
Introduction to Set Theory

George Voutsadakis1

1Mathematics and Computer Science
Lake Superior State University

LSSU Math 400

George Voutsadakis (LSSU) Set Theory June 2014 1 / 39



Outline

1 Sets
Introduction to Sets
Properties
The Axioms
Elementary Operations on Sets

George Voutsadakis (LSSU) Set Theory June 2014 2 / 39



Sets Introduction to Sets

Subsection 1

Introduction to Sets

George Voutsadakis (LSSU) Set Theory June 2014 3 / 39



Sets Introduction to Sets

Sets and Elements

A set is any collection of objects.

Objects from which a given set is composed are called elements or
members of that set. We also say that they belong to that set.

We are mainly concerned with sets of mathematical objects, such as
numbers, points of space, functions, or sets.

Since the first three (numbers, points and functions) may themselves
be defined as sets with particular properties, in theoretical discussions
we restrict attention to objects that are sets.

In examples, however, we use various mathematical entities:

Example: The following are sets of mathematical objects:
(a) The set of all prime divisors of 324.
(b) The set of all numbers divisible by 0.
(c) The set of all continuous real-valued functions on the interval [0, 1].
(d) The set of all ellipses with major axis 5 and eccentricity 3.
(e) The set of all sets whose elements are natural numbers less than 20.
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Russell’s Paradox

Uncritical usage of “sets” remote from “everyday experience” may
lead to contradictions.

Consider for example the “set” R of all those sets which are not
elements of themselves. I.e., R is a set of all sets x such that x 6∈ x

(∈ reads “belongs to,” 6∈ reads “does not belong to”).
We ask whether R ∈ R :

If R ∈ R , then R is not an element of itself (because no element of R
belongs to itself), so R 6∈ R , a contradiction. Therefore, necessarily
R 6∈ R .
But if R 6∈ R , then R is a set which is not an element of itself, and all
such sets belong to R . We conclude that R ∈ R , a contradiction.

We summarize the argument: Define R by:

x ∈ R if and only if x 6∈ x .

Now consider x = R . By definition of R , R ∈ R if and only if R 6∈ R ,
a contradiction.
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On Russell’s Paradox

There is nothing wrong with R being a set of sets. Many sets whose
elements are again sets are employed in mathematics and do not lead
to contradictions.

It is easy to give examples of elements of R : If x is the set of all
natural numbers, then x 6∈ x (the set of all natural numbers is not a
natural number) and so x ∈ R .

It is not so easy to give examples of sets which do not belong to R ,
but this is irrelevant.

The argument would result in a contradiction even if there were sets
which are elements of themselves. (A plausible candidate for a set
which is an element of itself would be the “set of all sets” V ; clearly
V ∈ V .)

The “set of all sets”, however, leads to contradictions.
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Search for a Resolution

The goal is to develop set theory carefully to resolve this and similar
contradictions.

Having a set R defined as the set of all sets which are not elements of
themselves leads to a contradiction.

This can only mean that there is no set satisfying the definition of R .

The argument proves that there exists no set whose members would
be precisely the sets which are not elements of themselves.

Lesson of Russell’s Paradox: By merely defining a set we do not prove
its existence.

There are properties which do not define sets; that is, it is not
possible to collect all objects with those properties into one set.

One has to determine the properties which do define sets.

No way on how to do this is known, and some results in logic
(Incompleteness Theorems of Kurt Gödel) seem to indicate that a
complete answer is not even possible.
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Axiomatization of Set Theory

We formulate some of the relatively simple properties of sets used by
mathematicians as axioms.

Then check that all theorems follow logically from the axioms.

Since the axioms are obviously true and the theorems logically follow
from them, the theorems are also true.

We prove truths about sets which include, among other things, the
basic properties of natural, rational, and real numbers, functions,
orderings, etc., but, as far as is known, no contradictions.

Experience has shown that all notions used in contemporary
mathematics can be defined, and their mathematical properties
derived, in this axiomatic system.

In this sense, the axiomatic set theory serves as a satisfactory
foundation for the other branches of mathematics.

But not every true fact about sets can derived from the axioms we
present, i.e., the axiomatic system is not complete in this sense.
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Sets Properties

Discussion on Properties

Some “properties” commonly considered in everyday life are so vague
that they can hardly be admitted in a mathematical theory.

The “set of all the great twentieth century American novels”.
Is a twentieth century American novels “great”?
The “set of those natural numbers which could be written down in
decimal notation” (by ”could” we mean that someone could actually
do it with paper and pencil).
0 can be so written down. If number n can be written down, then
number n + 1 can also be written down. Therefore, by induction, every
natural number n can be written down.
But can 1010

10

be so written down?
The problem, here, is caused by the vague meaning of “could”.

To avoid similar difficulties and “contradictions”, we now describe
explicitly what we mean by a property.
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The Fundamental Concept of Membership

The basic set-theoretic property is the membership property: “. . .is an
element of. . .”, which we denote by ∈. So “X ∈ Y ” reads “X is an
element of Y ” or “X is a member of Y ” or “X belongs to Y ”.
The letters X and Y in these expressions are variables; they stand for
unspecified, arbitrary sets.
The proposition “X ∈ Y ” holds or does not hold depending on which
sets are denoted by X and Y .
We sometimes say “X ∈ Y ” is a property of X and Y .
Example: Similar principles apply in other branches of mathematics.
For example, “m is less than n” is a property of numbers m and n.
The letters m and n are variables denoting unspecified numbers.
Some m and n have this property (“2 is less than 4” is true) but
others do not (“3 is less than 2” is false).
All other set-theoretic properties can be stated in terms of
membership with the help of logical means: identity, logical
connectives, and quantifiers.
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Axiomatization of Identity

Sometimes the same set is denoted by different variables in various
contexts.

We use the identity sign “=” to express that two variables denote the
same set.

So we write X = Y if X is the same set as Y (X is identical with Y

or X is equal to Y ).
We list some obvious facts about identity:
(a) X = X . (X is identical with X .)
(b) If X = Y , then Y = X . (If X and Y are identical, then Y and X are

identical.)
(c) If X = Y and Y = Z , then X = Z . (If X is identical with Y and Y is

identical with Z , then X is identical with Z .)
(d) If X = Y and X ∈ Z , then Y ∈ Z . (If X and Y are identical and X

belongs to Z , then Y belongs to Z .)
(e) If X = Y and Z ∈ X , then Z ∈ Y . (If X and Y are identical and Z

belongs to X , then Z belongs to Y .)
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Sets Properties

Logical Connectives

Logical connectives can be used to construct more complicated
properties from simpler ones.

They are expressions like “not . . .”, “. . . and . . .”, “if . . . then . . .”
and “. . . if and only if . . .”.

Example:

(a) “X ∈ Y or Y ∈ X” is a property of X and Y .
(b) “Not X ∈ Y and not Y ∈ X” or, in more idiomatic English, “X is not

an element of Y and Y is not an element of X” is also a property of X
and Y .

(c) “If X = Y , then X ∈ Z if and only if Y ∈ Z” is a property of X ,Y

and Z .
(d) “X is not an element of X” (or: “not X ∈ X”) is a property of X .

We write

X 6∈ Y instead of “not X ∈ Y ”;
X 6= Y instead of “not X = Y ”.
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Quantifiers

Quantifiers “for all” (“for every”) and “there is” (“there exists”)
provide additional logical means.

All mathematical facts can be expressed in this language consisting of
equality, logical connectives and quantifiers. Moreover, this language
does not allow vague expressions, like the ones causing paradoxes.
Example:
(a) “There exists Y ∈ X”.
(b) “For every Y ∈ X , there is Z such that Z ∈ X and Z ∈ Y ”.
(c) “There exists Z such that Z ∈ X and Z 6∈ Y ”.

Truth or falsity of (a) depends on the set X .
If X is the set of all American presidents after 1789, then (a) is true;
If X is the set of all American presidents before 1789, (a) is false.

Thus, (a) is a property of X and (a) depends on the parameter X .

Similarly, (b) is a property of X , and (c) is a property of X and Y .

On the other hand, Y is not a parameter in (a), nor is (b) a property
of Y or Z , or (c) a property of Z .
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Properties, Parameters and Statements

Instead of providing precise rules for determining which variables are
parameters of a given property, we rely on an intuitive understanding.

Example:

(a) “Y ∈ X”;
(b) “There is Y ∈ X”;
(c) “For every X , there is Y ∈ X”.

(a) is a property of X and Y ; it is true for some pairs of sets X ,Y

and false for others.
(b) is a property of X (but not of Y ).
(c) has no parameters. (c) is, therefore, either true or false (it is in
fact, false).

Properties which have no parameters (and are, therefore, either true
or false) are called statements.

All mathematical theorems are (true) statements.
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Notation for Properties and Parameters

We sometimes wish to refer to an arbitrary, unspecified property.

We use boldface capital letters to denote statements and properties
and, if convenient, list some or all of their parameters in parentheses.
So A(X ) stands for any property of the parameter X .

Example: In the preceding example, we could write

E(X ,Y ) for “Y ∈ X”;
A(X ) for “There is Y ∈ X”.

In general, P(X ,Y , . . . ,Z ) is a property whose truth or falsity
depends on parameters X ,Y , . . . ,Z (and possibly others).
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Defined Properties as Shorthands

Recall that we adopted a restricted language, consisting of
membership, equality, logical connectives and quantifiers.
As more complicated theorems proved, it is practical to give names to
various particular properties, i.e., to define new properties.
A new symbol is then introduced to denote the property.
We can view it as a shorthand for the explicit formulation.
Example: The property of being a subset is defined by

X ⊆ Y if and only if, every element of X is an element of Y .

“X is a subset of Y ” (X ⊆ Y ) is a property of X and Y . We can use
it in more complicated formulations and, whenever desirable, replace
X ⊆ Y by its definition.
“If X ⊆ Y and Y ⊆ Z , then X ⊆ Z” is a shorthand for “If every

element of X is an element of Y and every element of Y

is an element of Z, then every element of X is an

element of Z”.
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Defined Constants as Shorthands

In principle, we could do mathematics without definitions, but it
would be tedious and exceedingly clumsy.

For another type of definition, consider the property P(X ): “There
exists no Y ∈ X”. We will prove that:

(a) There exists a set X such that P(X ) (there exists a set X with no
elements).

(b) There exists at most one set X such that P(X ), i.e., if P(X ) and
P(X ′), then X = X ′ (if X bas no elements and X ′ has no elements,
then X and X ′ are identical).

(a) and (b) together express the fact that there is a unique set X
with the property P(X ). We can then give this set a name, say ∅ (the
empty set) and use it as a shorthand in more complicated expressions.
The full meaning of “∅ ⊆ Z” is then “the set X which has no

elements is a subset of Z”.

We occasionally refer to ∅ as the constant defined by the property P.
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Defined Functions as Shorthands

As a last example of a definition, consider the property Q(X ,Y ,Z ) of
X ,Y and Z :

“For every U, U ∈ Z if and only if U ∈ X and U ∈ Y ”.

We see in the next section that:

(a) For every X and Y there exists Z such that Q(X ,Y ,Z ).
(b) For every X and Y , if Q(X ,Y ,Z ) and Q(X ,Y ,Z ′), then Z = Z ′ (for

every X and Y , there exists at most one Z such that Q(X ,Y ,Z )).

Conditions (a) and (b) (which have to be proved whenever this type
of definition is used) guarantee that for every X and Y there is a
unique set Z such that Q(X ,Y ,Z ). We can then introduce a name,
say X ∩ Y , for this unique set Z and call X ∩ Y the intersection of X
and Y . So Q(X ,Y ,X ∩ Y ) holds.

We refer to ∩ as the operation/function defined by the property Q.
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Sets The Axioms

Axiom of Existence

The first principle postulates that our “universe of discourse” is not
void, i.e., that some sets exist.

To be concrete, we postulate the existence of a specific set, namely
the empty set.

The Axiom of Existence

There exists a set which has no elements.

A set with no elements can be variously described intuitively:

The set of all U.S. Presidents before 1789;
The set of all real numbers x for which x2 = −1, etc.

All examples of this kind describe one and the same set, namely the
empty, vacuous set. So, intuitively, there is only one empty set.

The formal proof requires a second postulate.
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Sets The Axioms

The Axiom of Extensionality

Our second postulate expresses the fact that each set is determined
by its elements.

Example:

X is the set consisting exactly of the numbers 2, 3, and 5.
Y is the set of all prime numbers greater than 1 and less than 7.
Z is the set of all solutions of the equation x3 − 10x2 + 31x − 30 = 0.

Here X = Y , X = Z , and Y = Z , and we have three different
descriptions of one and the same set.

The Axiom of Extensionality

If every element of X is an element of Y and every element of Y is an
element of X , then X = Y .

If two sets have the same elements, then they are identical.
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Sets The Axioms

Uniqueness of the Empty Set

Lemma (Uniqueness of the Empty Set)

There exists only one set with no elements.

Assume that A and B are sets with no elements.
Every element of A is an element of B (since A has no elements, the
statement “a ∈ A implies a ∈ B” is an implication with a false
antecedent, and thus automatically true).
Similarly, every element of B is an element of A (since B has no
elements).

Therefore, A = B , by the Axiom of Extensionality.

Definition (Empty Set)

The (unique) set with no elements is called the empty set and is denoted
∅.

The definition of the constant ∅ is justified by the Axiom of Existence
and the preceding lemma.
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Sets The Axioms

The Axiom Schema of Comprehension

Since sets are collections of objects sharing some common property,
we expect to have axioms expressing this fact.

As demonstrated by the preceding paradoxes, not every property
describes a set; properties “X 6∈ X” or “X = X” are typical examples.

To be able to collect all objects having such a property into a set, we
have to be able to perceive all sets.

The difficulty is avoided if we postulate the existence of a set of all
objects with a given property only if there already exists some set to
which they all belong.

The Axiom Schema of Comprehension

Let P(x) be a property of x . For any set A, there is a set B such that
x ∈ B if and only if x ∈ A and P(x).

This is a schema of axioms, i.e., for each property P, we have one
axiom.
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Instances of The Axiom Schema of Comprehension

Example: If P(x) is “x = x”, the axiom says:
For any set A, there is a set B such that x ∈ B if and only if x ∈ A

and x = x . (In this case, B = A.)

Example: If P(x) is “x 6∈ x”, the axiom postulates:
For any set A, there is a set B such that x ∈ B if and only if x ∈ A

and x 6∈ x .

Although there are infinitely many axioms, this causes no problems,
since it is easy to recognize whether a particular statement is or is not
an axiom and since every proof uses only finitely many axioms.

The property P(x) can depend on other parameters p, . . . , q. The
corresponding axiom then postulates that for any sets p, . . . , q and
any A, there is a set B (depending on p, . . . , q and, of course, on A)
consisting exactly of all those x ∈ A for which P(x , p, . . . , q).
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Using Comprehension via Extensionality

Proposition (Existence of Intersection)

If P and Q are sets, then there is a set R such that x ∈ R if and only if
x ∈ P and x ∈ Q.

Consider the property P(x ,Q) of x and Q: “x ∈ Q”. Then, by the
Comprehension Schema, for every Q and for every P there is a set R
such that x ∈ R if and only if x ∈ P and P(x ,Q), i.e., if and only if
x ∈ P and x ∈ Q. (Here P plays the role of A, Q is a parameter.)

Lemma (Uniqueness in Comprehension)

For all A, there is unique B such that x ∈ B if and only if x ∈ A and P(x).

If B ′ is such that x ∈ B ′ if and only if x ∈ A and P(x), then x ∈ B if
and only if x ∈ B ′, so B = B ′, by Extensionality.

Definition (Notation for Comprehension)

{x ∈ A : P(x)} the set of all x ∈ A with the property P(x).
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Sets The Axioms

The Axiom of Pair

The only set we proved to exist is the empty set; Moreover,
applications of the Comprehension Schema to the empty set produce
again the empty set: {x ∈ ∅ : P(x)} = ∅, regardless of the property P.

The next three principles postulate that some of the constructions
frequently used in mathematics yield sets.

The Axiom of Pair

For any A and B , there is a set C such that x ∈ C if and only if x = A or
x = B .

So A ∈ C and B ∈ C , and there are no other elements of C .

The set C is unique.

Definition of Unordered Pair

We define the unordered pair of A and B as the set having exactly A

and B as its elements and introduce the notation {A,B} for the unordered
pair of A and B . In particular, if A = B , we write {A} instead of {A,A}.
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Forming Unordered Pairs

Example:

(a) Set A = ∅ and B = ∅; then {∅} = {∅, ∅} is a set for which ∅ ∈ {∅},
and if x ∈ {∅}, then x = ∅. So {∅} has a unique element ∅.
Note that {∅} 6= ∅, since ∅ ∈ {∅} but ∅ 6∈ ∅.

(b) Let A = ∅ and B = {∅}; then ∅ ∈ {∅, {∅}} and {∅} ∈ {∅, {∅}} and ∅
and {∅} are the only elements of {∅, {∅}}.
Note, also, that ∅ 6= {∅, {∅}} and {∅} 6= {∅, {∅}}.
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The Axiom of Union

The Axiom of Union

For any set S , there exists a set U, such that x ∈ U if and only if x ∈ A

for some A ∈ S .

The set U is unique; it is called the union of S and denoted by
⋃

S .

We say that S is a system of sets or a collection of sets when we
want to stress that elements of S are sets (since all objects we
consider are sets, this is always true and, thus, the expressions “set”
and “system of sets” have the same meaning).

The union of a system of sets S is then a set of precisely those x

which belong to some set from the system S .
Example:
(a) Let S = {∅, {∅}}; x ∈

⋃
S if and only if x ∈ A for some A ∈ S , i.e., if

and only if x ∈ ∅ or x ∈ {∅}. Therefore, x ∈
⋃
S if and only if x = ∅:⋃

S = {∅}.
(b)

⋃
∅ = ∅.
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Union of Two or More Sets

Example: Let M and N be sets; x ∈
⋃
{M,N} if and only if x ∈ M or

x ∈ N. The set
⋃
{M,N} is called the union of M and N and is

denoted M ∪ N.
We introduced the familiar set-theoretic operation of union:

The Axiom of Pair and the Axiom of Union are necessary to define
union of two sets;
The Axiom of Extensionality is needed to guarantee that it is unique.

The union of two sets has the usual meaning:

x ∈ M ∪ N if and only if x ∈ M or x ∈ N.

Example: {{∅}} ∪ {∅, {∅}} = {∅, {∅}}.
The Axiom of Union is more powerful: it enables us to form unions of
not just two, but of any, possibly infinite, collection of sets.

If A,B and C are sets, we can prove the existence and uniqueness of
the set P whose elements are exactly A,B and C . P is denoted
{A,B ,C} and is called an unordered triple of A,B and C .
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The Axiom of Power Set

Definition (Subset)

A is a subset of B if and only if every element of A belongs to B . In other
words, A is a subset of B if, for every x , x ∈ A implies x ∈ B .

We write A ⊆ B to denote that A is a subset of B .
Example:
(a) {∅} ⊆ {∅, {∅}} and {{∅}} ⊆ {∅, {∅}}.
(b) ∅ ⊆ A and A ⊆ A, for every set A.
(c) {x ∈ A : P(x)} ⊆ A.
(d) If A ∈ S , then A ⊆

⋃
S .

The next axiom postulates that all subsets of a given set can be
collected into one set.

The Axiom of Power Set

For any set S , there exists a set P such that X ∈ P if and only if X ⊆ S .

Since the set P is again uniquely determined, we call the set of all
subsets of S the power set of S and denote it by P(S).
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Elements Satisfying a Property

Example:
(a) P(∅) = {∅}.
(b) P({a}) = {∅, {a}}.
(c) The elements of P({a, b}) are ∅, {a}, {b}, and {a, b}.

Let P(x) be a property of x (and, possibly, of other parameters). If
there is a set A such that, for all x , P(x) implies x ∈ A, then
{x ∈ A : P(x)} exists, and, moreover, does not depend on A.
I.e., if A′ is another set such that for all x , P(x) implies x ∈ A′, then
{x ∈ A′ : P(x)} = {x ∈ A : P(x)}.

We can now define {x : P(x)} to be the set {x ∈ A : P(x)}, where A

is any set for which P(x) implies x ∈ A (since it does not matter
which such set A we use):
{x : P(x)} is the set of all x with the property P(x).

It must be stressed that this notation can be used only after it has
been proved that some A contains all x with the property P.
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Set of Elements Satisfying a Property

Example:
(a) {x : x ∈ P and x ∈ Q} exists.

P(x ,P ,Q) is the property “x ∈ P and x ∈ Q”; let A = P . Then
P(x ,P ,Q) implies x ∈ A. Therefore, {x : x ∈ P and x ∈ Q} = {x ∈
P : x ∈ P and x ∈ Q} = {x ∈ P : x ∈ Q}.

(b) {x : x = a or x = b} exists; for a proof put A = {a, b}; also show that
{x : x = a or x = b} = {a, b}.

(c) {x : x 6∈ x} does not exist (because of Russell’s Paradox): thus in this
instance the notation {x : P(x)} is inadmissible.

Although our list of axioms is not complete, we postpone the
introduction of the remaining postulates until they are needed.

We did not guarantee existence of infinite sets.
The Axiom Schema of Replacement is introduced later.
Towards the end we also introduce the Axiom of Choice.

This axiomatic system was essentially formulated by Ernst Zermelo in
1908 and is often referred to as the Zermelo-Fraenkel axiomatic

system for set theory.
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Subset (⊆) Relation Between Sets

We may now introduce simple set-theoretic operations (union,
intersection, difference, etc.) and prove some of their basic properties.

The property of “being a subset”, denoted ⊆, is called inclusion.

Lemma

For all sets A,B ,C :

(a) A ⊆ A.

(b) If A ⊆ B and B ⊆ A, then A = B.

(c) If A ⊆ B and B ⊆ C , then A ⊆ C .

To verify (c) we have to prove: If x ∈ A, then x ∈ C . But if x ∈ A,
then x ∈ B , since A ⊆ B . Now, x ∈ B implies x ∈ C , since B ⊆ C .
So x ∈ A implies x ∈ C .

If A ⊆ B and A 6= B , we say that A is a proper subset of B (A is
properly contained in B), and write A ⊂ B .

B ⊇ A means A ⊆ B and B ⊃ A means A ⊂ B .
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Operations on Sets

Definition (Operations on Sets)

The intersection of A and B , A ∩ B , is the set of all x which belong
to both A and B .

The union of A and B , A ∪B , is the set of all x which belong to A or
B (or both).

The difference of A and B , A− B , is the set of all x ∈ A which do
not belong to B .

The symmetric difference of A and B , A△B , is defined by
A△B = (A − B) ∪ (B − A).

Existence and uniqueness may be proved using the preceding axioms.
As an example, we sketch these for A− B :

Existence: Since x ∈ A− B implies x ∈ A, by Comprehension, there
exists {x ∈ A : x ∈ A and x 6∈ B} = {x : x ∈ A and x 6∈ B}.
Uniqueness: If two sets are defined by the same property, they contain
the same elements and, by Extensionality, they are equal.
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Properties of Set-Theoretic Operations

Proposition

(Commutativity) A ∩ B = B ∩ A, A ∪ B = B ∪ A;

(Associativity) (A ∩ B) ∩ C = A ∩ (B ∩ C ),
(A ∪ B) ∪ C = A ∪ (B ∪ C );
So we may write A ∩ B ∩ C and A ∪ B ∪ C unambiguously.

(Distributivity) A ∩ (B ∪ C ) = (A ∩ B) ∪ (A ∩ C ),
A ∪ (B ∩ C ) = (A ∪ B) ∩ (A ∪ C );

(DeMorgan Laws) C − (A ∩ B) = (C − A) ∪ (C − B),
C − (A ∪ B) = (C − A) ∩ (C − B);

And for difference and symmetric difference:

A ∩ (B − C ) = (A ∩ B)− C ;
A− B = ∅ if and only if A ⊆ B;
A△A = ∅;
A△B = B△A;
(A△B)△C = A△(B△C ).
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Venn Diagrams and a Sample Proof

Venn diagrams help in discovering set relationships.

Recall the distributive law

A ∩ (B ∪ C ) = (A ∩ B) ∪ (A ∩ C ).

To prove this, we have, to prove that the sets A ∩ (B ∪ C ) and
(A∩B)∪ (A∩C ) have the same elements. This requires us to show:
(a) Every element of A ∩ (B ∪ C ) belongs to (A ∩ B) ∪ (A ∩ C ).

Let a ∈ A ∩ (B ∪ C ). Then a ∈ A and a ∈ B ∪ C . Therefore, either
a ∈ B or a ∈ C . So a ∈ A and a ∈ B or a ∈ A and a ∈ C . This means
that a ∈ A ∩ B or a ∈ A ∩ C . Therefore, a ∈ (A ∩ B) ∪ (A ∩ C ).

(b) Every element of (A ∩ B) ∪ (A ∩ C ) belongs to A ∩ (B ∪ C ).
Let a ∈ (A ∩ B) ∪ (A ∩ C ). Then a ∈ A ∩ B or a ∈ A ∩ C . In the first
case, a ∈ A and a ∈ B, so that a ∈ A and a ∈ B ∪ C and, hence,
a ∈ A ∩ (B ∪ C ). In the second a ∈ A and a ∈ C , so again a ∈ A and
a ∈ B ∪ C , so that a ∈ A ∩ (B ∪ C ).
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Intersection of a System of Sets and Disjoint Sets

The union of a system of sets S was defined in the preceding section.

The intersection
⋂

S of a nonempty system of sets S is defined by

x ∈
⋂

S if and only if x ∈ A, for all A ∈ S .

Then intersection of two sets is a special case: A ∩ B =
⋂
{A,B}.

Notice that we do not define
⋂

∅; the reason is that every x belongs
to all A ∈ ∅ (since there is no such A), so

⋂
∅ would have to be a set

of all sets.

We postpone further study of unions and intersections until later.

We say that sets A and B are disjoint if A ∩ B = ∅.

More generally, S is a system of mutually disjoint sets if
A ∩ B = ∅, for all A,B ∈ S such that A 6= B .
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