Introduction to Set Theory

George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science
Lake Superior State University

LSSU Math 400

- Introduction to Sets
- Properties
- The Axioms
- Elementary Operations on Sets

Subsection 1

Introduction to Sets

Sets and Elements

- A set is any collection of objects.
- Objects from which a given set is composed are called elements or members of that set. We also say that they belong to that set.
- We are mainly concerned with sets of mathematical objects, such as numbers, points of space, functions, or sets.
- Since the first three (numbers, points and functions) may themselves be defined as sets with particular properties, in theoretical discussions we restrict attention to objects that are sets.
- In examples, however, we use various mathematical entities:
- Example: The following are sets of mathematical objects:
(a) The set of all prime divisors of 324.
(b) The set of all numbers divisible by 0 .
(c) The set of all continuous real-valued functions on the interval $[0,1]$.
(d) The set of all ellipses with major axis 5 and eccentricity 3.
(e) The set of all sets whose elements are natural numbers less than 20.

Russell's Paradox

- Uncritical usage of "sets" remote from "everyday experience" may lead to contradictions.
- Consider for example the "set" R of all those sets which are not elements of themselves. l.e., R is a set of all sets x such that $x \notin x$ (\in reads "belongs to," \notin reads "does not belong to").
We ask whether $R \in R$:
- If $R \in R$, then R is not an element of itself (because no element of R belongs to itself), so $R \notin R$, a contradiction. Therefore, necessarily $R \notin R$.
- But if $R \notin R$, then R is a set which is not an element of itself, and all such sets belong to R. We conclude that $R \in R$, a contradiction.
We summarize the argument: Define R by:

$$
x \in R \quad \text { if and only if } x \notin x
$$

Now consider $x=R$. By definition of $R, R \in R$ if and only if $R \notin R$, a contradiction.

On Russell's Paradox

- There is nothing wrong with R being a set of sets. Many sets whose elements are again sets are employed in mathematics and do not lead to contradictions.
- It is easy to give examples of elements of R : If x is the set of all natural numbers, then $x \notin x$ (the set of all natural numbers is not a natural number) and so $x \in R$.
- It is not so easy to give examples of sets which do not belong to R, but this is irrelevant.
- The argument would result in a contradiction even if there were sets which are elements of themselves. (A plausible candidate for a set which is an element of itself would be the "set of all sets" V; clearly $V \in V$.)
- The "set of all sets", however, leads to contradictions.

Search for a Resolution

- The goal is to develop set theory carefully to resolve this and similar contradictions.
- Having a set R defined as the set of all sets which are not elements of themselves leads to a contradiction.
- This can only mean that there is no set satisfying the definition of R.
- The argument proves that there exists no set whose members would be precisely the sets which are not elements of themselves.
- Lesson of Russell's Paradox: By merely defining a set we do not prove its existence.
- There are properties which do not define sets; that is, it is not possible to collect all objects with those properties into one set.
- One has to determine the properties which do define sets.
- No way on how to do this is known, and some results in logic (Incompleteness Theorems of Kurt Gödel) seem to indicate that a complete answer is not even possible.

Axiomatization of Set Theory

- We formulate some of the relatively simple properties of sets used by mathematicians as axioms.
- Then check that all theorems follow logically from the axioms.
- Since the axioms are obviously true and the theorems logically follow from them, the theorems are also true.
- We prove truths about sets which include, among other things, the basic properties of natural, rational, and real numbers, functions, orderings, etc., but, as far as is known, no contradictions.
- Experience has shown that all notions used in contemporary mathematics can be defined, and their mathematical properties derived, in this axiomatic system.
- In this sense, the axiomatic set theory serves as a satisfactory foundation for the other branches of mathematics.
- But not every true fact about sets can derived from the axioms we present, i.e., the axiomatic system is not complete in this sense.

Subsection 2

Properties

Discussion on Properties

- Some "properties" commonly considered in everyday life are so vague that they can hardly be admitted in a mathematical theory.
- The "set of all the great twentieth century American novels". Is a twentieth century American novels "great"?
- The "set of those natural numbers which could be written down in decimal notation" (by "could" we mean that someone could actually do it with paper and pencil).
0 can be so written down. If number n can be written down, then number $n+1$ can also be written down. Therefore, by induction, every natural number n can be written down.
But can $10^{10^{10}}$ be so written down?
The problem, here, is caused by the vague meaning of "could".
- To avoid similar difficulties and "contradictions", we now describe explicitly what we mean by a property.

The Fundamental Concept of Membership

- The basic set-theoretic property is the membership property: ". . . is an element of. ..", which we denote by \in. So " $X \in Y$ " reads " X is an element of Y " or " X is a member of Y " or " X belongs to Y ".
- The letters X and Y in these expressions are variables; they stand for unspecified, arbitrary sets.
- The proposition " $X \in Y$ " holds or does not hold depending on which sets are denoted by X and Y.
- We sometimes say " $X \in Y^{\prime}$ " is a property of X and Y.
- Example: Similar principles apply in other branches of mathematics. For example, " m is less than n " is a property of numbers m and n. The letters m and n are variables denoting unspecified numbers. Some m and n have this property (" 2 is less than 4 " is true) but others do not (" 3 is less than 2 " is false).
- All other set-theoretic properties can be stated in terms of membership with the help of logical means: identity, logical connectives, and quantifiers.

Axiomatization of Identity

- Sometimes the same set is denoted by different variables in various contexts.
- We use the identity sign " $=$ " to express that two variables denote the same set.
- So we write $X=Y$ if X is the same set as $Y(X$ is identical with Y or X is equal to Y).
- We list some obvious facts about identity:
(a) $X=X$. (X is identical with X.)
(b) If $X=Y$, then $Y=X$. (If X and Y are identical, then Y and X are identical.)
(c) If $X=Y$ and $Y=Z$, then $X=Z$. (If X is identical with Y and Y is identical with Z, then X is identical with Z.)
(d) If $X=Y$ and $X \in Z$, then $Y \in Z$. (If X and Y are identical and X belongs to Z, then Y belongs to Z.)
(e) If $X=Y$ and $Z \in X$, then $Z \in Y$. (If X and Y are identical and Z belongs to X, then Z belongs to Y.)

Logical Connectives

- Logical connectives can be used to construct more complicated properties from simpler ones.
- They are expressions like "not ...", "... and ...", "if ... then ..." and ". . . if and only if ...".
- Example:
(a) " $X \in Y$ or $Y \in X$ " is a property of X and Y.
(b) "Not $X \in Y$ and not $Y \in X$ " or, in more idiomatic English, " X is not an element of Y and Y is not an element of X " is also a property of X and Y.
(c) "If $X=Y$, then $X \in Z$ if and only if $Y \in Z$ " is a property of X, Y and Z.
(d) " X is not an element of X " (or: "not $X \in X$ ") is a property of X.
- We write
- $X \notin Y$ instead of "not $X \in Y$ ";
- $X \neq Y$ instead of "not $X=Y$ ".

Quantifiers

- Quantifiers "for all" ("for every") and "there is" ("there exists") provide additional logical means.
- All mathematical facts can be expressed in this language consisting of equality, logical connectives and quantifiers. Moreover, this language does not allow vague expressions, like the ones causing paradoxes.
- Example:
(a) "There exists $Y \in X$ ".
(b) "For every $Y \in X$, there is Z such that $Z \in X$ and $Z \in Y$ ".
(c) "There exists Z such that $Z \in X$ and $Z \notin Y$ ".
- Truth or falsity of (a) depends on the set X.
- If X is the set of all American presidents after 1789, then (a) is true;
- If X is the set of all American presidents before 1789, (a) is false.

Thus, (a) is a property of X and (a) depends on the parameter X.

- Similarly, (b) is a property of X, and (c) is a property of X and Y.
- On the other hand, Y is not a parameter in (a), nor is (b) a property of Y or Z, or (c) a property of Z.

Properties, Parameters and Statements

- Instead of providing precise rules for determining which variables are parameters of a given property, we rely on an intuitive understanding.
- Example:
(a) " $Y \in X$ ";
(b) "There is $Y \in X$ ";
(c) "For every X, there is $Y \in X$ ".
(a) is a property of X and Y; it is true for some pairs of sets X, Y and false for others.
(b) is a property of X (but not of Y).
(c) has no parameters. (c) is, therefore, either true or false (it is in fact, false).
- Properties which have no parameters (and are, therefore, either true or false) are called statements.
- All mathematical theorems are (true) statements.

Notation for Properties and Parameters

- We sometimes wish to refer to an arbitrary, unspecified property.
- We use boldface capital letters to denote statements and properties and, if convenient, list some or all of their parameters in parentheses. So $\mathbf{A}(X)$ stands for any property of the parameter X.
- Example: In the preceding example, we could write
- $\mathbf{E}(X, Y)$ for " $Y \in X$ ";
- $\mathbf{A}(X)$ for "There is $Y \in X$ ".
- In general, $\mathbf{P}(X, Y, \ldots, Z)$ is a property whose truth or falsity depends on parameters X, Y, \ldots, Z (and possibly others).

Defined Properties as Shorthands

- Recall that we adopted a restricted language, consisting of membership, equality, logical connectives and quantifiers.
- As more complicated theorems proved, it is practical to give names to various particular properties, i.e., to define new properties.
- A new symbol is then introduced to denote the property.
- We can view it as a shorthand for the explicit formulation.
- Example: The property of being a subset is defined by
$X \subseteq Y$ if and only if, every element of X is an element of Y. " X is a subset of Y " $(X \subseteq Y)$ is a property of X and Y. We can use it in more complicated formulations and, whenever desirable, replace $X \subseteq Y$ by its definition.
"If $X \subseteq Y$ and $Y \subseteq Z$, then $X \subseteq Z$ " is a shorthand for "If every element of X is an element of Y and every element of Y is an element of Z, then every element of X is an element of $Z^{\prime \prime}$.

Defined Constants as Shorthands

- In principle, we could do mathematics without definitions, but it would be tedious and exceedingly clumsy.
- For another type of definition, consider the property $\mathbf{P}(X)$: "There exists no $Y \in X^{\prime \prime}$. We will prove that:
(a) There exists a set X such that $\mathbf{P}(X)$ (there exists a set X with no elements).
(b) There exists at most one set X such that $\mathbf{P}(X)$, i.e., if $\mathbf{P}(X)$ and $\mathbf{P}\left(X^{\prime}\right)$, then $X=X^{\prime}$ (if X bas no elements and X^{\prime} has no elements, then X and X^{\prime} are identical).
(a) and (b) together express the fact that there is a unique set X with the property $\mathbf{P}(X)$. We can then give this set a name, say \emptyset (the empty set) and use it as a shorthand in more complicated expressions. The full meaning of " $\emptyset \subseteq Z$ " is then "the set X which has no elements is a subset of Z ".
- We occasionally refer to \emptyset as the constant defined by the property \mathbf{P}.

Defined Functions as Shorthands

- As a last example of a definition, consider the property $\mathbf{Q}(X, Y, Z)$ of X, Y and Z :

$$
\text { "For every } U, U \in Z \text { if and only if } U \in X \text { and } U \in Y \text { ". }
$$

We see in the next section that:
(a) For every X and Y there exists Z such that $\mathbf{Q}(X, Y, Z)$.
(b) For every X and Y, if $\mathbf{Q}(X, Y, Z)$ and $\mathbf{Q}\left(X, Y, Z^{\prime}\right)$, then $Z=Z^{\prime}$ (for every X and Y, there exists at most one Z such that $\mathbf{Q}(X, Y, Z)$).
Conditions (a) and (b) (which have to be proved whenever this type of definition is used) guarantee that for every X and Y there is a unique set Z such that $\mathbf{Q}(X, Y, Z)$. We can then introduce a name, say $X \cap Y$, for this unique set Z and call $X \cap Y$ the intersection of X and Y. So $\mathbf{Q}(X, Y, X \cap Y)$ holds.

- We refer to \cap as the operation/function defined by the property \mathbf{Q}.

Subsection 3

The Axioms

Axiom of Existence

- The first principle postulates that our "universe of discourse" is not void, i.e., that some sets exist.
- To be concrete, we postulate the existence of a specific set, namely the empty set.

The Axiom of Existence

There exists a set which has no elements.

- A set with no elements can be variously described intuitively:
- The set of all U.S. Presidents before 1789 ;
- The set of all real numbers x for which $x^{2}=-1$, etc.
- All examples of this kind describe one and the same set, namely the empty, vacuous set. So, intuitively, there is only one empty set.
- The formal proof requires a second postulate.

The Axiom of Extensionality

- Our second postulate expresses the fact that each set is determined by its elements.
- Example:
- X is the set consisting exactly of the numbers 2,3 , and 5 .
- Y is the set of all prime numbers greater than 1 and less than 7 .
- Z is the set of all solutions of the equation $x^{3}-10 x^{2}+31 x-30=0$. Here $X=Y, X=Z$, and $Y=Z$, and we have three different descriptions of one and the same set.

The Axiom of Extensionality

If every element of X is an element of Y and every element of Y is an element of X, then $X=Y$.

- If two sets have the same elements, then they are identical.

Uniqueness of the Empty Set

Lemma (Uniqueness of the Empty Set)

There exists only one set with no elements.

- Assume that A and B are sets with no elements.
- Every element of A is an element of B (since A has no elements, the statement " $a \in A$ implies $a \in B$ " is an implication with a false antecedent, and thus automatically true).
- Similarly, every element of B is an element of A (since B has no elements).
Therefore, $A=B$, by the Axiom of Extensionality.

Definition (Empty Set)

The (unique) set with no elements is called the empty set and is denoted \emptyset.

- The definition of the constant \emptyset is justified by the Axiom of Existence and the preceding lemma.

The Axiom Schema of Comprehension

- Since sets are collections of objects sharing some common property, we expect to have axioms expressing this fact.
- As demonstrated by the preceding paradoxes, not every property describes a set; properties " $X \notin X$ " or " $X=X$ " are typical examples.
- To be able to collect all objects having such a property into a set, we have to be able to perceive all sets.
- The difficulty is avoided if we postulate the existence of a set of all objects with a given property only if there already exists some set to which they all belong.

The Axiom Schema of Comprehension

Let $\mathbf{P}(x)$ be a property of x. For any set A, there is a set B such that $x \in B$ if and only if $x \in A$ and $\mathbf{P}(x)$.

- This is a schema of axioms, i.e., for each property \mathbf{P}, we have one axiom.

Instances of The Axiom Schema of Comprehension

- Example: If $\mathbf{P}(x)$ is " $x=x$ ", the axiom says: For any set A, there is a set B such that $x \in B$ if and only if $x \in A$ and $x=x$. (In this case, $B=A$.)
- Example: If $\mathbf{P}(x)$ is " $x \notin x$ ", the axiom postulates: For any set A, there is a set B such that $x \in B$ if and only if $x \in A$ and $x \notin x$.
- Although there are infinitely many axioms, this causes no problems, since it is easy to recognize whether a particular statement is or is not an axiom and since every proof uses only finitely many axioms.
- The property $\mathbf{P}(x)$ can depend on other parameters p, \ldots, q. The corresponding axiom then postulates that for any sets p, \ldots, q and any A, there is a set B (depending on p, \ldots, q and, of course, on A) consisting exactly of all those $x \in A$ for which $\mathbf{P}(x, p, \ldots, q)$.

Using Comprehension via Extensionality

Proposition (Existence of Intersection)

If P and Q are sets, then there is a set R such that $x \in R$ if and only if $x \in P$ and $x \in Q$.

- Consider the property $\mathbf{P}(x, Q)$ of x and Q : " $x \in Q$ ". Then, by the Comprehension Schema, for every Q and for every P there is a set R such that $x \in R$ if and only if $x \in P$ and $\mathbf{P}(x, Q)$, i.e., if and only if $x \in P$ and $x \in Q$. (Here P plays the role of A, Q is a parameter.)

Lemma (Uniqueness in Comprehension)

For all A, there is unique B such that $x \in B$ if and only if $x \in A$ and $\mathbf{P}(x)$.

- If B^{\prime} is such that $x \in B^{\prime}$ if and only if $x \in A$ and $P(x)$, then $x \in B$ if and only if $x \in B^{\prime}$, so $B=B^{\prime}$, by Extensionality.

Definition (Notation for Comprehension)

$\{x \in A: \mathbf{P}(x)\}$ the set of all $x \in A$ with the property $\mathbf{P}(x)$.

The Axiom of Pair

- The only set we proved to exist is the empty set; Moreover, applications of the Comprehension Schema to the empty set produce again the empty set: $\{x \in \emptyset: \mathbf{P}(x)\}=\emptyset$, regardless of the property \mathbf{P}.
- The next three principles postulate that some of the constructions frequently used in mathematics yield sets.

The Axiom of Pair

For any A and B, there is a set C such that $x \in C$ if and only if $x=A$ or $x=B$.

- So $A \in C$ and $B \in C$, and there are no other elements of C.
- The set C is unique.

Definition of Unordered Pair

We define the unordered pair of A and B as the set having exactly A and B as its elements and introduce the notation $\{A, B\}$ for the unordered pair of A and B. In particular, if $A=B$, we write $\{A\}$ instead of $\{A, A\}$.

Forming Unordered Pairs

- Example:
(a) Set $A=\emptyset$ and $B=\emptyset$; then $\{\emptyset\}=\{\emptyset, \emptyset\}$ is a set for which $\emptyset \in\{\emptyset\}$, and if $x \in\{\emptyset\}$, then $x=\emptyset$. So $\{\emptyset\}$ has a unique element \emptyset.
Note that $\{\emptyset\} \neq \emptyset$, since $\emptyset \in\{\emptyset\}$ but $\emptyset \notin \emptyset$.
(b) Let $A=\emptyset$ and $B=\{\emptyset\}$; then $\emptyset \in\{\emptyset,\{\emptyset\}\}$ and $\{\emptyset\} \in\{\emptyset,\{\emptyset\}\}$ and \emptyset and $\{\emptyset\}$ are the only elements of $\{\emptyset,\{\emptyset\}\}$. Note, also, that $\emptyset \neq\{\emptyset,\{\emptyset\}\}$ and $\{\emptyset\} \neq\{\emptyset,\{\emptyset\}\}$.

The Axiom of Union

The Axiom of Union

For any set S, there exists a set U, such that $x \in U$ if and only if $x \in A$ for some $A \in S$.

- The set U is unique; it is called the union of S and denoted by $\bigcup S$.
- We say that S is a system of sets or a collection of sets when we want to stress that elements of S are sets (since all objects we consider are sets, this is always true and, thus, the expressions "set" and "system of sets" have the same meaning).
- The union of a system of sets S is then a set of precisely those x which belong to some set from the system S.
- Example:
(a) Let $S=\{\emptyset,\{\emptyset\} ; x \in \bigcup S$ if and only if $x \in A$ for some $A \in S$, i.e., if and only if $x \in \emptyset$ or $x \in\{\emptyset\}$. Therefore, $x \in \bigcup S$ if and only if $x=\emptyset$: $\cup S=\{\emptyset\}$.
(b) $\cup \emptyset=\emptyset$.

Union of Two or More Sets

- Example: Let M and N be sets; $x \in \bigcup\{M, N\}$ if and only if $x \in M$ or $x \in N$. The set $\bigcup\{M, N\}$ is called the union of M and N and is denoted $M \cup N$.
- We introduced the familiar set-theoretic operation of union:
- The Axiom of Pair and the Axiom of Union are necessary to define union of two sets;
- The Axiom of Extensionality is needed to guarantee that it is unique.
- The union of two sets has the usual meaning:

$$
x \in M \cup N \text { if and only if } x \in M \text { or } x \in N
$$

- Example: $\{\{\emptyset\}\} \cup\{\emptyset,\{\emptyset\}\}=\{\emptyset,\{\emptyset\}\}$.
- The Axiom of Union is more powerful: it enables us to form unions of not just two, but of any, possibly infinite, collection of sets.
- If A, B and C are sets, we can prove the existence and uniqueness of the set P whose elements are exactly A, B and $C . P$ is denoted $\{A, B, C\}$ and is called an unordered triple of A, B and C.

The Axiom of Power Set

Definition (Subset)

A is a subset of B if and only if every element of A belongs to B. In other words, A is a subset of B if, for every $x, x \in A$ implies $x \in B$.

- We write $A \subseteq B$ to denote that A is a subset of B.
- Example:
(a) $\{\emptyset\} \subseteq\{\emptyset,\{\emptyset\}\}$ and $\{\{\emptyset\}\} \subseteq\{\emptyset,\{\emptyset\}\}$.
(b) $\emptyset \subseteq A$ and $A \subseteq A$, for every set A.
(c) $\{x \in A: \mathbf{P}(x)\} \subseteq A$.
(d) If $A \in S$, then $A \subseteq \bigcup S$.
- The next axiom postulates that all subsets of a given set can be collected into one set.

The Axiom of Power Set

For any set S, there exists a set P such that $X \in P$ if and only if $X \subseteq S$.

- Since the set P is again uniquely determined, we call the set of all subsets of S the power set of S and denote it by $\mathcal{P}(S)$.

Elements Satisfying a Property

- Example:
(a) $\mathcal{P}(\emptyset)=\{\emptyset\}$.
(b) $\mathcal{P}(\{a\})=\{\emptyset,\{a\}\}$.
(c) The elements of $\mathcal{P}(\{a, b\})$ are $\emptyset,\{a\},\{b\}$, and $\{a, b\}$.
- Let $\mathbf{P}(x)$ be a property of x (and, possibly, of other parameters). If there is a set A such that, for all $x, \mathbf{P}(x)$ implies $x \in A$, then $\{x \in A: \mathbf{P}(x)\}$ exists, and, moreover, does not depend on A.
I.e., if A^{\prime} is another set such that for all $x, \mathbf{P}(x)$ implies $x \in A^{\prime}$, then $\left\{x \in A^{\prime}: \mathbf{P}(x)\right\}=\{x \in A: \mathbf{P}(x)\}$.
- We can now define $\{x: \mathbf{P}(x)\}$ to be the set $\{x \in A: \mathbf{P}(x)\}$, where A is any set for which $\mathbf{P}(x)$ implies $x \in A$ (since it does not matter which such set A we use):
$\{x: \mathbf{P}(x)\}$ is the set of all x with the property $\mathbf{P}(x)$.
- It must be stressed that this notation can be used only after it has been proved that some A contains all x with the property \mathbf{P}.

Set of Elements Satisfying a Property

- Example:
(a) $\{x: x \in P$ and $x \in Q\}$ exists.
$\mathbf{P}(x, P, Q)$ is the property " $x \in P$ and $x \in Q$ "; let $A=P$. Then
$\mathbf{P}(x, P, Q)$ implies $x \in A$. Therefore, $\{x: x \in P$ and $x \in Q\}=\{x \in$ $P: x \in P$ and $x \in Q\}=\{x \in P: x \in Q\}$.
(b) $\{x: x=a$ or $x=b\}$ exists; for a proof put $A=\{a, b\}$; also show that $\{x: x=a$ or $x=b\}=\{a, b\}$.
(c) $\{x: x \notin x\}$ does not exist (because of Russell's Paradox): thus in this instance the notation $\{x: \mathbf{P}(x)\}$ is inadmissible.
- Although our list of axioms is not complete, we postpone the introduction of the remaining postulates until they are needed.
- We did not guarantee existence of infinite sets.
- The Axiom Schema of Replacement is introduced later.
- Towards the end we also introduce the Axiom of Choice.
- This axiomatic system was essentially formulated by Ernst Zermelo in 1908 and is often referred to as the Zermelo-Fraenkel axiomatic system for set theory.

Subsection 4

Elementary Operations on Sets

Subset (\subseteq) Relation Between Sets

- We may now introduce simple set-theoretic operations (union, intersection, difference, etc.) and prove some of their basic properties.
- The property of "being a subset", denoted \subseteq, is called inclusion.

Lemma

For all sets A, B, C :
(a) $A \subseteq A$.
(b) If $A \subseteq B$ and $B \subseteq A$, then $A=B$.
(c) If $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.

- To verify (c) we have to prove: If $x \in A$, then $x \in C$. But if $x \in A$, then $x \in B$, since $A \subseteq B$. Now, $x \in B$ implies $x \in C$, since $B \subseteq C$. So $x \in A$ implies $x \in C$.
- If $A \subseteq B$ and $A \neq B$, we say that A is a proper subset of B (A is properly contained in B), and write $A \subset B$.
- $B \supseteq A$ means $A \subseteq B$ and $B \supset A$ means $A \subset B$.

Operations on Sets

Definition (Operations on Sets)

- The intersection of A and $B, A \cap B$, is the set of all x which belong to both A and B.
- The union of A and $B, A \cup B$, is the set of all x which belong to A or B (or both).
- The difference of A and $B, A-B$, is the set of all $x \in A$ which do not belong to B.
- The symmetric difference of A and $B, A \triangle B$, is defined by $A \triangle B=(A-B) \cup(B-A)$.
- Existence and uniqueness may be proved using the preceding axioms.
- As an example, we sketch these for $A-B$:
- Existence: Since $x \in A-B$ implies $x \in A$, by Comprehension, there exists $\{x \in A: x \in A$ and $x \notin B\}=\{x: x \in A$ and $x \notin B\}$.
- Uniqueness: If two sets are defined by the same property, they contain the same elements and, by Extensionality, they are equal.

Properties of Set-Theoretic Operations

Proposition

- (Commutativity) $A \cap B=B \cap A, A \cup B=B \cup A$;
- (Associativity) $(A \cap B) \cap C=A \cap(B \cap C)$, $(A \cup B) \cup C=A \cup(B \cup C)$;
So we may write $A \cap B \cap C$ and $A \cup B \cup C$ unambiguously.
- (Distributivity) $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$, $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$;
- (DeMorgan Laws) $C-(A \cap B)=(C-A) \cup(C-B)$, $C-(A \cup B)=(C-A) \cap(C-B)$;
- And for difference and symmetric difference:
- $A \cap(B-C)=(A \cap B)-C$;
- $A-B=\emptyset$ if and only if $A \subseteq B$;
- $A \triangle A=\emptyset$;
- $A \triangle B=B \triangle A$;
- $(A \triangle B) \triangle C=A \triangle(B \triangle C)$.

Venn Diagrams and a Sample Proof

- Venn diagrams help in discovering set relationships.

Recall the distributive law

$$
A \cap(B \cup C)=(A \cap B) \cup(A \cap C)
$$

- To prove this, we have, to prove that the sets $A \cap(B \cup C)$ and $(A \cap B) \cup(A \cap C)$ have the same elements. This requires us to show:
(a) Every element of $A \cap(B \cup C)$ belongs to $(A \cap B) \cup(A \cap C)$. Let $a \in A \cap(B \cup C)$. Then $a \in A$ and $a \in B \cup C$. Therefore, either $a \in B$ or $a \in C$. So $a \in A$ and $a \in B$ or $a \in A$ and $a \in C$. This means that $a \in A \cap B$ or $a \in A \cap C$. Therefore, $a \in(A \cap B) \cup(A \cap C)$.
(b) Every element of $(A \cap B) \cup(A \cap C)$ belongs to $A \cap(B \cup C)$. Let $a \in(A \cap B) \cup(A \cap C)$. Then $a \in A \cap B$ or $a \in A \cap C$. In the first case, $a \in A$ and $a \in B$, so that $a \in A$ and $a \in B \cup C$ and, hence, $a \in A \cap(B \cup C)$. In the second $a \in A$ and $a \in C$, so again $a \in A$ and $a \in B \cup C$, so that $a \in A \cap(B \cup C)$.

Intersection of a System of Sets and Disjoint Sets

- The union of a system of sets S was defined in the preceding section.
- The intersection $\bigcap S$ of a nonempty system of sets S is defined by

$$
x \in \bigcap S \text { if and only if } x \in A, \text { for all } A \in S
$$

- Then intersection of two sets is a special case: $A \cap B=\bigcap\{A, B\}$.
- Notice that we do not define $\bigcap \emptyset$; the reason is that every x belongs to all $A \in \emptyset$ (since there is no such A), so $\bigcap \emptyset$ would have to be a set of all sets.
- We postpone further study of unions and intersections until later.
- We say that sets A and B are disjoint if $A \cap B=\emptyset$.
- More generally, S is a system of mutually disjoint sets if $A \cap B=\emptyset$, for all $A, B \in S$ such that $A \neq B$.

