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Subsection 1

Cardinality of Sets
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Equipotent Sets

A basic question about a set is: “How many elements does it have?”

We can define the statement “sets A and B have the same number of
elements” without knowing anything about numbers.

Think of the problem of determining whether the set of all patrons in
a theater has the same number of elements as the set of all seats.

To find the answer, the ushers need not count the patrons or the seats.
It is enough if they check that each patron sits in one, and only one,
seat, and each seat is occupied by one, and only one, theater goer.

Definition (Equipotency)

Sets A and B are equipotent (have the same cardinality), denoted
|A| = |B |, if there is a one-to-one function f with domain A and range B .
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Some Examples

(a) {∅, {∅}} and {{{∅}}, {{{∅}}}} are equipotent; let f (∅) = {{∅}} and
f ({∅}) = {{{∅}}}.

(b) {∅} and {∅, {∅}} are not equipotent.

(c) The set of all positive real numbers is equipotent with the set of all
negative real numbers; set f (x) = −x for all positive real numbers x .
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Properties of Equipotency

Theorem

(a) A is equipotent to A.

(b) If A is equipotent to B , then B is equipotent to A.

(c) If A is equipotent to B and B is equipotent to C , then A is
equipotent to C .

(a) IdA is a one-to-one mapping of A onto A.

(b) If f is a one-to-one mapping of A onto B , f −1 is a one-to-one
mapping of B onto A.

(c) If f is a one-to-one mapping of A onto B and g is a one-to-one
mapping of B onto C , then g ◦ f is a one-to-one mapping of A onto
C .
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Comparing Cardinalities

Definition

The cardinality of A is less than or equal to the cardinality of B , denoted
|A| ≤ |B |, if there is a one-to-one mapping of A into B .

Notice that |A| ≤ |B | means that |A| = |C |, for some subset C of B .

We also write |A| < |B | to mean that |A| ≤ |B | and not |A| = |B |,
i.e., that there is a one-to-one mapping of A onto a subset of B , but
there is no one-to-one mapping of A onto B .

This is not the same thing as saying that there exists a one-to-one
mapping of A onto a proper subset of B .

Example: There exists a one-to-one mapping of the set N onto a
proper subset of N, but of course |N| = |N|.
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Lemma on Comparing Cardinalities

Lemma

(a) If |A| < |B | and |A| = |C |, then |C | < |B |.

(b) If |A| ≤ |B | and |B | = |C |, then |A| ≤ |C |.

(c) |A| ≤ |A|.

(d) If |A| ≤ |B | and |B | ≤ |C |, then |A| ≤ |C |.

We prove (a). Assume |A| < |B | and |A| = |C |. There exists a
one-to-one mapping f : A → B , but no one-to-one mapping of A onto
B , and there exists a one-to-one mapping g : A → C of A onto C .

f ◦ g−1 : C → B is a one-to-one mapping, whence |C | ≤ |B|.
Assume there exists a one-to-one mapping h : C → B of C onto B.
Then h ◦ g : A → B is a one-to-one mapping of A onto B, which
contradicts |A| < |B|. Thus, no one-to-one mapping from C onto B

exists.

It follows that |C | < |B |.
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Key Lemma for Antisymmetry

Lemma

If A1 ⊆ B ⊆ A and |A1| = |A|, then |B | = |A|.

Let f be a one-to-one mapping of A onto A1.
By recursion, we define two sequences of sets
A0,A1, . . . ,An, . . . and B0,B1, . . . ,Bn, . . .. Let
A0 = A, B0 = B . For each n, An+1 = f [An]
and Bn+1 = f [Bn]. Since A0 ⊇ B0 ⊇ A1,
it follows by induction An ⊇ An+1, for all n.
Define Cn = An − Bn, C =

⋃

∞

n=0 Cn and D =
A− C (C is blue part).
We have f [Cn] = Cn+1, so f [C ] =

⋃

∞

n=1 Cn. We define a one-to-one
mapping g of A onto B :

g(x) =

{

f (x), if x ∈ C

x , if x ∈ D

Both g ↾ C and g ↾ D are one-to-one functions, and their ranges are
disjoint. Thus g is a one-to-one function and maps A onto f [C ] ∪ D = B .
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The Cantor-Bernstein Theorem

The Cantor-Bernstein Theorem

If |X | ≤ |Y | and |Y | ≤ |X |, then |X | = |Y |.

If |X | ≤ |Y |, then there exists a one-to-one function f that maps X
into Y . If |Y | ≤ |X |, then there exists a one-to-one function g that
maps Y into X . To show that |X | = |Y | we have to exhibit a
one-to-one function which maps X onto Y .
Let us apply first f and then g . The function g ◦ f maps X into X

and is one-to-one. Clearly, g [f [X ]] ⊆ g [Y ] ⊆ X . Moreover, since f

and g are one-to-one, we have |X | = |g [f [X ]]| and |Y | = |g [Y ]|.
Thus the theorem follows from the preceding lemma, by taking
A = X , B = g [Y ], A1 = g [f [X ]].
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Cardinal Numbers

The question of whether ≤ is linear, i.e., whether |A| ≤ |B | or
|B | ≤ |A| holds for all A and B , requires the Axiom of Choice.

It is both conceptually and notationally useful to define |A|, “the
number of elements of the set A”, as an actual set.

Assumption

There are sets called cardinal numbers (or cardinals) with the property
that, for every set X there is a unique cardinal |X | (the cardinal number

of X , the cardinality of X ) and sets X and Y are equipotent if and only if
|X | is equal to |Y |.

In effect, we are assuming existence of a unique “representative” for
each class of mutually equipotent sets.

This assumption can be proved with the help of the Axiom of Choice.

For certain classes of sets, including finite sets, cardinal numbers can
be defined without the Axiom of Choice.
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Subsection 2

Finite Sets
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Finite and Infinite Sets

Finite sets can be defined as those sets whose size is a natural
number.

Definition (Finite and Infinite Sets)

A set S is finite if it is equipotent to some natural number n ∈ N. We
then define |S | = n and say that S has n elements. A set is infinite if it
is not finite.

By our definition, cardinal numbers of finite sets are the natural
numbers.

Obviously, natural numbers are themselves finite sets, and |n| = n, for
all n ∈ N.

To show that the cardinal number of a finite set is unique, we prove

Lemma

If n ∈ N, then there is no one-to-one mapping of n onto a proper subset
X ⊂ n.
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Proof of the Lemma

Lemma

If n ∈ N, then there is no one-to-one mapping of n onto a proper subset
X ⊂ n.

By induction on n.

For n = 0, the assertion is trivially true.
Assume that it is true for n. We proceed to prove it for n + 1. If the
assertion is false for n + 1, then there is a one-to-one mapping f of
n+ 1 onto some X ⊂ n + 1. There are two possible cases: Either
n ∈ X or n 6∈ X .

If n 6∈ X , then X ⊆ n and f ↾ n maps n onto a proper subset
X − {f (n)} of n, a contradiction.
If n ∈ X , then n = f (k) for some k < n. We consider the function g

on n defined as follows: g(i) =

{

f (i), for all i 6= k , i < n

f (n), if i = k < n
. The

function g is one-to-one and maps n onto X − {n}, a proper subset of
n, a contradiction.
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A Corollary of the Ordering Properties

Corollary

(a) If n 6= m, then there is no one-to-one mapping of n onto m.

(b) If |S | = n and |S | = m, then n = m.

(c) N is infinite.

(a) If n 6= m, then either n ⊂ m or m ⊂ n. Thus, there is no one-to-one
mapping of n onto m.

(b) Immediate from (a).

(c) The successor function is a one-to-one mapping of N onto its proper
subset N− {0}. Thus, |N| 6= n, for all n ∈ N.

If m, n ∈ N and m < n in the ordering of N, then m ⊂ n. Thus,
m = |m| < |n| = n, where < is the ordering of cardinal numbers.
Hence there is no need to distinguish between the two orderings, and
we denote both by <.
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Subsets of Finite Sets are Finite

Theorem (Subsets of Finite Sets are Finite)

If X is a finite set and Y ⊆ X , then Y is finite. Moreover, |Y | ≤ |X |.

Assume X = {x0, . . . , xn−1}, where 〈x0, . . . , xn−1〉 is a one-to-one
sequence, and Y 6= ∅. To show that Y is finite, we construct a
one-to-one finite sequence whose range is Y . We use the Recursion
Theorem.

k0 = the least k such that xk ∈ Y ;
ki+1 = the least k such that k > ki , k < n, and xk ∈ Y (if such k

exists).

With A = n = {0, 1, . . . , n − 1}, a = min {k ∈ n : xk ∈ Y } and

g(t, i) =

{

min {k ∈ n : k > t and xk ∈ Y }, if such k exists
undefined, otherwise

, this

satisfies the premises of the Recursion Theorem. Thus, it defines a
sequence 〈k0, . . . , km−1〉. When we let yi = xki , for all i < m, then
Y = {yi : i < m}. By induction, it is shown m < n (ki ≥ i whenever
defined, so, in particular, m − 1 ≤ km−1 ≤ n − 1).
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Images of Finite Sets are Finite

Theorem (Images of Finite Sets are Finite)

If X is a finite set and f is a function, then f [X ] is finite. Moreover,
|f [X ]| ≤ |X |.

Let X = {x0, . . . , xn−1}. Again, we use recursion to construct a finite
one-to-one sequence whose range is f [X ]. We use the version with
f (n + 1) = g(f ↾ n):

k0 = 0;
ki+1 = the least k > ki such that k < n and f (xk ) 6= f (xkj ), for all
j ≤ i , (if it exists).

Set yi = f (xki ). Then f [X ] = {y0, . . . , ym−1} for some m ≤ n.

As a consequence, if 〈ai : i < n〉 is any finite sequence (with or
without repetition), then the set {ai : i < n} is finite.
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The Union of Finite Sets is Finite

Lemma

If X and Y are finite, then X ∪Y is finite. Moreover, |X ∪Y | ≤ |X |+ |Y |,
and, if X and Y are disjoint, then |X ∪ Y | = |X |+ |Y |.

If X = {x0, . . . , xn−1}, Y = {y0, . . . , ym−1}, where 〈x0, . . . , xn−1〉 and
〈y0, . . . , ym−1〉 are one-to-one finite sequences, consider the finite
sequence z = 〈x0, . . . , xn−1, y0, . . . , ym−1〉 of length n+m. Clearly, z
maps n+m onto X ∪ Y . So X ∪ Y is finite and |X ∪ Y | ≤ n +m by
the preceding theorem.
If X and Y are disjoint, z is one-to-one and |X ∪ Y | = n +m.
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The Union of Finitely Many Finite Sets is Finite

Theorem

If S is finite and if every X ∈ S is finite, then
⋃

S is finite.

By induction on the number of elements of S .

The statement is true if |S | = 0.
Assume that the statement is true for all S with |S | = n.
Let S = {X0, . . . ,Xn−1,Xn} be a set with n + 1 elements, each Xi ∈ S

being a finite set. By the induction hypothesis,
⋃n−1

i=0 Xi is finite. We
also have

⋃

S = (

n−1
⋃

i=0

Xi ) ∪ Xn,

which is, therefore, finite by the preceding lemma.
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Power Set of a Finite Set is Finite

Theorem (Power Set of a Finite Set is Finite)

If X is finite, then P(X ) is finite.

By induction on |X |.
If |X | = 0, i.e., X = ∅, then P(X ) = {∅} is finite.
Assume that P(X ) is finite whenever |X | = n. Let Y be a set with
n+1 elements: Y = {y0, . . . , yn}. Let X = {y0, . . . , yn−1}. Note that:

P(Y ) = P(X ) ∪ U, where U = {u : u ⊆ Y and yn ∈ U}.
|U| = |P(X )| because there is a one-to-one mapping of U onto P(X ):
f (u) = u − {yn}, for all u ∈ U.

Hence P(Y ) is a union of two finite sets and, consequently, finite.
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Infinite Sets Have More Elements than Finite Sets

Theorem (Infinite Sets Have More Elements than Finite Sets)

If X is infinite, then |X | > n, for all n ∈ N.

It suffices to show that |X | ≥ n, for all n ∈ N. This can be done by
induction.

Certainly 0 < |X |.
Assume that |X | ≥ n. Then, there is a one-to-one function f : n → X .
Since X is infinite, there exists x ∈ (X − ranf ). Define
g = f ∪ {(n, x)}. g is a one-to-one function on n + 1 into X . We
conclude that |X | ≥ n+ 1.
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Alternative Definition of Finite Sets

We briefly discuss another approach to finiteness that does not use
natural numbers.

A set X is finite if and only if there exists a relation ≺ such that

(a) ≺ is a linear ordering of X .
(b) Every nonempty subset of X has a least and a greatest element in ≺.

Note that this notion of finiteness agrees with the one we defined
using finite sequences:

If X = {x0, . . . , xn−1}, then x0 ≺ · · · ≺ xn−1 describes a linear ordering
of X satisfying the properties.
If (X ,≺) satisfies (a) and (b), we construct, by recursion, a sequence
〈f0, f1, . . .〉. The sequence exhausts all elements of X , but the
construction must come to a halt after a finite number of steps.
Otherwise, the infinite set {f0, f1, f2, . . .} has no greatest element in
(X ,≺).
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Another Definition of Finite Sets

We mention another definition of finite sets not involving natural
numbers.

We say that X is finite if every nonempty family of subsets of X has
a ⊆-maximal element, i.e., if ∅ 6= U ⊆ P(X ), then, there exists
z ∈ U, such that that for no y ∈ U, z ⊂ y .

Yet another possible approach to finiteness involves an attempt to
define finite sets as those sets which are not equipotent to any of
their proper subsets. However, it is impossible to prove equivalence of
this definition with the original one without using the Axiom of
Choice.
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Subsection 3

Countable Sets
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Countable and At Most Countable Sets

The Axiom of Infinity provides us with an example of an infinite set -
the set N of all natural numbers.

We investigate the cardinality of N: i.e., we are interested in sets that
are equipotent to the set N.

Definition (Countable Set)

A set S is countable if |S | = |N|. A set S is at most countable if
|S | ≤ |N|.

A set S is countable if there is a one-to-one mapping of N onto S ,
i.e., if S is the range of an infinite one-to-one sequence.
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Infinite Subsets of Countable Sets

Theorem

An infinite subset of a countable set is countable.

Let A be a countable set, and let B ⊆ A be infinite. There is an
infinite one-to-one sequence 〈an〉

∞
n=0 whose range is A.

We let b0 = ak0 , where k0 is the least k such that ak ∈ B.
Having constructed bn, we let bn+1 = akn+1 , where kn+1 is the least k
such that ak ∈ B and ak 6= bi , for every i ≤ n. Such k exists since B is
infinite.

The existence of the sequence 〈bn〉
∞
n=0 follows easily from the

Recursion Theorem. It is easily seen that B = {bn : n ∈ N} and that
〈bn〉

∞
n=0 is one-to-one. Thus B is countable.

Corollary

A set is at most countable if and only if it is either finite or countable.

If a set S is at most countable then it is equipotent to a subset of a
countable set. So it is either finite or countable.

George Voutsadakis (LSSU) Set Theory June 2014 26 / 73



Finite, Countable and Uncountable Sets Countable Sets

Range of an Infinite Sequence

The range of an infinite one-to-one sequence is countable.

If 〈an〉
∞
n=0 is an infinite sequence which is not one-to-one, then the set

{an}
∞
n=0 may be finite (e.g., this happens if it is a constant sequence).

However, if the range is infinite, then it is countable.

Theorem (Range of an Infinite Sequence)

The range of an infinite sequence 〈an〉
∞
n=0 is at most countable, i.e., either

finite or countable. (In other words, the image of a countable set under
any mapping is at most countable.)

By recursion, we construct a sequence 〈bn〉 (with either finite or
infinite domain) which is one-to-one and has the same range as
〈an〉

∞
n=0.
We let b0 = a0;
Having constructed bn, we let bn+1 = akn+1 , where kn+1 is the least k
such that ak 6= bi , for all i ≤ n. (If no such k exists, then we consider
the finite sequence 〈bi : i ≤ n〉.)

The sequence 〈bi 〉 is one-to-one and its range is {an}
∞
n=0.
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Partitioning a Countable Set into Countable Subsets

Not all properties of size carry over from finite sets to the infinite case.

A countable set S can be decomposed into two disjoint parts, A and
B , such that |A| = |B | = |S |; that is inconceivable if S is finite
(unless S = ∅).

Consider the set E = {2k : k ∈ N} of all even numbers, and the set
O = {2k + 1 : k ∈ N} of all odd numbers. Both E and O are infinite,
hence countable. Thus we have |N| = |E | = |O|, while N = E ∪O

and E ∩ O = ∅.

Even more striking: Let pn denote the n-th prime number, i.e.,
p0 = 2, p1 = 3, etc. Let

S0 = {2k : k ∈ N},S1 = {3k : k ∈ N}, . . . ,Sn = {pkn : k ∈ N}, . . .

The sets Sn, n ∈ N, are mutually disjoint countable subsets of N.
Thus, we have N ⊇

⋃

∞

n=0 Sn, where |Sn| = |N|, and the Sn’s are
mutually disjoint.
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The Union of Two Countable Sets is Countable

Theorem

The union of two countable sets is a countable set.

Let A = {an : n ∈ N} and B = {bn : n ∈ N} be countable. We
construct a sequence 〈cn〉

∞
n=0 as follows:

c2k = ak , and c2k+1 = bk , for all k ∈ N.

Then A ∪ B = {cn : n ∈ N} and, since it is infinite, it is countable.

Corollary

The union of a finite system of countable sets is countable.

This can be proved by induction on the size of the system, using the
preceding theorem.

George Voutsadakis (LSSU) Set Theory June 2014 29 / 73



Finite, Countable and Uncountable Sets Countable Sets

Need for Axiom of Choice

One might be tempted to conclude that the union of a countable
system of countable sets in countable, but this can only be proved if
one uses the Axiom of Choice.

Without the Axiom of Choice, one cannot even prove the following
“evident” theorem:

If S = {An : n ∈ N} and |An| = 2 for each n, then
⋃

∞

n=0 An is
countable!

The difficulty is in choosing, for each n ∈ N, a unique sequence
enumerating An. If such a choice can be made, the result holds, as we
will show later.
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Cartesian Product of Countable Sets

Theorem

If A and B are countable, then A× B is countable.

It suffices to show that |N×N| = |N|, i.e., to construct

either a one-to-one mapping of N×N onto N or
a one-to-one sequence with range N×N.

We provide three methods:

(a) Consider the function

f (k , n) = 2k · (2n + 1)− 1.

f is one-to-one and the range of f is N.
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Other Proofs of the Theorem

(b) Construct a sequence of elements of N×N in the manner prescribed
by the diagram on the left:

(c) Construct a sequence of elements of N×N in the manner prescribed
by the diagram on the right.
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Cartesian Products and Countable Systems

Corollary

The cartesian product of a finite number of countable sets is countable.
Consequently, Nm is countable, for every m > 0.

This statement can be proved by induction.

Theorem

Let 〈An : n ∈ N〉 be a countable system of at most countable sets, and let
〈an : n ∈ N〉 be a system of enumerations of the An, i.e., for each n ∈ N,
an = 〈an(k) : k ∈ N〉 is an infinite sequence, and An = {an(k) : k ∈ N}.
Then

⋃

∞

n=0 An is at most countable.

Define f : N×N →
⋃

∞

n=0 An by f (n, k) = an(k). f maps N×N

onto
⋃

∞

n=0 An. Thus, the latter is at most countable by the preceding
theorems.
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Cartesian Power and Countable Systems of Countable Sets

Theorem

If A is countable, then the set Seq(A) of all finite sequences of elements of
A is countable.

It is enough to prove the theorem for A = N. As Seq(N) =
⋃

∞

n=0 N
n,

the theorem follows from the preceding thorem, if we can produce a
sequence 〈an : n ≥ 1〉 of enumerations of Nn. We do that by
recursion. Let g be a one-to-one mapping of N onto N×N. Define
recursively:

a1(i) = 〈i〉, for all i ∈ N;
an+1(i) = 〈b0, . . . , bn−1, i2〉, where g(i) = (i1, i2) and
〈b0, . . . , bn−1〉 = an(i1), for all i ∈ N.

The idea is to let an+1(i) be the (n + 1)-tuple resulting from the
concatenation of the (i1)-th n-tuple (in the previously constructed
enumeration of n-tuples, an) with i2. An easy proof by induction
shows that an is onto Nn, for all n ≥ 1, and therefore

⋃

∞

n=1 N
n is

countable. Since N0 = {〈〉},
⋃

∞

n=0 N
n is also countable.
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Set of Finite Subsets of a Countable Set

Corollary

The set of all finite subsets of a countable set is countable.

The function F defined by F (〈a0, . . . , an−1〉) = {a0, . . . , an−1} maps
the countable set Seq(A) onto the set of all finite subsets of A. Since
the first set is countable, the second is countable also.
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Integers, Rationals and Equivalence Classes

Theorem

The set of all integers Z and the set of all rational numbers Q are
countable.

Z is countable because it is the union of two countable sets:
Z = {0, 1, 2, 3, . . .} ∪ {−1,−2,−3, . . .}. Q is countable because the
function f : Z× (Z− {0}) → Q with f (p, q) = p/q maps a
countable set onto Q.

Theorem

An equivalence relation on a countable set has at most countably many
equivalence classes.

Let E be an equivalence relation on a countable set A. The function
F defined by F (a) = [a]E maps the countable set A onto the set
A/E . Thus, A/E is at most countable.
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Closures in Structures

Theorem

Let A be a structure with the universe A, and let C ⊆ A be at most
countable. Then C , the closure of C , is also at most countable.

We have shown that C =
⋃

∞

n=0 Ci , where C0 = C and

Ci+1 = Ci ∪ F0[C
f0
i ] ∪ · · · ∪ Fn−1[C

fn−1

i ]. It therefore suffices to
produce a system of enumerations of 〈Ci : i ∈ N〉. Let 〈c(k) : k ∈ N〉
be an enumeration of C , and let g be a mapping of N onto the
countable set (n+ 1)×N×Nf0 × · · · ×Nfn−1 . We define a system of
enumerations 〈ai : i ∈ N〉 recursively as follows:

a0(k) = c(k);

ai+1(k) =

{

Fp(ai (r
0
p ), . . . , ai(r

fp−1
p )), if 0 ≤ p ≤ n− 1

ai(q), if p = n
, where

g(k) = 〈p, q, 〈r00 , . . . , r
f0−1
0 〉, . . . , 〈r0n−1, . . . , r

fn−1−1
n−1 〉〉.

The definition of ai+1 is designed so as to make it transparent that if
ai enumerates Ci , ai+1 enumerates Ci+1 (with many repetitions). By
induction, ai enumerates Ci , for each i ∈ N, as required.
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Aleph-Naught ℵ0

Definition (Aleph-Naught)

|A| = N, for all countable sets A.

We use the symbol ℵ0 (aleph-naught) to denote the cardinal number
of countable sets, i.e., the set of natural numbers, when it is used as
a cardinal number.

Here is a summary of some of the results of this section using the new
notation:

(a) ℵ0 > n, for all n ∈ N;
if ℵ0 ≥ κ, for some cardinal number κ, then κ = ℵ0 or κ = n, for some
n ∈ N.

(b) If |A| = ℵ0, |B| = ℵ0, then |A ∪ B| = ℵ0, |A× B| = ℵ0.
(c) If |A| = ℵ0, then |Seq(A)| = ℵ0.
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Subsection 4

Linear Orderings
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The sets N,Z and Q

We cannot distinguish among the sets N, Z and Q solely on the basis
of their cardinality. The three sets “look” quite different and to
capture the difference, we have to consider the way they are ordered.

The ordering of N by size is quite different from the usual ordering of
Z (for example, N has a least element and Z does not).

Both are quite different from the usual ordering of Q (for example,
between any two distinct rational numbers lie infinitely many
rationals, while between any two distinct integers lie only finitely
many integers).

Linear orderings are an important tool in the study of various
properties of sets.
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Similarity of Linearly Ordered Sets

Definition (Similarity of Linearly Ordered Sets)

Linearly ordered sets (A, <) and (B ,≺) are similar (have the same order

type) if they are isomorphic, i.e., if there is a one-to-one mapping f on A

onto B such that for all a1, a2 ∈ A,

a1 < a2 holds if and only if f (a1) ≺ f (a2) holds.

Similar ordered sets “look alike”; their orderings have the same
properties. It follows that:

(N, <) and (Z, <) are not similar;
Likewise, (Z, <) and (Q, <) are not similar;
(N, <) and (Q, <) are not similar either.
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Order Types

Similarity behaves like an equivalence relation:

(a) (A, <) is similar to (A, <).
(b) If (A, <) is similar to (B,≺), then (B,≺) is similar to (A, <).
(c) If (A1, <1) is similar to (A2, <2) and (A2, <2) is similar to (A3, <3),

then (A1, <1) is similar to (A3, <3).

Just as in the case of cardinal numbers, it is possible to assume that
with each linearly ordered set there is associated an object called its
order type so that similar ordered sets have the same order type.

To avoid technical problems connected with a formal definition of
order types, we use them only as a figure of speech, which can be
avoided by talking about similar sets instead.

We define rigorously order types of well-ordered sets (the most
important special case) later.
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Linearly Ordered Finite Sets are Well-Ordered

Lemma

Every linear ordering on a finite set is a well-ordering.

We show that every nonempty finite subset B of a linearly ordered set
(A, <) has a least element. We accomplish this by induction on the
number of elements of B .

If B has 1 element, the claim is clearly true.
Assume that it is true for all n-element sets. Let B have n+ 1
elements. Then B = {b} ∪ B ′, where B ′ has n elements and b 6∈ B ′.
By the inductive hypothesis, B ′ bas a least element b′.

If b′
< b, then b′ is the least element of B.

Otherwise, b is the least element of B.

In either case, B has a least element.
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Finite Equipotent Linear Orderings are Similar

Theorem

If (A1, <1) and (A2, <2) are linearly ordered sets and |A1| = |A2| is finite,
then (A1, < 1) and (A2, <2) are similar.

We proceed by induction on n = |A1| = |A2|.
If n = 0, then A1 = A2 = ∅ and (A1, <1), (A2, <2) are isomorphic.
Assume that the claim is true for all linear orderings of n-element sets.
Let |A1| = |A2| = n + 1. We proved that <1 and <2 are well-orderings,
so let a1 (a2, respectively) be the least element of (A1, <1) ((A2, <2),
respectively). Now |A1 − {a1}| = |A2 − {a2}| = n, so by the inductive
hypothesis, there is an isomorphism g between (A1 − {a1},
<1 ∩ (A1 − {a1})2) and (A2 − {a2}, <2 ∩ (A2 − {a2})2). Define
f : A1 → A2 by f (a1) = a2 and f (a) = g(a), for all a ∈ A1 − {a1}. It is
easy to check that f is an isomorphism between (A1, <1) and (A2, <2).

Thus, for finite sets order types correspond to cardinal numbers.

Linear orderings of infinite sets are much more interesting.
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Inverse of a Linear Ordering

Lemma

If (A, <) is a linear ordering, then (A, <−1) is also a linear ordering.

The proof is omitted.

Example: The inverse of the ordering (N, <) is the ordering (N, <−1):

. . . <−1 4 <−1 3 <−1 2 <−1 1 <−1 0.

Notice that it is similar to the ordering of negative integers by size:

. . .− 4 < −3 < −2 < −1.

It is not a well-ordering.

George Voutsadakis (LSSU) Set Theory June 2014 45 / 73



Finite, Countable and Uncountable Sets Linear Orderings

Sum of Linearly Ordered Sets

Lemma

Let (A1, <1) and (A2, <2) be linearly ordered sets and A1 ∩ A2 = ∅. The
relation < on A = A1 ∪ A2 defined by

a < b if and only if a, b ∈ A1 and a <1 b

or a, b ∈ A2 and a <2 b

or a ∈ A1, b ∈ A2.

is a linear ordering.

This proof is also omitted.

The set A is ordered by putting all elements of A1 before all elements
of A2.

We say that the linearly ordered set (A, <) is the sum of the linearly
ordered sets (A1, <1) and (A2, <2).
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Example of a Sum

The order type of the sum does not depend on the particular
orderings (A1, <1) and (A2, <2), only on their types.

Example: The linearly ordered set (Z, <) of all integers is similar to
the sum of the linearly ordered sets (N, <−1) and (N, <) (< denotes
the usual ordering of numbers by size).
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Lexicographic Ordering of Product

Lemma

Let (A1, <1) and (A2, <2) be linearly ordered sets. The relation < on
A = A1 × A2 defined by (a1, a2) < (b1, b2) if and only if a1 <1 b1 or
(a1 = b1 and a2 <2 b2) is a linear ordering.

Transitivity: If (a1, a2) < (b1, b2) and (b1, b2) < (c1, c2), we have
either a1 <1 b1 or (a1 = b1 and a2 <2 b2).

In the first case a1 <1 b1 and b1 ≤1 c1 gives a1 <1 c1.
In the second case, either b1 <1 c1 and a1 <1 c1 again, or b1 = c1 and
b2 <2 c2, so that a1 = c1 and a2 <2 c2.

Asymmetry: This follows immediately from asymmetry of <1 and <2.
Linearity: Given (a1, a2) and (b1, b2), one of the following occurs:
(a) a1 <1 b1 (so (a1, a2) < (b1, b2));
(b) b1 <1 a1 (so (b1, b2) < (a1, a2));
(c) a1 = b1 and a2 <2 b2 (so (a1, a2) < (b1, b2));
(d) a1 = b1 and b2 <2 a2 (so (b1, b2) < (a1, a2));
(e) a1 = b1 and a2 = b2 (so (a1, a2) = (b1, b2)).

< is the lexicographic ordering (lexicographic product) of A1×A2.
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Product of a Sequence of Linearly Ordered Sets

Theorem

Let 〈(Ai , <i) : i ∈ I 〉 be an indexed system of linearly ordered sets, where
I ⊆ N. The relation ≺ on

∏

i∈I Ai defined by

f ≺ g iff diff(f , g) = {i ∈ I : fi 6= gi} 6= ∅ and fi0 <i0 gi0 ,
where i0 is the least element of diff(f , g)

is a linear ordering of
∏

i∈I Ai (it is called its lexicographic ordering).

Transitivity: Assume that f ≺ g and g ≺ h. Let i0 and j0 be the least
elements of diff(f , g) and diff(g , h), respectively. If i0 < j0, we have
fi0 <i0 gi0 and gi0 = hi0 , so fi0 <i0 hi0 and i0 is the least element of
diff(f , h). So f ≺ h. The cases i0 = j0 and i0 > j0 are similar.

Asymmetry: f ≺ g and g ≺ f is impossible because it would mean
that fi0 < gi0 and gi0 < fi0 , for i0 = the least element of
diff(f , g) = diff(g , f ).
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Product of a Sequence of Linearly Ordered Sets (Cont’d)

Linearity: If diff(f , g) = ∅, we have f = g . Otherwise, if i0 is the least
element of diff(f , g), either fi0 <i0 gi0 or fi0 >i0 gi0 , holds and,
consequently, either f ≺ g or f ≻ g .

In particular, if (Ai , <i ) = (A, <), for all i ∈ I = N, ≺ is the
lexicographic ordering of the set AN of all infinite sequences of
elements of A.
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Antilexicographic Ordering

One can also choose to compare second coordinates before comparing
the first coordinates and so define the antilexicographic ordering ≺
of A1 × A2:

(a1, a2) ≺ (b1, b2) if and only if a2 <2 b2 or (a2 = b2 and a1 <1 b1).

The proof that ≺ is a linear ordering is entirely analogous to the
lexicographic case.

The two orderings are generally quite different.
Example: The lexicographic and antilexicographic products of
A1 = N = {0, 1, 2, . . .} and A2 = {0, 1} (both ordered by size):

The first ordering is similar to (N, <).
The second is not (it is the sum of two copies of (N, <)).
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Dense Ordered Sets

It is rather surprising that there is a universal linear ordering of
countable sets, i.e., such that every countable linearly ordered set is
similar to one of its subsets.

Definition (Dense Ordered Set)

An ordered set (X , <) is dense if it has at least two elements and if, for
all a, b ∈ X , a < b implies that there exists x ∈ X , such that a < x < b.

Let us call the least and the greatest elements of a linearly ordered set
(if they exist) the endpoints of the set.

The most important example of a countable dense linearly ordered set
is the set Q of all rational numbers, ordered by size.

The ordering is dense because, if r , s are rational numbers and r < s,
then x = r+s

2 is also a rational number, and r < x < s.
Moreover, (Q, <) has no endpoints (if r ∈ Q then r + 1, r − 1 ∈ Q and
r − 1 < r < r + 1).
We prove that all countable linearly ordered sets without endpoints
have the same order type.
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Countable Dense Linear Orders Without Endpoints I

Theorem

Let (P ,≺) and (Q, <) be countable dense linearly ordered sets without
endpoints. Then (P ,≺) and (Q, <) are similar.

Let 〈pn : n ∈ N〉 be a 1-1 sequence such that P = {pn : n ∈ N}. Let
〈qn : n ∈ N〉 be a 1-1 sequence such that Q = {qn : n ∈ N}. A
function h on a subset of P into Q is called a partial isomorphism
from P to Q if p ≺ p′ if and only if h(p) < h(p′), holds for all
p, p′ ∈ domh.

Claim: If h is a partial isomorphism from P to Q such that domh is
finite, and if p ∈ P and q ∈ Q, then there is a partial isomorphism
hp,q ⊇ h such that p ∈ domhp,q and q ∈ ranhp,q .
Let h = {(pi1 , qi1), . . . , (pik , qik )}, where pi1 ≺ pi2 ≺ · · · ≺ pik and, thus,
also qi1 < qi2 < · · · < qik . If p 6∈ domh, we have either p ≺ pi1 , or
pie ≺ p ≺ pie+1, for some 1 < e < k , or pik ≺ p. Take the least natural
number n such that qn is in the same relationship to qi1 , . . . , qik as p is
to to pi1 , . . . , pik .
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Countable Dense Linear Orders Without Endpoints II

We continue with the proof of the Claim:
More precisely, qn is such that:

if p ≺ pi1 , then qn < qi1 ;
if pie ≺ p ≺ pie+1, then qie < qn < qie+1;
if pik ≺ p, then qik < qn.

The possibility of doing this is guaranteed by the fact that (Q, <) is a
dense linear ordering without endpoints. Now h′ = h ∪ {(p, qn)} is a
partial isomorphism. If q ∈ ranh′, then we are done. If q 6∈ ranh′, then
by the same argument as before (with the roles of P and Q reversed),
there is pm ∈ P such that h′ ∪ {(pm, q)} is a partial isomorphism. We
take the least such m, and let hp,q = h′ ∪ {(pm, q)}.

We next construct a sequence of compatible partial isomorphisms by
recursion: Set h0 = ∅ and hn+1 = (hn)pn,qn , where (hn)pn,qn is the
extension of hn (given by the claim) such that pn ∈ dom(hn)pn,qn and
qn ∈ ran(hn)pn,qn . Let h =

⋃

n∈N hn. Then, h : P → Q is an
isomorphism between (P ,≺) and (Q, <).
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Universality Theorem

Theorem

Every countable linearly ordered set can be mapped isomorphically into
any countable dense linearly ordered set without endpoints.

Let (P ,≺) be a countable linearly ordered set and let (Q, <) be a
countable dense linearly ordered set without endpoints. For every
partial isomorphism h from the ordered set (P ,≺) into Q and for
every p ∈ P , we define a partial isomorphism hp ⊇ h such that
p ∈ domhp. Then we use recursion.
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Subsection 5

Complete Linear Orderings
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Gaps in Countable Dense Linear Orderings

The usual ordering < of the set Q of rational numbers is universal
among countable linear orderings.

However, when arithmetic operations on Q are considered, some
things are missing:

For example, there is no rational number x such that x2 = 2.
Another example of this phenomenon appears when one considers
decimal representations of rational numbers. Every rational number has
a decimal expansion that is either finite (e.g., 1

4 = 0.25) or infinite but
periodic from some place onward (e.g., 1

6 = 0.1666 . . .).
Although it is possible to write down decimal expansions 0.a1a2a3 . . .,
where 〈ai 〉∞i=1 is an arbitrary sequence of integers between 0 and 9,
unless the sequence is finite or eventually periodic, there is no rational
number x such that x = 0.a1a2a3 . . ..

It is clear from this discussion that the ordered set (Q, <) has gaps.
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Gaps in Linearly Ordered Sets

Definition (Gap in Linearly Ordered Set)

Let (P , <) be a linearly ordered set. A gap is a pair (A,B) of sets such
that:

(a) A and B are nonempty disjoint subsets of P and A ∪ B = P .

(b) If a ∈ A and b ∈ B , then a < b.

(c) A does not have a greatest element and B does not have a least
element.

Example: Let B = {x ∈ Q : x > 0 and x2 > 2} and
A = Q− B = {x ∈ Q : x < 0 or (x > 0 and x2 < 2)}. It is not
difficult to check that (A,B) is a gap in Q.

Similarly, an infinite decimal expansion which is not eventually
periodic gives rise to a gap.
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Gaps and Nonexistence of Suprema of Bounded Sets

A nonempty subset of a linearly ordered set P is called bounded if it
has both lower and upper bounds.

A set is bounded from above (from below) if it has an upper
(lower) bound.

Let (A,B) be a gap in a linearly ordered set. The set A is bounded
from above because any b ∈ B is its upper bound.

Claim: A does not have a supremum.
If c were a supremum of A, then either c would be the greatest
element of A or the least element of B, as one can easily verify.

Let S be a nonempty set, bounded from above. Let
A = {x : x ≤ s, for some s ∈ S}, B = {x : x > s, for every s ∈ S}. A
and B satisfy Properties (a) and (b) in the definition of a gap. If S
does not have a supremum, then (A,B) is a gap, since the greatest
element of A or the least element of B wold be a supremum of S .
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Complete Dense Linearly Ordered Sets

Definition (Complete Dense Linearly Ordered Set)

Let (P , <) be a dense linearly ordered set. P is complete if every
nonempty S ⊆ P bounded from above has a supremum. Note that (P , <)
is complete if and only if it does not have any gaps.

Not every dense linearly ordered set is complete.

However, the following theorem guarantees that every dense linearly
ordered set can be completed by “filling the gaps”.

Moreover, the result of this completion is essentially uniquely
determined.
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Completion of Dense Linear Orderings

Theorem (Completion of Dense Linear Orderings Without Endpoints)

Let (P , <) be a dense linearly ordered set without endpoints. Then there
exists a complete linearly ordered set (C ,≺) such that

(a) P ⊆ C ;

(b) If p, q ∈ P , then p < q if and only if p ≺ q (≺ agrees with < on P);

(c) P is dense in C , i.e., for any p, q ∈ P , such that p < q, there is
c ∈ C , such that p ≺ c ≺ q;

(d) C does not have endpoints.

Moreover, this complete linearly ordered set (C ,≺) is unique up to
isomorphism over P . I.e., if (C ∗,≺∗) is a complete linearly ordered set
which satisfies (a)-(d), then there is an isomorphism h between (C ,≺) and
(C ∗,≺∗), such that h(x) = x , for all x ∈ P .
The linearly ordered set (C ,≺) is called the completion of (P , <).
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Proof of Uniqueness

Let (C ,≺) and (C ∗,≺∗) be two complete linearly ordered sets
satisfying (a)-(d). We show there exists an isomorphism h : C → C ∗,
such that h(x) = x , for all x ∈ P .

If c ∈ C , let Sc = {p ∈ P : p 4 c}. If c∗ ∈ C∗, let
Sc∗ = {p ∈ P : p 4 c∗}. If S is a nonempty subset of P bounded from
above, let sup S be the supremum of S in (C ,≺) and sup∗ S the
supremum of S in (C∗,≺∗). Then sup Sc = c and sup∗ Sc∗ = c∗.
Define h by h(c) = sup∗ Sc .

h is a mapping of C into C ∗.
h is onto C∗: Let c∗ ∈ C∗. Then c∗ = sup∗ Sc∗ . Let c = sup Sc∗ .
Then Sc = Sc∗ and c∗ = h(c).
If c ≺ d then h(c) ≺∗ h(d): If c ≺ d , by density, there exists p ∈ P ,
such that c ≺ p ≺ d . Thus, sup∗ Sc ≺∗ p ≺∗ sup∗ Sd . Thus,
h(c) ≺∗ h(d).
The preceding parts imply that h is an isomorphism.
h(x) = x , for all x ∈ P : If x ∈ P , then x = supSx = sup∗ Sx , whence
h(x) = x .
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Cuts

To prove existence, we introduce the notion of a Dedekind cut.

Definition (Cut)

A cut is a pair (A,B) of sets such that:

(a) A and B are disjoint nonempty subsets of P and A ∪ B = P .

(b) If a ∈ A and b ∈ B, then a < b.

We recall that a cut is a gap if, in addition, A does not have a
greatest element and B does not have a least element.
Notice that since P is dense, it is not possible that both A has a
greatest element and B has a least element.

Either B has a least element and A does not have a greatest element,
or A has a greatest element and B does not have a least element.

In the first case, the supremum of A is the least element of B . In the
second, the supremum of A is the greatest element of A.

Hence, we consider only the first case and disregard other cuts.
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Dedekind Cuts

Definition (Dedekind Cut)

A cut (A,B) is a Dedekind cut if A does not have a greatest element.

We have two types of Dedekind cuts (A,B):
(a) Those where B = {x ∈ P : x ≥ p}, for some p ∈ P ; we denote

(A,B) = [p].
(b) Gaps.

Consider the set C of all Dedekind cuts (A,B) in (P , <) and order C
as follows:

(A,B) 4 (A′,B ′) if and only if A ⊆ A′.

(C ,4) is a linearly ordered set.

If p, q ∈ P are such that p < q, then we have [p] ≺ [q]. Thus,
(P ′,≺), where P ′ = {[p] : p ∈ P}, is isomorphic to (P , <).
To show that (C ,≺) is a completion of (P ′,≺), it suffices to prove
(c’) P ′ is dense in (C ,≺);
(d’) C does not have endpoints;
(e) (C ,≺) is complete.
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Existence of Completion I

(c’) To show that P ′ is dense in C , let c , d ∈ C be such that c ≺ d . This
means that c = (A,B), d = (A′,B ′), and A ⊂ A′. Let p ∈ P be such
that p ∈ A′ and p 6∈ A. Moreover, we can assume that p is not the
least element of B . Then (A,B) ≺ [p] ≺ (A′,B ′) and, hence, P ′ is
dense in C . This also shows that (C ,≺) is a densely ordered set.

(d’) Similarly, if (A,B) ∈ C , then there is p ∈ B that is not the least
element of B , and we have (A,B) ≺ [p]. Hence C does not have a
greatest element. For analogous reasons, it does not have a least
element.

(e) To show that C is complete, let S be a nonempty subset of C ,
bounded from above. Therefore, there is (A0,B0) ∈ C , such that
A ⊆ A0 whenever (A,B) ∈ S . To find the supremum of S , let

AS =
⋃

{A : (A,B) ∈ S}, BS = P − AS =
⋂

{B : (A,B) ∈ S}.

(AS ,BS) is a cut. (BS is nonempty because B0 ⊆ BS .)
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Existence of Completion II

(e) To show that C is complete, we assumed S be a nonempty subset of
C , bounded from above. Therefore, there is (A0,B0) ∈ C , such that
A ⊆ A0 whenever (A,B) ∈ S . To find the supremum of S , we let

AS =
⋃

{A : (A,B) ∈ S}, BS = P − AS =
⋂

{B : (A,B) ∈ S}.

(AS ,BS) is a cut. (BS is nonempty because B0 ⊆ BS .)
In fact, (AS ,BS) is a Dedekind cut: AS does not have a greatest
element since none of the A’s does.
Since AS ⊇ A for each (A,B) ∈ S , (AS ,BS ) is an upper bound of S .
Let us show that (AS ,BS) is the least upper bound of S. If (A,B) is
any upper bound of S , then A ⊆ A for all (A,B) ∈ S , and, so,
AS =

⋃

{A : (A,B) ∈ S} ⊆ A. Hence, (AS ,BS ) 4 (A,B). Thus
(AS ,BS) is the supremum of S .
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The Reals as the Completion of the Rationals

The ordered set (Q, <) of rationals has a unique completion (up to
isomorphism); this is the ordered set of real numbers. The ordering of
reals coincides with < on Q, so we use < (rather than ≺) for it.

Definition (Real Numbers)

The completion of (Q, <) is denoted (R, <); the elements of R are the
real numbers.

Theorem

(R, <) is the unique (up to isomorphism) complete linearly ordered set
without endpoints that has a countable subset dense in it.

Let (C ,≺) be a complete linearly ordered set without endpoints, and
let P be a countable subset of C dense in C . Then (P ,≺) is
isomorphic to (Q, <). By the uniqueness of completion, (C ,≺) is
then isomorphic to the completion of (Q, <). Thus, (C ,≺) is
isomorphic to (R, <).
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Subsection 6

Uncountable Sets

George Voutsadakis (LSSU) Set Theory June 2014 68 / 73



Finite, Countable and Uncountable Sets Uncountable Sets

Uncountability of R

Georg Cantor proved that uncountable sets exist.

This discovery provided an impetus for the development of set theory
and became a source of its depth and richness.

Theorem (Uncountability of R)

The set R of all real numbers is uncountable.

(R, <) is a dense linear ordering without endpoints. If R were
countable, by a preceding theorem, (R, <) would be isomorphic to
(Q, <). But this is not possible because (R, <) is complete and
(Q, <) is not.

This proof relies on the theory of linear orderings.

Cantor’s original proof used his famous “diagonalization argument”.
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Cantor’s Diagonalization Argument

Theorem (Uncountability of R)

The set R of all real numbers is uncountable.

Assume that R is countable, i.e., R is the range of some infinite

sequence 〈rn〉
∞
n=1. Let a

(n)
0 .a

(n)
1 a

(n)
2 . . . be the decimal expansion of rn.

(We assume that a decimal expansion does not contain only the digit
9 from some place on, so each real number has a unique decimal
expansion.) Let

bn =

{

1, if a
(n)
n = 0

0, otherwise
.

Let r be the real number whose decimal expansion is 0.b1b2b3 . . ..

We have bn 6= a
(n)
n , hence, r 6= rn, for all n = 1, 2, 3, . . ., a

contradiction.

George Voutsadakis (LSSU) Set Theory June 2014 70 / 73



Finite, Countable and Uncountable Sets Uncountable Sets

Uncountability of the Power Set of N

Theorem

The set of all sets of natural numbers is uncountable; in fact,
|P(N)| > |N|.

The function f : N → P(N) defined by f (n) = {n} is one-to-one, so
|N| ≤ |P(N)|.
We prove that for every sequence 〈Sn : n ∈ N〉 of subsets of N there
is some S ⊆ N such that S 6= Sn, for all n ∈ N. This shows that
there is no mapping of N onto P(N), and hence |N| < |P(N)|. We
define the set S ⊆ N as follows:

S = {n ∈ N : n 6∈ Sn}.

The number n is used to distinguish S from Sn:
If n ∈ Sn, then n 6∈ S .
If n 6∈ Sn, then n ∈ S .

In either case, S 6= Sn, as required.
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Uncountability of R

We prove that the set 2N = {0, 1}N of all infinite sequences of 0’s
and 1’s is also uncountable. In fact, it has the same cardinality as
P(N) and R.

Theorem

|P(N)| = |2N| = |R|.

For each S ⊆ N define the characteristic function of S ,

χS : N → {0, 1}: χS(n) =

{

0, if n ∈ S

1, if n 6∈ S
. It is easy to check that

the correspondence between sets and their characteristic functions is a
one-to-one mapping of P(N) onto {0, 1}N.

To complete the proof, we show that |R| ≤ |P(N)| and also
|2N| ≤ |R| and use the Cantor-Bernstein Theorem.
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Uncountability of R (Cont’d)

We first show that |R| ≤ |P(N)| and, then, |2N| ≤ |R|
(a) We have constructed real numbers as cuts in the set Q of all rational

numbers. The function that assigns to each real number r = (A,B)
the set A ⊆ Q is a one-to-one mapping of R into P(Q). Therefore,
|R| ≤ |P(Q)|. As |Q| = |N|, we have |P(Q)| = |P(N)|. Hence
|R| ≤ |P(N)|.

(b) To prove |P(N)| ≤ |R| we use the decimal representation of real
numbers. The function that assigns to each infinite sequence 〈an〉∞n=0

of 0’s and 1’s the unique real number whose decimal expansion is
0.a0a1a2 . . . is a one-to-one mapping of 2N into R. Therefore, we have
|2N| ≤ |R|.

The Cantor-Bernstein Theorem asserts that |R| = |P(N)| = |2N|.

We introduced ℵ0 as a notation for the cardinal of N. Due to the
theorem, the cardinal number of R is usually denoted 2ℵ0 . The set R
of all real numbers is also referred to as “the continuum”; for this
reason, 2ℵ0 is called the cardinality of the continuum. In this
notation, Cantor’s Theorem says that ℵ0 < 2ℵ0 .
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