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Derivatives Differentiability

Differentiability

Definition (Differentiability)

Let S be a subset of R, f a real-valued function defined on S , c a point of
S , i.e., c ∈ S ⊆ R and f : S → R. Let g : S − {c} → R be the function
defined by the formula

g(x) =
f (x)− f (c)

x − c
,

called a difference-quotient function associated with f . We say that:

f is differentiable at c if S is a neighborhood of c and g has a limit
at c ;

f is right differentiable at c if S is a right neighborhood of c and g

has a right limit at c ;

f is left differentiable at c if S is a left neighborhood of c and g

has a left limit at c .
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Derivatives Differentiability

Derivative

When they exist, these limits are called the derivative, right
derivative and left derivative of f at c , written

f ′(c) = lim
x→c

f (x)− f (c)

x − c
;

f ′r (c) = lim
x→c+

f (x)− f (c)

x − c
; f ′ℓ (c) = lim

x→c−

f (x)− f (c)

x − c
.

Theorem

Let f : S → R, where S is a neighborhood of c ∈ R. The following
conditions on f are equivalent:

(a) f is differentiable at c ;

(b) f is both left and right differentiable at c , and f ′
ℓ
(c) = f ′r (c).

For such a function f , necessarily f ′(c) = f ′ℓ (c) = f ′r (c).

The equivalence is immediate from limit considerations.
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Derivatives Differentiability

δ, ǫ-Criterion

Just as for general limits, there are sequential and ǫ, δ criteria for
differentiability:

Theorem

Let f : S → R, where S is a neighborhood of c ∈ R, and let L ∈ R. The
following conditions on f are equivalent:

(a) f is differentiable at c , with derivative L;

(b) For every ǫ > 0, there exists a δ > 0, such that, if x ∈ S and
0 < |x − c | < δ, then |f (x)− f (c)− L(x − c)| ≤ ǫ|x − c |.

The last inequality in (b) may be written |g(x) − L| ≤ ǫ, where g is
the difference-quotient function. Thus, the theorem is immediate.

Remark: There are “one-sided”’ versions of the theorem: E.g., in the
criterion for right differentiability, S is a right neighborhood of c and
the condition on x in (b) is c < x < c + δ.
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Derivatives Differentiability

Using the Extendability Criterion

Theorem

Let f : S → R, where S is a neighborhood of c . The following conditions
on f are equivalent:

(a) f is differentiable at c ;

(b) There exists a function A : S → R, such that A is continuous at c
and f (x)− f (c) = A(x)(x − c), for all x ∈ S .

A function A satisfying the conditions in (b) is unique, and f ′(c) = A(c).

The equation in condition (b) is trivially satisfied for x = c . So the
condition means that there exists a function A : S → R, such that A
is continuous at c and A(x) = g(x), for all x ∈ S − {c}. This is in
turn equivalent to the existence of a limit for g at c , i.e., equivalent to
condition (a), and the limit is necessarily equal to A(c): f ′(c) = A(c).

Remark: In a “one-sided” version, e.g., for right differentiability, S is a
right neighborhood of c and A is required to be right continuous at c .
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Derivatives Differentiability

Differentiability and Continuity

Corollary

If f : S → R is differentiable at c , then f is continuous at c .

We have a function A continuous at c , such that

f (x) = f (c) + A(x)(x − c), for all x ∈ S ,

so f is continuous at c .

Example: The function f : R− {0} → R defined by f (x) = 1
x
is

differentiable at every c ∈ R− {0}, with f ′(c) = − 1
c2
.

We can apply the last theorem to the identity

1

x
−

1

c
= −

1

cx
(x − c),

citing the continuity of the function A(x) = − 1
cx

at c .
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Derivatives Algebra of Derivatives

Subsection 2

Algebra of Derivatives
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Derivatives Algebra of Derivatives

Algebraic Laws of Derivatives

Theorem (Laws of Differentiation)

Let f : S → R, g : S → R, where S is a neighborhood of c ∈ R.

If f and g are differentiable at c , then so are f + g , af , a ∈ R, and
fg , and

(f + g)′(c) = f ′(c) + g ′(c),
(af )′(c) = af ′(c),
(fg)′(c) = f ′(c)g(c) + f (c)g ′(c).

If, moreover, f (c) 6= 0, then 1
f
is differentiable at c and

(

1

f

)

′

(c) = −
f ′(c)

f (c)2
.
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Derivatives Algebra of Derivatives

Proof of the Sum Rule

We know that there exist functions A : S → R, B : S → R,
continuous at c , such that

f (x)− f (c) = A(x)(x − c) and g(x) − g(c) = B(x)(x − c),

for all x ∈ S . The function A+ B : S → R is also continuous at c
and, moreover, for all x ∈ S ,

(f + g)(x) − (f + g)(c) = [f (x) − f (c)] + [g(x) − g(c)]
= A(x)(x − c) + B(x)(x − c)
= (A+ B)(x) · (x − c).

Thus, f + g is differentiable at c , with derivative

(A+ B)(c) = A(c) + B(c) = f ′(c) + g ′(c).

The proof for af , a ∈ R, is similar.
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Derivatives Algebra of Derivatives

Proof of the Product Rule

For all x ∈ S ,

f (x)g(x) − f (c)g(c) = [f (x)− f (c)]g(x) + f (c)[g(x) − g(c)]
= A(x)(x − c)g(x) + f (c)B(x)(x − c).

Thus,
(fg)(x) − (fg)(c) = [Ag + f (c)B ](x) · (x − c),

where Ag + f (c)B is continuous at c . Therefore, fg is differentiable
at c and

(fg)′(c) = [Ag + f (c)B ](c)
= A(c)g(c) + f (c)B(c)
= f ′(c)g(c) + f (c)g ′(c).
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Derivatives Algebra of Derivatives

Proof of the Reciprocal Rule

Suppose, in addition, that f (c) 6= 0. Since f is continuous at c , 1
f
is

defined on a neighborhood T of c . For x ∈ T ,

1

f (x)
−

1

f (c)
= −

1

f (c)f (x)
[f (x)− f (c)]

= −
1

f (c)f (x)
[A(x)(x − c)]

= −
A(x)

f (c)f (x)
(x − c).

The function B(x) = −
A(x)

f (c)f (x)
is continuous at c , whence 1

f
is

differentiable at c and
(

1

f

)

′

(c) = B(c) = −
f ′(c)

f (c)2
.
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Derivatives Composition and the Chain Rule

Subsection 3

Composition and the Chain Rule
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Derivatives Composition and the Chain Rule

The Chain Rule

Theorem (Chain Rule)

Let f : S → R, where S is a neighborhood of c ∈ R, g : T → R, where T

is a neighborhood of f (c) and suppose that f (S) ⊆ T , so that the
composite function g ◦ f : S → R is defined:

S T✲
f

R✲

g

c ∈ f (c) ∈

If f is differentiable at c , and g is differentiable at f (c), then g ◦ f is
differentiable at c and

(g ◦ f )′(c) = g ′(f (c)) · f ′(c).

Write h = g ◦ f . There exists a function A : S → R, continuous at c ,
such that f (x) − f (c) = A(x)(x − c), for all x ∈ S . Similarly, there is
a function B : T → R, continuous at f (c), such that
g(y)− g(f (c)) = B(y)(y − f (c)), for all y ∈ T .
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Derivatives Composition and the Chain Rule

The Chain Rule (Cont’d)

f (x)− f (c) = A(x)(x − c), for all x ∈ S ,
g(y)− g(f (c)) = B(y)(y − f (c)), for all y ∈ T .

If x ∈ S , then f (x) ∈ T . Putting y = f (x), we get

g(f (x)) − g(f (c)) = B(f (x))(f (x)− f (c))
= B(f (x))A(x)(x − c).

Thus, h(x)− h(c) = [(B ◦ f )A](x) · (x − c), for all x ∈ S . Since
(B ◦ f )A is continuous at c , h is differentiable at c and

h′(c) = [(B ◦ f )A](c)
= (B ◦ f )(c) · A(c)
= B(f (c)) · A(c)
= g ′(f (c)) · f ′(c).
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Derivatives Composition and the Chain Rule

A Remark on One-Sided Versions

There are partial “one-sided” versions of the theorem:

E.g., assume S is a right neighborhood of c and T is a neighborhood
of f (c). If f is right differentiable at c , and g is differentiable at f (c),
then g ◦ f is right differentiable at c and

(g ◦ f )′r (c) = g ′(f (c)) · f ′r (c).

As in the proof of the theorem, A and f are right continuous at c , so
(B ◦ f )A is also right continuous at c .
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Derivatives Local Max and Min

Subsection 4

Local Max and Min
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Derivatives Local Max and Min

Local Max and Min

Definition (Local Max and Min)

Let f : S → R, where S is a neighborhood of c ∈ R. We say that:

f has a local maximum at c if there exists a neighborhood V of c ,
with V ⊆ S , such that f (x) ≤ f (c), for all x ∈ V ;

f has a local minimum at c if there exists a neighborhood V of c ,
with V ⊆ S , such that f (x) ≥ f (c), for all x ∈ V (in other words, −f

has a local maximum at c).

Remark: A function f : S → R is said to have a maximum (or
global maximum) at c ∈ S , if f (x) ≤ f (c), for all x ∈ S (here S

need not be a neighborhood of c).

If f (x) ≥ f (c), for all x ∈ S , then f is said to have a minimum (or
global minimum) at c .

Example: Every continuous function defined on a closed interval has a
maximum and a minimum.
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Derivatives Local Max and Min

Signs of Right and Left Derivatives at Local Maxima

Local Max and Derivatives

Suppose f : S → R has a local maximum at c . Then

(i) f right differentiable at c ⇒ f ′r (c) ≤ 0;

(ii) f left differentiable at c ⇒ f ′ℓ (c) ≥ 0.

It is implicit that S is a neighborhood of c in R. Shrinking S , if
necessary, we can suppose that f (x) ≤ f (c), for all x ∈ S .

(i) Let (xn) be a sequence in S , with xn > c and xn → c . By assumption,
f (xn)−f (c)

xn−c
→ f ′r (c). But f (xn)− f (c) ≤ 0 and xn − c > 0, so the

fraction is ≤ 0, and, therefore, so is its limit.
(ii) Assuming xn < c , the numerator in the above difference quotient is

≤ 0 and the denominator is < 0.
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Derivatives Local Max and Min

Derivatives at Local Maxima

Theorem

Let f : S → R, where S is a neighborhood of c ∈ R. If f has a local
maximum or a local minimum at c , and if f is differentiable at c , then
f ′(c) = 0.

If f has a local maximum at c then, by the lemma,
0 ≤ f ′ℓ (c) = f ′(c) = f ′r (c) ≤ 0, so f ′(c) = 0.

If f has a local minimum at c , apply the preceding argument to −f .

George Voutsadakis (LSSU) Real Analysis August 2014 21 / 26



Derivatives Mean Value Theorem

Subsection 5

Mean Value Theorem
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Derivatives Mean Value Theorem

Rolle’s Theorem

We now focus on the interaction between a function and its derivative.

Theorem (Rolle’s Theorem)

If f : [a, b] → R is continuous, a < b, f is differentiable at every point of
(a, b), and f (a) = f (b), then there exists a point c ∈ (a, b), such that
f ′(c) = 0.

The range of f is a closed interval, say f ([a, b]) = [m,M].

If m = M then f is constant and f ′(c) = 0, for all c ∈ (a, b).
Suppose m < M , say m = f (c), M = f (d). Since f (a) = f (b) and
f (c) 6= f (d), not both of c and d can be endpoints of [a, b]. Thus, at
least one of them must be an internal point. If, for example, d ∈ (a, b),
then f has a local maximum at d , so f ′(d) = 0.
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Derivatives Mean Value Theorem

The Mean Value Theorem

Theorem. (Mean Value Theorem)

If f : [a, b] → R is continuous, a < b, and f is differentiable at every point
of (a, b), then there exists a point c ∈ (a, b), such that

f (b)− f (a) = f ′(c)(b − a).

The theorem says there
is an internal point at
which the tangent line
is parallel to the chord
joining the endpoints:

Write m = f (b)−f (a)
b−a

for the slope of the chord. Its equation is
y = f (a) +m(x − a). Define F : [a, b] → R by “subtracting” the line
from the graph of f , i.e., F (x) = f (x)− [f (a) +m(x − a)]. Then F is
continuous on [a, b], differentiable on (a, b), F (a) = F (b) = 0. By
Rolle’s theorem, there is c ∈ (a, b), such that 0 = F ′(c) = f ′(c)−m.
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Derivatives Mean Value Theorem

Monotonicity and the Sign of the Derivative

Corollary

For a continuous function f : [a, b] → R that is differentiable on (a, b), the
following conditions are equivalent:

(a) f is increasing;

(b) f ′(x) ≥ 0, for all x ∈ (a, b).

(a)⇒(b): We consider xn ∈ (a, b), with xn 6= c and xn → c . Then
f (x)−f (c)

x−c
→ f ′(c). But, f (x)−f (c)

x−c
≥ 0, for all x 6= c , whence

f ′(c) ≥ 0.

(b)⇒(a): Note that f (a) ≤ f (b): in fact, by the MVT, there exists

c ∈ (a, b), such that f ′(c) = f (b)−f (a)
b−a

≥ 0, whence, since b − a > 0,
f (b)− f (a) ≥ 0. More generally, if a < x < y < b, then f (x) ≤ f (y)
(by applying the same argument to f ↾[x ,y ]). Thus, f is increasing.
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Derivatives Mean Value Theorem

Constant Functions and The Derivative

Corollary

If f : [a, b] → R is continuous, differentiable on (a, b), and f ′(x) = 0, for
all x ∈ (a, b), then f is a constant function.

By the preceding corollary, f is increasing. The hypotheses are also
satisfied by −f , so f is also decreasing. Hence f is constant.
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