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Cardinal Numbers Cardinal Arithmetic

Addition of Cardinal Numbers

To define the sum κ+ λ of two cardinals, we use the analogy with
finite sets: If a set A has a elements, a set B has b elements, and if A
and B are disjoint, then A ∪ B has a+ b elements.

Definition (Addition of Cardinal Numbers)

κ+ λ = |A ∪ B |, where |A| = κ, |B | = λ and A ∩ B = ∅.

In order to make this definition legitimate, we have to show that
κ+ λ does not depend on the choice of the sets A and B .

Lemma (Addition of Cardinals is Well-defined)

If A,B ,A′,B ′ are such that |A| = |A′|, |B | = |B ′| and A ∩ B = ∅ =
A′ ∩ B ′, then |A ∪ B | = |A′ ∪ B ′|.

Let f and g be, respectively, a 1-1 mapping of A onto A′ and of B
onto B ′. Then f ∪ g is a 1-1 mapping of A ∪ B onto A′ ∪ B ′.
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Some Properties of Addition of Cardinal Numbers

Addition of cardinals coincides with the ordinary addition of numbers
in case of finite cardinals.

Moreover, many of the usual laws of addition remain valid.

(a) Addition of cardinal numbers is commutative: κ+ λ = λ+ κ;
(b) Addition of cardinal numbers is associative: κ+ (λ+ µ) = (κ+ λ) + µ;

These laws follow directly from the definition.

(c) κ ≤ κ+ λ;
(d) If κ1 ≤ κ2 and λ1 ≤ λ2, then κ1 + λ1 ≤ κ2 + λ2.

However, not all laws of addition of numbers hold for addition of
cardinals. In particular, strict inequalities in formulas are rare in case
of infinite cardinals and those that hold are quite difficult to establish.

Example: Take the simple fact that if n 6= 0, then n+ n > n. If κ is
infinite, then this is no longer true: We have seen that ℵ0 + ℵ0 = ℵ0.

The Axiom of Choice implies that κ+ κ = κ, for every infinite κ.
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Multiplication of Cardinal Numbers

If A and B are sets of a and b elements, respectively, then the
product A× B has a · b elements.

Definition (Multiplication of Cardinal Numbers)

κ · λ = |A× B |, where |A| = κ and |B | = λ.

This definition does not depend on the specific sets:

Lemma (Multiplication is Well-defined)

If A,B ,A′,B ′ satisfy |A| = |A′|, |B | = |B ′|, then |A× B | = |A′ × B ′|.

Let f : A → A′, g : B → B ′ be mappings. We define
h : A× B → A′ × B ′ as follows:

h(a, b) = (f (a), g(b)).

If f and g are one-to-one and onto, so is h.
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Properties of Multiplication of Cardinal Numbers

Multiplication has some expected properties, in particular, it is
commutative, associative and the distributive law holds:
(e) κ · λ = λ · κ;
(f) κ · (λ · µ) = (κ · λ) · µ;
(g) κ · (λ + µ) = κ · λ+ κ · µ.

The last property is a consequence of the equality A× (B ∪ C ) =
(A× B) ∪ (A × C ), that holds for any sets A,B and C .

(h) κ ≤ κ · λ, if λ > 0;
(i) If κ1 ≤ κ2 and λ1 ≤ λ2, then κ1 · λ1 ≤ κ2 · λ2.
(j) κ+ κ = 2 · κ.

If |A| = κ, then 2 · κ is the cardinal of {0, 1} × A. We note that
{0, 1} × A = ({0} × A) ∪ ({1} × A), that |{0} × A| = |{1} × A| = κ

and that the two summands are disjoint. Hence 2 · κ = κ+ κ.
(k) κ+ κ ≤ κ · κ whenever κ ≥ 2.
As in the case of addition, multiplication of infinite cardinals has some
properties different from those valid for finite numbers.

Example: ℵ0 · ℵ0 = ℵ0. Moreover, the Axiom of Choice implies that
κ · κ = κ, for all infinite cardinals.
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Exponentiation of Cardinal Numbers

If A and B are finite sets, with a and b elements, respectively, then ab

is the number of all functions from B to A.

Definition (Exponentiation of Cardinal Numbers)

κλ = |AB |, where |A| = κ and |B | = λ.

The definition of κλ does not depend on the choice of A and B .

Lemma (Exponentiation is Well-defined)

If |A| = |A′| and |B | = |B ′|, then |AB | = |A′B′

|.

Let f : A → A′ and g : B → B ′ be one-to-one and onto. Let
F : AB → A′B′

be defined as follows:

A A′✲

f

B B ′✲
g

❄
k

❄
h

If k ∈ AB , let F (k) = h ∈ A′B′

, where h(g(b)) =
f (k(b)), for all b ∈ B , i.e., h = f ◦k ◦g−1. Then
F is one-to-one and maps AB onto A′B′

.
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Properties of Exponentiation

(l) κ ≤ κλ, if λ > 0;

(m) λ ≤ κλ, if κ > 1;

(n) If κ1 ≤ κ2 and λ1 ≤ λ2, then κλ1
1 ≤ κλ2

2 ;

(o) κ · κ = κ2;

To see this, it suffices to have a one-to-one correspondence between
A× A, the set of all pairs (a, b) with a, b ∈ A, and the set of all
functions from {0, 1} into A. Such a correspondence has already been
established.

Some additional properties are given in the following theorem.
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Additional Properties of Exponentiation

Theorem

(a) κλ+µ = κλ · κµ (b) (κλ)µ = κλ·µ (c) (κ · λ)µ = κµ · λµ.

Let κ = |K |, λ = |L| and µ = |M|.
(a) Assume that L and M are disjoint. Construct a one-to-one mapping F

of K L × KM onto K L∪M . If (f , g) ∈ K L × KM , let F (f , g) = f ∪ g .
We note that f ∪ g is a function, in fact a member of K L∪M . Every
h ∈ K L∪M is equal to F (f , g) for some (f , g) ∈ K L × KM (namely,
f = h ↾ L, g = h ↾ M). It is easily seen that F is one-to-one.

(b) We look for a one-to-one map F of K L×M onto (K L)M . A typical
element of K L×M is a function f : L×M → K . We let F assign to f

the function g : M → K L defined, for all m ∈ M , by g(m) = h ∈ K L,
where h(ℓ) = f (ℓ,m), ℓ ∈ L. F is one-to-one and onto.

(c) We need a one-to-one mapping F of KM × LM onto (K × L)M . For
each (f1, f2) ∈ KM × LM , let F (f1, f2) = g : M → K × L, where
g(m) = (f1(m), f2(m)), for all m ∈ M . It is also easy to check that F is
one-to-one and onto.
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Cantor’s Theorem

Cantor’s Theorem

|X | < |P(X )|, for every set X .

The proof is a straightforward generalization of the proof of the
corresponding theorem for N. Its heart is an abstract form of the
diagonalization argument.

The function f : X → P(X ) defined by f (x) = {x} is clearly
one-to-one. So |X | ≤ |P(X )|.
It remains to show that there is no mapping of X onto P(X ). So let f
be a mapping of X into P(X ). Consider the set

S = {x ∈ X : x 6∈ f (x)}.

Claim: S is not in the range of f .
Suppose that S = f (z), for some z ∈ X . By definition of S , z ∈ S if
and only if z 6∈ f (z). So we have z ∈ S if and only if z 6∈ S , a
contradiction.
So f is not onto P(X ). This completes the proof that |X | < |P(X )|.
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Additional Generalizations

Theorem

|P(X )| = 2|X |, for every set X .

Replace N by X in the proof of |P(N)| = 2|N|.
Cantor’s Theorem can now be restated as

κ < 2κ, for every cardinal number κ.

Finally, for any set of cardinal numbers, there exists a cardinal
number greater than all of them:

Corollary

For any system of sets S , there is a set Y such that |Y | > |X |, for all
X ∈ S .

Let Y = P(
⋃

S). By Cantor’s Theorem, |Y | > |
⋃

S |. Clearly,
|
⋃

S | ≥ |X |, for all X ∈ S (if X ∈ S , then X ⊆
⋃

S). Thus,
|Y | > |X |.
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ℵ0 and 2ℵ0

We summarize the properties of the cardinal number ℵ0, the
cardinality of countable sets, using the concepts of cardinal
arithmetic:

(a) κ < ℵ0 if and only if κ ∈ N.
(b) n+ ℵ0 = ℵ0 + ℵ0 = ℵ0 (n ∈ N).
(c) n · ℵ0 = ℵ0 · ℵ0 = ℵ0 (n ∈ N, n > 0).
(d) ℵn

0 = ℵ0 (n ∈ N, n > 0).

We now study the second most important infinite cardinal number,
the cardinality of the continuum, 2ℵ0 .

Recall that 2ℵ0 is the cardinality of R:

Theorem

|R| = 2ℵ0 .

Has already been shown.
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Properties of the Cardinality of the Continuum

Theorem

(a) n + 2ℵ0 = ℵ0 + 2ℵ0 = 2ℵ0 + 2ℵ0 = 2ℵ0 (n ∈ N).

(b) n · 2ℵ0 = ℵ0 · 2
ℵ0 = 2ℵ0 · 2ℵ0 = 2ℵ0 (n ∈ N, n > 0).

(c) (2ℵ0)n = (2ℵ0)ℵ0 = nℵ0 = ℵℵ0
0 = 2ℵ0 (n ∈ N, n > 1).

(a) This follows from the obvious sequence of inequalities:

2ℵ0 ≤ n + 2ℵ0 ≤ ℵ0 + 2ℵ0 ≤ 2ℵ0 + 2ℵ0 = 2 · 2ℵ0 = 21+ℵ0 = 2ℵ0

using the Cantor-Bernstein Theorem.
(b) Similarly, we have

2ℵ0 ≤ n · 2ℵ0 ≤ ℵ0 · 2
ℵ0 ≤ 2ℵ0 · 2ℵ0 = 2ℵ0+ℵ0 = 2ℵ0 .

(c) We have: 2ℵ0 ≤ (2ℵ0)n ≤ (2ℵ0)ℵ0 = 2ℵ
2
0 = 2ℵ0 ,

2ℵ0 ≤ nℵ0 ≤ ℵℵ0
0 ≤ (2ℵ0)ℵ0 = 2ℵ

2
0 = 2ℵ0 .
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Unexpected Consequences

The preceding theorem, has some rather unexpected consequences:

For example, 2ℵ0 · 2ℵ0 = 2ℵ0 means that |R×R| = |R|. The set
R×R of all pairs of real numbers is in a one-to-one correspondence
with the set of all points in the plane (via a cartesian coordinate
system). Thus we see that there exists a one-to-one mapping of a
straight line R onto a plane R×R.
Similarly, R can be mapped in a 1-1 way onto a three-dimensional
space R×R×R, etc.

These results (due to Cantor) astonished his contemporaries, since
they seem rather counterintuitive.

The next theorem shows that several important sets have the
cardinality of the continuum.
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Sets with the Cardinality of the Continuum

Theorem (Sets with the Cardinality of the Continuum)

(a) The set of all points in the n-dimensional space Rn has cardinality 2ℵ0 .

(b) The set of all complex numbers has cardinality 2ℵ0 .

(c) The set of all infinite sequences of natural numbers has cardinality
2ℵ0 .

(d) The set of all infinite sequences of real numbers has cardinality 2ℵ0 .

(a) |Rn| = (2ℵ0)n by definition of cardinal exponentiation; (2ℵ0)n = 2ℵ0

by the theorem.

(b) Complex numbers are represented by pairs of reals, so the cardinality
of the set of all complex numbers is |R×R| = (2ℵ0)2 = 2ℵ0 .

(c) The set of all infinite sequences of natural numbers is NN and
|NN| = ℵℵ0

0 = ℵ0.

(d) |RN| = (2ℵ0)ℵ0 = 2ℵ0 .
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Complement of a Countable Set in a Continuum

Theorem (Complement of a Countable Set in a Continuum)

If A is a countable subset of B and |B | = 2ℵ0 , then |B − A| = 2ℵ0 .

We can assume without loss of
generality that B = R×R. Let
P = domA, i.e.,
P = {x ∈ R : (x , y) ∈ A, for some y}.

Since |A| = ℵ0, we have |P | ≤ ℵ0. Thus, there exists x0 ∈ R, such
that x0 6∈ P . Consequently, the set X = {x0} ×R is disjoint from A,
so X ⊆ (R×R)− A. Clearly, |X | = |R| = 2ℵ0 and we have
|(R×R)− A| ≥ 2ℵ0 .

In general, using the Axiom of Choice, it can be shown that if
|A| < |B |, then |B − A| = |B |.
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More Sets with the Cardinality of the Continuum

Theorem (More Sets with the Cardinality of the Continuum)

(a) The set of all irrational numbers has cardinality 2ℵ0 .

(b) The set of all infinite sets of natural numbers has cardinality 2ℵ0 .

(c) The set of all one-to-one mappings of N onto N has cardinality 2ℵ0 .

(a) The set of all rationals Q is countable, hence the set R−Q of all
irrational numbers has cardinality 2ℵ0 .

(b) The set of all subsets of N, P(N), has cardinality 2ℵ0 , and the set of
all finite subsets of N is countable. Hence, the set of all infinite
subsets of N has the cardinality of the continuum.
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Proof of Part (c)

(c) Let P be the set of all one-to-one mappings of N onto N.
Since P ⊆ NN, |P | ≤ 2ℵ0 .
Let E and O, respectively, be the sets of all even and odd natural
numbers. If X ⊆ E is infinite, define a mapping fX : N → N by

fX (n) =

{

the kth element of X , if n = 2k
the kth element of N− X , if n = 2k + 1

Notice that N− X ⊇ O is infinite, so fX is a one-to-one mapping of
N onto N. Moreover, it is easy to show that X1 6= X2 implies
fX1

6= fX2
. We thus have a one-to-one correspondence between infinite

subsets of E and certain elements of P . Since there are 2ℵ0 infinite
subsets of E , we get |P | ≥ 2ℵ0 .
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Continuous Functions and Open Sets

Theorem (Continuous Functions and Open Sets)

(a) The set of all continuous functions on R to R has cardinality 2ℵ0 .

(b) The set of all open sets of reals has cardinality 2ℵ0 .

(a) Every continuous function on R is determined by its values on a
dense set, in particular on the rational arguments: If f and g are two
continuous functions on R, and if f (q) = g(q), for all q ∈ Q, then
f = g . Let C be the set of all continuous real-valued functions on R.
Let F be a mapping of C into RQ defined by F (f ) = f ↾ Q. By the
fact above, F is one-to-one, so |C | ≤ |RQ| = (2ℵ0)ℵ0 = 2ℵ0 . On the
other hand, clearly |C | ≥ 2ℵ0 (consider the constant functions).

(b) Every open set is a union of a system of open intervals with rational
endpoints. There are ℵ0 open intervals with rational endpoints, and,
hence, 2ℵ0 such systems. So there are at most 2ℵ0 open sets. Since
for a, b ∈ R, a 6= b, (a,∞) 6= (b,∞), there are at least 2ℵ0 open sets.
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The Continuum Hypothesis

We know that 2ℵ0 is greater than ℵ0, but how much greater?

Cantor conjectured that 2ℵ0 is the next cardinal number after ℵ0:

The Continuum Hypothesis

There is no uncountable cardinal number κ such that κ < 2ℵ0 .

The Continuum Hypothesis asserts that every set of real numbers is
either finite or countable, or else it is equipotent to the set of all real
numbers, with no cardinalities in between.

In 1900, David Hilbert included the Continuum Problem in his famous
list of open problems in mathematics (as Problem 1).

In 1939, Kurt Gödel showed that the Continuum Hypothesis is
consistent with the axioms of set theory. That is, using the axioms of
Zermelo-Fraenkel set theory (including the Axiom of Choice), one
cannot refute the Continuum Hypothesis.

In 1963, Paul Cohen proved that the Continuum Hypothesis is
independent of (cannot be proved from) the axioms.

George Voutsadakis (LSSU) Set Theory June 2014 22 / 23



Cardinal Numbers The Cardinality of the Continuum

A Set with Cardinality Greater than the Continuum

Lemma

The set of all real-valued functions on real numbers has cardinality
22

ℵ0 > 2ℵ0 .

The cardinal number of RR is

(2ℵ0)2
ℵ0 = 2ℵ0·2ℵ0 = 22

ℵ0
.
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