Introduction to Real Analysis

George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science
Lake Superior State University

LSSU Math 421

(1) Derivatives

- Differentiability
- Algebra of Derivatives
- Composition and the Chain Rule
- Local Max and Min
- Mean Value Theorem

Subsection 1

Differentiability

Differentiability

Definition (Differentiability)

Let S be a subset of \mathbb{R}, f a real-valued function defined on S, c a point of S, i.e., $c \in S \subseteq \mathbb{R}$ and $f: S \rightarrow \mathbb{R}$. Let $g: S-\{c\} \rightarrow \mathbb{R}$ be the function defined by the formula

$$
g(x)=\frac{f(x)-f(c)}{x-c}
$$

called a difference-quotient function associated with f. We say that:

- f is differentiable at c if S is a neighborhood of c and g has a limit at c;
- f is right differentiable at c if S is a right neighborhood of c and g has a right limit at c;
- f is left differentiable at c if S is a left neighborhood of c and g has a left limit at c.

Derivative

- When they exist, these limits are called the derivative, right derivative and left derivative of f at c, written

$$
\begin{gathered}
f^{\prime}(c)=\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c} ; \\
f_{r}^{\prime}(c)=\lim _{x \rightarrow c^{+}} \frac{f(x)-f(c)}{x-c} ; \quad f_{\ell}^{\prime}(c)=\lim _{x \rightarrow c^{-}} \frac{f(x)-f(c)}{x-c} .
\end{gathered}
$$

Theorem

Let $f: S \rightarrow \mathbb{R}$, where S is a neighborhood of $c \in \mathbb{R}$. The following conditions on f are equivalent:
(a) f is differentiable at c;
(b) f is both left and right differentiable at c, and $f_{\ell}^{\prime}(c)=f_{r}^{\prime}(c)$.

For such a function f, necessarily $f^{\prime}(c)=f_{\ell}^{\prime}(c)=f_{r}^{\prime}(c)$.

- The equivalence is immediate from limit considerations.

δ, ϵ-Criterion

- Just as for general limits, there are sequential and ϵ, δ criteria for differentiability:

Theorem

Let $f: S \rightarrow \mathbb{R}$, where S is a neighborhood of $c \in \mathbb{R}$, and let $L \in \mathbb{R}$. The following conditions on f are equivalent:
(a) f is differentiable at c, with derivative L;
(b) For every $\epsilon>0$, there exists a $\delta>0$, such that, if $x \in S$ and $0<|x-c|<\delta$, then $|f(x)-f(c)-L(x-c)| \leq \epsilon|x-c|$.

- The last inequality in (b) may be written $|g(x)-L| \leq \epsilon$, where g is the difference-quotient function. Thus, the theorem is immediate.
- Remark: There are "one-sided"' versions of the theorem: E.g., in the criterion for right differentiability, S is a right neighborhood of c and the condition on x in (b) is $c<x<c+\delta$.

Using the Extendability Criterion

Theorem

Let $f: S \rightarrow \mathbb{R}$, where S is a neighborhood of c. The following conditions on f are equivalent:
(a) f is differentiable at c;
(b) There exists a function $A: S \rightarrow \mathbb{R}$, such that A is continuous at c and $f(x)-f(c)=A(x)(x-c)$, for all $x \in S$.
A function A satisfying the conditions in (b) is unique, and $f^{\prime}(c)=A(c)$.

- The equation in condition (b) is trivially satisfied for $x=c$. So the condition means that there exists a function $A: S \rightarrow \mathbb{R}$, such that A is continuous at c and $A(x)=g(x)$, for all $x \in S-\{c\}$. This is in turn equivalent to the existence of a limit for g at c, i.e., equivalent to condition (a), and the limit is necessarily equal to $A(c): f^{\prime}(c)=A(c)$.
- Remark: In a "one-sided" version, e.g., for right differentiability, S is a right neighborhood of c and A is required to be right continuous at c.

Differentiability and Continuity

Corollary

If $f: S \rightarrow \mathbb{R}$ is differentiable at c, then f is continuous at c.

- We have a function A continuous at c, such that

$$
f(x)=f(c)+A(x)(x-c), \text { for all } x \in S
$$

so f is continuous at c.

- Example: The function $f: \mathbb{R}-\{0\} \rightarrow \mathbb{R}$ defined by $f(x)=\frac{1}{x}$ is differentiable at every $c \in \mathbb{R}-\{0\}$, with $f^{\prime}(c)=-\frac{1}{c^{2}}$.
We can apply the last theorem to the identity

$$
\frac{1}{x}-\frac{1}{c}=-\frac{1}{c x}(x-c)
$$

citing the continuity of the function $A(x)=-\frac{1}{c x}$ at c.

Subsection 2

Algebra of Derivatives

Algebraic Laws of Derivatives

Theorem (Laws of Differentiation)

Let $f: S \rightarrow \mathbb{R}, g: S \rightarrow \mathbb{R}$, where S is a neighborhood of $c \in \mathbb{R}$.

- If f and g are differentiable at c, then so are $f+g, a f, a \in \mathbb{R}$, and $f g$, and

$$
\begin{aligned}
(f+g)^{\prime}(c) & =f^{\prime}(c)+g^{\prime}(c) \\
(a f)^{\prime}(c) & =a f^{\prime}(c) \\
(f g)^{\prime}(c) & =f^{\prime}(c) g(c)+f(c) g^{\prime}(c)
\end{aligned}
$$

- If, moreover, $f(c) \neq 0$, then $\frac{1}{f}$ is differentiable at c and

$$
\left(\frac{1}{f}\right)^{\prime}(c)=-\frac{f^{\prime}(c)}{f(c)^{2}}
$$

Proof of the Sum Rule

- We know that there exist functions $A: S \rightarrow \mathbb{R}, B: S \rightarrow \mathbb{R}$, continuous at c, such that

$$
f(x)-f(c)=A(x)(x-c) \quad \text { and } \quad g(x)-g(c)=B(x)(x-c)
$$

for all $x \in S$. The function $A+B: S \rightarrow R$ is also continuous at c and, moreover, for all $x \in S$,

$$
\begin{aligned}
(f+g)(x)-(f+g)(c) & =[f(x)-f(c)]+[g(x)-g(c)] \\
& =A(x)(x-c)+B(x)(x-c) \\
& =(A+B)(x) \cdot(x-c) .
\end{aligned}
$$

Thus, $f+g$ is differentiable at c, with derivative

$$
(A+B)(c)=A(c)+B(c)=f^{\prime}(c)+g^{\prime}(c)
$$

- The proof for $a f, a \in \mathbb{R}$, is similar.

Proof of the Product Rule

- For all $x \in S$,

$$
\begin{aligned}
f(x) g(x)-f(c) g(c) & =[f(x)-f(c)] g(x)+f(c)[g(x)-g(c)] \\
& =A(x)(x-c) g(x)+f(c) B(x)(x-c) .
\end{aligned}
$$

Thus,

$$
(f g)(x)-(f g)(c)=[A g+f(c) B](x) \cdot(x-c)
$$

where $A g+f(c) B$ is continuous at c. Therefore, $f g$ is differentiable at c and

$$
\begin{aligned}
(f g)^{\prime}(c) & =[A g+f(c) B](c) \\
& =A(c) g(c)+f(c) B(c) \\
& =f^{\prime}(c) g(c)+f(c) g^{\prime}(c)
\end{aligned}
$$

Proof of the Reciprocal Rule

- Suppose, in addition, that $f(c) \neq 0$. Since f is continuous at $c, \frac{1}{f}$ is defined on a neighborhood T of c. For $x \in T$,

$$
\begin{aligned}
\frac{1}{f(x)}-\frac{1}{f(c)} & =-\frac{1}{f(c) f(x)}[f(x)-f(c)] \\
& =-\frac{1}{f(c) f(x)}[A(x)(x-c)] \\
& =-\frac{A(x)}{f(c) f(x)}(x-c) .
\end{aligned}
$$

The function $B(x)=-\frac{A(x)}{f(c) f(x)}$ is continuous at c, whence $\frac{1}{f}$ is differentiable at c and

$$
\left(\frac{1}{f}\right)^{\prime}(c)=B(c)=-\frac{f^{\prime}(c)}{f(c)^{2}}
$$

Subsection 3

Composition and the Chain Rule

The Chain Rule

Theorem (Chain Rule)

Let $f: S \rightarrow \mathbb{R}$, where S is a neighborhood of $c \in \mathbb{R}, g: T \rightarrow \mathbb{R}$, where T is a neighborhood of $f(c)$ and suppose that $f(S) \subseteq T$, so that the composite function $g \circ f: S \rightarrow \mathbb{R}$ is defined:

$$
\underset{c \in}{S} \xrightarrow[f]{f} T) \xrightarrow{f} \mathbb{R}
$$

If f is differentiable at c, and g is differentiable at $f(c)$, then $g \circ f$ is differentiable at c and

$$
(g \circ f)^{\prime}(c)=g^{\prime}(f(c)) \cdot f^{\prime}(c)
$$

- Write $h=g \circ f$. There exists a function $A: S \rightarrow \mathbb{R}$, continuous at c, such that $f(x)-f(c)=A(x)(x-c)$, for all $x \in S$. Similarly, there is a function $B: T \rightarrow \mathbb{R}$, continuous at $f(c)$, such that $g(y)-g(f(c))=B(y)(y-f(c))$, for all $y \in T$.

The Chain Rule (Cont'd)

$$
\begin{aligned}
& f(x)-f(c)=A(x)(x-c), \text { for all } x \in S \\
& g(y)-g(f(c))=B(y)(y-f(c)), \text { for all } y \in T
\end{aligned}
$$

If $x \in S$, then $f(x) \in T$. Putting $y=f(x)$, we get

$$
\begin{aligned}
g(f(x))-g(f(c)) & =B(f(x))(f(x)-f(c)) \\
& =B(f(x)) A(x)(x-c) .
\end{aligned}
$$

Thus, $h(x)-h(c)=[(B \circ f) A](x) \cdot(x-c)$, for all $x \in S$. Since $(B \circ f) A$ is continuous at c, h is differentiable at c and

$$
\begin{aligned}
h^{\prime}(c) & =[(B \circ f) A](c) \\
& =(B \circ f)(c) \cdot A(c) \\
& =B(f(c)) \cdot A(c) \\
& =g^{\prime}(f(c)) \cdot f^{\prime}(c) .
\end{aligned}
$$

A Remark on One-Sided Versions

- There are partial "one-sided" versions of the theorem:
E.g., assume S is a right neighborhood of c and T is a neighborhood of $f(c)$. If f is right differentiable at c, and g is differentiable at $f(c)$, then $g \circ f$ is right differentiable at c and

$$
(g \circ f)_{r}^{\prime}(c)=g^{\prime}(f(c)) \cdot f_{r}^{\prime}(c)
$$

As in the proof of the theorem, A and f are right continuous at c, so $(B \circ f) A$ is also right continuous at c.

Subsection 4

Local Max and Min

Local Max and Min

Definition (Local Max and Min)

Let $f: S \rightarrow \mathbb{R}$, where S is a neighborhood of $c \in \mathbb{R}$. We say that:

- f has a local maximum at c if there exists a neighborhood V of c, with $V \subseteq S$, such that $f(x) \leq f(c)$, for all $x \in V$;
- f has a local minimum at c if there exists a neighborhood V of c, with $V \subseteq S$, such that $f(x) \geq f(c)$, for all $x \in V$ (in other words, $-f$ has a local maximum at c).
- Remark: A function $f: S \rightarrow \mathbb{R}$ is said to have a maximum (or global maximum) at $c \in S$, if $f(x) \leq f(c)$, for all $x \in S$ (here S need not be a neighborhood of c). If $f(x) \geq f(c)$, for all $x \in S$, then f is said to have a minimum (or global minimum) at c.
- Example: Every continuous function defined on a closed interval has a maximum and a minimum.

Signs of Right and Left Derivatives at Local Maxima

Local Max and Derivatives

Suppose $f: S \rightarrow \mathbb{R}$ has a local maximum at c. Then
(i) f right differentiable at $c \Rightarrow f_{r}^{\prime}(c) \leq 0$;
(ii) f left differentiable at $c \Rightarrow f_{\ell}^{\prime}(c) \geq 0$.

- It is implicit that S is a neighborhood of c in \mathbb{R}. Shrinking S, if necessary, we can suppose that $f(x) \leq f(c)$, for all $x \in S$.
(i) Let $\left(x_{n}\right)$ be a sequence in S, with $x_{n}>c$ and $x_{n} \rightarrow c$. By assumption, $\frac{f\left(x_{n}\right)-f(c)}{x_{n}-c} \rightarrow f_{r}^{\prime}(c)$. But $f\left(x_{n}\right)-f(c) \leq 0$ and $x_{n}-c>0$, so the fraction is ≤ 0, and, therefore, so is its limit.
(ii) Assuming $x_{n}<c$, the numerator in the above difference quotient is ≤ 0 and the denominator is <0.

Derivatives at Local Maxima

Theorem

Let $f: S \rightarrow \mathbb{R}$, where S is a neighborhood of $c \in \mathbb{R}$. If f has a local maximum or a local minimum at c, and if f is differentiable at c, then $f^{\prime}(c)=0$.

- If f has a local maximum at c then, by the lemma, $0 \leq f_{\ell}^{\prime}(c)=f^{\prime}(c)=f_{r}^{\prime}(c) \leq 0$, so $f^{\prime}(c)=0$.
If f has a local minimum at c, apply the preceding argument to $-f$.

Subsection 5

Mean Value Theorem

Rolle's Theorem

- We now focus on the interaction between a function and its derivative.

Theorem (Rolle's Theorem)

If $f:[a, b] \rightarrow \mathbb{R}$ is continuous, $a<b, f$ is differentiable at every point of (a, b), and $f(a)=f(b)$, then there exists a point $c \in(a, b)$, such that $f^{\prime}(c)=0$.

- The range of f is a closed interval, say $f([a, b])=[m, M]$.
- If $m=M$ then f is constant and $f^{\prime}(c)=0$, for all $c \in(a, b)$.
- Suppose $m<M$, say $m=f(c), M=f(d)$. Since $f(a)=f(b)$ and $f(c) \neq f(d)$, not both of c and d can be endpoints of $[a, b]$. Thus, at least one of them must be an internal point. If, for example, $d \in(a, b)$, then f has a local maximum at d, so $f^{\prime}(d)=0$.

The Mean Value Theorem

Theorem. (Mean Value Theorem)

If $f:[a, b] \rightarrow \mathbb{R}$ is continuous, $a<b$, and f is differentiable at every point of (a, b), then there exists a point $c \in(a, b)$, such that

$$
f(b)-f(a)=f^{\prime}(c)(b-a) .
$$

- The theorem says there is an internal point at which the tangent line is parallel to the chord joining the endpoints:

Write $m=\frac{f(b)-f(a)}{b-a}$ for the slope of the chord. Its equation is $y=f(a)+m(x-a)$. Define $F:[a, b] \rightarrow \mathbb{R}$ by "subtracting" the line from the graph of f, i.e., $F(x)=f(x)-[f(a)+m(x-a)]$. Then F is continuous on $[a, b]$, differentiable on $(a, b), F(a)=F(b)=0$. By Rolle's theorem, there is $c \in(a, b)$, such that $0=F^{\prime}(c)=f^{\prime}(c)-m$.

Monotonicity and the Sign of the Derivative

Corollary

For a continuous function $f:[a, b] \rightarrow \mathbb{R}$ that is differentiable on (a, b), the following conditions are equivalent:
(a) f is increasing;
(b) $f^{\prime}(x) \geq 0$, for all $x \in(a, b)$.

- (a) \Rightarrow (b): We consider $x_{n} \in(a, b)$, with $x_{n} \neq c$ and $x_{n} \rightarrow c$. Then $\frac{f(x)-f(c)}{x-c} \rightarrow f^{\prime}(c)$. But, $\frac{f(x)-f(c)}{x-c} \geq 0$, for all $x \neq c$, whence $f^{\prime}(c) \geq 0$.
- (b) $\Rightarrow(\mathrm{a})$: Note that $f(a) \leq f(b)$: in fact, by the MVT, there exists $c \in(a, b)$, such that $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a} \geq 0$, whence, since $b-a>0$, $f(b)-f(a) \geq 0$. More generally, if $a<x<y<b$, then $f(x) \leq f(y)$ (by applying the same argument to $f\left\lceil_{[x, y]}\right.$). Thus, f is increasing.

Constant Functions and The Derivative

Corollary

If $f:[a, b] \rightarrow \mathbb{R}$ is continuous, differentiable on (a, b), and $f^{\prime}(x)=0$, for all $x \in(a, b)$, then f is a constant function.

- By the preceding corollary, f is increasing. The hypotheses are also satisfied by $-f$, so f is also decreasing. Hence f is constant.

