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Natural Numbers Introduction to Natural Numbers

Natural Numbers and Sets

To develop mathematics within axiomatic set theory, it is necessary to
define natural numbers.

Intuitively, natural numbers are 0, 1, 2, 3, . . ..

We can easily give examples of sets having zero, one, two, or three
elements:

∅ has 0 elements;
{∅} or, in general, {a} for any a, has one element;
{∅, {∅}}, or {{{∅}}, {{{∅}}}}, or, in general, {a, b}, where a 6= b, has
two elements, etc.

We next supplement this intuitive understanding by a rigorous
definition.
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The First Natural Numbers as Sets

To define the number 0, we choose a representative of all sets having
no elements. This is easy, since there is only one such set: We define
0 = ∅.

Many sets have one element (singletons): {∅}, {{∅}}, {{∅, {∅}}};
How should we choose a representative? Since we already defined 0, a
natural choice is {0}. So we define 1 = {0} = {∅}.

Next we consider sets with two elements: {∅, {∅}}, {{∅}, {∅, {∅}}},
etc. By now, we have defined 0 and 1, and 0 6= 1. We choose the set
whose elements are the previously defined numbers 0 and 1:
2 = {0, 1} = {∅, {∅}}.

It should begin to be obvious how the process continues:
3 = {0, 1, 2} = {∅, {∅}, {∅, {∅}}}.

4 = {0, 1, 2, 3} = {∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}}}.

5 = {0, 1, 2, 3, 4}, etc.
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Problem in General Definition of Natural Numbers

We would like to define a natural number n as the set of all smaller
natural numbers: {0, 1, . . . , n − 1}. So, n would be a particular set of
n elements.

The problem is that, even though we can define a specific natural
number, there is no list of such definitions that tells us what a natural
number is in general.

To do this, we need a statement of the form: “A set n is a natural
number if its elements are all the smaller natural numbers”, but such
a “definition” would involve the very concept being defined.

Given a natural number n, we get the “next” number by adjoining
one more element to n, namely, n itself. The procedure works for
1 = 0 ∪ {0}, 2 = 1 ∪ {1}, but not for 0, the least natural number.
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The Successor of a Set

Definition (Successor)

The successor of a set x is the set S(x) = x ∪ {x}.

Intuitively, the successor S(n) of a natural number n is the “one
bigger” number n + 1.

In the following we use the notation n + 1 = S(n).

We later define addition of natural numbers (using the notion of
successor) in such a way that n+ 1 indeed equals the sum of n and 1.
But until then, it is just a notation, and no properties of addition are
assumed or implied by it.
We can now summarize the intuition behind natural numbers:
(a) 0 is a natural number.
(b) If n is a natural number, then its successor n + 1 is also a natural

number.
(c) All natural numbers are obtained by application of (a) and (b), i.e.. by

starting with 0 and repeatedly applying the successor operation:
0, 0 + 1 = 1, 1 + 1 = 2, 2 + 1 = 3, 3 + 1 = 4, 4 + 1 = 5, . . . etc.
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Inductive Sets

Definition (Inductive Set)

A set I is called inductive if

(a) 0 ∈ I .

(b) If n ∈ I , then (n + 1) ∈ I .

An inductive set contains 0 and, with each element, also its successor.

According to (c) of the preceding slide, an inductive set should
contain all natural numbers. The precise meaning of (c) is that the
set of natural numbers is an inductive set which contains no other
elements but natural numbers, i.e., it is the smallest inductive set.

Definition (Set of Natural Numbers)

The set of all natural numbers is the set

N = {x : x ∈ I , for every inductive set I}.

The elements of N are called natural numbers. Thus, a set x is a
natural number if and only if it belongs to every inductive set.
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Existence of N

The existence of N has to be justified on the basis of the Axiom of
Comprehension: Let A be any particular inductive set; then clearly
N = {x ∈ A : x ∈ I for every inductive set I}.

The only remaining question is: Are there any inductive sets at all?

Unfortunately, the existence of infinite sets (such as N) cannot be
proved from the axioms introduced so far.

The reason is that these axioms have a general form: “For every set
X , there exists a set Y such that . . .”, where, if the set X is finite,
the set Y is also finite.

Since the only set whose existence we postulated outright is ∅, which
is finite, all the other sets whose existence is required by the axioms
are also finite.
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The Axiom of Infinity

The Axiom of Infinity

An inductive set exists.

Some mathematicians object to the Axiom of Infinity on the grounds
that a collection of objects produced by an infinite process (such as
N) should not be treated as a completed entity.

Infinite sets are basic tools in mathematics and the essence of set
theory. No contradiction resulting from their use has ever arisen.

The Axiom of Infinity yields the set of natural numbers N.

Lemma (N is Inductive)

N is inductive. If I is any inductive set, then N ⊆ I .

0 ∈ N because 0 ∈ I for any inductive I . If n ∈ N, then n ∈ I for any
inductive I , so (n + 1) ∈ I for any inductive I , and consequently
(n + 1) ∈ N. This shows that N is inductive.
The second part follows from the definition of N.
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Ordering of Natural Numbers

The next step is to define the ordering of natural numbers by size.

Since the main idea was to define each natural number as a set of
smaller natural numbers, we define the ordering as follows:

Definition (Ordering of N)

The relation < on N is defined by:

m < n if and only if m ∈ n.

It is now necessary to prove that < is indeed a linear ordering and
that the ordered set (N, <) has the properties that are expected of
the natural numbers.
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The Induction Principle

In the preceding section we defined the set N of natural numbers to
be the least set such that

(a) 0 ∈ N;
(b) If n ∈ N, then (n + 1) ∈ N.

We also defined m < n to mean m ∈ n.

The Induction Principle

Let P(x) be a property (possibly with parameters). Assume that:

(a) P(0) holds.

(b) For all n ∈ N, P(n) implies P(n + 1).

Then P holds for all natural numbers n.

This is an immediate consequence of our definition of N. The
assumptions (a) and (b) simply say that the set A = {n ∈ N : P(n)}
is inductive. Therefore, N ⊆ A.
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Using Proof by Induction

Lemma

(i) 0 ≤ n, for all n ∈ N.

(ii) For all k , n ∈ N, k < n + 1 if and only if k < n or k = n.

(i) We let P(x) be the property “0 ≤ x” and proceed to establish the
assumptions of the Induction Principle.

(a) P(0) holds. P(0) is the statement “0 ≤ 0”, which is certainly true
(0 = 0).

(b) P(n) implies P(n + 1). Let us assume that P(n) holds, i.e., 0 ≤ n.
This means, by definition of <, that 0 = n or 0 ∈ n. In either case,
0 ∈ n ∪ {n} = n + 1, so 0 < (n + 1) and P(n + 1) holds.

Having proved (a) and (b) we use the Induction Principle to conclude
that P(n) holds for all n ∈ N, i.e., 0 ≤ n, for all n ∈ N.

(ii) This part does not require induction. It suffices to observe that
k ∈ n ∪ {n} if and only if k ∈ n or k = n.

George Voutsadakis (LSSU) Set Theory June 2014 14 / 73



Natural Numbers Properties of Natural Numbers

Transitivity of <

Theorem

(N, <) is a linearly ordered set.

We must show that < is transitive, asymmetric and linear on N.
(i) The relation < is transitive on N: We have to show that, for all

k ,m, n ∈ N , k < m and m < n imply k < n. We use induction on n.
Let P(x) be “for all k ,m ∈ N, if k < m and m < x , then k < x”.
(a) P(0) holds. P(0) asserts: for all k ,m ∈ N, if k < m and m < 0, then

k < 0. By the lemma, there is no m ∈ N such that m < 0, so P(0) is
trivially true.

(b) Assume P(n), i.e., for all k ,m ∈ N, if k < m and m < n, then k < n.
We have to prove P(n + 1), i.e., we have to show that k < m and
m < (n + 1) imply k < (n + 1). But if k < m and m < (n + 1), then
by the lemma, m < n or m = n. If m < n, we get k < n by the
inductive assumption P(n). If m = n, we have k < n from k < m. In
either case, k < n + 1 by the lemma and, therefore, P(n + 1).

The Induction Principle now asserts the validity of P(n), for all n ∈ N.
This is precisely the statement of transitivity of (N, <).
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Asymmetry of <

We continue the proof by showing asymmetry:

(ii) The relation < is asymmetric on N: Assume that n < k and k < n. By
transitivity, this implies n < n. So we only have to show that the latter
is impossible.
We proceed again by induction:

Clearly, 0 < 0 is impossible (it would mean that ∅ ∈ ∅).
Let us assume that n < n is false and prove that (n + 1) < (n + 1) is
false. If (n + 1) < (n + 1), were true, we would have either n + 1 < n

or n + 1 = n by the preceding lemma. Since n < n + 1 holds by the
same lemma, and we have proved transitivity of < previously, we
conclude that n < n, thus contradicting our inductive assumption.

We have now established both (a) and (b) in the Induction Principle
(with P(x) being “x < x is false”). We can conclude that n < n is
impossible for any n ∈ N. We now know that < is a (strict) ordering of
N.

It remains to prove < is a linear ordering of N.
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< is Linear

It remains to prove that < is a linear ordering.
(iii) < is a linear ordering of N: We have to prove that for all m, n ∈ N

either m < n or m = n or n < m. We proceed by induction on n.
(a) For all m ∈ N, either m < 0 or m = 0 or 0 < m. This follows

immediately from the preceding lemma.
(b) Assume that for all m ∈ N, either m < n nor m = n or n < m. We

have to prove an analogous statement with (n + 1) in place of n.
If m < n, then m < (n + 1) by the lemma and transitivity.
Similarly, if m = n then m < (n + 1).
Finally, if n < m, we would like to conclude that n + 1 ≤ m. This
would show that, for all m ∈ N, either m < (n + 1) or m = (n + 1) or
(n + 1) < m, establishing (b), and completing the proof.
So we prove that if n < m, then (n + 1) ≤ m holds for all m ∈ N by
induction on m (n is a parameter; that is, we are going to apply the
Induction Principle to the property P(x): “If n < x , then n + 1 ≤ x”).
We do this in the next slide and conclude that P(m) holds for all
m ∈ N, as needed.

Finally, we finish the proof of (iii) by observing that the assumptions
(a) and (b) of the Induction Principle have now been established.
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Finishing Proof of Linearity of <

We are going to apply the Induction Principle to the property P(x):
“If n < x , then n+ 1 ≤ x”.

If m = 0, the statement “if n < 0, then n + 1 ≤ 0” is true (since its
hypothesis must he false).
Assume P(m), i.e., if n < m, then (n + 1) ≤ m. To prove P(m + 1),
assume that n < m + 1. Then n < m or n = m.
If n < m, n + 1 ≤ m by the inductive assumption, and so
n+ 1 ≤ m+ 1.
If n = m then of course n + 1 = m + 1.
In either case P(m + 1) is proved.
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Induction Principle Second Version

The preceding Proof of Part (iii) is an example of “double induction”:

In order to prove a statement depending on two variables m and n, we
proceed by induction on one of them (n).
But, then, the proof of the induction assumption (b) in itself requires
induction on the other variable m (for fixed n).

We state and prove another version of the Induction Principle that is
often more convenient.

The Induction Principle, Second Version

Let P(x) be a property (possibly with parameters). Assume that, for all
n ∈ N,

If P(k) holds for all k < n, then P(n).

Then P holds for all natural numbers n.
I.e., in order to prove P(n), for all n ∈ N, it suffices to prove P(n) (for all
n ∈ N) under the assumption that it holds for all smaller natural numbers.
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Proof of the Second Version of the Induction Principle

Assume that

If P(k) holds for all k < n, then P(n).

Consider the property Q(n): “P(k) holds for all k < n”.

Clearly Q(0) is true (there are no k < 0).
If Q(n) holds, then Q(n + 1) holds: If Q(n) holds, then P(k) holds for
all k < n, and consequently also for k = n, by hypothesis. The
preceding lemma shows that P(k) holds for all k < n+1, and therefore
Q(n + 1) holds.

By the Induction Principle, Q(n) is true for all n ∈ N. Since for
k ∈ N there is some n > k (e.g., n = k + 1), we have P(k) true for
all k ∈ N, as desired.
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Well-Ordering

Definition (Well-Ordering)

A linear ordering ≺ of a set A is a well-ordering if every nonempty subset
of A has a least element. The ordered set (A,≺) is then called a
well-ordered set.

Well-ordered sets form a backbone of set theory and we study them
extensively later.

Theorem (Well-Ordering of N)

(N, <) is a well-ordered set.

Let X be a nonempty subset of N. We have to show that X has a
least element. So we assume that X does not have a least element
and consider N−X . The crucial step is to observe that if k ∈ N−X ,
for all k < n, then n ∈ N− X : otherwise, n would be the least
element of X . By the second version of the Induction Principle we
conclude that n ∈ N− X holds for all natural numbers n (P(x) is the
property “x ∈ N− X”) and therefore that X = ∅, a contradiction.
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Bounded Sets of Natural Numbers Have Maxima

Theorem

If a nonempty set of natural numbers has an upper bound in the ordering
<, then it has a greatest element.

Let A ⊆ N, A 6= ∅ be given. Let
B = {k ∈ N : k is an upper bound of A}. We assume that B 6= ∅.
By the preceding theorem, B has a least element n, so n = sup(A).
The proof is completed by showing that n ∈ A.
Trivial induction proves that either n = 0 or n = k + 1 for some
k ∈ N. Assume that n 6∈ A. Then n > m, for all m ∈ A. Since A 6= ∅,
this means that n 6= 0. Therefore, n = k + 1 for some k ∈ N, which
gives k ≥ m for all m ∈ A. Thus k is an upper bound of A and
k < n, a contradiction.
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Subsection 3

The Recursion Theorem
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Finite and Infinite Sequences

A sequence is a function whose domain is either a natural number or
N.

A sequence whose domain is some natural number n ∈ N is called a
finite sequence of length n and is denoted 〈ai : i < n〉 or
〈ai : i = 0, 1, . . . , n − 1〉 or 〈a0, a1, . . . , an−1〉.

〈〉 (= ∅) is the unique sequence of length 0, the empty sequence.

Seq(A) =
⋃

n∈N An denotes the set of all finite sequences of elements
of A.

If the domain of a sequence is N, we call it an infinite sequence and
denote it 〈ai : i ∈ N〉 or 〈ai : i = 0, 1, 2, . . .〉 or 〈ai 〉

∞
i=0.

So infinite sequences of elements of A are just members of AN.

We also use the notation {ai : i ∈ N}, {ai}
∞
i=0, etc., for the range of

the sequence 〈ai : i ∈ N〉.

Similarly, {ai : i < n} or {a0, a1, . . . , an−1} denotes the range of
〈ai : i < n〉.
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Examples of Sequences

We introduce two examples of sequences:
(a) s : N → N is defined by s0 = 1 and sn+1 = n2, for all n ∈ N.
(b) f : N → N is defined by f0 = 1 and fn+1 = fn × (n + 1), for all n ∈ N.
The two definitions exhibit a crucial difference.

The definition of s gives explicit instructions on how to compute sx for
any x ∈ N. It enables us to formulate a property P such that sx = y if
and only if P(x , y). P is “either x = 0 and y = 1 or, for some n ∈ N,
x = n + 1 and y = n2”. The existence and uniqueness of s satisfying
(a) follows from our axioms: s = {(x , y) ∈ N×N : P(x , y)}.
The instructions supplied by the definition of f tell us only how to
compute fx provided that the value of f for some smaller number
(namely, x − 1) was already computed. It is not immediately obvious
how to formulate a property P, not involving the function f being
defined, such that fx = y if and only if P(x , y).

The definition in (b) gives conditions f ought to satisfy: “f is a
function on N to N which satisfies the “initial condition”: f0 = 1, and
the “recursive condition”: for all n ∈ N, fn+1 = fn × (n + 1)”.
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The Recursion Theorem

A recursive definition of this kind is justified only if it is possible to
show that there exists some function satisfying the required
conditions, and that there do not exist two or more such functions.

The Recursion Theorem

For any set A, any a ∈ A, and any function g : A×N → A, there exists a
unique infinite sequence f : N → A such that

(a) f0 = a;

(b) fn+1 = g(fn, n), for all n ∈ N.

In Example (b), we had A = N, a = 1, and g(u, v) = u × (v + 1).

The set a is the “initial value” of f .

The role of g is to provide instructions for computing fn+1 assuming
fn has already been computed.
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Idea Behind the Proof of the Recursion Theorem

The proof of the Recursion Theorem consists of devising an explicit
definition of f .

In Example (b), fn is the n-factorial. An explicit definition of f is:
f0 = 1 and fm = 1× 2× · · · × (m − 1)×m, if m 6= 0 and m ∈ N.

The problem consists in making “· · ·” precise. It can be resolved by
stating that fm is the result of a computation:
1, 1×1, (1×1)×2, (1×1×2)×3, . . . , (1×1×2×· · ·× (m−1))×m.

A computation is a finite sequence starting with the “initial value” of
f and repeatedly applying g .

In the example, the m-step computation t is a finite sequence of
length m + 1 where t0 = 1 and tk+1 = tk × (k + 1) = g(tk , k), for all
k < m, k ≥ 0.

The rigorous explicit definition of f then is:
fm = tm where t is an m-step computation (based on a = 1 and g).
The existence and uniqueness of f is reduced to showing that there is
precisely one m-step computation for each m ∈ N.
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Proof of Existence I

Existence of f : A function t : (m + 1) → A is called an m-step
computation based on a and g if t0 = a, and, for all k such that
0 ≤ k < m, tk+1 = g(tk , k). Notice that t ⊆ N× A. Let

F = {t ∈ P(NxA) : t is an m-step computation for some m ∈ N}.

Let f =
⋃
F .

Claim: f is a function.
It suffices to show that the system of functions F is compatible. So let
t, u ∈ F , domt = n ∈ N, domu = m ∈ N. Assume, e.g., n ≤ m. Then
n ⊆ m, and it suffices to show that tk = uk , for all k < n. This can be
done by induction:

First, t0 = a = u0.
Next, let k be such that k + 1 < n, and assume tk = uk . Then
tk+1 = g(tk , k) = g(uk , k) = uk+1.

Thus, tk = uk , for all k < n.
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Proof of Existence II

Existence of f (Cont’d):

Claim: domf = N and ranf ⊆ A.
We know that domf ⊆ N and ranf ⊆ A. To show that domf = N, it
suffices to prove that for each n ∈ N there is an n-step computation t.
We use the Induction Principle.

Clearly, t = {(0, a)} is a 0-step computation.
Assume that t is an n-step computation. Then the following function
t+ on (n + 1) + 1 is an (n + 1)-step computation:

t+k = tk , if k ≤ n

t+n+1 = g(tn, n).

We conclude that each n ∈ N is in the domain of some computation
t ∈ F , so N ⊆

⋃
t∈F domt = domf .
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Uniqueness of f

We finish the proof of the existence of f :

Claim: f satisfies conditions (a) and (b).
Clearly, f0 = a since t0 = a, for all t ∈ F . To show that fn+1 = g(fn, n),
for any n ∈ N, let t be an (n + 1)-step computation. Then tk = f , for
all k ∈ domt. So fn+1 = tn+1 = g(tn, n) = g(fn, n).

The existence of a function f with the properties required by the
Recursion Theorem follows from the three claims.

Uniqueness of f : Let h : N → A be such that

(a’) h0 = a;
(b’) hn+1 = g(hn, n), for all n ∈ N.

We show that fn = hn, for all n ∈ N, again using induction.

First, f0 = a = h0.
If fn = hn, then fn+1 = g(fn, n) = g(hn, n) = hn+1.

Therefore, f = h.
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Characterization of (N, <)

We use the Recursion Theorem to prove that some properties of the
ordering of N by size uniquely characterize the ordered set (N, <).

Theorem (Characterization of <)

Let (A,≺) be a nonempty linearly ordered set with the properties:

(a) For every p ∈ A, there is q ∈ A such that q ≻ p.

(b) Every nonempty subset of A has a ≺-least clement.

(c) Every nonempty subset of A that has an upper bound has a ≺-greatest
element.

Then (A,≺) is isomorphic to (N, <).

We construct the isomorphism f using the Recursion Theorem. Let a
be the least element of A and let g(x , n) be the least element of A
greater than x (for any n). Then a ∈ A and g is a function on A×N

into A: g(x , n) is defined for any x ∈ A because of (a) and (b) and
does not depend on n.
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Proof of the Characterization of (N, <)

a is the least element of A and g(x , n) is the least element of A
greater than x . The Recursion Theorem guarantees the existence of a
function f : N → A, such that
(i) f0 = a, the least element of A.
(ii) fn+1 = g(fn, n) = the least element of A greater than fn.

It is obvious that fn ≺ fn+1, for each n ∈ N. By induction, we get
fn ≺ fm, whenever n < m. Consequently, f is a one-to-one function.
It remains to show that the range of f is A.
If not, A− ranf 6= ∅. Let p be the least element of A− ranf . The set
B = {q ∈ A : q ≺ p} has an upper bound p, and is nonempty
(otherwise, p would be the least element of A, but then p = f0). Let
q be the greatest element of B (it exists by assumption (c)). Since
q ≺ p, we have q = fm, for some m ∈ N. However, it is now easily
seen that p is the least element of A greater than q. Therefore,
p = fn+1, by the recursive condition (ii). Consequently, p ∈ ranf , a
contradiction.
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General Recursion

In some recursive definitions, the value of fn+1 depends not only on
fn, but also on fk for other k < n.

A typical example is the Fibonacci sequence: 1, 1, 2, 3, 5, 8, 13, 21, . . ..
Here f0 = 1, f1 = 1, and fn+1 = fn + fn−1, for n > 0.

The following theorem formalizes this recursive construction:

Theorem (General Recursion)

For any set S and any function g : Seq(S) → S , there exists a unique
sequence f : N → S such that fn = g(f ↾ n) = g(〈f0, . . . , fn−1〉), for all
n ∈ N.

Notice that, in particular, f0 = g(f ↾ 0) = g(〈〉) = g(∅).

To obtain the Fibonacci sequence, we let

g(t) =

{
1, if t is a finite sequence of length 0 or 1
tn−1 + tn−2, if t is a finite sequence of length n > 1
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Proof of General Recursion

The idea is to use the Recursion Theorem to define the sequence
〈Fn : n ∈ N〉 = 〈f ↾ n : n ∈ N〉. So we define

F0 = 〈〉 and Fn+1 = Fn ∪ {(n, g(Fn))}, for all n ∈ N.

The existence of 〈Fn : n ∈ N〉 follows from the Recursion Theorem
with A = Seq(S), a = 〈〉 and G : A×N → A defined by

G (t, n) =

{
t ∪ {〈n, g(t)〉}, if t is a sequence of length n

〈〉, otherwise
.

It is easy to prove by induction that each Fn belongs to Sn and that
Fn ⊆ Fn+1, for all n ∈ N. Therefore, {Fn : n ∈ N} is a compatible
system of functions. Let f =

⋃
n∈N Fn. Then, clearly, f : N → S and

f ↾ n = Fn, for all n ∈ N. Finally, fn = Fn+1(n) = g(Fn) = g(f ↾ n),
as needed.
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Parametric Version of the Recursion Theorem

The following “parametric” version allows us to use recursion to
define functions of two variables.

Theorem (Parametric Version of Recursion)

Let a : P → A and g : P ×A×N → A be functions. There exists a unique
function f : P ×N → A, such that

(a) f (p, 0) = a(p), for all p ∈ P ;

(b) f (p, n + 1) = g(p, f (p, n), n), for all n ∈ N and p ∈ P .

The notation fp,0 may be used in place of f (p, 0), etc.

Define an m-step computation to be a function
t : P × (m + 1) → A such that, for all p ∈ P , t(p, 0) = a(p) and

t(p, k + 1) = g(p, t(p, k), k), for all k , such that 0 < k < m.

Then follow the steps in the proof of the Recursion Theorem, always
carrying p along.
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Arithmetic of Natural Numbers
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Definition of Addition

We apply the Recursion Theorem to define addition of natural
numbers; Then, we use Induction to prove basic properties of addition.

Theorem

There is a unique function + : N×N → N such that

(a) +(m, 0) = m, for all m ∈ N;

(b) +(m, n + 1) = +(m, n) + 1, for all m, n ∈ N.

In the parametric version of the Recursion Theorem let A = P = N,
a(p) = p, for all p ∈ N, and g(p, x , n) = x + 1, for all p, x , n ∈ N.
Notice that letting n = 0 in (b) leads to +(m, 0 + 1) = +(m, 0) + 1:
Since, by (a), +(m, 0) = m and, by the definition of the number 1,
0 + 1 = S(0) = 1, we have +(m, 1) = m + 1 = S(m), so the
successor of m ∈ N is indeed the sum of m and 1.
We write m + n instead of +(m, n) in the sequel. In this notation:

m+ 0 = m;
m+ (n + 1) = (m + n) + 1.
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Commutativity of Addition

Theorem (Commutativity of Addition)

Addition is commutative; i.e., for all m, n ∈ N, m + n = n +m.

Let us say that n commutes if m + n = n +m holds for all m ∈ N.
We prove that every n ∈ N commutes, by induction on n.

To show that 0 commutes, it suffices to show that 0 +m = m for all m
(because, then, 0 +m = m+0 by definition). Clearly, 0 + 0 = 0, and if
0+m = m, then 0+ (m+1) = (0+m) + 1 = m+1 (induction on m).
Assume that n commutes. We show that n + 1 commutes. We prove,
by induction on m, that m + (n + 1) = (n + 1) +m for all m ∈ N.

If m = 0, then the equality has already been shown.
Assume that m + (n + 1) = (n + 1) +m.
(m + 1) + (n + 1) = ((m + 1) + n) + 1 (by definition)

= (n + (m + 1)) + 1 (since n commutes)
= ((n +m) + 1) + 1 (by definition)
= ((m + n) + 1) + 1 (since n commutes)
= (m + (n + 1)) + 1 (by definition)
= ((n + 1) +m) + 1 (induction hypothesis)
= (n + 1) + (m + 1) (by definition).
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Peano Arithmetic

The theory of arithmetic of natural numbers can be developed
axiomatically. The system of axioms is called Peano arithmetic:

The undefined notions of Peano arithmetic are the constant 0, the
unary operation S , and the binary operations + and ·.
The axioms of Peano arithmetic are:

(P1) If S(n) = S(m), then n = m.
(P2) S(n) 6= 0.
(P3) n + 0 = n.
(P4) n + S(m) = S(n +m).
(P5) n · 0 = 0.
(P6) n · S(m) = (n ·m) + n.
(P7) If n 6= 0, then n = S(k), for some k .
(P8) The Induction Schema: Let A be an arithmetical property (i.e., a

property expressible in terms of +, ·,S , 0). If 0 has the property A and
if A(k) implies A(S(k)) for every k , then every number has A.

It is not difficult to verify that natural numbers and arithmetic
operations, as we defined them, satisfy the Peano axioms.
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Integers and Rational Numbers
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Idea Behind Subtraction

We defined natural numbers and their ordering and indicated how
arithmetic operations on natural numbers can be defined.
We now define integers and rational numbers.
The idea is to convert an arithmetic operation that is only partially
defined on natural numbers (subtraction in the case of integers,
division in the case of rationals) into a total operation.
We just outline the main ideas, and leave out almost all proofs.
Subtraction may be defined for those pairs (n,m) of natural numbers
where n ≥ m. In this case, n −m is the unique natural number k for
which n = m + k . If n < m, no such natural number k exists, and
n −m is undefined.
If n −m is represented by the ordered pair (n,m), different ordered
pairs represent the same integer, e.g., (2, 5) and (6, 9) both represent
−3. In general, (n1,m1) and (n2,m2) represent the same integer if
and only if n1 −m1 = n2 −m2. Rewritten as n1 +m2 = n2 +m1, it
involves only addition of natural numbers.
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Formal Construction of Z

Let Z′ = N×N. Define a relation ≈ on Z′ by

(a, b) ≈ (c , d) if and only if a + d = b + c .

The relation ≈ is an equivalence relation on Z′.

Let Z = Z′/≈ be the set of all equivalence classes of Z′ modulo ≈.
We call Z be the set of all integers. Its elements are integers.

Next, define a relation < on Z by

[(a, b)] < [(c , d)] if and only if a + d < b + c .

Since (a, b) represents a − b and (c , d) represents c − d ,
a − b < c − d should mean a + d < b + c .
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Representatives

< is well defined (i.e., truth or falsity of [(a, b)] < [(c , d)] does not
depend on the choice of representatives (a, b) and (c , d) but only on
their respective equivalence classes).
< it is a linear ordering.
For each integer [(a, b)]

either a ≥ b, in which case (a, b) ≈ (a − b, 0) (“-” is subtraction of
natural numbers, which is defined in this case)
or a < b, in which case (a, b) ≈ (0, b − a).

It follows that each integer contains a unique pair of the form (n, 0),
n ∈ N, or (0, n), n ∈ N− {0}. So [(n, 0)] are the positive integers
and [(0, n)] are the negative ones.
The mapping F : N → Z defined by F (n) = [(n, 0)] is one-to-one and
order-preserving, i.e., m < n implies that F (m) < F (n).
We identify each integer of the form [(n, 0)] with the corresponding
natural number n, and denote each integer of the form [(0, n)] by −n,
e.g., −3 = [(0, 3)] = [(2, 5)] = [(6, 9)].
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Addition and Multiplication on Z

(Z, <) has no endpoints;

{x ∈ Z : a < x < b}, a, b ∈ Z, a < b, has a finite number of
elements.

Every nonempty set of integers bounded from above has a greatest
element, and every nonempty set of integers bounded from below has
a least element.

We can define addition and multiplication of integers by

[(a, b)] + [(c , d)] = [(a + c , b + d)];
[(a, b)] · [(c , d)] = [(ac + bd , ad + bc)].

These operations satisfy the usual laws of algebra (commutativity,
associativity, and distributivity of multiplication over addition).

Moreover, for those integers that are natural numbers, addition and
multiplication of integers agree with addition and multiplication of
natural numbers.
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Subtraction and Absolute Value

We define subtraction by

[(a, b)] − [(c , d)] = [(a, b)] + (−[(c , d)]),

where −[(c , d)] = [(d , c)] is the opposite of [(c , d)].

Notice that −[(n, 0)] = [(0, n)] = −n and −[(0, n)] = [(n, 0)] = n, in
agreement with previous notation.

The absolute value |a| of an integer a is defined by

|a| =

{
a, if a ≥ 0
−a, if a < 0
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Fractions Over Z

We say that an integer a is divisible by an integer b if there is a
unique integer x such that a = b · x . This unique x is then called the
quotient of a and b.

We extend the system of integers so that any a is divisible by any b

and all useful arithmetic laws remain valid in the extended system.

Since the equation a = 0 · x bas either none or many solutions, the
best we can hope for is an extension in which for all a and all b 6= 0,
there is a unique x , such that a = b · x .
Let Q′ : Z× (Z− {0}) = {(a, b) ∈ Z2 : b 6= 0}. We call Q′ the set

of fractions over Z and write a/b in place of (a, b) for (a, b) ∈ Q′.

We define an equivalence ≈ on the set Q′ by
a

b
≈

c

d
if and only if a · d = b · c .

Let Q = Q′/≈ be the set of equivalence closes of Q modulo ≈.
Elements of Q are called rational numbers; the rational number
represented by a/b is denoted [a/b].
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Addition, Multiplication and Division in Q

There is an obvious one-to-one mapping i of the set Z of integers
into the rationals: i(a) = [a1 ].

We define addition and multiplication of rationals:
[a
b

]
+

[ c
d

]
=

[
a · d + b · c

b · d

]
,

[a
b

]
·
[ c
d

]
=

[ a · c
b · d

]
.

One must now show:
(a) Addition and multiplication of the rationals are well defined (i.e.,

independent of the choice of representative).
(b) For integers, the new definitions agree with the old ones: i.e.,

i(a+ b) = i(a) + i(b) and i(a · b) = i(a) · i(b), for all a, b ∈ Z.
(c) Addition and multiplication of rationals satisfy the usual laws of

algebra.
(d) If A ∈ Q, B ∈ Q, and B 6= [0/1], then the equation A = B · X has a

unique solution X ∈ Q. Thus, division of rational numbers is defined,
as long as the divisor is not zero; we denote this operation ÷:
X = A÷ B.
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Natural Ordering of Rationals

Finally, we extend the ordering of integers to the rationals.

First, notice that each rational can be represented by a fraction a/b
where the denominator b is greater than 0:

[a
b

]
=

[
−a

−b

]
and either b > 0 or −b > 0.

We now define the natural ordering of rationals:

If b > 0 and d > 0, let
[a
b

]
<

[ c
d

]
if and only if a · d < b · c .

The definition does not depend on the choice of representatives as
long as b > 0 and d > 0.

< is a linear ordering.

For a, b ∈ Z, a < b if and only if [a/1] < [b/1].

The usual algebraic laws (e.g., if a < b then a+ c < b+ c , etc.) hold.
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Density and Unboundedness of the Rational Ordering

Theorem

(Q, <) is a dense linearly ordered set and has no endpoints. In fact, for
every r ∈ Q there exists n ∈ N such that r < n.

Q is infinite: Since
a

b
− 1 <

a

b
<

a

b
+ 1, Q has no endpoints.

For the last statement:
If r ≤ 0 we can taken n = 1.
If r > 0, we write r = a/b where a > 0, b > 0, a, b ∈ N and take
n = a+ 1.

It remains to show that (Q, <) is dense. Let r , s be rationals such
that r < s and assume that r = a/b and s = c/d , where b > 0 and
d > 0. Now we let

x =
a · d + b · c

2 · b · d
,

i.e., x = (r + s)/2. Then r < x < s.
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The Integer Part of a Rational Number

Lemma

Given a rational number r , there is a unique integer e such that
e ≤ r < e + 1. We call e the integer part of r , denoted e = ⌊r⌋.

Let r = a
b
, b > 0.

Assume that a ≥ 0, 1 ≤ b, so a ≤ a · b and r = a
b
≤ a ∈ Z. It now

follows that S = {x ∈ Z : x ≤ r} ⊆ Z has an upper bound a ∈ Z.
If a < 0, then 0 is an upper bound on S .

Therefore, S has a greatest element e. Then e ≤ r < e + 1. Clearly,
e is the unique integer with this property.
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Expansion in Base p

By the preceding lemma, r = ⌊r⌋+ q, where ⌊r⌋ is an integer and
q ∈ Q, 0 ≤ q < 1. We concentrate on the expansion of q.

Construct a sequence of digits 0, 1, . . . , p − 1 by recursion as follows:

Find a1 ∈ {0, . . . , p − 1} such that a1/p ≤ q < (a1 + 1)/p (let
a1 = ⌊q · p⌋).
Then find a2 ∈ {0, . . . , p − 1} such that
a1/p + a2/p

2 ≤ q < a1/p + (a2 + 1)/p2 (let a2 = ⌊(q − a1/p) · p2⌋).
In general, find ak ∈ {0, . . . , p − 1} such that

a1

p
+ · · ·+

ak

pk
≤ q <

a1

p
+ · · ·+

ak + 1

pk

(take ak =

⌊(
q −

a1

p
− · · · −

ak−1

pk−1

)
· pk

⌋
).

We call the sequence 〈ai , i ∈ N〉 the expansion of q in base p.

When p = 10, it is customary to write q = 0.a1a2a3 . . ..
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Properties of Expansion in Base p

It can be shown that:

(a) There is no i such that aj = p − 1, for all j ≥ i .
(b) There exist n ∈ N and ℓ > 0 such that an+ℓ = an, for all n ≥ n0 (the

expansion is eventually periodic, with period ℓ).

Moreover, if q = a
b
, then we can find a period ℓ such that ℓ ≤ |b|.

Conversely, each sequence 〈an : n ∈ N〉 with the properties (a) and
(b) is an expansion of some rational number q, with 0 ≤ q < 1.
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Binary Operations

The functions +, ·, etc., are usually referred to as operations.

Each of these operations assigns to a pair of objects (numbers, sets) a
third object of the same kind (their sum, difference, union, etc.).

The order may make a difference, e.g., 7− 2 and 2− 7 are different.

Definition (Binary Operation)

A binary operation on S is a function mapping a subset of S2 into S .

Nonletter symbols such as +,×, ·,△, etc., are often used to denote
operations.

The value (result) of the operation ∗ at (x , y) is then denoted x ∗ y
rather than ∗(x , y).

There are also operations, such as square root or derivative, which are
applied to one object rather than to a pair of objects.
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More on Operations

Definition (Unary and Ternary Operation)

A unary operation on S is a function mapping a subset of S into S .

A ternary operation on S is a function on a subset of S3 into S .

Definition (Closure Under an Operation)

Let f be a binary operation on S and A ⊆ S . A is closed under the

operation f if for every x , y ∈ A such that f (x , y) is defined, f (x , y) ∈ A.

Similar definitions apply in the case of unary or ternary operations.
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Examples

(a) Let + be the operation of addition on the set of all real numbers.

Then + is defined for all real numbers a and b.
The set of all real numbers, as well as the set of all rational numbers
and the set of all integers, are closed under +.
The set of even natural numbers is closed under +, but the set of odd
natural numbers is not.

(b) Let ÷ be the operation of division on the set of all real numbers.

÷ is not defined for (a, b) where b = 0.
The set of all rational numbers is closed under ÷, but the set of all
integers is not.

(c) Let S be a set; define binary operations ∪S and ∩S on S ms follows:

(i) If x , y ∈ S and x ∪ y ∈ S , then x ∪S y = x ∪ y .
(ii) If x , y ∈ S and x ∩ y ∈ S , then x ∩S y = x ∩ y .

If we take S = P(A) for some A, ∪S and ∩S are defined for every pair
(x , y) ∈ S2.
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Intuition Behind Structures

A structure consists of a set A and of several relations and operations
on A.

For example, we consider structures with two binary relations and two
operations, say a unary operation and a binary operation. Let

A be a set,
R1 and R2 be binary relations in A,
f be a unary operation and
g a binary operation on A.

We make use of the five-tuple (A,R1,R2, f , g) to denote the
structure.

Example:
(a) Every ordered set is a structure with one binary relation.
(b) (A,∪A,∩A,⊆A) is a structure with two binary operations and one

binary relation.
(c) Let R be the set of all real numbers. (R,+,−,×,÷) is a structure

with four binary operations.
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Requirement for Ordered n-tuples

Recall that an ordered pair (a0, a1) has been defined as a set that
uniquely determines its two coordinates a0 and a1, i.e.,
(a0, a1) = (b0, b1) if and only if a0 = b0 and a1 = b1.

We called a0 the first coordinate of (a0, a1), and a1 its second
coordinate.

In analogy, an n-tuple (a0, a1, . . . , an−1) should be a set that uniquely
determines its n coordinates a0, a1, . . . , an−1, i.e., we want

(a0, . . . , an−1) = (b0, . . . , bn−1)
if and only if ai = bi , for all i = 0, . . . , n − 1.

We already introduced a notion that satisfies this condition: the
sequence of length n, 〈a0, a1, . . . , an−1〉

The statement that (a0, . . . , an−1) = (b0, . . . , bn−1) if and only if
ai = bi , for all i = 0, . . . , n − 1, is just a reformulation of equality of
functions.

George Voutsadakis (LSSU) Set Theory June 2014 58 / 73



Natural Numbers Operations and Structures

Ordered n-tuples

We therefore define n-tuples as sequences of length n.

For each i , 0 ≤ i < n, ai is called the (i + 1)-st coordinate of
〈a0, a1, . . . , an−1〉. So a0 is the first coordinate, a1 is the second
coordinate, . . ., an−1 is the n-th coordinate.

The only 0-tuple is the empty sequence 〈〉 = ∅, having no coordinates.

1-tuples are sequences of the form 〈a0〉, i.e., sets of the form
{(0, a0)}; it usually causes no confusion if one does not distinguish
between a 1-tuple 〈a0〉 and an element a0.

If 〈Ai : 0 ≤ i < n〉 is a finite sequence of sets, then the n-fold
cartesian product

∏
0≤i<n Ai , as defined before, is just the set of all

n-tuples a = 〈a0, a1, . . . , an−1〉 such that a0 ∈ A0, a1 ∈ A1, . . .,
an−1 ∈ An−1.

If Ai = A, for all i , 0 ≤ i < n, then
∏

0≤i<n Ai = An is the set of all
n-tuples with all coordinates from A.

A0 = {〈〉} and A1 can be identified with A.
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n-ary Relations and n-ary Operations

An n-ary relation R in A is a subset of An. We write
R(a0, a1, . . . , an−1) instead of (a0, a1, . . . , an−1) ∈ R .

An n-ary operation F on A is a function on a subset of An into A.
We write F (a0, a1, . . . , an−1) instead of F (〈a0, a1, . . . , an−1〉).

If P(x0, x1, . . . , xn−1) is a property with parameters x0, x1, . . . , xn−1,
we write

{〈a0, . . . , an−1〉 : a0 ∈ A0, . . . , an−1 ∈ An−1 and P(a0, . . . , an−1)}

to denote the set

{a ∈
∏

0≤i<n Ai : for some a0, . . . , an−1,

a = 〈a0, . . . , an−1〉 and P(a0, . . . , an−1)}.
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Pairs and 2-tuples

1-ary relations need not be distinguished from subsets of A.

1-ary operations are identified with functions on a subset of A into A.

0-ary relations (∅ and {〈〉}) do not have much use.

0-ary operations are objects of the form {(〈〉, a)} where a ∈ A. We
call them constants and in the sequel identify them with elements of
A, i.e., we do not distinguish between {(〈〉, a)} and a.

Note that the ordered pair (a0, a1) = {{a0}, {a0, a1}}, is generally a
different set from the just-defined 2-tuple 〈a0, a1〉 = {(0, a0), (1, a1)}.

Consequently, we have two definitions of cartesian product, A0 × A1

and
∏

0≤i<2 Ai , two definitions of binary relations and operations, etc.

However, there is a canonical one-to-one correspondence between
ordered pairs and 2-tuples that preserves first and second coordinates,
defined by δ((a0, a1)) = 〈a0, a1〉.

Thus, for almost all practical purposes, it makes no difference which
definition one uses.
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Types and Structures

A type τ is an ordered pair (〈r0, . . . , rm−1〉, 〈f0, . . . , fn−1〉) of finite
sequences of natural numbers, where ri > 0 for all 0 ≤ i ≤ m − 1.

A structure of type τ is a triple A = (A, 〈R0, . . . ,Rm−1〉, 〈F0, . . . ,
Fn−1〉), where Ri is an ri -ary relation on A for each i ≤ m − 1 and Fj
is an fj -ary operation on A for each j ≤ n − 1. In addition, we require
Fj 6= ∅ if fj = 0. (If fj = 0, Fj is a 0-ary operation on A, whence,
following earlier remarks Fj is a constant, i.e., just a distinguished
element of A.)

Example: N = (N, 〈<〉, 〈0,+, ·〉) is a structure of type (〈2〉, 〈0, 2, 2〉).
It carries one binary relation, one constant, and two binary operations.

Example: R = (R, 〈〉, 〈0, 1,+,−,×,÷〉) is a structure of type
(〈〉, 〈0, 0, 2, 2, 2, 2〉), etc.
We often present the structure as a (1 +m + n)-tuple, for example
(N, <, 0,+, ·), when it is understood which symbols represent
relations and which operations.

We call A the universe of the structure.
George Voutsadakis (LSSU) Set Theory June 2014 62 / 73



Natural Numbers Operations and Structures

Isomorphism of Structures

Definition (Isomorphism of Structures)

An isomorphism between structures A = (A, 〈R0, . . . ,Rm−1〉, 〈F0, . . . ,
Fn−1〉) and A′ = (A′, 〈R ′

0, . . . ,R
′
m−1〉, 〈F

′
0, . . . ,F

′
n−1〉) of the same type τ

is a one-to-one mapping h on A onto A′ such that

(a) Ri(a0, . . . , ari−1) if and only if R ′
i (h(a0), . . . , h(ari−1)) holds, for all

a0, . . . , ari−1 ∈ A and i ≤ m − 1;

(b) h(Fj(a0, . . . , afj−1)) = F ′
j (h(a0), . . . , h(afj−1)) holds, for all

a0, . . . , afj−1 ∈ A and all j ≤ n−1, provided that either side is defined.

The structures are called isomorphic if there is an isomorphism
between them.
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Abstract Example of Isomorphism of Structures

Example: Let (A,R1,R2, f , g) and (A′,R ′
1,R

′
2, f

′, g ′) be structures
with two binary relations and one unary and one binary operation.
Then h is an isomorphism of (A,R1,R2, f , g) and (A′,R ′

1,R
′
2, f

′, g ′) if
all of the following requirements hold:

(a) h is a one-to-one function on A onto A′.
(b) For all a, b ∈ A, a R1 b if and only if h(a) R ′

1 h(b).
(c) For all a, b ∈ A, a R2 b if and only if h(a) R ′

2 h(b).
(d) For all a ∈ A, f (a) is defined if and only if f ′(h(a)) is defined and

h(f (a)) = f ′(h(a)).
(e) For all a, b ∈ A, g(a, b) is defined if and only if g ′(h(a), h(b)) is

defined and h(g(a, b)) = g ′(h(a), h(b)).
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A Concrete Example

Example: Let A be the set of all real numbers, ≤A be the usual
ordering of real numbers, and + be the operation of addition on A.
Let A′ be the set of all positive real numbers, ≤A′ , be the usual
ordering of positive real numbers, and × be the operation of
multiplication on A′. We show that the structures (A,≤A,+) and
(A′,≤A′ ,×) are isomorphic.

Let h be the function h(x) = ex , for all x ∈ A. We prove that h is an
isomorphism of (A,≤A,+) and (A′,≤A′ ,×). We have to prove:

(a) h is a one-to-one function on A onto A′: Clearly h is a function,
domh = A, and ranh = A′. Moreover, if x1 6= x2, then ex1 6= ex2 .

(b) Let x1, x2 ∈ A; then x1 ≤A x2 if and only if h(x1) ≤A′ h(x2): Since the
function ex is increasing, x1 ≤ x2 if and only if ex1 ≤ ex2 is indeed true.

(c) Let x1, x2 ∈ A; then x1 + x2 is defined if and only if h(x1)× h(x2) is
defined and h(x1 + x2) = h(x1)× h(x2): First, notice that both + on A

and × on A′ are defined for all ordered pairs. Now,
h(x1 + x2) = ex1+x2 = ex1 × ex2 = h(x1)× h(x2).
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Properties of Isomorphic Structures

Isomorphic structures have exactly the same properties as far as the
relations and operations on the structures are concerned.

Example: Let (A,R) and (B ,S) be isomorphic (R and S are binary
relations). R is an ordering of A if and only if S is an ordering of B .
Moreover, A has a least element in R if and only if B has a least
element in S .

Let h be an isomorphism of (A,R) and (B ,S). Assume that R is an
ordering of A. We prove that S is an ordering of B . Let
b1, b2, b3 ∈ B and b1 S b2, b2 S b3. Since h is onto B , there exist
a1, a2, a3 ∈ A, such that b1 = h(a1), b2 = h(a2), and b3 = h(a3).
Because a1 R a2 holds if and only if h(a1) S h(a2) holds, i.e., if and
only if b1 S b2 holds, we conclude that a1 R a2 and similarly a2 R a3.
But R is transitive in A, so a1 R a3. But then h(a1) S h(a3), i.e.,
b1 S b3. Reflexivity and antisymmetry are proven similarly.
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Example (Cont’d)

In an analogous way, it can be shown that, if S is an ordering of B ,
then R is an ordering of A.
We show antisymmetry. Suppose that a1, a2 ∈ A, such that a1 R a2
and a2 R a1. Then h(a1) S h(a2) and h(a2) S h(a1). But, S is an
ordering in B , whence, by antisymmetry, h(a1) = h(a2). Now, since h

is one-to-one, we get a1 = a2, proving antisymmetry of R in A.

Finally, let A have a least element. We claim that B has a least
element. Let a be the least element of A, i.e., a R x holds for all
x ∈ A. If y ∈ B , then y = h(x) for some x ∈ A. But, for this x ,
a R x holds. Correspondingly, h(a) S h(x) holds. Hence, h(a) S y

holds for all y ∈ B . Thus h(a) is the least element of B .
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Automorphisms of Structures

An isomorphism between a structure A and itself is called an
automorphism of A.

The identity mapping on the universe of A is trivially an
automorphism of A.

The structure (N, <) has no other automorphisms.

On the other hand, the structure (Z, <), where Z is the set of all
integers, has nontrivial automorphisms. In fact, they are precisely the
functions fh, h ∈ Z, where

fh(x) = x + h, for all x ∈ Z.
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Closed Subsets of Structures

Consider a fixed structure A = (A, 〈R0, . . . ,Rm−1〉, 〈F0, . . . ,Fn−1〉). A
set B ⊆ A is called closed if the result of applying any operation to
elements of B is again in B , i.e., if, for all j ≤ n− 1 and all
a0, . . . , afj−1 ∈ B , Fj(a0, . . . , afj−1) ∈ B provided that it is defined. In
particular, all constants of A belong to B .

Let C ⊆ A. The closure of C , denoted C , is the least closed set
containing all elements of C :

C =
⋂

{B ⊆ A : C ⊆ B and B is closed}.

Notice that A is a closed set containing C , so the system whose
intersection defines C is nonempty.

It is trivial to check that C is closed; by definition, then, C is indeed
the least closed set containing C .
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Examples

(a) Every set B ⊆ A is closed if A has no operations.

(b) Let R be the set of all real numbers and let C = {0}. The set of all
natural numbers N is the closure of C in the structure (R, f ) where f

is the successor function defined by

f (x) = x + 1, for all real numbers x .

(c) Let C = {0, 1}; the set of all integers Z is the closure of C in the
structure (R,+,−) or in (R,+,−,×).

(d) The set of all rationals Q is the closure of ∅ in (R, 0, 1,+,−,×,÷).

The notion of closure is important in algebra, logic, and other areas of
mathematics.

We now turn on how to construct the closure of a set “from below”.
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Construction of a Closure

Theorem (Construction of Closure)

Let A = (A, 〈R0, . . . ,Rm−1〉, 〈F0, . . . ,Fn−1〉) be a structure and let C ⊆ A.
If the sequence 〈Ci : i ∈ N〉 is defined recursively by

C0 = C ;

Ci+1 = Ci ∪ F0[C
f0
i ] ∪ · · · ∪ Fn−1[C

fn−1

i ],

then C =
⋃∞

i=0 Ci ;

Of course, the notation A0 ∪ · · · ∪ An−1 is a shorthand for
⋃

0≤i<n Ai .

Observe that Ci ⊆ Ci+1, for all i , so the sequence 〈Ci : i ∈ N〉 is
nondecreasing.
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Proof of the Closure Theorem

Let C̃ =
⋃∞

i=0 Ci .

We first prove that C ⊆ C̃ :
We must show that C̃ is closed, because C̃ ⊇ C0 = C . Let j < n and
a0, . . . , afj−1 ∈ C̃ . From the definition of union we get that each ar ,
0 ≤ r < fj , belongs to some Ci ; let ir be the least i ∈ N such that
ar ∈ Ci . By an easy inductive argument, the range of the finite
sequence 〈ir : 0 ≤ r < fj − 1〉 of natural numbers contains a greatest
element ı̄. Since 〈Ci : i ∈ N〉 is nondecreasing, we have ar ∈ Cir ⊆ Cı̄,
for all 0 ≤ r < fj − 1. We conclude that, if Fj (a0, . . . , afj−1) is defined,

then it belongs to Fj [C
fj
ı̄ ] ⊆ Cı̄+1 ⊆ C̃ , so C̃ is closed.

We prove, next, the reverse inclusion C̃ ⊆ C :

Clearly, C0 = C ⊆ C . If Ci ⊆ C , then Fj [C
fj
i ] ⊆ C , for each j ≤ n − 1,

because C is closed, and, therefore, also Ci+1 ⊆ C . We conclude using
the Induction Principle that Ci ⊆ C , for all i ∈ N and, finally,
C̃ =

⋃
∞

i=0 Ci ⊆ C , as required.
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Proving Properties of Closures

The final theorem of this set is used to prove that all elements of a
closure have some property P.

Theorem

Let P(x) be a property. Assume that

(a) P(a) holds for all a ∈ C .

(b) For each j < n− 1, if P(a0), . . . ,P(afj−1) hold and Fj(a0, . . . , afj−1) is
defined, then P(Fj (a0, . . . , afj−1)) holds.

Then P(x) holds for all x ∈ C .

Hypotheses (a) and (b) ensure that B = {x ∈ A : P(x)} is closed and
C ⊆ B . It follows that C ⊆ B .

The Induction Principle is a special case of the Theorem: Consider
the structure (N,S) (S the successor operation) and C = {0}.
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