Introduction to Real Analysis

George Voutsadakis¹

¹Mathematics and Computer Science Lake Superior State University

LSSU Math 421

Riemann Integral

- Upper and Lower Integrals
- First Properties of Upper and Lower Integrals
- Indefinite Upper and Lower Integrals
- Riemann Integrable Functions

Fixing Some Notation

• The following notations will be fixed:

- [a, b] is a closed interval of \mathbb{R} , a < b;
- $f:[a,b] \to \mathbb{R}$ is a **bounded** function;

•
$$M = \sup f = \sup \{f(x) : a \le x \le b\};$$

•
$$m = \inf f = \inf \{f(x) : a \le x \le b\}.$$

To add emphasis to the dependence of M and m on f, we sometimes write M = M(f) and m = m(f).

• Further notation is introduced when needed (for subintervals of [*a*, *b*], other functions, etc.).

Subsection 1

Upper and Lower Integrals

Subdivisions

Definition (Subdivision)

A **subdivision** σ of [a, b] is a finite list of points, starting at a, increasing strictly, and ending at b:

$$\sigma = \{ \mathsf{a} = \mathsf{a}_0 < \mathsf{a}_1 < \mathsf{a}_2 < \cdots < \mathsf{a}_n = b \}.$$

- The a_n , n = 0, 1, 2, ..., n, are called the **points** of the subdivision.
- The trivial subdivision $\sigma = \{a = a_0 < a_1 = b\}$ is allowed.
- The effect of σ (when n > 1) is to break up the interval [a, b] into n subintervals

$$[a_0, a_1], [a_1, a_2], \ldots, [a_{n-1}, a_n].$$

- The length of the ν -th subinterval is denoted e_{ν} , $e_{\nu} = a_{\nu} a_{\nu-1}$, $\nu = 1, \dots, n$.
- The largest of these lengths is called the norm of the subdivision σ, written N(σ) = max {e_ν : ν = 1,..., n}.

Oscillations

Definition

Let $\sigma = \{a = a_0 < a_1 < a_2 < \cdots < a_n = b\}$ be a subdivision of [a, b]. For $\nu = 1, \dots, n$, we write

$$\begin{aligned} M_{\nu} &= \sup \{ f(x) : a_{\nu-1} \leq x \leq a_{\nu} \}, \\ m_{\nu} &= \inf \{ f(x) : a_{\nu-1} \leq x \leq a_{\nu} \}. \end{aligned}$$

Obviously $m_{
u} \leq M_{
u}$ and the difference

$$\omega_{\nu} = M_{\nu} - m_{\nu} \ge 0$$

is called the **oscillation** of *f* over the subinterval $[a_{\nu-1}, a_{\nu}]$.

 To emphasize the dependence of these numbers on f, we write M_ν(f), m_ν(f), ω_ν(f), respectively.

Upper and Lower Sums

Definition (Upper and Lower Sums)

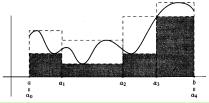
Let $\sigma = \{a = a_0 < a_1 < a_2 < \cdots < a_n = b\}$ be a subdivision of [a, b]. The **upper sum** of f for the subdivision σ is the number

$$S(\sigma) = \sum_{\nu=1}^{n} M_{\nu} e_{\nu}$$

and the **lower sum** of f for σ is the number

$$s(\sigma)=\sum_{\nu=1}m_{\nu}e_{\nu}.$$

- Again, we write $S_f(\sigma)$ and $s_f(\sigma)$ to express the dependence of these numbers on f and σ .
- The upper and lower sums can be interpreted as crude "rectangular" approximations to the area under the graph of f:



Boundedness of Upper and Lower Sums

Theorem

If σ is any subdivision of [a, b], then

$$m(b-a) \leq s(\sigma) \leq S(\sigma) \leq M(b-a).$$

• Say
$$\sigma = \{a = a_0 < a_1 < \dots < a_n = b\}$$
. For $\nu = 1, \dots, n$,
 $m \le m_{\nu} \le M_{\nu} \le M$.

By multiplying all four sides by e_{ν} , we get

$$me_{\nu} \leq m_{\nu}e_{\nu} \leq M_{\nu}e_{\nu} \leq Me_{\nu}.$$

Finally, take the sum over $\nu = 1, \ldots, n$:

$$m(b-a) \leq s(\sigma) \leq S(\sigma) \leq M(b-a).$$

• It follows that the sets $\{s(\sigma) : \sigma \text{ any subdivision of } [a, b]\}$ and $\{S(\sigma) : \sigma \text{ any subdivision of } [a, b]\}$ are bounded.

Lower and Upper Integrals

Definition (Lower and Upper Integrals)

The **lower integral of** f **over** [a, b] is defined to be the supremum of the lower sums, written

$$\int_{a}^{b} f = \sup \{s(\sigma) : \sigma \text{ any subdivision of } [a, b]\},\$$

and the **upper integral** is defined to be the infimum of all the upper sums, written

$$\int_{a}^{b} f = \inf \{ S(\sigma) : \sigma \text{ any subdivision of } [a, b] \}.$$

• Example: Consider

$$f(x) = \begin{cases} 1, & \text{if } x \text{ is rational in } [a, b] \\ 0, & \text{if } x \text{ is irrational in } [a, b] \end{cases}$$

For this function, every lower sum is 0 and every upper sum is b - a. Thus, $\int_a^b f = 0$ and $\int_a^b f = b - a$.

Convergence and Divergence

- For the upper integral:
 - For each subdivision σ, we take a supremum (actually, one for each term of S(σ)),
 - then we take the infimum of the $S(\sigma)$ over all possible subdivisions σ ,
 - a process analogous to the limit superior of a bounded sequence.
- Similarly, the definition of lower integral is analogous to the limit inferior of a bounded sequence (inf followed by sup).
- The preceding example represents a sort of "divergence".
- Just as the "nice" bounded sequences are the convergent ones (those for which lim inf = lim sup), the "nice"' bounded functions should, by analogy, be those for which the lower integral is equal to the upper integral.

Bounds

• Necessarily, for every subdivision σ , we have

$$s(\sigma) \leq \underline{\int}_a^b f$$
 and $\overline{\int}_a^b f \leq S(\sigma).$

Theorem

For every bounded function $f : [a, b] \rightarrow \mathbb{R}$,

$$m(b-a) \leq \underline{\int}_{a}^{b} f \leq M(b-a)$$
 and $m(b-a) \leq \overline{\int}_{a}^{b} f \leq M(b-a)$,

where $m = \inf f$ and $M = \sup f$.

Refinements

 Upper and lower sums are in a sense approximations to the upper and lower integrals. The way to improve the approximation is to make the subdivision "finer":

Definition (Refinement)

Let σ and τ be subdivisions of [a, b]. We say that τ refines σ (or that τ is a refinement of σ), written $\tau \succ \sigma$ or $\sigma \prec \tau$, if every point of σ is also a point of τ . Thus, if

$$\begin{aligned} \sigma &= \{ a = a_0 < a_1 < \cdots < a_n = b \} \\ \tau &= \{ a = b_0 < b_1 < \cdots < b_m = b \}, \end{aligned}$$

then $\tau \succ \sigma$ means that each a_{ν} is equal to some b_{μ} , i.e., as sets, $\{a_0, a_1, \ldots, a_n\} \subseteq \{b_0, b_1, \ldots, b_m\}.$

Remarks: Note σ ≻ σ; if ρ ≻ τ and τ ≻ σ then ρ ≻ σ. If τ ≻ σ and σ ≻ τ, then σ and τ are the same subdivision and we write σ = τ.
Also note that if τ ≻ σ, then, obviously, N(τ) ≤ N(σ).

Effect of Refinements on Sums

• The effect of refinement on upper and lower sums is described in the following:

Lemma

If
$$\tau \succ \sigma$$
, then $S(\tau) \leq S(\sigma)$ and $s(\tau) \geq s(\sigma)$.

• The lemma asserts that refinement can only decrease (or leave fixed) an upper sum and can only increase (or leave fixed) a lower sum. If $\tau = \sigma$, there is nothing to prove. Otherwise, if τ has $r \ge 1$ points not in σ , we can start at σ and arrive at τ in r steps by inserting one of these points at a time, say $\sigma = \sigma_0 \prec \sigma_1 \prec \cdots \prec \sigma_r = \tau$, where σ_k is obtained from σ_{k-1} by inserting one new point. We need only show that $S(\sigma_k) \le S(\sigma_{k-1})$ and $s(\sigma_k) \ge s(\sigma_{k-1})$, i.e., it suffices to consider the case that τ is obtained from σ by adding only one new point c.

Effect of Refinements on Sums (Cont'd)

• Suppose $\sigma = \{a = a_0 < a_1 < \cdots < a_n = b\}$. Say *c* belongs to the μ -th subinterval, $a_{\mu-1} < c < a_{\mu}$. Then, $\tau = \{a = a_0 < a_1 < \cdots < a_{\mu-1} < c < a_{\mu} < a_{\mu+1} < \cdots < a_n = b\}.$ The terms of $S(\tau)$ are the same as those of $S(\sigma)$ except that the μ -th term of $S(\sigma)$ is replaced by two terms of $S(\tau)$. Thus, in calculating $S(\sigma) - S(\tau)$ all of the action is in the μ -th term of $S(\sigma)$. By replacing f by its restriction to $[a_{\mu-1}, a_{\mu}]$, we are reduced to the case where $\sigma = \{a < b\}, \tau = \{a < c < b\}$. Writing $M = \sup f$ as before, and $M' = \sup \{f(x) : a < x < c\}, \quad M'' = \sup \{f(x) : c < x < b\},$ we obtain $S(\sigma) = M(b-a)$ and $S(\tau) = M'(c-a) + M''(b-c)$. Obviously $M' \leq M$ and $M'' \leq M$. Therefore, $S(\tau) \leq M(c-a) + M(b-c) = M(b-a) = S(\sigma)$, whence $S(\tau) \leq S(\sigma)$.

A similar argument shows that $s(\tau) \ge s(\sigma)$.

Any Lower Sum Dominated by Any Upper Sum

• We have already seen that, for any subdivision σ of [a, b]

$$m(b-a) \leq s(\sigma) \leq S(\sigma) \leq M(b-a).$$

In fact, even more is true:

Lemma

If σ and τ are any two subdivisions of [a, b], then $s(\sigma) < S(\tau)$.

 Let ρ be a subdivision, such that ρ ≻ σ and ρ ≻ τ. Such a ρ is called a common refinement of σ and τ and may be constructed, e.g., by taking together all of the points of σ and τ. By previous results,

$$s(\sigma) \leq s(\rho) \leq S(\rho) \leq S(\tau).$$

Lower Integral Dominated by Upper Integral

Theorem (lim inf \leq lim sup)

For every bounded function $f:[a,b]
ightarrow \mathbb{R}$,

$$\int_{a}^{b} f \leq \int_{a}^{b} f$$

Fix a subdivision τ. By the lemma, for every subdivision σ, s(σ) ≤ S(τ). Thus, by the definition of lower integral (as the least upper bound of the set of all lower sums), <u>∫</u>_a^b f ≤ S(τ). Letting τ vary, the previous inequality holding for all τ implies <u>∫</u>_a^b f ≤ <u>Γ</u>_a^b f, by the definition of the upper integral (as the greatest lower bound of the set of all upper sums).

Subsection 2

First Properties of Upper and Lower Integrals

Lower in Terms of Upper Integrals

• The following theorem reduces the study of lower integrals to that of upper integrals:

Theorem

For every bounded function
$$f : [a, b] \rightarrow \mathbb{R}$$
,

$$\underline{\int}_{a}^{b} f = - \overline{\int}_{a}^{b} (-f).$$

• Let σ be any subdivision of [a, b]. With $A_{\nu} = \{f(x) : a_{\nu-1} \le x \le a_{\nu}\}$, we have sup $(-A_{\nu}) = -(\inf A_{\nu})$. Therefore, $M_{\nu}(-f) = -m_{\nu}(f)$, for $\nu = 1, \ldots, n$, whence $S_{-f}(\sigma) = -s_f(\sigma)$. Writing

$$\mathcal{B} = \{s_f(\sigma) : \sigma \text{ any subdivision of } [a, b]\},$$

we have

$$-B = \{S_{-f}(\sigma) : \sigma \text{ any subdivision of } [a, b]\}.$$

Thus, $\underline{\int}_{a}^{b} f = \sup B = -\inf (-B) = -\overline{\int}_{a}^{b} (-f).$

Notation for Restrctions

Definition (Notation for Restrictions)

If $a \le c < d \le b$, the definitions for f can be applied to the restriction $f \upharpoonright_{[c,d]}$ of f to [c,d], i.e., to the function $x \mapsto f(x), c \le x \le d$. Instead of the cumbersome notations

we write simply
$$\frac{\int_{c}^{d} f \upharpoonright_{[c,d]} \text{ and } \int_{c}^{\overline{d}} f \upharpoonright_{[c,d]}, \\
\int_{c}^{d} f \text{ and } \int_{\overline{c}}^{\overline{d}} f.$$

It is also convenient to define

$$\underline{\int}_{c}^{c} f = \overline{\int}_{c}^{c} f = 0,$$

for any $c \in [a, b]$.

Additivity of Upper and Lower Integrals

• We show that the upper and lower integral is (for a fixed function f) an additive function of the endpoints of integration:

Theorem

lf

$$a \le c \le b$$
, then
(i) $\int_{a}^{b} f = \int_{a}^{c} f + \int_{c}^{b} f$; (ii) $\int_{a}^{b} f = \int_{a}^{c} f + \int_{c}^{b} f$.

- Both equations are trivial when c = a or c = b. Suppose a < c < b. It suffices to prove (i). Writing L for the left side and R for the right side, we show that L ≤ R and L ≥ R.
 - $L \leq R$: Let σ_1 be any subdivision of [a, c], σ_2 any subdivision of [c, b], and write $\sigma = \sigma_1 \oplus \sigma_2$ for the subdivision of [a, b] obtained by joining σ_1 and σ_2 at their common point c. Then $S(\sigma) = S(\sigma_1) + S(\sigma_2)$. (the upper sum on the left pertains to f, those on the right pertain to the restrictions of f to [a, c] and [c, b]).

Additivity of Upper and Lower Integrals (Cont'd)

• We continue with the proof of (i):

- $L \ge R$: Let σ be any subdivision of [a, b]. Let τ be a subdivision of [a, b], such that $\tau \succ \sigma$ and τ includes the point c (for example, let τ be the result of inserting c into σ if it is not already there). Since c is a point of τ , as in the first part of the proof we can write $\tau = \tau_1 \oplus \tau_2$, with τ_1 a subdivision of [a, c] and τ_2 a subdivision of [c, b]. Then $S(\sigma) \ge S(\tau) = S(\tau_1) + S(\tau_2) \ge \int_a^c f + \int_c^b f$. Thus, $S(\sigma) \ge R$, for every subdivision σ of [a, b], whence $L \ge R$.

Subsection 3

Indefinite Upper and Lower Integrals

Indefinite Integrals

Definition (Indefinite Integrals)

For the given bounded function $f : [a, b] \to \mathbb{R}$, we define functions $F : [a, b] \to \mathbb{R}$ and $H : [a, b] \to \mathbb{R}$ by the formulas

$$F(x) = \int_a^{\overline{x}} f$$
, $H(x) = \int_a^x f$, $a \le x \le b$.

We may also consider variable lower endpoints of integration, leading to a function G complementary to F, and a function K complementary to H. The function F is called the **indefinite upper integral** of f. H is called the **indefinite lower integral** of f.

- By a previously adopted convention, F(a) = H(a) = 0.
- Moreover, we know that $H(x) \leq F(x)$, for all $x \in [a, b]$.
- We show that the functions F and H have nice properties even if nothing is assumed about the given bounded function f.
 Moreover, every nice property of f (like continuity) yields an even nicer property of F (like differentiability).

Lipschitz Continuity of the Indefinite Integrals

Theorem

Let
$$k = \max\{|m|, |M|\}$$
, where $m = \inf f$ and $M = \sup f$. Then
 $|F(x) - F(y)| \le k|x - y|, \quad |H(x) - H(y)| \le k|x - y|,$

for all $x, y \in [a, b]$. In particular, F and H are continuous on [a, b].

• We can suppose x < y. By the additivity property, $\overline{\int}_a^y f = \overline{\int}_a^x f + \overline{\int}_x^y f$. Thus, $\overline{\int}_x^y f = F(y) - F(x)$. If m' and M' are the infimum and supremum of f on the interval [x, y], we have $m \le m' \le M' \le M$. This yields $m(y-x) \le m'(y-x) \le \overline{\int}_x^y f \le M'(y-x) \le M(y-x)$. Therefore, $m(y-x) \le F(y) - F(x) \le M(y-x)$. Since $|m| \le k$ and $|M| \le k$, $-k(y-x) \le F(y) - F(x) \le k(y-x)$, whence $|F(y) - F(x)| \le k(y-x) = k|y-x|$.

The proof for H is similar.

Monotonicity of Indefinite Integrals

Theorem (Monotonicity of Indefinite Integrals)

If $f \ge 0$, then F and H are increasing functions.

If f ≥ 0, then m ≥ 0, whence the upper and lower integrals of a nonnegative function are nonnegative. If a ≤ c < d ≤ b, then F(d) = F(c) + ∫_c^d f ≥ F(c). Hence F is increasing.

A similar reasoning applies to H.

Right Differentiability of Indefinite Integrals

Theorem (Right Differentiability of Indefinite Integrals)

If $a \le c < b$ and f is right continuous at c, then F and H are right differentiable at c and $F'_r(c) = H'_r(c) = f(c)$.

• We give the proof for F; the proof for H is similar. Let $\epsilon > 0$. We seek $\delta > 0$, $c + \delta < b$, with $c < x < c + \delta \Rightarrow \left| \frac{F(x) - F(c)}{x - c} - f(c) \right| \le \epsilon$. Since f is right continuous at c, there exists a $\delta > 0$, with $c + \delta < b$, such that $c \le t \le c + \delta \Rightarrow |f(t) - f(c)| \le \epsilon$. Consider $c < x < c + \delta$:

For $t \in [c, x]$, $|f(t) - f(c)| \le \epsilon$, whence $f(c) - \epsilon \le f(t) \le f(c) + \epsilon$. If m_x and M_x are the infimum and supremum of f on [c, x], then $f(c) - \epsilon \le m_x \le M_x \le f(c) + \epsilon$. Therefore, $[f(c) - \epsilon](x - c) \le m_x(x - c) \le \overline{\int_c^x} f \le M_x(x - c) \le [f(c) + \epsilon](x - c)$. Finally, we get $[f(c) - \epsilon](x - c) \le F(x) - F(c) \le [f(c) + \epsilon](x - c)$.

Differentiability of Indefinite Integrals

Theorem (Left Differentiability of Indefinite Integrals)

If $a < c \le b$ and f is left continuous at c, then F and H are left differentiable at c and $F'_{\ell}(c) = H'_{\ell}(c) = f(c)$.

The easiest strategy is to modify the preceding proof: Replace c < x < c + δ by c − δ < x < c, [c, x] by [x, c], etc.
 An alternative strategy is to apply the "right" version to the function g : [-b, -a] → ℝ defined by g(y) = f(-y), which is right continuous at -c when f is left continuous at c. The relations among the indefinite integrals of f and g are easy to verify, but cumbersome.

Corollary

If a < c < b and f is continuous at c, then F and H are differentiable at c and F'(c) = H'(c) = f(c).

• By assumption, f is both left and right continuous at c, whence $F'_{\ell}(c) = f(c) = F'_{r}(c)$ and $H'_{\ell}(c) = f(c) = H'_{r}(c)$. F and H are differentiable at c, with F'(c) = f(c) and H'(c) = f(c).

Indefinite Integrals in Terms of Lower Points

 We look at the upper and lower integrals as functions of the lower endpoint of integration:

Definition (Indefinite Integrals Revisited)

For the given bounded function $f : [a, b] \to \mathbb{R}$, we define functions $G : [a, b] \to \mathbb{R}$ and $K : [a, b] \to \mathbb{R}$ by the formulas

$$G(x) = \int_{x}^{\overline{b}} f$$
, $K(x) = \int_{x}^{b} f$, $a \le x \le b$.

Remarks: We have F(x) + G(x) = ∫_a^b f and H(x) + K(x) = ∫_a^b f, for a ≤ x ≤ b. Thus, G is in a sense complementary to F, and K to H. This is the key to deducing the properties of G from those of F, and the properties of K from those of H: E.g., since F and H are continuous, so are G and K.

George Voutsadakis (LSSU)

Differentiability of G and K

Theorem (Right Differentiability of G and K)

If $a \le c < b$ and f is right continuous at c, then G and K are right differentiable at c and $G'_r(c) = K'_r(c) = -f(c)$.

• This is immediate from right differentiability of *F* and *H* and the preceding complementarity formulas.

Theorem (Left Differentiability of G and K)

If $a < c \le b$ and f is left continuous at c, then G and K are left differentiable at c and $G'_{\ell}(c) = K'_{\ell}(c) = -f(c)$.

Corollary (Differentiability of G and K)

If a < c < b and f is continuous at c, then G and K are differentiable at c and G'(c) = K'(c) = -f(c).

Subsection 4

Riemann Integrable Functions

Riemann Integrability

Definition (Riemann Integral)

A bounded function $f : [a, b] \to \mathbb{R}$ is said to be **Riemann-integrable** (briefly, **integrable**) if $\int_{a}^{b} f = \int_{a}^{\overline{b}} f$.

(The analogous concept for bounded sequences (lim inf = lim sup) is convergence!) We write simply $\int_{a}^{b} f$ or (especially when f(x) is replaced by a formula for it) $\int_{a}^{b} f(x) dx$ for the common value of the lower and upper integral, and call it the **integral** (or **Riemann integral**) of f.

• Remark: If f is Riemann-integrable, then so is -f, and $\int_{a}^{b} (-f) = -\int_{a}^{b} f$.

Monotonicity and Riemann Integrability

• If $f(x) = \begin{cases} 1, & \text{if } x \text{ is rational} \\ 0, & \text{if } x \text{ is irrational} \end{cases}$, then f is not Riemann-integrable.

Theorem

If f is monotone, then it is Riemann-integrable.

• We can suppose that f is increasing. For every subdivision σ of [a, b], we have $s(\sigma) \leq \int_a^b f \leq \overline{\int}_a^b f \leq S(\sigma)$. To show that the lower integral is equal to the upper integral, we need only show that $S(\sigma) - s(\sigma)$ can be made as small as we like (by choosing σ appropriately). Say $\sigma = \{a = a_0 < a_1 < \cdots < a_n = b\}$. Since f is increasing, we have $m_{\nu} = f(a_{\nu-1}), \ M_{\nu} = f(a_{\nu}).$ Thus, $s(\sigma) = \sum_{\nu=1}^{n} f(a_{\nu-1})e_{\nu}$ and $S(\sigma) = \sum_{\nu=1}^{n} f(a_{\nu}) e_{\nu}$. So $S(\sigma) - s(\sigma) = \sum_{\nu=1}^{n} [f(a_{\nu}) - f(a_{\nu-1})] e_{\nu}$. Now assume that the points of σ are equally spaced, so that $e_{\nu} = \frac{1}{n}(b-a)$. The sum, then, "telescopes": $S(\sigma) - s(\sigma) = \frac{1}{n}(b-a)\sum_{\nu=1}^{n} [f(a_{\nu}) - f(a_{\nu-1})] = \frac{1}{n}(b-a)[f(b) - f(a)],$ which can be made arbitrarily small by taking *n* sufficiently large.

Continuity and Riemann Integrability

Theorem

If f is continuous on [a, b] then f is Riemann integrable.

• Let $F = \overline{\int}_a^x f$ and $H = \underline{\int}_a^x f$ be the indefinite upper integral and indefinite lower integral. We know that F(a) = H(a) = 0. We must show that F(b) = H(b).

We know F and H are continuous on [a, b]. Also, F and H are differentiable on (a, b) with F'(x) = f(x) = H'(x), for all $x \in (a, b)$. Thus, F - H is continuous on [a, b], differentiable on (a, b), and (F - H)'(x) = 0, for all $x \in (a, b)$. Therefore, F - H is constant by a corollary of the Mean Value Theorem. Since (F - H)(a) = 0, also (F - H)(b) = 0. Thus, F(b) = H(b), as we wished to show.

The Fundamental Theorem of Calculus

Theorem (The Fundamental Theorem of Calculus)

If $f : [a, b] \to \mathbb{R}$ is continuous, then:

- (1) f is Riemann-integrable on [a, b];
- (2) There exists a continuous function $F : [a, b] \to \mathbb{R}$, differentiable on (a, b), such that F'(x) = f(x), for all $x \in (a, b)$;
- (3) For any F satisfying (2), F(x) = F(a) + ∫_a^x f, for all x ∈ [a, b]. Moreover, F is right differentiable at a, left differentiable at b, and F'_r(a) = f(a), F'_ℓ(b) = f(b).
 - Part (1) is the conclusion of the preceding theorem. F(x) = ∫_a^x f has the properties in (2) and (3). Suppose that J : [a, b] → ℝ is also a continuous function having derivative f(x) at every x ∈ (a, b). By the argument used in the preceding theorem, J F is constant, say J(x) = F(x) + C, for all x ∈ [a, b]. Then J(x) J(a) = F(x) F(a) = ∫_a^x f, for all x ∈ [a, b]. Finally, J has the one-sided derivatives f(a) and f(b) at the endpoints since F does.

Consequences of the Fundamental Theorem

Corollary

If $f : [a, b] \to \mathbb{R}$ is continuous and $F : [a, b] \to \mathbb{R}$ is a continuous function, differentiable on (a, b), such that F'(x) = f(x), for all $x \in (a, b)$, then $\int_{a}^{b} f(x) = f(x) = f(x)$

$$\int_a f = F(b) - F(a).$$

Corollary

If
$$f:[a,b] \to \mathbb{R}$$
 is continuous, $f \ge 0$ on $[a,b]$, and $\int_a^b f = 0$, then $f \equiv 0$.

• If $F = \int_{a}^{x} f$, then F is increasing and $F(b) - F(a) = \int_{a}^{b} f = 0$. Therefore, F is constant. Then f = F' = 0 on (a, b), whence f = 0 on [a, b] by continuity.