$.

Existence of One-Sided Limits

Theorem

If $f:(a,b) \to \mathbb{R}$ is a bounded monotone function, then f has a right limit at every point of [a, b) and a left limit at every point of (a, b].

• It suffices, for example, to show that f(a+) exists. We can suppose f is increasing (if not, consider -f). Let $L = \inf \{f(x) : a < x < b\}$ (recall that f is bounded).

Claim: f has right limit L at a, i.e., f(a+) = L.

Assuming $a < x_n < b$ and $x_n \rightarrow a$, we have to show that $f(x_n) \rightarrow L$. Let $\epsilon > 0$. By the definition of L (as a greatest lower bound), there exists $c \in (a, b)$, such that $L \leq f(c) < L + \epsilon$. Ultimately $a < x_n < c$, whence $L \leq f(x_n) \leq f(c) < L + \epsilon$, so $|f(x_n) - L| < \epsilon$. We have shown that, for every $\epsilon > 0$, $|f(x_n) - L| < \epsilon$ ultimately, i.e., $f(x_n) \to L$.

• Remark: A function $f : [a, b] \to \mathbb{R}$ is said to be **regulated** if f has a right limit at every point of [a, b) and a left limit at every point of (a, b]. Thus, every monotone function $f : [a, b] \to \mathbb{R}$ is regulated.

Limits and Continuity

Continuity and Limit Equal to Value

• For a function defined on a neighborhood of a point, continuity at the point means the same thing as having a limit equal to the value:

Theorem

Let $f : S \to \mathbb{R}$, where S is a neighborhood of $c \in \mathbb{R}$. The following conditions on f are equivalent:

- (a) f is continuous at c;
- (b) $\exists \lim_{x\to c} f(x) = f(c);$
 - (a) \Rightarrow (b): This has already been seen.
 - (b)⇒(a): Assuming x_n ∈ S, x_n → c, we must show f(x_n) → f(c). This is obvious if x_n = c ultimately, and, if x_n ≠ c ultimately, then it is immediate from (b). The remaining case, that x_n = c frequently and x_n ≠ c frequently, follows from applying the preceding two cases to the appropriate subsequences.
 - "right" version: If S is a right neighborhood of c and $f : S \to \mathbb{R}$, then f is right continuous at c if and only if $\exists f(c+) = f(c)$.

Continuous Extendability

Corollary

Let S be a deleted neighborhood of $c \in \mathbb{R}$, $f : S \to \mathbb{R}$. The following conditions on f are equivalent:

(a) f has a limit at c;

(b) There exists a function $F : S \cup \{c\} \to \mathbb{R}$, such that F is continuous at c and F(x) = f(x), for all $x \in S - \{c\}$.

Necessarily, $F(c) = \lim_{x \to c} f(x)$.

Recall that c may or may not belong to S. If c ∈ S, then S ∪ {c} = S. If c ∉ S, then S - {c} = S.
(a)⇒(b): Say f has limit L ∈ ℝ at c. Define F : S ∪ {c} → ℝ by F(x) = {L, if x = c f(x), if x ∈ S - {c}. Note that, if c ∉ S, we are extending f to S ∪ {c}. If c ∈ S and f(c) ≠ L, we are redefining f at c. Finally, if c ∈ S and f(c) = L, nothing has changed.

Continuous Extendability (Cont'd)

• (a)
$$\Rightarrow$$
(b): We defined $F(x) = \begin{cases} L, & \text{if } x = c \\ f(x), & \text{if } x \in S - \{c\} \end{cases}$.
If $x_n \in S \cup \{c\}, x_n \neq c, x_n \rightarrow c$, then $x_n \in S - \{c\}$ and $F(x_n) = f(x_n) \rightarrow L = F(c)$. Thus, F is continuous at c .

- (b) \Rightarrow (a): Assume F has the properties in (b). If $x_n \in S$, $x_n \neq c$, $x_n \rightarrow c$, then $f(x_n) = F(x_n) \rightarrow F(c)$ by the continuity of F at c. This shows that f has limit F(c) at c.
- Remark: There are "one-sided" versions of the theorem.
 For example, if S is a deleted right neighborhood of c and f : S → ℝ, then f has a right limit at c if and only if there exists a function
 F: S ∪ {c} → ℝ, such that F is right continuous at c and
 F(x) = f(x), for all x ∈ S {c}; necessarily, F(c) = f(c+).

A Corollary of Continuous Extendability

Corollary

- Let $f : [a, b] \rightarrow \mathbb{R}$, a < b. The following conditions are equivalent:
- (a) f is continuous on [a, b];
- (b) $\exists f(a+) = f(a), \exists f(b-) = f(b) \text{ and, for every } c \in (a,b)$ $\exists \lim_{x \to c} f(x) = f(c).$
 - Condition (b) says that f is right continuous at a, left continuous at b, and continuous at every internal point c. I.e., f is continuous at every point of [a, b]. Condition (a) says the same thing.

ϵ, δ Characterization of Limits

ϵ,δ Characterization of Limits

Theorem

Let $f: S \to \mathbb{R}$, where S is a deleted neighborhood of $c \in \mathbb{R}$, and let

 $L \in \mathbb{R}$. The following conditions are equivalent:

(a)
$$\exists \lim_{x \to c} f(x) = L;$$

(b) For every $\epsilon > 0$, there exists a $\delta > 0$, such that $x \in S, 0 < |x - c| < \delta$ $\Rightarrow |f(x) - L| < \epsilon$.

By hypothesis, there exists a δ > 0, such that 0 < |x - c| < δ ⇒ x ∈ S. In particular, f(x) is defined for such x. So the problem in (b) is to assure that, in addition, |f(x) - L| < ε. Let F : S ∪ {c} → ℝ be the function such that F(c) = L and F(x) = f(x), x ∈ S - {c}. Condition (b) then says that for every ε > 0, there exists a δ > 0, such that x ∈ S, 0 < |x - c| < δ ⇒ |F(x) - F(c)| < ε, equivalently, x ∈ S ∪ {c}, |x - c| < δ ⇒ |F(x) - F(c)| < ε. Thus, Condition (b) is equivalent to the continuity of F at c, which is equivalent to (a).

One-Sided Versions

• There are, also, "one-sided" versions of the preceding theorem.

For example, let $f : S \to \mathbb{R}$, where S is a deleted right neighborhood of $c \in \mathbb{R}$, and let $L \in \mathbb{R}$. In order that f have a right limit at c equal to L, it is necessary and sufficient that, for every $\epsilon > 0$, there exist a $\delta > 0$, such that

$$x \in S, \ c < x < c + \delta \ \Rightarrow \ |f(x) - L| < \epsilon.$$

Algebra of Limits

Algebra of Limits

• The "algebra of continuity" translates into an "algebra of limits":

Theorem (Algebra of Limits)

Let S be a deleted neighborhood of $c \in \mathbb{R}$, and suppose $f : S \to \mathbb{R}$, $g : S \to \mathbb{R}$ have limits at c, say $\lim_{x\to c} f(x) = L$, $\lim_{x\to c} g(x) = M$. Then the functions f + g, fg and af, $a \in \mathbb{R}$, also have limits at c, and:

•
$$\lim_{x\to c} (f+g)(x) = L + M;$$

- $\lim_{x\to c} (af)(x) = aL;$
- $\lim_{x\to c} (fg)(x) = LM.$
- If, moreover, $M \neq 0$, then $\frac{f}{g}$ is defined on a deleted neighborhood of c and $\lim_{x\to c} \left(\frac{f}{g}\right)(x) = \frac{L}{M}$.

• Let $F: S \cup \{c\} \to \mathbb{R}$, $G: S \cup \{c\} \to \mathbb{R}$ be the functions such that F(c) = L, F(x) = f(x), $x \in S - \{c\}$, G(c) = M, G(x) = g(x), $x \in S - \{c\}$. F and G are continuous at c.

Algebra of Limits (Cont'd)

• F and G are continuous at c. Therefore, so is F + G. Moreover, (F+G)(c) = F(c) + G(c) = L + M and (F+G)(x) = f(x) + g(x) = (f+g)(x), for $x \in S - \{c\}$. Therefore, f + g has a limit at c equal to L + M.

The proofs for af and fg are similar.

Finally, suppose $M \neq 0$. With $\epsilon = \frac{1}{2}|M|$, choose $\delta > 0$, so that $0 < |x - c| < \delta \Rightarrow x \in S$ and $|g(x) - M| < \frac{1}{2}|M|$. In particular, $0 < |x - c| < \delta \Rightarrow g(x) \neq 0$. Restricting the functions f and g to the deleted neighborhood $(c - \delta, c) \cup (c, c + \delta)$ of c, we can suppose that g is never 0 on S. Then $\frac{F}{G}$ is continuous at c and $(\frac{F}{G})(x) = \frac{f(x)}{g(x)} = (\frac{f}{g})(x)$, for $x \in S - \{c\}$. Thus, $\frac{f}{g}$ has limit $\frac{F(c)}{G(c)} = \frac{L}{M}$ at c.

One-Sided Versions

Once more, there are "one-sided" versions of the theorem.
 For example, if S is a deleted right neighborhood of c and the functions f : S → ℝ, g : S → ℝ have right limits at c, then the functions f + g, af, a ∈ ℝ, and fg have right limits at c, and

$$(f+g)(c+) = f(c+)+g(c+), \ (af)(c+) = af(c+), \ (fg)(c+) = f(c+)g(c+).$$

If, moreover, $g(c+) \neq 0$, then $\frac{f}{g}$ is defined on a deleted right neighborhood of c and $(\frac{f}{g})(c+) = \frac{f(c+)}{g(c+)}$.