Introduction to Set Theory

George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science
Lake Superior State University

LSSU Math 400

(1) Relations, Functions and Orderings

- Ordered Pairs
- Relations
- Functions
- Equivalences and Partitions
- Orderings

Subsection 1

Ordered Pairs

Unordered versus Ordered Pairs

- We show how various mathematical concepts, such as relations, functions, and orderings can be represented by sets.
- We begin by introducing the notion of an ordered pair.
- If a and b are sets, then the unordered pair $\{a, b\}$ is a set whose elements are exactly a and b. The "order" in which a and b are put together plays no role, i.e., $\{a, b\}=\{b, a\}$.
- Sometimes, we need to pair a and b so that it is possible to "decipher" which set comes "first" and which comes "second."
- We denote this ordered pair of a and b by $(a, b) ; a$ is the first coordinate of the pair $(a, b), b$ is the second coordinate.
- The ordered pair has to be a set and it should be defined in such a way that two ordered pairs are equal if and only if their first coordinates are equal and their second coordinates are equal.
- There are many ways to define (a, b) so that these conditions are satisfied. We choose one (among many possible) definition.

Ordered Pairs and Equality

Definition (Ordered Pair)

$(a, b)=\{\{a\},\{a, b\}\}$.

- If $a \neq b,(a, b)$ has two elements, $\{a\}$ and $\{a, b\}$.
- We find the first coordinate by looking at the element of $\{a\}$.
- The second coordinate is then the other element of $\{a, b\}$.
- If $a=b$, then $(a, a)=\{\{a\},\{a, a\}\}=\{\{a\}\}$ has only one element.

Theorem

$(a, b)=\left(a^{\prime}, b^{\prime}\right)$ if and only if $a=a^{\prime}$ and $b=b^{\prime}$.

- If $a=a^{\prime}$ and $b=b^{\prime}$, then $(a, b)=\{\{a\},\{a, b\}\}=\left\{\left\{a^{\prime}\right\},\left\{a^{\prime}, b^{\prime}\right\}\right\}=$ $\left(a^{\prime}, b^{\prime}\right)$.
- Assume, conversely, that $\{\{a\},\{a, b\}\}=\left\{\left\{a^{\prime}\right\},\left\{a^{\prime}, b^{\prime}\right\}\right\}$.
- If $a \neq b,\{a\}=\left\{a^{\prime}\right\}$ and $\{a, b\}=\left\{a^{\prime}, b^{\prime}\right\}$. So, first, $a=a^{\prime}$ and then $\{a, b\}=\left\{a, b^{\prime}\right\}$ implies $b=b^{\prime}$.
- If $a=b,\{\{a\},\{a, a\}\}=\{\{a\}\}$. So $\{a\}=\left\{a^{\prime}\right\},\{a\}=\left\{a^{\prime}, b^{\prime}\right\}$, and we get $a=a^{\prime}=b^{\prime}$, so $a=a^{\prime}$ and $b=b^{\prime}$ holds in this case, too.

Ordered Triples, Quadruples, etc.

- With ordered pairs at our disposal, we can define
- ordered triples

$$
(a, b, c)=((a, b), c),
$$

- ordered quadruples

$$
(a, b, c, d)=((a, b, c), d)
$$

- and so on.
- Also, we define ordered "one-tuples"

$$
(a)=a .
$$

- The general definition of ordered n-tuples has to be postponed until natural numbers have been defined.

Subsection 2

Relations

Idea Behind Binary Relations

- Relations between objects of two sorts are called binary relations.
- Example:
- A line ℓ is in relation R_{1} with a point P if ℓ passes through P. Then R_{1} is a binary relation between objects called lines and objects called points.
- A positive integer m is in relation R_{2} with a positive integer n if m divides n (without remainder).
- Consider the relation R_{1}^{\prime} between lines and points such that a line ℓ is in relation R_{1}^{\prime} with a point P if P lies on ℓ. Obviously, a line ℓ is in relation R_{1}^{\prime} to a point P exactly when ℓ is in relation R_{1} to P. Although different properties were used to describe R_{1} and R_{1}^{\prime}, we would ordinarily consider R_{1} and R_{1}^{\prime} to be one and the same relation, i.e., $R_{1}=R_{1}^{\prime}$.
- Similarly, let a positive integer m be in relation R_{2}^{\prime} with a positive integer n if n is a multiple of m. Again, the same ordered pairs (m, n) are related in R_{2} as in R_{2}^{\prime}, and we consider R_{2} and R_{2}^{\prime} to be the same relation.

Binary Relations

Definition (Binary Relation)

A set R is a binary relation if all elements of R are ordered pairs, i.e., if for any $z \in R$, there exist x and y such that $z=(x, y)$.

- Example: The relation R_{2} is simply the set
$\{z$: there exist positive integers m and n, such that $z=(m, n)$ and m divides $n\}$.

Elements of R_{2} are ordered pairs

$$
\begin{aligned}
& (1,1),(1,2),(1,3), \ldots \\
& (2,2),(2,4),(2,6), \ldots \\
& (3,3),(3,6),(3,9), \ldots
\end{aligned}
$$

- It is customary to write $x R y$ instead of $(x, y) \in R$. We say that x is in relation R with y if $x R y$ holds.

Domain and Range of a Relation

Definition

Let R be a binary relation.
(a) The set of all x which are in relation R with some y is called the domain of R and denoted by $\operatorname{dom} R$.

$$
\operatorname{dom} R=\{x: \text { there exists } y \text { such that } x R y\}
$$ $\operatorname{dom} R$ is the set of all first coordinates of ordered pairs in R.

(b) The set of all y such that, for some x, x is in relation R with y is called the range of R, denoted by $\operatorname{ran} R$.

$$
\operatorname{ran} R=\{y: \text { there exists } x \text { such that } x R y\} .
$$

$\operatorname{ran} R$ is the set of all second coordinates of ordered pairs in R. Both $\operatorname{dom} R$ and $\operatorname{ran} R$ exist for any relation R.
(c) The set $\operatorname{dom} R \cup \operatorname{ran} R$ is called the field of R and is denoted by field R.
(d) If field $R \subseteq X$, we say that R is a relation in X or that R is a relation between elements of X.

Illustrating the Terminology

- Example: Let R_{2} be the previously defined relation: A positive integer m is in relation R_{2} with a positive integer n if m divides n (without remainder).
$\operatorname{dom} R_{2}=\{m$: there exists n such that m divides $n\}$
$=$ the set of all positive integers
because each positive integer m divides some n, e.g., $n=m$.
$\operatorname{ran} R_{2}=\{n$: there exists m such that m divides $n\}$
$=$ the set of all positive integers
because each positive integer n is divided by some m, e.g., by $m=n$. field $R_{2}=\operatorname{dom} R_{2} \cup \operatorname{ran} R_{2}=$ the set of all positive integers; R_{2} is a relation between positive integers.

Image and Inverse Image

Definition (Image and Inverse Image)

(a) The image of A under R, denoted $R[A]$, is the set of all y from the range of R related in R to some element of A.

$$
R[A]=\{y \in \operatorname{ran} R: \text { there exists } x \in A \text { for which } x R y\} .
$$

(b) The inverse image of B under R, denoted $R^{-1}[B]$, is the set of all x from the domain of R related in R to some element of B.

$$
R^{-1}[B]=\{x \in \operatorname{dom} R: \text { there exists } y \in B \text { for which } x R y\}
$$

- Example:

$$
\begin{aligned}
R_{2}^{-1}[\{3,8,9,12\}] & =\{1,2,3,4,6,8,9,12\} \\
R_{2}[\{2\}] & =\text { the set of all even positive integers. }
\end{aligned}
$$

Inverse of a Binary Relation

Definition (Inverse Realtion)

Let R be a binary relation. The inverse of R is the set $R^{-1}=\{z: z=(x, y)$ for some x and y such that $(y, x) \in R\}$.

- Example: Again let

$$
\begin{aligned}
R_{2}= & \{z: z=(m, n), m \text { and } n \text { are positive integers, } \\
& \text { and } m \text { divides } n\} .
\end{aligned}
$$

Then

$$
\begin{aligned}
R_{2}^{-1}= & \left\{w: w=(n, m), \text { and }(m, n) \in R_{2}\right\} \\
= & \{w: w=(n, m), m \text { and } n \text { are positive integers, } \\
& \text { and } m \text { divides } n\} .
\end{aligned}
$$

In our description of R_{2}, we use variable m for the first coordinate and variable n for the second coordinate; we also state the property describing R_{2} so that the variable m is mentioned first.

Example (Cont'd)

- It is a customary (though not necessary) practice to describe R_{2}^{-1} in the same way. All we have to do is use letter m instead of n, letter n instead of m and change the wording:

$$
\begin{aligned}
R_{2}^{-1}= & \{w: w=(m, n), n, m \text { are positive integers, } \\
& \text { and } n \text { divides } m\} \\
= & \{w: w=(m, n), m, n \text { are positive integers, } \\
& \text { and } m \text { is a multiple of } n\} .
\end{aligned}
$$

Now R_{2} and R_{2}^{-1} are described in a parallel way. In this sense, the inverse of the relation "divides" is the relation "is a multiple."

- Note that the symbol $R^{-1}[B]$ for the inverse image of B under R now also denotes the image of B under R^{-1}. Fortunately, these two sets are equal!

Inverse Image Under R versus Image Under R^{-1}

Lemma

The inverse image of B under R is equal to the image of B under R^{-1}.

- Notice first that $\operatorname{dom} R=\operatorname{ran} R^{-1}$. Now, $x \in \operatorname{dom} R$ belongs to the inverse image of B under R if and only if, for some $y,(x, y) \in R$. But $(x, y) \in R$ if and only if $(y, x) \in R^{-1}$. Therefore, x belongs to the inverse image of B under R if and only if for some $y \in B$, $(y, x) \in R^{-1}$, i.e., if and only if x belongs to the image of B under R^{-1}.
- To simplify our notation we write $\{(x, y): \mathbf{P}(x, y)\}$ instead of $\{w: w=(x, y)$ for some x and y such that $\mathbf{P}(x, y)\}$.
- Example: The inverse of R could be described in this notation $\{(x, y):(y, x) \in R\}$. Recall that use of such notation is admissible only if we prove that there exists a set A such that, for all x and y, $\mathbf{P}(x, y)$ implies $(x, y) \in A$.

Composition of Binary Relations

Definition (Composition)

Let R and S be binary relations. The composition of R and S is the relation
$S \circ R=\{(x, z):$ there exists y for which $(x, y) \in R$ and $(y, z) \in S\}$.

- So $(x, z) \in S \circ R$ means that for some $y, x R$ y and $y S z$.
- To find objects related to x in $S \circ R$,
- we first find objects y related to x in R,
- and then objects related to those y in S.
- Notice that R is performed first and S second, but the notation $S \circ R$ is customary (at least in the case of functions).

Special Relations

- Several types of relations are of special interest.

Definition (Membership and Identity Relations)

- The membership relation on A is defined by

$$
\epsilon_{A}=\{(a, b): a \in A, b \in A, \text { and } a \in b\} .
$$

- The identity relation on A is defined by

$$
\operatorname{ld}_{A}=\{(a, b): a \in A, b \in A, \text { and } a=b\} .
$$

Definition (Cartesian Product)

Let A and B be sets. The set of all ordered pairs whose first coordinate is from A and whose second coordinate is from B is called the cartesian product of A and B and denoted $A \times B$. In other words,

$$
A \times B=\{(a, b): a \in A \text { and } b \in B\}
$$

- Thus $A \times B$ is a relation in which every element of A is related to every element of B.

Existence of Cartesian Products

- To show that the set $A \times B$ exists:
- First show that, if $a \in A$ and $b \in B$, then $(a, b) \in \mathcal{P}(\mathcal{P}(A \cup B))$.
- Then conclude that

$$
A \times B=\{(a, b) \in \mathcal{P}(\mathcal{P}(A \cup B)): a \in A \text { and } b \in B\} .
$$

Since $\mathcal{P}(\mathcal{P}(A \cup B))$ was proved to exist, the existence of $A \times B$ follows from the Axiom Schema of Comprehension.

- To be completely explicit, we can write,
$A \times B=\{w \in \mathcal{P}(\mathcal{P}(A \cup B)): w=(a, b)$ for some $a \in A$ and $b \in B\}$.
- We denote $A \times A$ by A^{2}.
- The cartesian product of three sets can be introduced readily:
$A \times B \times C=(A \times B) \times C$. Notice that

$$
A \times B \times C=\{(a, b, c): a \in A, b \in B \text { and } c \in C\}
$$

(using an obvious extension of our notational convention).

- $A \times A \times A$ is usually denoted A^{3}.

Ternary Relations

Definition (Ternary Relation)

A ternary relation is a set of unordered triples. More explicitly, S is a ternary relation if for every $u \in S$, there exist x, y and z, such that $u=(x, y, z)$. If $S \subseteq A^{3}$, we say that S is a ternary relation in A. (Note that a binary relation R is in A if and only if $R \subseteq A^{2}$.)

- We could extend the concepts of this section to ternary relations and also define 4-ary or 17 -ary relations.
- When natural numbers have been introduced, we will define n-ary relations in general.
- For technical reasons, a unary relation is any set. A unary relation in A is any subset of A.
This agrees both with the idea that a unary relation in A should be a set of 1-tuples of elements of A and with the definition of $(x)=x$ adopted previously.

Subsection 3

Functions

Functions

- A function is a procedure or rule assigning to any object a from its domain a unique object b, the value of the function at a.
- A function is a special type of relation in which every object a from the domain is related to precisely one object in the range, the value of the function at a.

Definition (Function)

A binary relation F is called a function (or mapping, correspondence) if

$$
\text { a } F b_{1} \text { and a } F b_{2} \text { imply } b_{1}=b_{2}
$$

for all a, b_{1}, b_{2}. I.e., a binary relation F is a function if and only if for every a from dom F there is exactly one b such that a $F b$. This unique b is called the value of F at a and is denoted $F(a)$ or F_{a}. $F(a)$ is not defined if $a \notin \operatorname{dom} F$.) If F is a function with $\operatorname{dom} F=A$ and $\operatorname{ran} F \subseteq B$, it is customary to use the notations $F: A \rightarrow B,\langle F(a): a \in A\rangle,\left\langle F_{a}: a \in A\right\rangle$, or $\left\langle F_{a}\right\rangle_{a \in A}$, for the function F. The range of the function F can then be denoted $\{F(a): a \in A\}$ or $\left\{F_{a}\right\}_{a \in A}$.

Some Definitions Related to Functions

Lemma

Let F and G be functions. $F=G$ if and only if $\operatorname{dom} F=\operatorname{dom} G$ and $F(x)=G(x)$, for all $x \in \operatorname{dom} F$.

- Since functions are binary relations, the concepts of domain, range, image, inverse image, inverse, and composition are applicable.
- Here are some additional definitions:

Definition

Let F be a function and A and B sets.
(a) F is a function on A if $\operatorname{dom} F=A$.
(b) F is a function into B if $\operatorname{ran} F \subseteq B$.
(c) F is a function onto B if $\operatorname{ran} F=B$.
(d) The restriction of the function F to A is the function
$F \upharpoonright A=\{(a, b) \in F: a \in A\}$. If G is a restriction of F to some A, we say that F is an extension of G.

Example

- Let $F=\left\{\left(x, \frac{1}{x^{2}}\right): x \neq 0, x\right.$ is a real number $\} . F$ is a function:

$$
\text { If a } F b_{1} \text { and a } F b_{2}, b_{1}=\frac{1}{a^{2}} \text { and } b_{2}=\frac{1}{a^{2}} \text {, so } b_{1}=b_{2}
$$

Sometimes, we write $F=\left\langle\frac{1}{x^{2}}: x\right.$ is a real number, $\left.x \neq 0\right\rangle$. The value of F at $x, F(x)$, equals $\frac{1}{x^{2}} . F$ is function on A, where $A=\{x: x$ is a real number and $x \neq 0\} . F$ is a function into the set of all real numbers, but not onto the set of all real numbers. If $B=\{x: x$ is a real number and $x>0\}$, then F is onto B. If $C=\{x: 0<x \leq 1\}$, then $f[C]=\{x: x \geq 1\}$ and $F^{-1}[C]=\{x: x \leq-1$ or $x \geq 1\}$.
The composition $f \circ f$ can be determined:
$f \circ f=\{(x, z):$ there is y for which $(x, y) \in f$ and $(y, z) \in f\}$
$=\{(x, z)$: there is y for which $x \neq 0$,

$$
\left.y=\frac{1}{x^{2}}, \text { and } y \neq 0, z=\frac{1}{y^{2}}\right\}
$$

$$
=\left\{(x, z): x \neq 0 \text { and } z=x^{4}\right\}
$$

Notice that $f \circ f$ is a function.

Composition of Functions

Theorem

Let f and g be functions. Then $g \circ f$ is a function. $g \circ f$ is defined at x if and only if f is defined at x and g is defined at $f(x)$: $\operatorname{dom}(g \circ f)=$ $\operatorname{dom} f \cap f^{-1}$ [domg]. Also, $(g \circ f)(x)=g(f(x))$, for all $x \in \operatorname{dom}(g \circ f)$.

- We prove, first, that $g \circ f$ is a function. If $x(g \circ f) z_{1}$ and $x(g \circ f) z_{2}$, there exist y_{1} and y_{2} such that $\times f y_{1}, y_{1} g z_{1}$, and $\times f y_{2}, y_{2} g z_{2}$. Since f is a function, $y_{1}=y_{2}$. So we get $y_{1} g z_{1}, y_{1} g z_{2}$, and, since g is also a function, $z_{1}=z_{2}$.
- For the domain of $g \circ f: x \in \operatorname{dom}(g \circ f)$ if and only if there is some z such that $x(g \circ f) z$, i.e., if and only if there is some z and some y such that $x f y$ and $y g z$. But this happens if and only if $x \in \operatorname{dom} f$ and $y=f(x) \in$ domg. The last statement can be equivalently expressed as $x \in \operatorname{dom} f$ and $x \in f^{-1}$ [domg].

Composition and Invertibility

- This theorem is used in calculus to find domains of compositions of functions.
- Example: Let $f=\left\langle x^{2}-1: x\right.$ real $\rangle, g=\langle\sqrt{x}: x \geq 0\rangle$. Find the composition $g \circ f$.
We determine the domain of $g \circ f$ first. dom f is the set of all real numbers and domg $=\{x: x \geq 0\}$. We find $f^{-1}[\operatorname{dom} g]=\{x: f(x) \in$ domg $\}=\left\{x: x^{2}-1 \geq 0\right\}=\{x: x \geq 1$ or $x \leq-1\}$. Therefore, $\operatorname{dom}(g \circ f)=(\operatorname{dom} f) \cap f^{-1}[\operatorname{dom} g]=\{x: x \geq 1$ or $x \leq-1\}$ and $g \circ f=\left\{(x, z): x \geq 1\right.$ or $x \leq-1$ and, for some $y, x^{2}-1=$ y and $\sqrt{y}=z\}=\left\langle\sqrt{x^{2}-1}: x \geq 1\right.$ or $\left.x \leq-1\right\rangle$.
- If f is a function, its inverse f^{-1} is a relation, but it may not be a function.
- We say that a function f is invertible if f^{-1} is a function.

Invertibility and Injectivity

Definition (Injective Function)

A function f is called one-to-one or injective if $a_{1} \in \operatorname{dom} f, a_{2} \in \operatorname{dom} f$, and $a_{1} \neq a_{2}$ implies $f\left(a_{1}\right) \neq f\left(a_{2}\right)$. I.e., if $a_{1} \in \operatorname{dom} f, a_{2} \in \operatorname{dom} f$, and $f\left(a_{1}\right)=f\left(a_{2}\right)$, then $a_{1}=a_{2}$. Thus, a one-to-one function assigns different values to different elements from its domain.

Theorem

A function is invertible if and only if it is one-to-one. If f is invertible, then f^{-1} is also invertible and $\left(f^{-1}\right)^{-1}=f$.

- If f is invertible, then f^{-1} is a function. It follows that $f^{-1}(f(a))=a$ for all $a \in \operatorname{dom} f$. If $a_{1}, a_{2} \in \operatorname{dom} f$ and $f\left(a_{1}\right)=f\left(a_{2}\right)$, we get $f^{-1}\left(f\left(a_{1}\right)\right)=f^{-1}\left(f\left(a_{2}\right)\right)$ and $a_{1}=a_{2}$. So f is one-to-one.
- Let f be one-to-one. If a $f^{-1} b_{1}$ and a $f^{-1} b_{2}$, we have $b_{1} f a$ and $b_{2} f a$. Therefore, $b_{1}=b_{2}$, and f^{-1} is a function.
- Since $\left(f^{-1}\right)^{-1}=f, f^{-1}$ is also invertible and f^{-1} is also one-to-one.

Examples

- Example: Let $f=\left\langle\frac{1}{x^{2}}: x \neq 0\right\rangle$. Find f^{-1}. As $f=\left\{\left(x, \frac{1}{x^{2}}\right): x \neq 0\right\}$, we get $f^{-1}=\left\{\left(\frac{1}{x^{2}}, x\right): x \neq 0\right\} . f^{-1}$ is not a function since $(1,-1) \in f^{-1},(1,1) \in f^{-1}$. Therefore, f is not one-to-one: $(1,1) \in f$ and $(-1,1) \in f$.
- Example: Let $g=\langle 2 x-1: x$ real \rangle. Find g^{-1}. g is one-to-one: If $2 x_{1}-1=2 x_{2}-1$, then $2 x_{1}=2 x_{2}$ and $x_{1}=x_{2}$. Since $g=\{(x, y): y=2 x-1, x$ real $\}$, $g^{-1}=\{(y, x): y=2 x-1, x$ real $\}$. As customary when describing functions, we express the second coordinate (value) in terms of the first:

$$
g^{-1}=\left\{(y, x): x=\frac{y+1}{2}, y \text { real }\right\} .
$$

Finally, it is usual to denote the first ("independent") variable x and the second ("dependent") variable y. So we change notation: $g^{-1}=\left\{(x, y): y=\frac{x+1}{2}, x\right.$ real $\}=\left\langle\frac{x+1}{2}: x\right.$ real \rangle.

Compatible Functions

Definition (Compatibility)

(a) Functions f and g are called compatible if $f(x)=g(x)$, for all $x \in \operatorname{dom} f \cap \operatorname{domg}$.
(b) A set of functions F is called a compatible system of functions if any two functions f and g from F are compatible.

Lemma

(a) Functions f and g are compatible if and only if $f \cup g$ is a function.
(b) Functions f and g are compatible if and only if

$$
f \upharpoonright(\operatorname{dom} f \cap \operatorname{domg})=g \upharpoonright(\operatorname{dom} f \cap \operatorname{domg})
$$

- Suppose $f \cup g$ is a function. Let $x \in \operatorname{dom} f \cap \operatorname{domg}$. Then $x(f \cup g) f(x)$ and $x(f \cup g) g(x)$, whence $f(x)=g(x)$.
- Suppose f, g are compatible. Let $x(f \cup g) y_{1}$ and $x(f \cup g) y_{2}$.
- If $x \in \operatorname{dom} \cap \operatorname{domg}$, then $y_{1}=f(x)=g(x)=y_{2}$.
- If $x \in \operatorname{dom} f$ - domg, then $x f y_{1}$ and $x f y_{2}$, whence $y_{1}=y_{2}$.
- If $x \in \operatorname{domg}$ - $\operatorname{dom} f$ a similar argument applies.

Pasting Together Compatible Functions

Theorem

If F is a compatible system of functions, then $\bigcup F$ is a function with $\operatorname{dom}(\bigcup F)=\bigcup\{\operatorname{dom} f: f \in F\}$. The function $\bigcup F$ extends all $f \in F$.

- Functions from a compatible system can be pieced together to form a single function which extends them all.
- Clearly, $\bigcup F$ is a relation. We show it is a function. If $\left(a, b_{1}\right) \in \bigcup F$ and $\left(a, b_{2}\right) \in \bigcup F$, there are functions $f_{1}, f_{2} \in F$ such that $\left(a, b_{1}\right) \in f_{1}$ and $\left(a, b_{2}\right) \in f_{2}$. But f_{1} and f_{2} are compatible, and $a \in \operatorname{dom} f_{1} \cap \operatorname{dom} f_{2}$. So $b_{1}=f\left(a_{1}\right)=f\left(a_{2}\right)=b_{2}$.
- It is clear that $x \in \operatorname{dom}(\bigcup F)$ if and only if $x \in \operatorname{dom} f$, for some $f \in F$.

Product of Indexed Family of Sets

Definition

Let A and B be sets. The set of all functions on A into B is denoted B^{A}. (Of course, it must first be shown that B^{A} exists.)

- Let $S=\left\langle S_{i}: i \in I\right\rangle$ be a function with domain I. The values S_{i} are arbitrary sets. We call the function $\left\langle S_{i}: i \in I\right\rangle$ an indexed system of sets, stressing that the values of S are sets.
- Now let $S=\left\langle S_{i}: i \in I\right\rangle$ be an indexed system of sets. We define the product of the indexed system S as the set

$$
\prod S=\left\{f: f \text { is a function on } I \text { and } f_{i} \in S_{i}, \text { for all } i \in I\right\} .
$$

- Other notations are $\Pi\langle S(i): i \in I\rangle, \prod_{i \in I} S(i), \prod_{i \in I} S_{i}$.
- If S is such that $S_{i}=B$, for all $i \in I$, then $\prod_{i \in I} S_{i}=B^{\prime}$.
- The "exponentiation" of sets is related to "multiplication" of sets in the same way as similar operations on numbers are related.

Notation

- Two remarks concerning notation:
- $\bigcup A$ and $\bigcap A$ were defined for any system of sets $A(A \neq \emptyset$ in case of intersection). Often the system A is given as a range of some function, i.e., of some indexed system. We say that A is indexed by S if

$$
A=\left\{S_{i}: i \in I\right\}=\operatorname{ran} S,
$$

where S is a function on I. It is then customary to write

$$
\bigcup A=\bigcup\left\{S_{i}: i \in I\right\}=\bigcup_{i \in I} S_{i},
$$

and similarly for intersections.

- Let f be a function on a subset of the product $A \times B$. It is customary to denote the value of f at $(x, y) \in A \times B$ by $f(x, y)$, rather than $f((x, y))$. In this context, we regard f as a function of two variables x and y.

Subsection 4

Equivalences and Partitions

Equivalence Relation on a Set

Definition (Equivalence Relation)

Let R be a binary relation in A.
(a) R is called reflexive in A if, for all $a \in A$, a R a.
(b) R is called symmetric in A if, for all $a, b \in A$, a R b implies $b R$ a.
(c) R is called transitive in A if, for all $a, b, c \in A$,

$$
a R b \text { and } b R c \text { imply } a R c .
$$

(d) R is called an equivalence on A if it is reflexive, symmetric, and transitive in A.

Examples

(a) Let P be the set of all people living on Earth. We say that a person p is equivalent to a person $q(p \equiv q)$ if p and q live in same country.

- Trivially, \equiv is reflexive, symmetric, and transitive in P. Notice that the set P can be broken into classes of mutually equivalent elements. All people living in the United States form one class, all people living in France are another class, etc.
- All members of the same class are mutually equivalent;
- Members of different classes are never equivalent. The equivalence classes correspond exactly to different countries.
(b) Define an equivalence E on the set \mathbb{Z} of all integers as follows: $x E y$ if and only if $x-y$ is divisible by 2 .
l.e., two numbers are equivalent if their difference is even.
- E is reflexive, symmetric and transitive.

Again, the set \mathbb{Z} can be divided into equivalence classes under (or, modulo) the equivalence E. In this case, there are two equivalence classes: the set of even integers and the set of odd integers.

- Any two even integers are equivalent; so are any two odd integers.
- But an even integer cannot be equivalent to an odd one.

Equivalence Classes

- Any equivalence on A partitions A into equivalence classes; conversely, given a suitable partition of A, there is an equivalence on A determined by it.

Definition (Equivalence Class)

Let E be an equivalence on A and let $a \in A$. The equivalence class of a modulo E is the set

$$
[a]_{E}=\{x \in A: x E a\}
$$

Lemma

Let $a, b \in A$.
(a) a is equivalent to b modulo E if and only if $[a]_{E}=[b]_{E}$.
(b) a is not equivalent to b modulo E if and only if $[a]_{E} \cap[b]_{E}=\emptyset$.

Proof of the Lemma

(a) a E b implies $[a]_{E}=[b]_{E}$: Assume that a E b. Let $x \in[a]_{E}$, i.e., $x E$ a. By transitivity, $x E$ a and a $E b$ imply $x E b$, i.e., $x \in[b]_{E}$. Similarly, $x \in[b]_{E}$ implies $x \in[a]_{E}$. So $[a]_{E}=[b]_{E}$. $[a]_{E}=[b]_{E}$ implies a E : Assume that $[a]_{E}=[b]_{E}$. Since E is reflexive, a E, so $a \in[a]_{E}$. But then $a \in[b]_{E}$, that is, a $E b$.
(b) a $\mathbb{E} b$ implies $[a]_{E} \cap[b]_{E}=\emptyset$: Assume a $E b$ is not true; we have to prove $[a]_{E} \cap[b]_{E} \neq \emptyset$. If not, there is $x \in[a]_{E} \cap[b]_{E}$; so $x E$ and $x E b$. But then, using first symmetry and then transitivity, a $E x$ and $x E b$, so a $E b$, a contradiction.
$[a]_{E} \cap[b]_{E}=\emptyset$ implies a $\mathbb{E} b$: Assume finally that $[a]_{E} \cap[b]_{E}=\emptyset$. If a and b were equivalent modulo E, $a E$ would hold, so $a \in[b]_{E}$. But also $a \in[a]_{E}$, implying $[a]_{E} \cap[b]_{E} \neq \emptyset$, a contradiction.

Partition of a Set

Definition (Partition)

A system S of nonempty sets is called a partition of A if
(a) S is a system of mutually disjoint sets, i.e., if $C \in S, D \in S$, and $C \neq D$, then $C \cap D=\emptyset ;$
(b) The union of S is the whole set A, i.e., $\cup S=A$.

Definition (System of Equivalence Classes of an Equivalence Relation)

Let E be an equivalence on A. The system of all equivalence classes modulo E is denoted by $A / E: A / E=\left\{[a]_{E}: a \in A\right\}$.

Theorem (Equivalence Classes Form a Partition)

Let E be an equivalence on A. Then A / E is a partition of A.

- Property (a) follows from the preceding lemma: If $[a]_{E} \neq[b]_{E}$, then a and b are not E-equivalent, so $[a]_{E} \cap[b]_{E}=\emptyset$.
To prove (b), notice that $\bigcup A / E=A$ because $a \in[a]_{E}$. Notice also that no equivalence class is empty, since at least $a \in[a]_{E}$.

Equivalence of a Partition

- For each partition there is a corresponding equivalence relation.

Definition (Equivalence of a Partition)

Let S be a partition of A. The relation E_{S} in A is defined by
$E_{S}=\{(a, b) \in A \times A$: there is $C \in S$, such that $a \in C$ and $b \in C\}$.
Objects a and b are related by E_{S} if and only if they belong to the same set from the partition S.

Theorem

Let S be a partition of A. Then E_{S} is an equivalence on A.
(a) Reflexivity: Let $a \in A$. Since $A \in \bigcup S$, there is $C \in S$ for which $a \in C$, so $(a, a) \in E_{S}$.
(b) Symmetry: Assume a $E_{S} b$. Then there is $C \in S$, for which $a \in C$ and $b \in C$. Then, of course, $b \in C$ and $a \in C$, so $b E_{S} a$.
(c) Transitivity: Assume $a E_{S} b$ and $b E_{S} c$. Then there are $C \in S$ and $D \in S$, such that $a \in C$ and $b \in C$ and $b \in D$ and $c \in D$. We see that $b \in C \cap D$, so $C \cap D \neq \emptyset$, i.e., $C=D$. So $a \in C, c \in C$, and a $E_{S} c$.

Equivalence Relations and Partitions

Theorem (Equivalence Relations and Partitions)

(a) If E is an equivalence on A and $S=A / E$, then $E_{S}=E$.
(b) If S is a partition of A and E_{S} is the corresponding equivalence, then $A / E_{S}=S$.

- Equivalences and partitions describe the same "mathematical reality":
- Every equivalence E determines a partition $S=A / E$. The equivalence E_{S} determined by this partition S is identical with the original E.
- Conversely, each partition S determines an equivalence E_{S}; when we form equivalence classes modulo E_{S}, we recover the original partition S.

Definition (Set of Representatives)

A set $X \subseteq A$ is called a set of representatives for the equivalence E_{S} (or for the partition S of A) if, for every $C \in S, X \cap C=\{a\}$, for some $a \in C$.

- The Axiom of Choice is required to ensure that every partition has some set of representatives.

Subsection 5

Orderings

Partial Orderings

Definition (Antisymmetry)

A binary relation R in A is antisymmetric if, for all $a, b \in A$, $a R b$ and $b R$ a imply $a=b$.

Definition (Partial Ordering)

A binary relation R in A which is reflexive, antisymmetric and transitive is called a (partial) ordering of A. The pair (A, R) is called an ordered set.

- a $R b$ can be read as " a is less than or equal to b " or " b is greater than or equal to $a^{\prime \prime}$ (in the ordering R).
- By reflexivity, every element of A is less than or equal to itself.
- By antisymmetry, if a is less than or equal to b, and, at the same time, b is less than or equal to a, then $a=b$.
- Finally, by transitivity, if a is less than or equal to b and b is less than or equal to c, a has to be less than or equal to c.

Examples of Orderings

(a) \leq is an ordering on the set of all (natural, rational, real) numbers.
(b) Define the relation \subseteq_{A} in A as follows:

$$
x \subseteq_{A} y \text { if and only if } x \subseteq y \text { and } x, y \in A
$$

Then \subseteq_{A} is an ordering of the set A.
(c) Define the relation \supseteq_{A} in A as follows:

$$
x \supseteq A y \quad \text { if and only if } x \supseteq y \text { and } x, y \in A \text {. }
$$

Then \supseteq_{A} is also an ordering of the set A.
(d) The relation \mid defined by:

$$
n \mid m \text { if and only if } n \text { divides } m
$$

is an ordering of the set of all positive integers.
(e) The relation Id_{A} is an ordering of A.

Strict Orderings

Definition (Asymmetry)

A relation S in A is asymmetric if a $S b$ implies that $b S$ a does not hold, for any $a, b \in A$. That is, $a S b$ and $b S$ a can never both be true.

Definition (Strict Ordering)

A relation S in A is a strict ordering if it is asymmetric and transitive.

Theorem

(a) Let R be an ordering of A. Then the relation S defined in A by $a S b$ if and only if $a R b$ and $a \neq b$
is a strict ordering of A.
(b) Let S be a strict ordering of A. Then the relation R defined in A by a $R b$ if and only if $a S b$ or $a=b$
is an ordering of A.
We say that the strict ordering S corresponds to the ordering R and vice versa.

Proof of the Theorem

(a) Let us show that S is asymmetric: Assume that both a S and $b S$ a hold for some $a, b \in A$. Then also $a R b$ and $b R a$, so $a=b$ (because R is antisymmetric). This contradicts the definition of a $S b$. Next, we show that S is transitive: If $a \leq b$ and $b S c$, then $a R b$ and $a \neq b$ and $b R c$ and $b \neq c$.

- By the transitivity of R, a $R c$;
- $a \neq c$, since, if $a R b$ and $b R$, then $a=b$ a contradiction.

Therefore, $a S$ and S is transitive.
(b) Let us show that R is reflexive: Since $a=a$, for all a, a R a. Let us show that R is antisymmetric: Assume that a $R b$ and $b R$ a. Since S is asymmetric, we conclude that $a=b$.
For transitivity, assume $a R b$ and $b R c$. Then $a S b$ or $a=b$ and $b S c$ or $b=c$.

- If $a S b$ and $b S c$, then $a S c$ by the transitivity of S.
- If $a S b$ and $b=c$, then $a S c$.
- If $a=b$ and $b S c$, then $a S c$.
- If $a=b$ and $b=c$, then $a=c$.

Comparable and Incomparable Elements

Definition (Comparable and Incomparable Elements)

Let $a, b \in A$, and let \leq be an ordering of A. We say that a and b are comparable in the ordering \leq if $a \leq b$ or $b \leq a$.
We say that a and b are incomparable if they are not comparable, i.e., if neither $a \leq b$ nor $b \leq a$ holds.
Both definitions can be stated equivalently in terms of the corresponding strict ordering $<$. For example, a and b are incomparable in $<$ if $a \neq b$ and neither $a<b$ nor $b<a$ holds.

- Example:
(a) Any two real numbers are comparable in the ordering \leq.
(b) 2 and 3 are incomparable in the ordering \mid.
(c) Any two distinct $a, b \in A$ are incomparable in Id_{A}.
(d) If the set A has at least two elements, then there are incomparable elements in the ordered set $\left(\mathcal{P}(A), \subseteq_{\mathcal{P}(A)}\right)$.

Linear or Total Orderings

Definition (Linear or Total Ordering)

An ordering $\leq($ or $<)$ of A is called linear or total if any two elements of A are comparable. The pair (A, \leq) is then called a linearly ordered set.

- Example: The ordering \leq of positive integers is total, while \mid is not.

Definition (Chain)

Let $B \subseteq A$, where A is ordered by $\leq . B$ is a chain in A if any two elements of B are comparable.

- Example: The set of all powers of 2 (i.e., $\left\{2^{0}, 2^{1}, 2^{2}, 2^{3}, \ldots\right\}$) is a chain in the set of all positive integers ordered by \mid.

Least, Minimal, Greatest and Maximal Elements

Definition (Least, Minimal, Greatest, Maximal)

Let \leq be an ordering of A, and let $B \subseteq A$.
(a) $b \in B$ is the least element of B in the ordering \leq if $b \leq x$, for every $x \in B$.
(b) $b \in B$ is a minimal element of B in the ordering \leq if there exists no $x \in B$ such that $x \leq b$ and $x \neq b$.
(a') Similarly, $b \in B$ is the greatest element of B in the ordering \leq if, for every $x \in B, x \leq b$.
(b') $b \in B$ is a maximal element of B in the ordering \leq if there exists no $x \in B$ such that $b \leq x$ and $x \neq b$.

Some Examples

- Example: Let \mathbb{N} be the set of positive integers ordered by the divisibility relation \mid.
- 1 is the least element of \mathbb{N};
- \mathbb{N} has no greatest element.
- Example: Let B be the set of all positive integers greater (in magnitude) than $1, B=\{2,3,4, \ldots\}$.
- B does not have a least element in \mid (e.g., 2 is not the least element because 2 | 3 fails).
- It has, however, (infinitely) many minimal elements: numbers 2, 3, 5, etc. (exactly all prime numbers) are minimal.
- B has neither greatest nor maximal elements.

Properties of Least and Minimal Elements

Theorem

Let A be ordered by \leq, and let $B \subseteq A$.
(a) B has at most one least element.
(b) The least element of B (if it exists) is also minimal.
(c) If B is a chain, then every minimal element of B is also least.

The theorem remains true if the words "least" and "minimal" are replaced by "greatest" and "maximal", respectively.
(a) If both b_{1} and b_{2} are least elements of B, then $b_{1} \leq b_{2}$ and $b_{2} \leq b_{1}$. Thus, by antisymmetry, $b_{1}=b_{2}$.
(b) If b is not minimal, then there exists $x \in B$, such that $x<b$. Therefore, $b \not \leq x$ and b is not the least element in B.
(c) Suppose b is minimal in B. Let $x \in B$. Since B is a chain, $b \leq x$ or $x \leq b$. If $x \leq b$, since b is minimal, we must have $x=b$. Thus, in either case, $b \leq x$ and b is the least element in B.

Lower and Upper Bounds, Infima and Suprema

Definition (Lower, Upper Bounds, Infimum, Supremum)

Let \leq be an ordering of A, and let $B \subseteq A$.
(a) $a \in A$ is a lower bound of B in the ordered set (A, \leq) if $a \leq x$, for all $x \in B$.
(b) $a \in A$ is called an infimum of B in (A, \leq) (or the greatest lower bound of B in $(A, \leq))$ if it is the greatest element of the set of all lower bounds of B in (A, \leq).
Similarly,
(a') $a \in A$ is an upper bound of B in the ordered set (A, \leq) if $x \leq a$, for all $x \in B$.
(b') $a \in A$ is called a supremum of B in (A, \leq) (or the least upper bound of B in $(A, \leq))$ if it is the least element of the set of all upper bounds of B in (A, \leq).

- Note that the difference between the least element of B and a lower bound of B is that the second notion does not require $b \in B$.

Properties of Infima and Suprema

Theorem

Let (A, \leq) be an ordered set and let $B \subseteq A$.
(a) B has at most one infimum.
(b) If b is the least element of B, then b is the infimum of B.
(c) If b is the infimum of B and $b \in B$, then b is the least element of B.
(d) $b \in A$ is an infimum of B in (A, \leq) if and only if
(i) $b \leq x$, for all $x \in B$.
(ii) If $b^{\prime} \leq x$, for all $x \in B$, then $b^{\prime} \leq b$.

The theorem remains true if the words "least" and "infimum" are replaced by the words "greatest" and "supremum" and " \leq " is replaced by " \geq " in
(i) and (ii).
(b) The least element b of B is certainly a lower bound of B. If b^{\prime} is any lower bound of $B, b^{\prime} \leq b$ because $b \in B$. So b is the greatest element of the set of all lower bounds of B.

Notation and Examples

- We use notations $\inf (B)$ and $\sup (B)$ for the infimum of B and the supremum of B, if they exist.
- If B is linearly ordered, we also use $\min (B)$ and $\max (B)$ to denote the minimal (least) and the maximal (greatest) elements of B, if they exist.
- Example: Let \leq be the usual ordering of the set of real numbers. Let $B_{1}=\{x: 0<x<1\}, B_{2}=\{x: 0 \leq x<1\}, B_{3}=\{x: x>0\}$, and $B_{4}=\{x: x<0\}$.
- Then B_{1} has no least element and no greatest element. Any $b \leq 0$ is a lower bound of B_{1}, so 0 is the greatest lower bound of B_{1}, i.e., $0=\inf (B)$. Similarly, any $b \geq 1$ is an upper bound of B_{1}, so $1=\sup \left(B_{1}\right)$.
- The set B_{2} has a least element. So $0=\min \left(B_{2}\right)=\inf \left(B_{2}\right)$. It does not have a greatest element. Nevertheless, $\sup \left(B_{2}\right)=1$.
- The set B_{3} has neither a greatest element nor a supremum (actually B_{3} has no upper bound in \leq). Of course, $\inf \left(B_{3}\right)=0$.
- Similarly, B_{4} has no lower bounds, hence no infimum.

Order Isomorphisms

Definition (Order Isomorphism)

An isomorphism between two ordered sets $(P,<)$ and (Q, \prec) is a one-to-one function h with domain P and range Q such that, for all $p_{1}, p_{2} \in P, \quad p_{1}<p_{2} \quad$ if and only if $h\left(p_{1}\right) \prec h\left(p_{2}\right)$.
If an isomorphism exists between $(P,<)$ and (Q, \prec), then $(P,<)$ and (Q, \prec) are isomorphic.

Lemma

Let $(P,<)$ and (Q, \prec) be linearly ordered sets, and let h be a one-to-one function with domain P and range Q such that $h\left(p_{1}\right) \prec h\left(p_{2}\right)$ whenever $p_{1}<p_{2}$. Then h is an isomorphism between $(P,<)$ and (Q, \prec).

- We have to verify that if $p_{1}, p_{2} \in P$ are such that $h\left(p_{1}\right) \prec h\left(p_{2}\right)$, then $p_{1}<p_{2}$. But if p_{1} is not less than p_{2}, then, because $<$ is a linear ordering of P, either $p_{1}=p_{2}$ or $p_{2}<p_{1}$. If $p_{1}=p_{2}$, then $h\left(p_{1}\right)=h\left(p_{2}\right)$ and, if $p_{2}<p_{1}$, then $h\left(p_{2}\right) \prec h\left(p_{1}\right)$, by the assumption. Either case contradicts $h\left(p_{1}\right) \prec h\left(p_{2}\right)$.

