Introduction to Real Analysis

George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science
Lake Superior State University

LSSU Math 421

(1) Limits of Functions

- Deleted Neighborhoods
- Limits
- Limits and Continuity
- ϵ, δ Characterization of Limits
- Algebra of Limits

Subsection 1

Deleted Neighborhoods

Deleted Neighborhoods

- The idea of "deleted neighborhood" of a point c is to permit a variable x to approach c without ever having to be equal to c :

Definition (Deleted Neighborhood)

Let S be a subset of \mathbb{R}, c a real number, i.e., $S \subseteq \mathbb{R}, c \in \mathbb{R}$ (c need not belong to S, but it might). We say that:

- S is a deleted right neighborhood (DRN) of c if there is an $r>0$, such that $(c, c+r) \subseteq S$ (that is, $c<x<c+r \Rightarrow x \in S$);
- S is a deleted left neighborhood (DLN) of c if there is an $r>0$, such that $(c-r, c) \subseteq S$ (that is, $c-r<x<c \Rightarrow x \in S$);
- S is a deleted neighborhood (DN) of c if there is an $r>0$, such that $(c-r, c) \cup(c, c+r) \subseteq S$ (that is, $0<|x-c|<r \Rightarrow x \in S$).

Remarks on Deleted Neighborhoods

(i) S is a deleted neighborhood of c if and only if it is both a deleted left neighborhood and a deleted right neighborhood of c.
(ii) If S is a deleted neighborhood of c and if $S \subseteq T \subseteq \mathbb{R}$, then T is also a deleted neighborhood of c; In particular, every neighborhood of c is a deleted neighborhood of c and similarly for DRN's and DLN's.
(iii) If S and T are DRN's of c, then so is $S \cap T$ and similarly for DLN's.
(iv) S is a DRN of c if and only if $S \cup\{c\}$ is a right neighborhood of c and similarly for DLN's and DN's.

Examples

- If $a<b$, then the open interval (a, b) is a DRN of a, a DLN of b, and a neighborhood of every internal point.
- The same is true of the intervals $[a, b],(a, b]$ and $[a, b)$.
- If $f:[a, b] \rightarrow \mathbb{R}, a<b$, and if $c \in[a, b]$, then the set $[a, b]-\{c\}$ is a DN of c if $c \in(a, b)$; a DRN of c if $c=a$; and a DLN of c if $c=b$. The function $g:[a, b]-\{c\} \rightarrow \mathbb{R}$ defined by $g(x)=\frac{f(x)-f(c)}{x-c}$ is familiar from elementary calculus.
- Remarks on the terminology:
- A "deleted neighborhood" of c might contain c, in analogy with a "neighborhood" of c being permitted to contain points that are far away from c.
- For neighborhoods, the points far from c are ignored;
- For deleted neighborhoods, the presence of c - if it is present - is likewise ignored.
- Regardless of terminology, the concept of a "deleted neighborhood" should encompass the ordinary neighborhoods of c.

Subsection 2

Limits

Limits

- Continuity of a function f at a point a means, informally, that $f(x)$ approaches $f(a)$ as x approaches a.
- In the theory of limits, f is permitted to be undefined at a provided that, as x approaches $a, f(x)$ approaches something:

Definition (Limit)

Let $f: S \rightarrow \mathbb{R}$, where S is a deleted neighborhood of $c \in \mathbb{R}$. We say that f has a limit at c if there exists a real number L, such that

$$
\left.\begin{array}{l}
x_{n} \in S \\
x_{n} \neq c \\
x_{n} \rightarrow c
\end{array}\right\} \Rightarrow f\left(x_{n}\right) \rightarrow L
$$

- Such a number L is unique and is called the limit of f at c, written $\lim _{x \rightarrow c} f(x)=L$ or, for emphasis, $\lim _{\substack{x \rightarrow c \\ x \neq c}} f(x)=L$.
- The statement that f has a limit at c is also expressed by saying that " $\lim _{x \rightarrow c} f(x)$ exists".

Examples

- If S is a neighborhood of c and $f: S \rightarrow \mathbb{R}$ is continuous at c, then f has limit $f(c)$ at c :

$$
\lim _{x \rightarrow c} f(x)=f(c)
$$

Indeed, $f\left(x_{n}\right) \rightarrow f(c)$, for every sequence $\left(x_{n}\right)$ in S, such that $x_{n} \rightarrow c$ (and in particular for those with $x_{n} \neq c$, for all n).

- If $f: \mathbb{R}-\{3\} \rightarrow \mathbb{R}$ is the function defined by $f(x)=x^{2}$ for $x \neq 3$, then $\lim _{x \rightarrow 3} f(x)=9$. The same is true for the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
f(x)= \begin{cases}2 x+3, & \text { if } x<3 \\ x^{2}, & \text { if } x>3 \\ 1, & \text { if } x=3\end{cases}
$$

and for $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)= \begin{cases}2 x+3, & \text { if } x \text { rational } \\ x^{2}, & \text { if } x \text { irrational }\end{cases}$

One-Sided Limits

Definition (One-Sided Limit)

Let $f: S \rightarrow \mathbb{R}$, where S is a deleted right neighborhood of $c \in \mathbb{R}$. We say that f has a right limit at c if there exists a real number L, such that

$$
\left.\begin{array}{l}
x_{n} \in S \\
x_{n}>c \\
x_{n} \rightarrow c
\end{array}\right\} \Rightarrow f\left(x_{n}\right) \rightarrow L
$$

- Such a number L is unique and is called the right limit of f at c, written $\lim _{\substack{x \rightarrow c \\ x>c}} f(x)=L$ or $\lim _{x \rightarrow c^{+}} f(x)=L$, or, concisely, $f(c+)=L$.
- The statement that f has a right limit at c is also expressed by saying that " $f(c+)$ exists".
- Left limits (when they exist) are defined similarly: S is assumed to be a DLN of c and we require $x_{n}<c$. The symbols $\lim _{\substack{x \rightarrow c \\ x<c}} f(x), \lim _{x \rightarrow c^{-}} f(x)$, $f(c-)$ denote the left limit of f at c (when it exists).

Examples

- If S is a right neighborhood of c and $f: S \rightarrow \mathbb{R}$ is right continuous at c, then f has right limit $f(c)$ at c.
- Similarly with "right" replaced by "left".
- If $f: \mathbb{R} \rightarrow \mathbb{R}$ is defined by

$$
f(x)= \begin{cases}1, & \text { if } x<0 \\ 2, & \text { if } x=0 \\ 3, & \text { if } x>0\end{cases}
$$

then, at the point $0, f$ has left limit 1 and right limit $3 ; f$ does not have a limit at 0 (applying f to the sequence $x_{n}=\frac{(-1)^{n}}{n}$ produces a divergent sequence).

Limits and One-Sided Limits

Theorem

Let $f: S \rightarrow \mathbb{R}$, where $S \subseteq \mathbb{R}$, and let $c \in \mathbb{R}$. The following conditions are equivalent:
(a) f has a limit at c;
(b) $f(c-)$ and $f(c+)$ exist and are equal.

When f has a limit L at c, necessarily $L=f(c-)=f(c+)$.

- $(\mathrm{a}) \Rightarrow(\mathrm{b})$: By assumption, S is a deleted neighborhood of c, so it is also a DLN and a DRN. If f has limit L at c, then $f\left(x_{n}\right) \rightarrow L$, for every sequence in S with $x_{n} \rightarrow c$ and $x_{n} \neq c$. This is true, in particular, when $x_{n}<c$, for all n, and when $x_{n}>c$, for all n. Thus, $f(c-)$ and $f(c+)$ exist and are equal to L.

Limits and One-Sided Limits (Cont'd)

- (b) $\Rightarrow($ a): By assumption, S is a DLN and a DRN of c, so it is a DN of c. Write L for the common value of $f(c-)$ and $f(c+)$. If $\left(x_{n}\right)$ is a sequence in S, with $x_{n} \rightarrow c$ and $x_{n} \neq c$, for all n, then either
(i) $x_{n}<c$ ultimately, or
(ii) $x_{n}>c$ ultimately, or
(iii) $x_{n}<c$ frequently and $x_{n}>c$ frequently.

In cases (i) and (ii) it is clear that $f\left(x_{n}\right) \rightarrow L$.
In case (iii), let $\left(x_{n_{k}}\right)$ be the subsequence with $x_{n_{k}}<c$ and $\left(x_{m_{j}}\right)$ the subsequence with $x_{m_{j}}>c$. Then $f\left(x_{n_{k}}\right) \rightarrow f(c-)=L$ and $f\left(x_{m_{j}}\right) \rightarrow f(c+)=L$, whence $f\left(x_{n}\right) \rightarrow L$.

Existence of One-Sided Limits

Theorem

If $f:(a, b) \rightarrow \mathbb{R}$ is a bounded monotone function, then f has a right limit at every point of $[a, b)$ and a left limit at every point of $(a, b]$.

- It suffices, for example, to show that $f(a+)$ exists. We can suppose f is increasing (if not, consider $-f$). Let $L=\inf \{f(x): a<x<b\}$ (recall that f is bounded).
Claim: f has right limit L at a, i.e.. $f(a+)=L$.
Assuming $a<x_{n}<b$ and $x_{n} \rightarrow a$, we have to show that $f\left(x_{n}\right) \rightarrow L$. Let $\epsilon>0$. By the definition of L (as a greatest lower bound), there exists $c \in(a, b)$, such that $L \leq f(c)<L+\epsilon$. Ultimately $a<x_{n}<c$, whence $L \leq f\left(x_{n}\right) \leq f(c)<L+\epsilon$, so $\left|f\left(x_{n}\right)-L\right|<\epsilon$. We have shown that, for every $\epsilon>0,\left|f\left(x_{n}\right)-L\right|<\epsilon$ ultimately, i.e., $f\left(x_{n}\right) \rightarrow L$.
- Remark: A function $f:[a, b] \rightarrow \mathbb{R}$ is said to be regulated if f has a right limit at every point of $[a, b)$ and a left limit at every point of $(a, b]$. Thus, every monotone function $f:[a, b] \rightarrow \mathbb{R}$ is regulated.

Subsection 3

Limits and Continuity

Continuity and Limit Equal to Value

- For a function defined on a neighborhood of a point, continuity at the point means the same thing as having a limit equal to the value:

Theorem

Let $f: S \rightarrow \mathbb{R}$, where S is a neighborhood of $c \in \mathbb{R}$. The following conditions on f are equivalent:
(a) f is continuous at c;
(b) $\exists \lim _{x \rightarrow c} f(x)=f(c)$;

- $(\mathrm{a}) \Rightarrow(\mathrm{b})$: This has already been seen.
- (b) $\Rightarrow(a)$: Assuming $x_{n} \in S, x_{n} \rightarrow c$, we must show $f\left(x_{n}\right) \rightarrow f(c)$. This is obvious if $x_{n}=c$ ultimately, and, if $x_{n} \neq c$ ultimately, then it is immediate from (b). The remaining case, that $x_{n}=c$ frequently and $x_{n} \neq c$ frequently, follows from applying the preceding two cases to the appropriate subsequences.
- "right" version: If S is a right neighborhood of c and $f: S \rightarrow \mathbb{R}$, then f is right continuous at c if and only if $\exists f(c+)=f(c)$.

Continuous Extendability

Corollary

Let S be a deleted neighborhood of $c \in \mathbb{R}, f: S \rightarrow \mathbb{R}$. The following conditions on f are equivalent:
(a) f has a limit at c;
(b) There exists a function $F: S \cup\{c\} \rightarrow \mathbb{R}$, such that F is continuous at c and $F(x)=f(x)$, for all $x \in S-\{c\}$.
Necessarily, $F(c)=\lim _{x \rightarrow c} f(x)$.

- Recall that c may or may not belong to S. If $c \in S$, then $S \cup\{c\}=S$. If $c \notin S$, then $S-\{c\}=S$.
- (a) \Rightarrow (b): Say f has limit $L \in \mathbb{R}$ at c. Define $F: S \cup\{c\} \rightarrow \mathbb{R}$ by
$F(x)=\left\{\begin{array}{ll}L, & \text { if } x=c \\ f(x), & \text { if } x \in S-\{c\}\end{array}\right.$. Note that, if $c \notin S$, we are extending f to $S \cup\{c\}$. If $c \in S$ and $f(c) \neq L$, we are redefining f at c. Finally, if $c \in S$ and $f(c)=L$, nothing has changed.

Continuous Extendability (Cont'd)

- (a) $\Rightarrow(\mathrm{b})$: We defined $F(x)= \begin{cases}L, & \text { if } x=c \\ f(x), & \text { if } x \in S-\{c\}\end{cases}$ If $x_{n} \in S \cup\{c\}, x_{n} \neq c, x_{n} \rightarrow c$, then $x_{n} \in S-\{c\}$ and $F\left(x_{n}\right)=f\left(x_{n}\right) \rightarrow L=F(c)$. Thus, F is continuous at c.
- (b) $\Rightarrow(\mathrm{a})$: Assume F has the properties in (b). If $x_{n} \in S, x_{n} \neq c$, $x_{n} \rightarrow c$, then $f\left(x_{n}\right)=F\left(x_{n}\right) \rightarrow F(c)$ by the continuity of F at c. This shows that f has limit $F(c)$ at c.
- Remark: There are "one-sided" versions of the theorem.

For example, if S is a deleted right neighborhood of c and $f: S \rightarrow \mathbb{R}$, then f has a right limit at c if and only if there exists a function $F: S \cup\{c\} \rightarrow \mathbb{R}$, such that F is right continuous at c and $F(x)=f(x)$, for all $x \in S-\{c\}$; necessarily, $F(c)=f(c+)$.

A Corollary of Continuous Extendability

Corollary

Let $f:[a, b] \rightarrow \mathbb{R}, a<b$. The following conditions are equivalent:
(a) f is continuous on $[a, b]$;
(b) $\exists f(a+)=f(a), \exists f(b-)=f(b)$ and, for every $c \in(a, b)$ $\exists \lim _{x \rightarrow c} f(x)=f(c)$.

- Condition (b) says that f is right continuous at a, left continuous at b, and continuous at every internal point c. I.e., f is continuous at every point of $[a, b]$. Condition (a) says the same thing.

Subsection 4

ϵ, δ Characterization of Limits

ϵ, δ Characterization of Limits

Theorem

Let $f: S \rightarrow \mathbb{R}$, where S is a deleted neighborhood of $c \in \mathbb{R}$, and let
$L \in \mathbb{R}$. The following conditions are equivalent:
(a) $\exists \lim _{x \rightarrow c} f(x)=L$;
(b) For every $\epsilon>0$, there exists a $\delta>0$, such that $x \in S, 0<|x-c|<\delta$ $\Rightarrow|f(x)-L|<\epsilon$.

- By hypothesis, there exists a $\delta>0$, such that $0<|x-c|<\delta \Rightarrow$ $x \in S$. In particular, $f(x)$ is defined for such x. So the problem in (b) is to assure that, in addition, $|f(x)-L|<\epsilon$. Let $F: S \cup\{c\} \rightarrow \mathbb{R}$ be the function such that $F(c)=L$ and $F(x)=f(x), x \in S-\{c\}$. Condition (b) then says that for every $\epsilon>0$, there exists a $\delta>0$, such that $x \in S, 0<|x-c|<\delta \Rightarrow|F(x)-F(c)|<\epsilon$, equivalently, $x \in S \cup\{c\},|x-c|<\delta \Rightarrow|F(x)-F(c)|<\epsilon$. Thus, Condition (b) is equivalent to the continuity of F at c, which is equivalent to (a).

One-Sided Versions

- There are, also, "one-sided" versions of the preceding theorem. For example, let $f: S \rightarrow \mathbb{R}$, where S is a deleted right neighborhood of $c \in \mathbb{R}$, and let $L \in \mathbb{R}$. In order that f have a right limit at c equal to L, it is necessary and sufficient that, for every $\epsilon>0$, there exist a $\delta>0$, such that

$$
x \in S, c<x<c+\delta \Rightarrow|f(x)-L|<\epsilon .
$$

Subsection 5

Algebra of Limits

Algebra of Limits

- The "algebra of continuity" translates into an "algebra of limits":

Theorem (Algebra of Limits)

Let S be a deleted neighborhood of $c \in \mathbb{R}$, and suppose $f: S \rightarrow \mathbb{R}$, $g: S \rightarrow \mathbb{R}$ have limits at c, say $\lim _{x \rightarrow c} f(x)=L, \lim _{x \rightarrow c} g(x)=M$. Then the functions $f+g, f g$ and $a f, a \in \mathbb{R}$, also have limits at c, and:

- $\lim _{x \rightarrow c}(f+g)(x)=L+M$;
- $\lim _{x \rightarrow c}(a f)(x)=a L ;$
- $\lim _{x \rightarrow c}(f g)(x)=L M$.
- If, moreover, $M \neq 0$, then $\frac{f}{g}$ is defined on a deleted neighborhood of c and $\lim _{x \rightarrow c}\left(\frac{f}{g}\right)(x)=\frac{L}{M}$.
- Let $F: S \cup\{c\} \rightarrow \mathbb{R}, G: S \cup\{c\} \rightarrow \mathbb{R}$ be the functions such that $F(c)=L, F(x)=f(x), x \in S-\{c\}, G(c)=M, G(x)=g(x)$, $x \in S-\{c\} . F$ and G are continuous at c.

Algebra of Limits (Cont'd)

- F and G are continuous at c. Therefore, so is $F+G$. Moreover, $(F+G)(c)=F(c)+G(c)=L+M$ and $(F+G)(x)=f(x)+g(x)=(f+g)(x)$, for $x \in S-\{c\}$.
Therefore, $f+g$ has a limit at c equal to $L+M$.
The proofs for af and $f g$ are similar.
Finally, suppose $M \neq 0$. With $\epsilon=\frac{1}{2}|M|$, choose $\delta>0$, so that $0<|x-c|<\delta \Rightarrow x \in S$ and $|g(x)-M|<\frac{1}{2}|M|$. In particular, $0<|x-c|<\delta \Rightarrow g(x) \neq 0$. Restricting the functions f and g to the deleted neighborhood $(c-\delta, c) \cup(c, c+\delta)$ of c, we can suppose that g is never 0 on S. Then $\frac{F}{G}$ is continuous at c and $\left(\frac{F}{G}\right)(x)=\frac{f(x)}{g(x)}=$ $\left(\frac{f}{g}\right)(x)$, for $x \in S-\{c\}$. Thus, $\frac{f}{g}$ has limit $\frac{F(c)}{G(c)}=\frac{L}{M}$ at c.

One-Sided Versions

- Once more, there are "one-sided" versions of the theorem. For example, if S is a deleted right neighborhood of c and the functions $f: S \rightarrow \mathbb{R}, g: S \rightarrow \mathbb{R}$ have right limits at c, then the functions $f+g$, af, $a \in \mathbb{R}$, and $f g$ have right limits at c, and

$$
\begin{aligned}
(f+g)(c+) & =f(c+)+g(c+) \\
(a f)(c+) & =a f(c+) \\
(f g)(c+) & =f(c+) g(c+)
\end{aligned}
$$

If, moreover, $g(c+) \neq 0$, then $\frac{f}{g}$ is defined on a deleted right neighborhood of c and $\left(\frac{f}{g}\right)(c+)=\frac{f(c+)}{g(c+)}$.

