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Relations, Functions and Orderings Ordered Pairs

Unordered versus Ordered Pairs

We show how various mathematical concepts, such as relations,
functions, and orderings can be represented by sets.

We begin by introducing the notion of an ordered pair.

If a and b are sets, then the unordered pair {a, b} is a set whose
elements are exactly a and b. The “order” in which a and b are put
together plays no role, i.e., {a, b} = {b, a}.
Sometimes, we need to pair a and b so that it is possible to
“decipher” which set comes “first” and which comes “second.”

We denote this ordered pair of a and b by (a, b); a is the first
coordinate of the pair (a, b), b is the second coordinate.

The ordered pair has to be a set and it should be defined in such a
way that two ordered pairs are equal if and only if their first
coordinates are equal and their second coordinates are equal.

There are many ways to define (a, b) so that these conditions are
satisfied. We choose one (among many possible) definition.
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Relations, Functions and Orderings Ordered Pairs

Ordered Pairs and Equality

Definition (Ordered Pair)

(a, b) = {{a}, {a, b}}.
If a 6= b, (a, b) has two elements, {a} and {a, b}.

We find the first coordinate by looking at the element of {a}.
The second coordinate is then the other element of {a, b}.

If a = b, then (a, a) = {{a}, {a, a}} = {{a}} has only one element.

Theorem

(a, b) = (a′, b′) if and only if a = a′ and b = b′.

If a = a′ and b = b′, then (a, b) = {{a}, {a, b}} = {{a′}, {a′, b′}} =
(a′, b′).
Assume, conversely, that {{a}, {a, b}} = {{a′}, {a′, b′}}.

If a 6= b, {a} = {a′} and {a, b} = {a′, b′}. So, first, a = a′ and then
{a, b} = {a, b′} implies b = b′.
If a = b, {{a}, {a, a}} = {{a}}. So {a} = {a′}, {a} = {a′, b′}, and we
get a = a′ = b′, so a = a′ and b = b′ holds in this case, too.
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Relations, Functions and Orderings Ordered Pairs

Ordered Triples, Quadruples, etc.

With ordered pairs at our disposal, we can define

ordered triples
(a, b, c) = ((a, b), c),

ordered quadruples

(a, b, c , d) = ((a, b, c), d)

and so on.

Also, we define ordered “one-tuples”

(a) = a.

The general definition of ordered n-tuples has to be postponed until
natural numbers have been defined.
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Relations, Functions and Orderings Relations

Idea Behind Binary Relations

Relations between objects of two sorts are called binary relations.

Example:
A line ℓ is in relation R1 with a point P if ℓ passes through P . Then R1

is a binary relation between objects called lines and objects called
points.
A positive integer m is in relation R2 with a positive integer n if m
divides n (without remainder).
Consider the relation R ′

1 between lines and points such that a line ℓ is
in relation R ′

1 with a point P if P lies on ℓ. Obviously, a line ℓ is in
relation R ′

1 to a point P exactly when ℓ is in relation R1 to P .
Although different properties were used to describe R1 and R ′

1, we
would ordinarily consider R1 and R ′

1 to be one and the same relation,
i.e., R1 = R ′

1.
Similarly, let a positive integer m be in relation R ′

2 with a positive
integer n if n is a multiple of m. Again, the same ordered pairs (m, n)
are related in R2 as in R ′

2, and we consider R2 and R ′
2 to be the same

relation.
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Relations, Functions and Orderings Relations

Binary Relations

Definition (Binary Relation)

A set R is a binary relation if all elements of R are ordered pairs, i.e., if
for any z ∈ R , there exist x and y such that z = (x , y).

Example: The relation R2 is simply the set

{z : there exist positive integers m and n,
such that z = (m, n) and m divides n}.

Elements of R2 are ordered pairs

(1, 1), (1, 2), (1, 3), . . .
(2, 2), (2, 4), (2, 6), . . . ,
(3, 3), (3, 6), (3, 9), . . .
· · ·

It is customary to write x R y instead of (x , y) ∈ R . We say that x is
in relation R with y if x R y holds.
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Relations, Functions and Orderings Relations

Domain and Range of a Relation

Definition

Let R be a binary relation.

(a) The set of all x which are in relation R with some y is called the
domain of R and denoted by domR .

domR = {x : there exists y such that x R y}.
domR is the set of all first coordinates of ordered pairs in R .

(b) The set of all y such that, for some x , x is in relation R with y is
called the range of R , denoted by ranR .

ranR = {y : there exists x such that x R y}.
ranR is the set of all second coordinates of ordered pairs in R .
Both domR and ranR exist for any relation R .

(c) The set domR ∪ ranR is called the field of R and is denoted by fieldR .

(d) If fieldR ⊆ X , we say that R is a relation in X or that R is a
relation between elements of X .
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Relations, Functions and Orderings Relations

Illustrating the Terminology

Example: Let R2 be the previously defined relation: A positive integer
m is in relation R2 with a positive integer n if m divides n (without
remainder).

domR2 = {m : there exists n such that m divides n}
= the set of all positive integers

because each positive integer m divides some n, e.g., n = m.

ranR2 = {n : there exists m such that m divides n}
= the set of all positive integers

because each positive integer n is divided by some m, e.g., by m = n.
fieldR2 = domR2 ∪ ranR2 = the set of all positive integers;
R2 is a relation between positive integers.
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Relations, Functions and Orderings Relations

Image and Inverse Image

Definition (Image and Inverse Image)

(a) The image of A under R , denoted R [A], is the set of all y from the
range of R related in R to some element of A.

R [A] = {y ∈ ranR : there exists x ∈ A for which x R y}.

(b) The inverse image of B under R , denoted R−1[B ], is the set of all
x from the domain of R related in R to some element of B .

R−1[B ] = {x ∈ domR : there exists y ∈ B for which x R y}.

Example:

R−1
2 [{3, 8, 9, 12}] = {1, 2, 3, 4, 6, 8, 9, 12};

R2[{2}] = the set of all even positive integers.
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Relations, Functions and Orderings Relations

Inverse of a Binary Relation

Definition (Inverse Realtion)

Let R be a binary relation. The inverse of R is the set

R−1 = {z : z = (x , y) for some x and y such that (y , x) ∈ R}.

Example: Again let

R2 = {z : z = (m, n), m and n are positive integers,
and m divides n}.

Then

R−1
2 = {w : w = (n,m), and (m, n) ∈ R2}

= {w : w = (n,m), m and n are positive integers,
and m divides n}.

In our description of R2, we use variable m for the first coordinate
and variable n for the second coordinate; we also state the property
describing R2 so that the variable m is mentioned first.
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Relations, Functions and Orderings Relations

Example (Cont’d)

It is a customary (though not necessary) practice to describe R−1
2 in

the same way. All we have to do is use letter m instead of n, letter n
instead of m and change the wording:

R−1
2 = {w : w = (m, n), n, m are positive integers,

and n divides m}
= {w : w = (m, n), m, n are positive integers,

and m is a multiple of n}.

Now R2 and R−1
2 are described in a parallel way. In this sense, the

inverse of the relation “divides” is the relation “is a multiple.”

Note that the symbol R−1[B ] for the inverse image of B under R now
also denotes the image of B under R−1. Fortunately, these two sets
are equal!
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Relations, Functions and Orderings Relations

Inverse Image Under R versus Image Under R−1

Lemma

The inverse image of B under R is equal to the image of B under R−1.

Notice first that domR = ranR−1. Now, x ∈ domR belongs to the
inverse image of B under R if and only if, for some y , (x , y) ∈ R . But
(x , y) ∈ R if and only if (y , x) ∈ R−1. Therefore, x belongs to the
inverse image of B under R if and only if for some y ∈ B ,
(y , x) ∈ R−1, i.e., if and only if x belongs to the image of B under
R−1.

To simplify our notation we write {(x , y) : P(x , y)} instead of
{w : w = (x , y) for some x and y such that P(x , y)}.
Example: The inverse of R could be described in this notation
{(x , y) : (y , x) ∈ R}. Recall that use of such notation is admissible
only if we prove that there exists a set A such that, for all x and y ,
P(x , y) implies (x , y) ∈ A.
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Relations, Functions and Orderings Relations

Composition of Binary Relations

Definition (Composition)

Let R and S be binary relations. The composition of R and S is the
relation

S ◦ R = {(x , z) : there exists y for which (x , y) ∈ R and (y , z) ∈ S}.

So (x , z) ∈ S ◦ R means that for some y , x R y and y S z .

To find objects related to x in S ◦ R ,
we first find objects y related to x in R ,
and then objects related to those y in S .

Notice that R is performed first and S second, but the notation S ◦ R
is customary (at least in the case of functions).
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Relations, Functions and Orderings Relations

Special Relations

Several types of relations are of special interest.

Definition (Membership and Identity Relations)

The membership relation on A is defined by

∈A = {(a, b) : a ∈ A, b ∈ A, and a ∈ b}.
The identity relation on A is defined by

IdA = {(a, b) : a ∈ A, b ∈ A, and a = b}.

Definition (Cartesian Product)

Let A and B be sets. The set of all ordered pairs whose first coordinate is
from A and whose second coordinate is from B is called the cartesian
product of A and B and denoted A× B . In other words,

A× B = {(a, b) : a ∈ A and b ∈ B}.

Thus A× B is a relation in which every element of A is related to
every element of B .
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Relations, Functions and Orderings Relations

Existence of Cartesian Products

To show that the set A× B exists:
First show that, if a ∈ A and b ∈ B, then (a, b) ∈ P(P(A ∪ B)).
Then conclude that

A× B = {(a, b) ∈ P(P(A ∪ B)) : a ∈ A and b ∈ B}.
Since P(P(A ∪ B)) was proved to exist, the existence of A× B follows
from the Axiom Schema of Comprehension.

To be completely explicit, we can write,

A×B = {w ∈ P(P(A ∪B)) : w = (a, b) for some a ∈ A and b ∈ B}.
We denote A× A by A2.
The cartesian product of three sets can be introduced readily:
A× B × C = (A× B)× C . Notice that

A× B × C = {(a, b, c) : a ∈ A, b ∈ B and c ∈ C}
(using an obvious extension of our notational convention).

A× A× A is usually denoted A3.
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Relations, Functions and Orderings Relations

Ternary Relations

Definition (Ternary Relation)

A ternary relation is a set of unordered triples. More explicitly, S is a
ternary relation if for every u ∈ S , there exist x , y and z , such that
u = (x , y , z). If S ⊆ A3, we say that S is a ternary relation in A. (Note
that a binary relation R is in A if and only if R ⊆ A2.)

We could extend the concepts of this section to ternary relations and
also define 4-ary or 17-ary relations.

When natural numbers have been introduced, we will define n-ary
relations in general.

For technical reasons, a unary relation is any set. A unary relation
in A is any subset of A.

This agrees both with the idea that a unary relation in A should be a
set of 1-tuples of elements of A and with the definition of (x) = x

adopted previously.
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Subsection 3

Functions
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Relations, Functions and Orderings Functions

Functions

A function is a procedure or rule assigning to any object a from its
domain a unique object b, the value of the function at a.

A function is a special type of relation in which every object a from
the domain is related to precisely one object in the range, the value of
the function at a.

Definition (Function)

A binary relation F is called a function (or mapping, correspondence) if

a F b1 and a F b2 imply b1 = b2

for all a, b1, b2. I.e., a binary relation F is a function if and only if for
every a from domF there is exactly one b such that a F b. This unique b

is called the value of F at a and is denoted F (a) or Fa. (F (a) is not
defined if a 6∈ domF .) If F is a function with domF = A and ranF ⊆ B , it
is customary to use the notations F : A → B , 〈F (a) : a ∈ A〉, 〈Fa : a ∈ A〉,
or 〈Fa〉a∈A, for the function F . The range of the function F can then be
denoted {F (a) : a ∈ A} or {Fa}a∈A.
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Relations, Functions and Orderings Functions

Some Definitions Related to Functions

Lemma

Let F and G be functions. F = G if and only if domF = domG and
F (x) = G (x), for all x ∈ domF .

Since functions are binary relations, the concepts of domain, range,
image, inverse image, inverse, and composition are applicable.

Here are some additional definitions:
Definition

Let F be a function and A and B sets.

(a) F is a function on A if domF = A.

(b) F is a function into B if ranF ⊆ B.

(c) F is a function onto B if ranF = B.

(d) The restriction of the function F to A is the function
F ↾ A = {(a, b) ∈ F : a ∈ A}. If G is a restriction of F to some A, we say
that F is an extension of G .
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Relations, Functions and Orderings Functions

Example

Let F = {(x , 1
x2
) : x 6= 0, x is a real number}. F is a function:

If a F b1 and a F b2, b1 =
1
a2

and b2 =
1
a2
, so b1 = b2.

Sometimes, we write F = 〈 1
x2

: x is a real number, x 6= 0〉. The value

of F at x , F (x), equals 1
x2
. F is function on A, where

A = {x : x is a real number and x 6= 0}. F is a function into the set
of all real numbers, but not onto the set of all real numbers. If
B = {x : x is a real number and x > 0}, then F is onto B . If
C = {x : 0 < x ≤ 1}, then f [C ] = {x : x ≥ 1} and
F−1[C ] = {x : x ≤ −1 or x ≥ 1}.
The composition f ◦ f can be determined:

f ◦ f = {(x , z) : there is y for which (x , y) ∈ f and (y , z) ∈ f }
= {(x , z) : there is y for which x 6= 0,

y = 1
x2
, and y 6= 0, z = 1

y2}
= {(x , z) : x 6= 0 and z = x4}.

Notice that f ◦ f is a function.
George Voutsadakis (LSSU) Set Theory June 2014 23 / 53



Relations, Functions and Orderings Functions

Composition of Functions

Theorem

Let f and g be functions. Then g ◦ f is a function. g ◦ f is defined at x if
and only if f is defined at x and g is defined at f (x): dom(g ◦ f ) =
domf ∩ f −1[domg ]. Also, (g ◦ f )(x) = g(f (x)), for all x ∈ dom(g ◦ f ).

We prove, first, that g ◦ f is a function. If x(g ◦ f )z1 and x(g ◦ f )z2,
there exist y1 and y2 such that x f y1, y1 g z1, and x f y2, y2 g z2.
Since f is a function, y1 = y2. So we get y1 g z1, y1 g z2, and, since
g is also a function, z1 = z2.

For the domain of g ◦ f : x ∈ dom(g ◦ f ) if and only if there is some z

such that x(g ◦ f )z , i.e., if and only if there is some z and some y

such that x f y and y g z . But this happens if and only if x ∈ domf

and y = f (x) ∈ domg . The last statement can be equivalently
expressed as x ∈ domf and x ∈ f −1[domg ].
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Relations, Functions and Orderings Functions

Composition and Invertibility

This theorem is used in calculus to find domains of compositions of
functions.

Example: Let f = 〈x2 − 1 : x real〉, g = 〈√x : x ≥ 0〉. Find the
composition g ◦ f .
We determine the domain of g ◦ f first. domf is the set of all real
numbers and domg = {x : x ≥ 0}. We find f −1[domg ] = {x : f (x) ∈
domg} = {x : x2 − 1 ≥ 0} = {x : x ≥ 1 or x ≤ −1}. Therefore,
dom(g ◦ f ) = (domf ) ∩ f −1[domg ] = {x : x ≥ 1 or x ≤ −1} and
g ◦ f = {(x , z) : x ≥ 1 or x ≤ −1 and, for some y , x2 − 1 =
y and

√
y = z} = 〈

√
x2 − 1 : x ≥ 1 or x ≤ −1〉.

If f is a function, its inverse f −1 is a relation, but it may not be a
function.

We say that a function f is invertible if f −1 is a function.
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Relations, Functions and Orderings Functions

Invertibility and Injectivity

Definition (Injective Function)

A function f is called one-to-one or injective if a1 ∈ domf , a2 ∈ domf ,
and a1 6= a2 implies f (a1) 6= f (a2). I.e., if a1 ∈ domf , a2 ∈ domf , and
f (a1) = f (a2), then a1 = a2. Thus, a one-to-one function assigns different
values to different elements from its domain.

Theorem

A function is invertible if and only if it is one-to-one. If f is invertible, then
f −1 is also invertible and (f −1)−1 = f .

If f is invertible, then f −1 is a function. It follows that f −1(f (a)) = a

for all a ∈ domf . If a1, a2 ∈ domf and f (a1) = f (a2), we get
f −1(f (a1)) = f −1(f (a2)) and a1 = a2. So f is one-to-one.

Let f be one-to-one. If a f −1 b1 and a f −1 b2, we have b1 f a and
b2 f a. Therefore, b1 = b2, and f −1 is a function.

Since (f −1)−1 = f , f −1 is also invertible and f −1 is also one-to-one.
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Examples

Example: Let f = 〈 1
x2

: x 6= 0〉. Find f −1.

As f = {(x , 1
x2
) : x 6= 0}, we get f −1 = {( 1

x2
, x) : x 6= 0}. f −1 is not

a function since (1,−1) ∈ f −1, (1, 1) ∈ f −1. Therefore, f is not
one-to-one: (1, 1) ∈ f and (−1, 1) ∈ f .

Example: Let g = 〈2x − 1 : x real〉. Find g−1.
g is one-to-one: If 2x1 − 1 = 2x2 − 1, then 2x1 = 2x2 and x1 = x2.
Since g = {(x , y) : y = 2x − 1, x real},
g−1 = {(y , x) : y = 2x − 1, x real}. As customary when describing
functions, we express the second coordinate (value) in terms of the
first:

g−1 = {(y , x) : x =
y + 1

2
, y real}.

Finally, it is usual to denote the first (“independent”) variable x and
the second (“dependent”) variable y . So we change notation:
g−1 = {(x , y) : y = x+1

2 , x real} = 〈x+1
2 : x real〉.
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Compatible Functions

Definition (Compatibility)

(a) Functions f and g are called compatible if f (x) = g(x), for all
x ∈ domf ∩ domg .

(b) A set of functions F is called a compatible system of functions if
any two functions f and g from F are compatible.

Lemma

(a) Functions f and g are compatible if and only if f ∪ g is a function.

(b) Functions f and g are compatible if and only if

f ↾ (domf ∩ domg) = g ↾ (domf ∩ domg).

Suppose f ∪ g is a function. Let x ∈ domf ∩ domg . Then
x(f ∪ g)f (x) and x(f ∪ g)g(x), whence f (x) = g(x).
Suppose f , g are compatible. Let x(f ∪ g)y1 and x(f ∪ g)y2.

If x ∈ dom ∩ domg , then y1 = f (x) = g(x) = y2.
If x ∈ domf − domg , then x f y1 and x f y2, whence y1 = y2.
If x ∈ domg − domf a similar argument applies.
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Pasting Together Compatible Functions

Theorem

If F is a compatible system of functions, then
⋃

F is a function with
dom(

⋃
F ) =

⋃{domf : f ∈ F}. The function
⋃

F extends all f ∈ F .

Functions from a compatible system can be pieced together to form a
single function which extends them all.

Clearly,
⋃

F is a relation. We show it is a function. If (a, b1) ∈
⋃

F

and (a, b2) ∈
⋃

F , there are functions f1, f2 ∈ F such that (a, b1) ∈ f1
and (a, b2) ∈ f2. But f1 and f2 are compatible, and
a ∈ domf1 ∩ domf2. So b1 = f (a1) = f (a2) = b2.

It is clear that x ∈ dom(
⋃

F ) if and only if x ∈ domf , for some f ∈ F .
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Product of Indexed Family of Sets

Definition

Let A and B be sets. The set of all functions on A into B is denoted BA.
(Of course, it must first be shown that BA exists.)

Let S = 〈Si : i ∈ I 〉 be a function with domain I . The values Si are
arbitrary sets. We call the function 〈Si : i ∈ I 〉 an indexed system of
sets, stressing that the values of S are sets.

Now let S = 〈Si : i ∈ I 〉 be an indexed system of sets. We define the
product of the indexed system S as the set

∏
S = {f : f is a function on I and fi ∈ Si , for all i ∈ I}.

Other notations are
∏〈S(i) : i ∈ I 〉,∏i∈I S(i),

∏
i∈I Si .

If S is such that Si = B , for all i ∈ I , then
∏

i∈I Si = B I .

The “exponentiation” of sets is related to “multiplication” of sets in
the same way as similar operations on numbers are related.
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Relations, Functions and Orderings Functions

Notation

Two remarks concerning notation:⋃
A and

⋂
A were defined for any system of sets A (A 6= ∅ in case of

intersection). Often the system A is given as a range of some function,
i.e., of some indexed system. We say that A is indexed by S if

A = {Si : i ∈ I} = ranS ,

where S is a function on I . It is then customary to write

⋃
A =

⋃
{Si : i ∈ I} =

⋃

i∈I

Si ,

and similarly for intersections.
Let f be a function on a subset of the product A× B. It is customary
to denote the value of f at (x , y) ∈ A× B by f (x , y), rather than
f ((x , y)). In this context, we regard f as a function of two variables x
and y .
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Subsection 4

Equivalences and Partitions
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Equivalence Relation on a Set

Definition (Equivalence Relation)

Let R be a binary relation in A.

(a) R is called reflexive in A if, for all a ∈ A, a R a.

(b) R is called symmetric in A if, for all a, b ∈ A,

a R b implies b R a.

(c) R is called transitive in A if, for all a, b, c ∈ A,

a R b and b R c imply a R c .

(d) R is called an equivalence on A if it is reflexive, symmetric, and
transitive in A.
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Examples
(a) Let P be the set of all people living on Earth. We say that a person p

is equivalent to a person q (p ≡ q) if p and q live in same country.
Trivially, ≡ is reflexive, symmetric, and transitive in P .

Notice that the set P can be broken into classes of mutually
equivalent elements. All people living in the United States form one
class, all people living in France are another class, etc.

All members of the same class are mutually equivalent;
Members of different classes are never equivalent.

The equivalence classes correspond exactly to different countries.
(b) Define an equivalence E on the set Z of all integers as follows:

x E y if and only if x − y is divisible by 2.
I.e., two numbers are equivalent if their difference is even.

E is reflexive, symmetric and transitive.
Again, the set Z can be divided into equivalence classes under (or,
modulo) the equivalence E . In this case, there are two equivalence
classes: the set of even integers and the set of odd integers.

Any two even integers are equivalent; so are any two odd integers.
But an even integer cannot be equivalent to an odd one.

George Voutsadakis (LSSU) Set Theory June 2014 34 / 53



Relations, Functions and Orderings Equivalences and Partitions

Equivalence Classes

Any equivalence on A partitions A into equivalence classes;
conversely, given a suitable partition of A, there is an equivalence on
A determined by it.

Definition (Equivalence Class)

Let E be an equivalence on A and let a ∈ A. The equivalence class of a
modulo E is the set

[a]E = {x ∈ A : x E a}.

Lemma

Let a, b ∈ A.

(a) a is equivalent to b modulo E if and only if [a]E = [b]E .

(b) a is not equivalent to b modulo E if and only if [a]E ∩ [b]E = ∅.
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Proof of the Lemma

(a) a E b implies [a]E = [b]E : Assume that a E b. Let x ∈ [a]E , i.e.,
x E a. By transitivity, x E a and a E b imply x E b, i.e., x ∈ [b]E .
Similarly, x ∈ [b]E implies x ∈ [a]E . So [a]E = [b]E .
[a]E = [b]E implies a E b: Assume that [a]E = [b]E . Since E is
reflexive, a E a, so a ∈ [a]E . But then a ∈ [b]E , that is, a E b.

(b) a 6E b implies [a]E ∩ [b]E = ∅: Assume a E b is not true; we have to
prove [a]E ∩ [b]E 6= ∅. If not, there is x ∈ [a]E ∩ [b]E ; so x E a and
x E b. But then, using first symmetry and then transitivity, a E x

and x E b, so a E b, a contradiction.
[a]E ∩ [b]E = ∅ implies a 6E b: Assume finally that [a]E ∩ [b]E = ∅. If
a and b were equivalent modulo E , a E b would hold, so a ∈ [b]E .
But also a ∈ [a]E , implying [a]E ∩ [b]E 6= ∅, a contradiction.
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Partition of a Set

Definition (Partition)

A system S of nonempty sets is called a partition of A if

(a) S is a system of mutually disjoint sets, i.e., if C ∈ S ,D ∈ S , and
C 6= D, then C ∩D = ∅;

(b) The union of S is the whole set A, i.e.,
⋃

S = A.

Definition (System of Equivalence Classes of an Equivalence Relation)

Let E be an equivalence on A. The system of all equivalence classes
modulo E is denoted by A/E : A/E = {[a]E : a ∈ A}.
Theorem (Equivalence Classes Form a Partition)

Let E be an equivalence on A. Then A/E is a partition of A.

Property (a) follows from the preceding lemma: If [a]E 6= [b]E , then a

and b are not E -equivalent, so [a]E ∩ [b]E = ∅.
To prove (b), notice that

⋃
A/E = A because a ∈ [a]E . Notice also

that no equivalence class is empty, since at least a ∈ [a]E .
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Equivalence of a Partition

For each partition there is a corresponding equivalence relation.

Definition (Equivalence of a Partition)

Let S be a partition of A. The relation ES in A is defined by

ES = {(a, b) ∈ A× A : there is C ∈ S , such that a ∈ C and b ∈ C}.
Objects a and b are related by ES if and only if they belong to the same
set from the partition S .

Theorem

Let S be a partition of A. Then ES is an equivalence on A.

(a) Reflexivity: Let a ∈ A. Since A ∈ ⋃
S , there is C ∈ S for which a ∈ C , so

(a, a) ∈ ES .

(b) Symmetry: Assume a ES b. Then there is C ∈ S , for which a ∈ C and
b ∈ C . Then, of course, b ∈ C and a ∈ C , so b ES a.

(c) Transitivity: Assume a ES b and b ES c . Then there are C ∈ S and D ∈ S ,
such that a ∈ C and b ∈ C and b ∈ D and c ∈ D. We see that b ∈ C ∩ D,
so C ∩ D 6= ∅, i.e., C = D. So a ∈ C , c ∈ C , and a ES c .
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Equivalence Relations and Partitions

Theorem (Equivalence Relations and Partitions)

(a) If E is an equivalence on A and S = A/E , then ES = E .

(b) If S is a partition of A and ES is the corresponding equivalence, then
A/ES = S .

Equivalences and partitions describe the same “mathematical reality”:
Every equivalence E determines a partition S = A/E . The equivalence
ES determined by this partition S is identical with the original E .
Conversely, each partition S determines an equivalence ES ; when we
form equivalence classes modulo ES , we recover the original partition S .

Definition (Set of Representatives)

A set X ⊆ A is called a set of representatives for the equivalence ES

(or for the partition S of A) if, for every C ∈ S , X ∩ C = {a}, for some
a ∈ C .

The Axiom of Choice is required to ensure that every partition has
some set of representatives.
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Subsection 5

Orderings
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Partial Orderings

Definition (Antisymmetry)

A binary relation R in A is antisymmetric if, for all a, b ∈ A,

a R b and b R a imply a = b.

Definition (Partial Ordering)

A binary relation R in A which is reflexive, antisymmetric and transitive is
called a (partial) ordering of A. The pair (A,R) is called an ordered set.

a R b can be read as “a is less than or equal to b” or “b is greater
than or equal to a” (in the ordering R).

By reflexivity, every element of A is less than or equal to itself.

By antisymmetry, if a is less than or equal to b, and, at the same
time, b is less than or equal to a, then a = b.

Finally, by transitivity, if a is less than or equal to b and b is less than
or equal to c , a has to be less than or equal to c .
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Examples of Orderings

(a) ≤ is an ordering on the set of all (natural, rational, real) numbers.

(b) Define the relation ⊆A in A as follows:

x ⊆A y if and only if x ⊆ y and x , y ∈ A.

Then ⊆A is an ordering of the set A.

(c) Define the relation ⊇A in A as follows:

x ⊇A y if and only if x ⊇ y and x , y ∈ A.

Then ⊇A is also an ordering of the set A.

(d) The relation | defined by:

n | m if and only if n divides m

is an ordering of the set of all positive integers.

(e) The relation IdA is an ordering of A.
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Strict Orderings

Definition (Asymmetry)

A relation S in A is asymmetric if a S b implies that b S a does not hold,
for any a, b ∈ A. That is, a S b and b S a can never both be true.

Definition (Strict Ordering)

A relation S in A is a strict ordering if it is asymmetric and transitive.

Theorem

(a) Let R be an ordering of A. Then the relation S defined in A by

a S b if and only if a R b and a 6= b

is a strict ordering of A.

(b) Let S be a strict ordering of A. Then the relation R defined in A by

a R b if and only if a S b or a = b

is an ordering of A.

We say that the strict ordering S corresponds to the ordering R and vice
versa.
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Proof of the Theorem

(a) Let us show that S is asymmetric: Assume that both a S b and b S a

hold for some a, b ∈ A. Then also a R b and b R a, so a = b

(because R is antisymmetric). This contradicts the definition of a S b.
Next, we show that S is transitive: If a S b and b S c , then a R b
and a 6= b and b R c and b 6= c .

By the transitivity of R , a R c ;
a 6= c , since, if a R b and b R a, then a = b a contradiction.

Therefore, a S c and S is transitive.

(b) Let us show that R is reflexive: Since a = a, for all a, a R a.
Let us show that R is antisymmetric: Assume that a R b and b R a.
Since S is asymmetric, we conclude that a = b.
For transitivity, assume a R b and b R c . Then a S b or a = b and
b S c or b = c .

If a S b and b S c , then a S c by the transitivity of S .
If a S b and b = c , then a S c .
If a = b and b S c , then a S c .
If a = b and b = c , then a = c .
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Comparable and Incomparable Elements

Definition (Comparable and Incomparable Elements)

Let a, b ∈ A, and let ≤ be an ordering of A. We say that a and b are
comparable in the ordering ≤ if a ≤ b or b ≤ a.
We say that a and b are incomparable if they are not comparable, i.e., if
neither a ≤ b nor b ≤ a holds.
Both definitions can be stated equivalently in terms of the corresponding
strict ordering <. For example, a and b are incomparable in < if a 6= b

and neither a < b nor b < a holds.

Example:

(a) Any two real numbers are comparable in the ordering ≤.
(b) 2 and 3 are incomparable in the ordering |.
(c) Any two distinct a, b ∈ A are incomparable in IdA.
(d) If the set A has at least two elements, then there are incomparable

elements in the ordered set (P(A),⊆P(A)).
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Linear or Total Orderings

Definition (Linear or Total Ordering)

An ordering ≤ (or <) of A is called linear or total if any two elements of
A are comparable. The pair (A,≤) is then called a linearly ordered set.

Example: The ordering ≤ of positive integers is total, while | is not.

Definition (Chain)

Let B ⊆ A, where A is ordered by ≤. B is a chain in A if any two
elements of B are comparable.

Example: The set of all powers of 2 (i.e., {20, 21, 22, 23, . . .}) is a
chain in the set of all positive integers ordered by |.
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Least, Minimal, Greatest and Maximal Elements

Definition (Least, Minimal, Greatest, Maximal)

Let ≤ be an ordering of A, and let B ⊆ A.

(a) b ∈ B is the least element of B in the ordering ≤ if b ≤ x , for every
x ∈ B .

(b) b ∈ B is a minimal element of B in the ordering ≤ if there exists no
x ∈ B such that x ≤ b and x 6= b.

(a’) Similarly, b ∈ B is the greatest element of B in the ordering ≤ if,
for every x ∈ B , x ≤ b.

(b’) b ∈ B is a maximal element of B in the ordering ≤ if there exists
no x ∈ B such that b ≤ x and x 6= b.
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Some Examples

Example: Let N be the set of positive integers ordered by the
divisibility relation |.

1 is the least element of N;
N has no greatest element.

Example: Let B be the set of all positive integers greater (in
magnitude) than 1, B = {2, 3, 4, . . .}.

B does not have a least element in | (e.g., 2 is not the least element
because 2 | 3 fails).
It has, however, (infinitely) many minimal elements: numbers 2, 3, 5,
etc. (exactly all prime numbers) are minimal.
B has neither greatest nor maximal elements.
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Properties of Least and Minimal Elements

Theorem

Let A be ordered by ≤, and let B ⊆ A.

(a) B has at most one least element.

(b) The least element of B (if it exists) is also minimal.

(c) If B is a chain, then every minimal element of B is also least.

The theorem remains true if the words “least” and “minimal” are replaced
by “greatest” and “maximal”, respectively.

(a) If both b1 and b2 are least elements of B , then b1 ≤ b2 and b2 ≤ b1.
Thus, by antisymmetry, b1 = b2.

(b) If b is not minimal, then there exists x ∈ B , such that x < b.
Therefore, b � x and b is not the least element in B .

(c) Suppose b is minimal in B . Let x ∈ B . Since B is a chain, b ≤ x or
x ≤ b. If x ≤ b, since b is minimal, we must have x = b. Thus, in
either case, b ≤ x and b is the least element in B .
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Lower and Upper Bounds, Infima and Suprema

Definition (Lower, Upper Bounds, Infimum, Supremum)

Let ≤ be an ordering of A, and let B ⊆ A.

(a) a ∈ A is a lower bound of B in the ordered set (A,≤) if a ≤ x , for
all x ∈ B .

(b) a ∈ A is called an infimum of B in (A,≤) (or the greatest lower
bound of B in (A,≤)) if it is the greatest element of the set of all
lower bounds of B in (A,≤).

Similarly,

(a’) a ∈ A is an upper bound of B in the ordered set (A,≤) if x ≤ a, for
all x ∈ B .

(b’) a ∈ A is called a supremum of B in (A,≤) (or the least upper
bound of B in (A,≤)) if it is the least element of the set of all upper
bounds of B in (A,≤).

Note that the difference between the least element of B and a lower
bound of B is that the second notion does not require b ∈ B .
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Properties of Infima and Suprema

Theorem

Let (A,≤) be an ordered set and let B ⊆ A.

(a) B has at most one infimum.

(b) If b is the least element of B , then b is the infimum of B .

(c) If b is the infimum of B and b ∈ B , then b is the least element of B .

(d) b ∈ A is an infimum of B in (A,≤) if and only if

(i) b ≤ x , for all x ∈ B.
(ii) If b′ ≤ x , for all x ∈ B, then b′ ≤ b.

The theorem remains true if the words “least” and “infimum” are replaced
by the words “greatest” and “supremum” and “≤” is replaced by “≥” in
(i) and (ii).

(b) The least element b of B is certainly a lower bound of B . If b′ is any
lower bound of B , b′ ≤ b because b ∈ B . So b is the greatest
element of the set of all lower bounds of B .
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Notation and Examples

We use notations inf(B) and sup(B) for the infimum of B and the
supremum of B , if they exist.
If B is linearly ordered, we also use min(B) and max(B) to denote the
minimal (least) and the maximal (greatest) elements of B , if they
exist.
Example: Let ≤ be the usual ordering of the set of real numbers. Let
B1 = {x : 0 < x < 1}, B2 = {x : 0 ≤ x < 1}, B3 = {x : x > 0}, and
B4 = {x : x < 0}.

Then B1 has no least element and no greatest element. Any b ≤ 0 is a
lower bound of B1, so 0 is the greatest lower bound of B1, i.e.,
0 = inf(B). Similarly, any b ≥ 1 is an upper bound of B1, so
1 = sup(B1).
The set B2 has a least element. So 0 = min(B2) = inf(B2). It does not
have a greatest element. Nevertheless, sup(B2) = 1.
The set B3 has neither a greatest element nor a supremum (actually B3

has no upper bound in ≤). Of course, inf(B3) = 0.
Similarly, B4 has no lower bounds, hence no infimum.
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Order Isomorphisms

Definition (Order Isomorphism)

An isomorphism between two ordered sets (P , <) and (Q,≺) is a
one-to-one function h with domain P and range Q such that, for all
p1, p2 ∈ P , p1 < p2 if and only if h(p1) ≺ h(p2).
If an isomorphism exists between (P , <) and (Q,≺), then (P , <) and
(Q,≺) are isomorphic.

Lemma

Let (P , <) and (Q,≺) be linearly ordered sets, and let h be a one-to-one
function with domain P and range Q such that h(p1) ≺ h(p2) whenever
p1 < p2. Then h is an isomorphism between (P , <) and (Q,≺).

We have to verify that if p1, p2 ∈ P are such that h(p1) ≺ h(p2), then
p1 < p2. But if p1 is not less than p2, then, because < is a linear
ordering of P , either p1 = p2 or p2 < p1. If p1 = p2, then
h(p1) = h(p2) and, if p2 < p1, then h(p2) ≺ h(p1), by the
assumption. Either case contradicts h(p1) ≺ h(p2).
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