Introduction to Real Analysis

George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science
Lake Superior State University

LSSU Math 421

(1) Riemann Integral

- Upper and Lower Integrals
- First Properties of Upper and Lower Integrals
- Indefinite Upper and Lower Integrals
- Riemann Integrable Functions

Fixing Some Notation

- The following notations will be fixed:
- $[a, b]$ is a closed interval of $\mathbb{R}, a<b$;
- $f:[a, b] \rightarrow \mathbb{R}$ is a bounded function;
- $M=\sup f=\sup \{f(x): a \leq x \leq b\}$;
- $m=\inf f=\inf \{f(x): a \leq x \leq b\}$.

To add emphasis to the dependence of M and m on f, we sometimes write $M=M(f)$ and $m=m(f)$.

- Further notation is introduced when needed (for subintervals of $[a, b]$, other functions, etc.).

Subsection 1

Upper and Lower Integrals

Subdivisions

Definition (Subdivision)

A subdivision σ of $[a, b]$ is a finite list of points, starting at a, increasing strictly, and ending at b :

$$
\sigma=\left\{a=a_{0}<a_{1}<a_{2}<\cdots<a_{n}=b\right\} .
$$

- The $a_{n}, n=0,1,2, \ldots, n$, are called the points of the subdivision.
- The trivial subdivision $\sigma=\left\{a=a_{0}<a_{1}=b\right\}$ is allowed.
- The effect of σ (when $n>1$) is to break up the interval $[a, b]$ into n subintervals

$$
\left[a_{0}, a_{1}\right],\left[a_{1}, a_{2}\right], \ldots,\left[a_{n-1}, a_{n}\right] .
$$

- The length of the ν-th subinterval is denoted $e_{\nu}, e_{\nu}=a_{\nu}-a_{\nu-1}$, $\nu=1, \ldots, n$.
- The largest of these lengths is called the norm of the subdivision σ, written $N(\sigma)=\max \left\{e_{\nu}: \nu=1, \ldots, n\right\}$.

Oscillations

Definition

Let $\sigma=\left\{a=a_{0}<a_{1}<a_{2}<\cdots<a_{n}=b\right\}$ be a subdivision of $[a, b]$. For $\nu=1, \ldots, n$, we write

$$
\begin{aligned}
M_{\nu} & =\sup \left\{f(x): a_{\nu-1} \leq x \leq a_{\nu}\right\}, \\
m_{\nu} & =\inf \left\{f(x): a_{\nu-1} \leq x \leq a_{\nu}\right\} .
\end{aligned}
$$

Obviously $m_{\nu} \leq M_{\nu}$ and the difference

$$
\omega_{\nu}=M_{\nu}-m_{\nu} \geq 0
$$

is called the oscillation of f over the subinterval $\left[a_{\nu-1}, a_{\nu}\right]$.

- To emphasize the dependence of these numbers on f, we write $M_{\nu}(f), m_{\nu}(f), \omega_{\nu}(f)$, respectively.

Upper and Lower Sums

Definition (Upper and Lower Sums)

Let $\sigma=\left\{a=a_{0}<a_{1}<a_{2}<\cdots<a_{n}=b\right\}$ be a subdivision of $[a, b]$. The upper sum of f for the subdivision σ is the number

$$
S(\sigma)=\sum_{\nu=1}^{n} M_{\nu} e_{\nu}
$$

and the lower sum of f for σ is the number

$$
s(\sigma)=\sum_{\nu=1}^{n} m_{\nu} e_{\nu}
$$

- Again, we write $S_{f}(\sigma)$ and $s_{f}(\sigma)$ to express the dependence of these numbers on f and σ.
- The upper and lower sums can be interpreted as crude "rectangular" approximations to the area under the graph of f :

Boundedness of Upper and Lower Sums

Theorem

If σ is any subdivision of $[a, b]$, then

$$
m(b-a) \leq s(\sigma) \leq S(\sigma) \leq M(b-a)
$$

- Say $\sigma=\left\{a=a_{0}<a_{1}<\cdots<a_{n}=b\right\}$. For $\nu=1, \ldots, n$,

$$
m \leq m_{\nu} \leq M_{\nu} \leq M .
$$

By multiplying all four sides by e_{ν}, we get

$$
m e_{\nu} \leq m_{\nu} e_{\nu} \leq M_{\nu} e_{\nu} \leq M e_{\nu}
$$

Finally, take the sum over $\nu=1, \ldots, n$:

$$
m(b-a) \leq s(\sigma) \leq S(\sigma) \leq M(b-a)
$$

- It follows that the sets $\{s(\sigma): \sigma$ any subdivision of $[a, b]\}$ and $\{S(\sigma): \sigma$ any subdivision of $[a, b]\}$ are bounded.

Lower and Upper Integrals

Definition (Lower and Upper Integrals)

The lower integral of f over $[a, b]$ is defined to be the supremum of the lower sums, written

$$
\int_{a}^{b} f=\sup \{s(\sigma): \sigma \text { any subdivision of }[a, b]\}
$$

and the upper integral is defined to be the infimum of all the upper sums, written

$$
\int_{a}^{b} f=\inf \{S(\sigma): \sigma \text { any subdivision of }[a, b]\}
$$

- Example: Consider

$$
f(x)= \begin{cases}1, & \text { if } x \text { is rational in }[a, b] \\ 0, & \text { if } x \text { is irrational in }[a, b]\end{cases}
$$

For this function, every lower sum is 0 and every upper sum is $b-a$. Thus, $\int_{a}^{b} f=0$ and $\int_{a}^{b} f=b-a$.

Convergence and Divergence

- For the upper integral:
- For each subdivision σ, we take a supremum (actually, one for each term of $S(\sigma)$),
- then we take the infimum of the $S(\sigma)$ over all possible subdivisions σ, a process analogous to the limit superior of a bounded sequence.
- Similarly, the definition of lower integral is analogous to the limit inferior of a bounded sequence (inf followed by sup).
- The preceding example represents a sort of "divergence".
- Just as the "nice" bounded sequences are the convergent ones (those for which $\lim \inf =\lim$ sup), the "nice"' bounded functions should, by analogy, be those for which the lower integral is equal to the upper integral.

Bounds

- Necessarily, for every subdivision σ, we have

$$
s(\sigma) \leq \int_{a}^{b} f \quad \text { and } \quad \int_{a}^{b} f \leq S(\sigma)
$$

Theorem

For every bounded function $f:[a, b] \rightarrow \mathbb{R}$,

$$
m(b-a) \leq \int_{a}^{b} f \leq M(b-a) \quad \text { and } \quad m(b-a) \leq \int_{a}^{b} f \leq M(b-a)
$$

where $m=\inf f$ and $M=\sup f$.

Refinements

- Upper and lower sums are in a sense approximations to the upper and lower integrals. The way to improve the approximation is to make the subdivision "finer":

Definition (Refinement)

Let σ and τ be subdivisions of $[a, b]$. We say that τ refines σ (or that τ is a refinement of σ), written $\tau \succ \sigma$ or $\sigma \prec \tau$, if every point of σ is also a point of τ. Thus, if

$$
\begin{aligned}
\sigma & =\left\{a=a_{0}<a_{1}<\cdots<a_{n}=b\right\} \\
\tau & =\left\{a=b_{0}<b_{1}<\cdots<b_{m}=b\right\}
\end{aligned}
$$

then $\tau \succ \sigma$ means that each a_{ν} is equal to some b_{μ}, i.e., as sets, $\left\{a_{0}, a_{1}, \ldots, a_{n}\right\} \subseteq\left\{b_{0}, b_{1}, \ldots, b_{m}\right\}$.

- Remarks: Note $\sigma \succ \sigma$; if $\rho \succ \tau$ and $\tau \succ \sigma$ then $\rho \succ \sigma$. If $\tau \succ \sigma$ and $\sigma \succ \tau$, then σ and τ are the same subdivision and we write $\sigma=\tau$.
- Also note that if $\tau \succ \sigma$, then, obviously, $N(\tau) \leq N(\sigma)$.

Effect of Refinements on Sums

- The effect of refinement on upper and lower sums is described in the following:

Lemma

If $\tau \succ \sigma$, then $S(\tau) \leq S(\sigma)$ and $s(\tau) \geq s(\sigma)$.

- The lemma asserts that refinement can only decrease (or leave fixed) an upper sum and can only increase (or leave fixed) a lower sum. If $\tau=\sigma$, there is nothing to prove. Otherwise, if τ has $r \geq 1$ points not in σ, we can start at σ and arrive at τ in r steps by inserting one of these points at a time, say $\sigma=\sigma_{0} \prec \sigma_{1} \prec \cdots \prec \sigma_{r}=\tau$, where σ_{k} is obtained from σ_{k-1} by inserting one new point. We need only show that $S\left(\sigma_{k}\right) \leq S\left(\sigma_{k-1}\right)$ and $s\left(\sigma_{k}\right) \geq s\left(\sigma_{k-1}\right)$, i.e., it suffices to consider the case that τ is obtained from σ by adding only one new point c.

Effect of Refinements on Sums (Cont'd)

- Suppose $\sigma=\left\{a=a_{0}<a_{1}<\cdots<a_{n}=b\right\}$. Say c belongs to the μ-th subinterval, $a_{\mu-1}<c<a_{\mu}$. Then,
$\tau=\left\{a=a_{0}<a_{1}<\cdots<a_{\mu-1}<c<a_{\mu}<a_{\mu+1}<\cdots<a_{n}=b\right\}$.
The terms of $S(\tau)$ are the same as those of $S(\sigma)$ except that the μ-th term of $S(\sigma)$ is replaced by two terms of $S(\tau)$. Thus, in calculating $S(\sigma)-S(\tau)$ all of the action is in the μ-th term of $S(\sigma)$. By replacing f by its restriction to $\left[a_{\mu-1}, a_{\mu}\right]$, we are reduced to the case where $\sigma=\{a<b\}, \tau=\{a<c<b\}$. Writing $M=\sup f$ as before, and

$$
M^{\prime}=\sup \{f(x): a \leq x \leq c\}, \quad M^{\prime \prime}=\sup \{f(x): c \leq x \leq b\}
$$

we obtain $S(\sigma)=M(b-a)$ and $S(\tau)=M^{\prime}(c-a)+M^{\prime \prime}(b-c)$.
Obviously $M^{\prime} \leq M$ and $M^{\prime \prime} \leq M$. Therefore,
$S(\tau) \leq M(c-a)+M(b-c)=M(b-a)=S(\sigma)$, whence
$S(\tau) \leq S(\sigma)$.
A similar argument shows that $s(\tau) \geq s(\sigma)$.

Any Lower Sum Dominated by Any Upper Sum

- We have already seen that, for any subdivision σ of $[a, b]$

$$
m(b-a) \leq s(\sigma) \leq S(\sigma) \leq M(b-a)
$$

In fact, even more is true:

Lemma

If σ and τ are any two subdivisions of $[a, b]$, then $s(\sigma)<S(\tau)$.

- Let ρ be a subdivision, such that $\rho \succ \sigma$ and $\rho \succ \tau$. Such a ρ is called a common refinement of σ and τ and may be constructed, e.g., by taking together all of the points of σ and τ. By previous results,

$$
s(\sigma) \leq s(\rho) \leq S(\rho) \leq S(\tau)
$$

Lower Integral Dominated by Upper Integral

Theorem (lim inf $\leq \lim$ sup)

For every bounded function $f:[a, b] \rightarrow \mathbb{R}$,

$$
\int_{a}^{b} f \leq \int_{a}^{b} f
$$

- Fix a subdivision τ. By the lemma, for every subdivision σ, $s(\sigma) \leq S(\tau)$. Thus, by the definition of lower integral (as the least upper bound of the set of all lower sums), $\int_{a}^{b} f \leq S(\tau)$. Letting τ vary, the previous inequality holding for all $\bar{\tau}$ implies $\int_{a}^{b} f \leq \bar{\int}_{a}^{b} f$, by the definition of the upper integral (as the greatest lower bound of the set of all upper sums).

Subsection 2

First Properties of Upper and Lower Integrals

Lower in Terms of Upper Integrals

- The following theorem reduces the study of lower integrals to that of upper integrals:

Theorem

For every bounded function $f:[a, b] \rightarrow \mathbb{R}$,

$$
\int_{a}^{b} f=-\int_{a}^{b}(-f)
$$

- Let σ be any subdivision of $[a, b]$. With $A_{\nu}=\left\{f(x): a_{\nu-1} \leq x \leq a_{\nu}\right\}$, we have $\sup \left(-A_{\nu}\right)=-\left(\inf A_{\nu}\right)$. Therefore, $M_{\nu}(-f)=-m_{\nu}(f)$, for $\nu=1, \ldots, n$, whence $S_{-f}(\sigma)=-s_{f}(\sigma)$. Writing

$$
B=\left\{s_{f}(\sigma): \sigma \text { any subdivision of }[a, b]\right\}
$$

we have

$$
-B=\left\{S_{-f}(\sigma): \sigma \text { any subdivision of }[a, b]\right\}
$$

Thus, $\int_{a}^{b} f=\sup B=-\inf (-B)=-\int_{a}^{b}(-f)$.

Notation for Restrctions

Definition (Notation for Restrictions)

If $a \leq c<d \leq b$, the definitions for f can be applied to the restriction $f\lceil[c, d]$ of f to $[c, d]$, i.e., to the function $x \mapsto f(x), c \leq x \leq d$. Instead of the cumbersome notations

$$
\int_{c}^{d} f \upharpoonright_{[c, d]} \quad \text { and } \quad \int_{c}^{d} f \upharpoonright_{[c, d]}
$$

we write simply

$$
\int_{c}^{d} f \text { and } \int_{c}^{d} f
$$

It is also convenient to define

$$
\int_{c}^{c} f=\int_{c}^{c} f=0
$$

for any $c \in[a, b]$.

Additivity of Upper and Lower Integrals

- We show that the upper and lower integral is (for a fixed function f) an additive function of the endpoints of integration:

Theorem

If $a \leq c \leq b$, then

$$
\text { (i) } \int_{a}^{b} f=\int_{a}^{c} f+\bar{\int}_{c}^{b} f \text {; (ii) } \int_{a}^{b} f=\int_{a}^{c} f+\underline{\int}_{c}^{b} f \text {. }
$$

- Both equations are trivial when $c=a$ or $c=b$. Suppose $a<c<b$. It suffices to prove (i). Writing L for the left side and R for the right side, we show that $L \leq R$ and $L \geq R$.
- $L \leq R$: Let σ_{1} be any subdivision of $[a, c], \sigma_{2}$ any subdivision of $[c, b]$, and write $\sigma=\sigma_{1} \oplus \sigma_{2}$ for the subdivision of $[a, b]$ obtained by joining σ_{1} and σ_{2} at their common point c. Then $S(\sigma)=S\left(\sigma_{1}\right)+S\left(\sigma_{2}\right)$. (the upper sum on the left pertains to f, those on the right pertain to the restrictions of f to $[a, c]$ and $[c, b]$).

Additivity of Upper and Lower Integrals (Cont'd)

- We continue with the proof of (i):
- Showing that $L \leq R$, we have $S(\sigma)=S\left(\sigma_{1}\right)+S\left(\sigma_{2}\right)$. Thus, $\bar{\int}_{a}^{b} f \leq S(\sigma)=S\left(\sigma_{1}\right)+S\left(\sigma_{2}\right)$. So $\bar{\int}_{a}^{b} f-S\left(\sigma_{1}\right) \leq S\left(\sigma_{2}\right)$. Varying σ_{2} over all possible subdivisions of $[c, b]$, it follows that $\bar{\int}_{a}^{b} f-S\left(\sigma_{1}\right) \leq \int_{c}^{b} f$. Thus, $\int_{a}^{b} f-\int_{c}^{b} f \leq S\left(\sigma_{1}\right)$. Since this holds for all σ_{1}, we get $\bar{\int}_{a}^{b} f-\bar{\int}_{c}^{b} f \leq \bar{\int}_{a}^{c} f$.
- $L \geq R$: Let σ be any subdivision of $[a, b]$. Let τ be a subdivision of [a, b], such that $\tau \succ \sigma$ and τ includes the point c (for example, let τ be the result of inserting c into σ if it is not already there). Since c is a point of τ, as in the first part of the proof we can write $\tau=\tau_{1} \oplus \tau_{2}$, with τ_{1} a subdivision of $[a, c]$ and τ_{2} a subdivision of $[c, b]$. Then $S(\sigma) \geq S(\tau)=S\left(\tau_{1}\right)+S\left(\tau_{2}\right) \geq \bar{\int}_{a}^{c} f+\bar{\int}_{c}^{b} f$. Thus, $S(\sigma) \geq R$, for every subdivision σ of $[a, b]$, whence $L \geq R$.

Subsection 3

Indefinite Upper and Lower Integrals

Indefinite Integrals

Definition (Indefinite Integrals)

For the given bounded function $f:[a, b] \rightarrow \mathbb{R}$, we define functions $F:[a, b] \rightarrow \mathbb{R}$ and $H:[a, b] \rightarrow \mathbb{R}$ by the formulas

$$
F(x)=\int_{a}^{x} f, \quad H(x)=\int_{a}^{x} f, \quad a \leq x \leq b .
$$

We may also consider variable lower endpoints of integration, leading to a function G complementary to F, and a function K complementary to H. The function F is called the indefinite upper integral of $f . H$ is called the indefinite lower integral of f.

- By a previously adopted convention, $F(a)=H(a)=0$.
- Moreover, we know that $H(x) \leq F(x)$, for all $x \in[a, b]$.
- We show that the functions F and H have nice properties even if nothing is assumed about the given bounded function f.
Moreover, every nice property of f (like continuity) yields an even nicer property of F (like differentiability).

Lipschitz Continuity of the Indefinite Integrals

Theorem

Let $k=\max \{|m|,|M|\}$, where $m=\inf f$ and $M=\sup f$. Then

$$
|F(x)-F(y)| \leq k|x-y|, \quad|H(x)-H(y)| \leq k|x-y|,
$$

for all $x, y \in[a, b]$. In particular, F and H are continuous on $[a, b]$.

- We can suppose $x<y$. By the additivity property,

$$
\bar{\int}_{a}^{y} f=\bar{\int}_{a}^{x} f+\bar{\int}_{x}^{y} f \text {. Thus, } \int_{x}^{y} f=F(y)-F(x) \text {. If } m^{\prime} \text { and } M^{\prime} \text { are }
$$ the infimum and supremum of f on the interval $[x, y]$, we have $m \leq m^{\prime} \leq M^{\prime} \leq M$. This yields $m(y-x) \leq m^{\prime}(y-x) \leq \bar{\int}_{x}^{y} f \leq M^{\prime}(y-x) \leq M(y-x)$. Therefore, $m(y-x) \leq F(y)-F(x) \leq M(y-x)$. Since $|m| \leq k$ and $|M| \leq k$, $-k(y-x) \leq F(y)-F(x) \leq k(y-x)$, whence $|F(y)-F(x)| \leq k(y-x)=k|y-x|$.

The proof for H is similar.

Monotonicity of Indefinite Integrals

Theorem (Monotonicity of Indefinite Integrals)
If $f \geq 0$, then F and H are increasing functions.

- If $f \geq 0$, then $m \geq 0$, whence the upper and lower integrals of a nonnegative function are nonnegative. If $a \leq c<d \leq b$, then $F(d)=F(c)+\bar{\int}_{c}^{d} f \geq F(c)$. Hence F is increasing.
A similar reasoning applies to H.

Right Differentiability of Indefinite Integrals

Theorem (Right Differentiability of Indefinite Integrals)

If $a \leq c<b$ and f is right continuous at c, then F and H are right differentiable at c and $F_{r}^{\prime}(c)=H_{r}^{\prime}(c)=f(c)$.

- We give the proof for F; the proof for H is similar. Let $\epsilon>0$. We seek $\delta>0, c+\delta<b$, with $c<x<c+\delta \Rightarrow\left|\frac{F(x)-F(c)}{x-c}-f(c)\right| \leq \epsilon$. Since f is right continuous at c, there exists a $\delta>0$, with $c+\delta<b$, such that $c \leq t \leq c+\delta \Rightarrow|f(t)-f(c)| \leq \epsilon$. Consider $c<x<c+\delta$:

For $t \in[c, x],|f(t)-f(c)| \leq \epsilon$, whence $f(c)-\epsilon \leq f(t) \leq f(c)+\epsilon$. If m_{x} and M_{x} are the infimum and supremum of f on $[c, x]$, then $f(c)-\epsilon \leq m_{x} \leq M_{x} \leq f(c)+\epsilon$. Therefore, $[f(c)-\epsilon](x-c) \leq m_{x}(x-c) \leq \bar{\int}_{c}^{x} f \leq M_{x}(x-c) \leq[f(c)+\epsilon](x-c)$. Finally, we get $[f(c)-\epsilon](x-c) \leq F(x)-F(c) \leq[f(c)+\epsilon](x-c)$.

Differentiability of Indefinite Integrals

Theorem (Left Differentiability of Indefinite Integrals)

If $a<c \leq b$ and f is left continuous at c, then F and H are left differentiable at c and $F_{\ell}^{\prime}(c)=H_{\ell}^{\prime}(c)=f(c)$.

- The easiest strategy is to modify the preceding proof: Replace $c<x<c+\delta$ by $c-\delta<x<c,[c, x]$ by $[x, c]$, etc.
An alternative strategy is to apply the "right" version to the function $g:[-b,-a] \rightarrow \mathbb{R}$ defined by $g(y)=f(-y)$, which is right continuous at $-c$ when f is left continuous at c. The relations among the indefinite integrals of f and g are easy to verify, but cumbersome.

Corollary

If $a<c<b$ and f is continuous at c, then F and H are differentiable at c and $F^{\prime}(c)=H^{\prime}(c)=f(c)$.

- By assumption, f is both left and right continuous at c, whence $F_{\ell}^{\prime}(c)=f(c)=F_{r}^{\prime}(c)$ and $H_{\ell}^{\prime}(c)=f(c)=H_{r}^{\prime}(c) . F$ and H are differentiable at c, with $F^{\prime}(c)=f(c)$ and $H^{\prime}(c)=f(c)$.

Indefinite Integrals in Terms of Lower Points

- We look at the upper and lower integrals as functions of the lower endpoint of integration:

Definition (Indefinite Integrals Revisited)

For the given bounded function $f:[a, b] \rightarrow \mathbb{R}$, we define functions $G:[a, b] \rightarrow \mathbb{R}$ and $K:[a, b] \rightarrow \mathbb{R}$ by the formulas

$$
G(x)=\int_{x}^{b} f, \quad K(x)=\int_{x}^{b} f, \quad a \leq x \leq b .
$$

- Remarks: We have $F(x)+G(x)=\int_{a}^{b} f$ and $H(x)+K(x)=\int_{a}^{b} f$, for $a \leq x \leq b$. Thus, G is in a sense complementary to F, and K to H. This is the key to deducing the properties of G from those of F, and the properties of K from those of H : E.g., since F and H are continuous, so are G and K.

Differentiability of G and K

Theorem (Right Differentiability of G and K)
If $a \leq c<b$ and f is right continuous at c, then G and K are right differentiable at c and $G_{r}^{\prime}(c)=K_{r}^{\prime}(c)=-f(c)$.

- This is immediate from right differentiability of F and H and the preceding complementarity formulas.

Theorem (Left Differentiability of G and K)

If $a<c \leq b$ and f is left continuous at c, then G and K are left differentiable at c and $G_{\ell}^{\prime}(c)=K_{\ell}^{\prime}(c)=-f(c)$.

Corollary (Differentiability of G and K)

If $a<c<b$ and f is continuous at c, then G and K are differentiable at c and $G^{\prime}(c)=K^{\prime}(c)=-f(c)$.

Subsection 4

Riemann Integrable Functions

Riemann Integrability

Definition (Riemann Integral)

A bounded function $f:[a, b] \rightarrow \mathbb{R}$ is said to be Riemann-integrable (briefly, integrable) if

$$
\int_{a}^{b} f=\bar{\int}_{a}^{b} f
$$

(The analogous concept for bounded sequences ($\lim \inf =\lim s u p$) is convergence!) We write simply $\int_{a}^{b} f$ or (especially when $f(x)$ is replaced by a formula for it) $\int_{a}^{b} f(x) d x$ for the common value of the lower and upper integral, and call it the integral (or Riemann integral) of f.

- Remark: If f is Riemann-integrable, then so is $-f$, and

$$
\int_{a}^{b}(-f)=-\int_{a}^{b} f
$$

Monotonicity and Riemann Integrability

- If $f(x)=\left\{\begin{array}{ll}1, & \text { if } x \text { is rational } \\ 0, & \text { if } x \text { is irrational }\end{array}\right.$, then f is not Riemann-integrable.

Theorem

If f is monotone, then it is Riemann-integrable.

- We can suppose that f is increasing. For every subdivision σ of $[a, b]$, we have $s(\sigma) \leq \int_{a}^{b} f \leq \int_{a}^{b} f \leq S(\sigma)$. To show that the lower integral is equal to the upper integral, we need only show that $S(\sigma)-s(\sigma)$ can be made as small as we like (by choosing σ appropriately). Say $\sigma=\left\{a=a_{0}<a_{1}<\cdots<a_{n}=b\right\}$. Since f is increasing, we have $m_{\nu}=f\left(a_{\nu-1}\right), M_{\nu}=f\left(a_{\nu}\right)$. Thus, $s(\sigma)=\sum_{\nu=1}^{n} f\left(a_{\nu-1}\right) e_{\nu}$ and $S(\sigma)=\sum_{\nu=1}^{n} f\left(a_{\nu}\right) e_{\nu}$. So $S(\sigma)-s(\sigma)=\sum_{\nu=1}^{n}\left[f\left(a_{\nu}\right)-f\left(a_{\nu-1}\right)\right] e_{\nu}$.
Now assume that the points of σ are equally spaced, so that $e_{\nu}=\frac{1}{n}(b-a)$. The sum, then, "telescopes":
$S(\sigma)-s(\sigma)=\frac{1}{n}(b-a) \sum_{\nu=1}^{n}\left[f\left(a_{\nu}\right)-f\left(a_{\nu-1}\right)\right]=\frac{1}{n}(b-a)[f(b)-f(a)]$, which can be made arbitrarily small by taking n sufficiently large.

Continuity and Riemann Integrability

Theorem

If f is continuous on $[a, b]$ then f is Riemann integrable.

- Let $F=\int_{a}^{x} f$ and $H=\int_{a}^{x} f$ be the indefinite upper integral and indefinite lower integral. We know that $F(a)=H(a)=0$. We must show that $F(b)=H(b)$.
We know F and H are continuous on $[a, b]$. Also, F and H are differentiable on (a, b) with $F^{\prime}(x)=f(x)=H^{\prime}(x)$, for all $x \in(a, b)$. Thus, $F-H$ is continuous on $[a, b]$, differentiable on (a, b), and $(F-H)^{\prime}(x)=0$, for all $x \in(a, b)$. Therefore, $F-H$ is constant by a corollary of the Mean Value Theorem. Since $(F-H)(a)=0$, also $(F-H)(b)=0$. Thus, $F(b)=H(b)$, as we wished to show.

The Fundamental Theorem of Calculus

Theorem (The Fundamental Theorem of Calculus)

If $f:[a, b] \rightarrow \mathbb{R}$ is continuous, then:
(1) f is Riemann-integrable on $[a, b]$;
(2) There exists a continuous function $F:[a, b] \rightarrow \mathbb{R}$, differentiable on (a, b), such that $F^{\prime}(x)=f(x)$, for all $x \in(a, b)$;
(3) For any F satisfying (2), $F(x)=F(a)+\int_{a}^{x} f$, for all $x \in[a, b]$. Moreover, F is right differentiable at a, left differentiable at b, and $F_{r}^{\prime}(a)=f(a), F_{\ell}^{\prime}(b)=f(b)$.

- Part (1) is the conclusion of the preceding theorem. $F(x)=\bar{\int}_{a}^{x} f$ has the properties in (2) and (3). Suppose that $J:[a, b] \rightarrow \mathbb{R}$ is also a continuous function having derivative $f(x)$ at every $x \in(a, b)$. By the argument used in the preceding theorem, $J-F$ is constant, say $J(x)=F(x)+C$, for all $x \in[a, b]$. Then $J(x)-J(a)=F(x)-F(a)$ $=\int_{a}^{x} f$, for all $x \in[a, b]$. Finally, J has the one-sided derivatives $f(a)$ and $f(b)$ at the endpoints since F does.

Consequences of the Fundamental Theorem

Corollary

If $f:[a, b] \rightarrow \mathbb{R}$ is continuous and $F:[a, b] \rightarrow \mathbb{R}$ is a continuous function, differentiable on (a, b), such that $F^{\prime}(x)=f(x)$, for all $x \in(a, b)$, then

$$
\int_{a}^{b} f=F(b)-F(a)
$$

Corollary

If $f:[a, b] \rightarrow \mathbb{R}$ is continuous, $f \geq 0$ on $[a, b]$, and $\int_{a}^{b} f=0$, then $f \equiv 0$.

- If $F=\int_{a}^{x} f$, then F is increasing and $F(b)-F(a)=\int_{a}^{b} f=0$.

Therefore, F is constant. Then $f=F^{\prime}=0$ on (a, b), whence $f=0$ on $[a, b]$ by continuity.

